WorldWideScience

Sample records for surface perturbations decouple

  1. Curvature perturbations from dimensional decoupling

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.

  2. 1+1+2 gravitational perturbations on LRS class II spacetimes: decoupling gravito-electromagnetic tensor harmonic amplitudes

    International Nuclear Information System (INIS)

    Burston, R B

    2008-01-01

    This is the first in a series of papers which considers gauge-invariant and covariant gravitational perturbations on arbitrary vacuum locally rotationally symmetric (LRS) class II spacetimes. Ultimately, we derive four decoupled equations governing four specific combinations of the gravito-electromagnetic (GEM) 2-tensor harmonic amplitudes. We use the gauge-invariant and covariant 1+1+2 formalism which Clarkson and Barrett (2003 Class. Quantum Grav. 20 3855) developed for analysis of vacuum Schwarzschild perturbations. In particular we focus on the first-order 1+1+2 GEM system and use linear algebra techniques suitable for exploiting its structure. Consequently, we express the GEM system new 1+1+2 complex form by choosing new complex GEM tensors, which is conducive to decoupling. We then show how to derive a gauge-invariant and covariant decoupled equation governing a newly defined complex GEM 2-tensor. Finally, the GEM 2-tensor is expanded in terms of arbitrary tensor harmonics and linear algebra is used once again to decouple the system further into four real decoupled equations

  3. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  4. Quantifying the ice-albedo feedback through decoupling

    Science.gov (United States)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  5. Studies of spatial decoupling in heterogeneous LMFBR critical assemblies

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Goin, R.W.; Carpenter, S.G.

    1984-01-01

    Recent measurements at the Zero Power Plutonium Reactor have studied the spatial decoupling in large, heterogeneous assemblies. These assemblies exhibited a significantly greater degree of decoupling than previous homogeneous assemblies of similar size. The flux distributions in these heterogeneous assemblies were very sensitive reactivity perturbations, and perturbed flux distributions were achieved relatively slowly. Decoupling was investigated using rod-drop, boron-oscillator and noise-coherence techniques which emphasized different times following the perturbations. Reactivity changes could be measured by analyzing the power history from a single detector using inverse kinetics methods with the assumption of an instantaneous efficiency change for the detector. For assemblies more decoupled than ZPPR-13, the instantaneous efficiency change assumption begins to be invalid

  6. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  7. 1+1+2 gravitational perturbations on LRS class II spacetimes: II. Decoupling gravito-electromagnetic 2-vector and scalar harmonic amplitudes

    International Nuclear Information System (INIS)

    Burston, R B

    2008-01-01

    This is the second paper in a series that considers first-order, gauge-invariant and covariant, gravitational perturbations to locally rotationally symmetric (LRS) class II vacuum spacetimes. Focusing on the 1+1+2 gravito-electromagnetic (GEM) formalism, the first paper used linear algebra techniques to derive four decoupled equations that govern four specific combinations of the GEM 2-tensor harmonic amplitudes. This paper completes the decoupling of the 1+1+2 GEM system by showing how to derive seven new decoupled quantities. Four of these arise when considering the GEM 2-vector harmonic amplitudes and it is found that decoupling is achieved by combining these with the (2/3-sheet) shear 2-tensor harmonic amplitudes. The remaining three arise from the 1+1+2 GEM scalars. Two of which concern the 2-gradient of the gravito-electric scalar that must also be combined with shear 2-tensor amplitudes, whereas the other involves the gravito-magnetic scalar only

  8. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  9. The spectrum of density perturbations in an expanding universe

    Science.gov (United States)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  10. Linear theory of density perturbations in a neutrino+baryon universe

    International Nuclear Information System (INIS)

    Wasserman, I.

    1981-01-01

    Various aspects of the linear theory of density perturbations in a universe containing a significant population of massive neutrinos are calculated. Because linear perturbations in the neutrino density are subject to nonviscous damping on length scales smaller than the effective neutrino Jeans length, the fluctuation spectrum of the neutrino density perturbations just after photon decoupling is expected to peak near the maximum neutrino Jeans mass. The gravitational effects of nonneutrino species are included in calculating the maximum neutrino Jeans mass, which is found to be [M/sub J/(t)]/sub max/approx.10 17 M/sub sun//[m/sub ν/(eV)] 2 , about an order of magnitude smaller than is obtained when nonneutrino species are ignored. An explicit expression for the nonviscous damping of neutrino density perturbations less massive than the maximum neutrino Jeans mass is derived. The linear evolution of density perturbations after photon decoupling is discussed. Of particular interest is the possibility that fluctuations in the neutrino density induce baryon density perturbations after photon decoupling and that the maximum neutrino Jeans determines the characteristic bound mass of galaxy clusters

  11. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  12. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  13. Comparison of two perturbation methods to estimate the land surface modeling uncertainty

    Science.gov (United States)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2007-12-01

    In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.

  14. Current Density and Plasma Displacement Near Perturbed Rational Surface

    International Nuclear Information System (INIS)

    Boozer, A.H.; Pomphrey, N.

    2010-01-01

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  15. Magnetic surfaces and localized perturbations in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    Wobig, H.

    1986-09-01

    The critical dependence of plasma confinement in low-shear stellarators, such as Wendelstein VII-A, on the external rotational transform can be explained on the basis of magnetic surface destruction. External symmetry-breaking perturbations generate islands on the low order rational magnetic surfaces. The islands are largest at t=1/2 and t=1/3. Confinement is optimum in close proximity to these values. In order to study the structure of surfaces under the influence of perturbations, a mapping procedure is used instead of field line integration. It is found that the neighbourhood of low- order rational surfaces is particularly robust against surface destruction. The reason is that in this vicinity only rational surfaces with large m and n exist (t=m/n). On these surfaces the external perturbation only generates small islands. In W VII-A the current leads to the helical windings are one symmetry- breaking perturbation, and there might also be others. It is possible to avoid field errors of this kind in future stellarators. (orig.)

  16. Perturbations of ultralight vector field dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-02-13

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with k{sup 2}≪Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k{sup 2}≫Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c{sub s}{sup 2}≃k{sup 2}/m{sup 2}a{sup 2}. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Φ−Ψ)/Φ∼c{sub s}{sup 2}. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Φ∼c{sub s}{sup 2}. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  17. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  18. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  19. Calculation studies of a multi-layer decoupler system for a decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Ooi, M.; Kiyanagi, Y.

    2001-01-01

    We proposed a multi-layer decoupler as a method to improve pulse characteristics of emitted neutrons from a decoupled hydrogen moderator. Pulse shapes from a moderator with the multi layer-decoupler were compared with those with a traditional single layer decoupler. It was found that the multi-layer decoupler system gave better pulse characteristic with less decrease of peak intensity. (author)

  20. Gauge-invariant perturbations in a spatially flat anisotropic universe

    International Nuclear Information System (INIS)

    Den, Mitsue.

    1986-12-01

    The gauge-invariant perturbations in a spatially flat anisotropic universe with an arbitrary dimension (= N) are studied. In a previous paper the equations for the perturbations with a wave vector k a in one of the axial directions were derived and their solutions were shown. In this paper the perturbations with k a in arbitrary directions are treated. The remarkable properties are that all three types (scalar, vector, and tensor) of perturbations are generally coupled, so that a density perturbation can be produced also by vector or tensor perturbations. The formulation is quite general, but the behavior of the perturbations is discussed in a simple case such that N = 4 and k a is orthogonal to one of the axial directions. In this case, the perturbations are divided into two groups which are dynamically decoupled from each other. The asymptotic behavior of the perturbations in the group containing the density perturbation is discussed. (author)

  1. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL-rupture.

    Science.gov (United States)

    Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn

    2018-05-23

    Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (pMechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The MSSM with large tan(beta) beyond the decoupling limit

    International Nuclear Information System (INIS)

    Hofer, L.; Scherer, D.; Nierste, U.

    2009-01-01

    If the parameter tan(beta) of the MSSM is large, enhanced loop corrections must be resumed to all orders in perturbation theory. We perform this resummation for flavour-diagonal and flavour-violating tan-beta-enhanced corrections without resorting to the decoupling limit, in which the MSSM is reduced to an effective 2HDM. Our results enable us to clarify the dependence of the resumed expressions on the renormalization scheme and to cover two new classes of processes with supersymmetric particles, which are both intractable with the conventional effective-2HDM method: The first class are collider processes with external supersymmetric particles; the second class are loop processes which vanish in the decoupling limit of supersymmetry. Applying the resummation formulae to FCNC processes in B physics, we find an interesting new effect in observables in which the chromomagnetic effective operator is important. (author)

  3. Random surfaces: A non-perturbative regularization of strings?

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1989-12-01

    I review the basic properties of the theory of randum surfaces. While it is by now well known that the theory of (discretized) random surfaces correctly describes the (perturbative) aspects of non-critical strings in d 1. In these lectures I intend to show that the theory of dynamical triangulated random surfaces provides us with a lot of information about the dynamics of both the bosonic string and the superstring even for d>1. I also briefly review recent attempts to define a string field theory (sum over all genus) in this approach. (orig.)

  4. The correlation function for density perturbations in an expanding universe. I - Linear theory

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  5. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  6. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  7. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  8. No difference between mechanical perturbation training with compliant surface and manual perturbation training on knee functional performance after ACL rupture.

    Science.gov (United States)

    Nawasreh, Zakariya; Logerstedt, David; Failla, Mathew; Snyder-Mackler, Lynn

    2017-10-27

    Manual perturbation training improves dynamic knee stability and functional performance after anterior cruciate ligament rupture (ACL-rupture). However, it is limited to static standing position and does not allow time-specific perturbations at different phase of functional activities. The purpose of this study was to investigate whether administering mechanical perturbation training including compliant surface provides effects similar to manual perturbation training on knee functional measures after an acute ACL-rupture. Sixteen level I/II athletes with ACL-ruptures participated in this preliminary study. Eight patients received mechanical (Mechanical) and eight subjects received manual perturbation training (Manual). All patients completed a functional testing (isometric quadriceps strength, single-legged hop tests) and patient-reported measures (Knee Outcome Survey-Activities of Daily Living Scale (KOS-ADLS), Global Rating Score (GRS), International Knee Documentation Committee 2000 (IKDC 2000) at pre- and post-training. 2 × 2 ANOVA was used for data analysis. No significant group-by-time interactions were found for all measures (p > 0.18). Main effects of time were found for single hop (Pre-testing: 85.14% ± 21.07; Post-testing: 92.49% ± 17.55), triple hop (Pre-testing: 84.64% ± 14.17; Post-testing: 96.64% ± 11.14), KOS-ADLS (Pre-testing: 81.13% ± 11.12; Post-testing: 88.63% ± 12.63), GRS (Pre-testing: 68.63% ± 15.73; Post-testing: 78.81% ± 13.85), and IKDC 2000 (Pre-testing: 66.66% ± 9.85; Post-testing: 76.05% ± 14.62) (p training using compliant surfaces induce effects similar to manual perturbation training on knee functional performance after acute ACL-rupture. The clinical significance is both modes of training improve patients' functional-performance and limb-to-limb movement symmetry, and enhancing the patients' self-reported of knee functional measures after ACL rupture. Mechanical

  9. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    Science.gov (United States)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  10. Dynamical decoupling of unbounded Hamiltonians

    Science.gov (United States)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  11. Non-perturbative string theories and singular surfaces

    International Nuclear Information System (INIS)

    Bochicchio, M.

    1990-01-01

    Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)

  12. Decoupling structure and metallogenesis

    International Nuclear Information System (INIS)

    Tong Hangshou

    1993-01-01

    The decoupling structure is, at present, a hot spot for the study in geoscience. A study on the decoupling structure is not only of great theoretical significance, but also of more economic importance. The author briefly discusses the study of the decoupling structure in terms of its present status, implication, characteristics, formation mechanism and theoretical significance, in addition, with emphasis on the expounding of the decoupling structure over endogenic metallic deposits such as oil and gas, coal, gold, silver, copper, lead, zinc and iron etc. At last reconsideration is made on the ore control theory of the decoupling structure to the ore control structure in the uranium ore field in South China. The author proposes a superficial idea in order to provide a basis of geological structures for expanding old mining areas, opening up new areas(bases), and prospecting for large and rich uranium deposits

  13. Decoupled Modulation Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaobu; Huang, Renke; Huang, Zhenyu; Diao, Ruisheng

    2016-06-03

    The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulation control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.

  14. Dirac equation on a curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.T., E-mail: fbrandt@usp.br; Sánchez-Monroy, J.A., E-mail: antosan@usp.br

    2016-09-07

    The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein–Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles. - Highlights: • The thin-layer method is employed to derive the Dirac equation on a curved surface. • A geometric potential is absent at least to first-order in the perturbative expansion. • The effects of the extrinsic curvature are included to rescue the non-relativistic limit. • The resulting Dirac equation is consistent with the Heisenberg uncertainty principle.

  15. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    Science.gov (United States)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  16. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  17. Null-polygonal minimal surfaces in AdS4 from perturbed W minimal models

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji

    2012-11-01

    We study the null-polygonal minimal surfaces in AdS 4 , which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4) 4 /U(1) n-5 generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS 3 case.

  18. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  19. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    Science.gov (United States)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  20. Study of the behaviour of magnetic lines after perturbation of a toroidal field with magnetic surfaces

    International Nuclear Information System (INIS)

    Mercier, C.

    1989-02-01

    The effect of a perturbing magnetic field on a field whose magnetic surfaces are tori nested around a closed central line is studied. This perturbation effect creates magnetic islands around surfaces with rational rotational transform. These islands are investigated analytically, which makes it possible to evaluate their size. The resulting turbulence of the medium can then be studied by calculating the interaction of two neighbouring islands

  1. Decoupling Responsible Management Education

    DEFF Research Database (Denmark)

    Rasche, Andreas; Gilbert, Dirk Ulrich

    2015-01-01

    This article examines under what conditions business schools may decouple the structural effects of their engagement in responsible management education from actual organizational practices. We argue that schools may be unable to match rising institutional pressures to publicly commit to responsi......This article examines under what conditions business schools may decouple the structural effects of their engagement in responsible management education from actual organizational practices. We argue that schools may be unable to match rising institutional pressures to publicly commit...... to responsible management education with their limited internal capacity for change. Our analysis proposes that decoupling is likely if schools (a) are exposed to resource stringency, (b) face overt or covert resistance against change processes, (c) are confronted with competing institutional pressures, and (d......) perceive institutional demands as ambiguous. We discuss two implications of this proposition. On one hand, decoupling can cause dissonant legitimacy perceptions, leading to cynicism around responsible management education within business schools. On the other hand, a temporary inconsistency between talk...

  2. Vortex-strings in N=2 SQCD and bulk-string decoupling

    Science.gov (United States)

    Gerchkovitz, Efrat; Karasik, Avner

    2018-02-01

    We study vortex-strings in four-dimensional N=2 supersymmetric SU( N c ) × U(1) gauge theories with N f hypermultiplets in the fundamental representation of SU( N c ) and general U(1) charges. If N f > N c , the vacuum is not gapped and the low-energy theory contains both the vacuum massless excitations and the string zero-modes. The question we address in this work is whether the vacuum and the string moduli decouple at low energies, allowing a description of the low-energy dynamics in terms of a two-dimensional theory on the string worldsheet. We find a simple condition controlling the bulk-string coupling: if there exist two flavors such that the product of their U(1) charge difference with the magnetic flux carried by the string configuration is not an integer multiple of 2 π, the string has zero-modes that decay slower than 1 /r, where r is the radial distance from the string core. These modes are coupled to the vacuum massless excitations even at low energies. If, however, all such products are integer multiples of 2 π, long-range modes of this type do not exist and the string moduli decouple from the bulk at low energies. This condition turns out to coincide with the condition of trivial Aharonov-Bohm phases for the particles in the spectrum. In addition to a derivation of the bulk-string decoupling criterion using classical analysis of the string zero-modes, we provide a non-perturbative derivation of the criterion, which uses supersymmetric localization techniques.

  3. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  4. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  5. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  6. Decoupling

    NARCIS (Netherlands)

    Fletcher, Robert; Rammelt, Crelis

    2017-01-01

    Central to the United Nations’ post-2015 development agenda grounded in the Sustainable Development Goals is the notion of ‘decoupling’: the need to divorce economic growth from its ecological impact. For proponents, decoupling entails increasing the efficiency with which value is derived from

  7. Null-polygonal minimal surfaces in AdS{sub 4} from perturbed W minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ito, Katsushi [Tokyo Institute of Technology (Japan). Dept. of Physics; Satoh, Yuji [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics

    2012-11-15

    We study the null-polygonal minimal surfaces in AdS{sub 4}, which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4){sub 4}/U(1){sup n-5} generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS{sub 3} case.

  8. Selective Regulator Decoupling and Organizations' Strategic Responses

    NARCIS (Netherlands)

    Heese, Jonas; Krishnan, Ranjani; Moers, Frank

    2016-01-01

    Organizations often respond to institutional pressures by symbolically adopting policies and procedures but decoupling them from actual practice. Literature has examined why organizations decouple from regulatory pressures. In this study, we argue that decoupling occurs within regulatory agencies

  9. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  10. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  11. Hedge Funds and Risk-Decoupling

    DEFF Research Database (Denmark)

    Ringe, Wolf-Georg

    Negative risk-decoupling, otherwise known as empty voting, is a popular strategy amongst hedge funds and other activist investors. In short, it is the attempt to decouple the economic risk from the share’s ownership position, retaining in particular the voting right without risk. This paper uses ...

  12. Decoupling theorem in supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Leon, J; Perez-Mercader, J; Sanchez, M F

    1988-07-21

    We introduce a superfield extension of Weisberger's method for decoupling calculations in multiscale field theories and generalize our previous method which does not require the computation of any Feynman diagram. We illustrate this for the two-scale Wess-Zumino model, showing explicitly how the decoupling takes place.

  13. Correlation function for density perturbations in an expanding universe. I. Linear theory

    International Nuclear Information System (INIS)

    McClelland, J.; Silk, J.

    1977-01-01

    We derive analytic solutions for the evolution of linearized adiabatic spherically symmetric density perturbations and the two-point correlation function in two regimes of the early universe: the radiation-dominated regime prior to decoupling, and the matter-dominated regime after decoupling. The solutions are for an Einstein--de Sitter universe, and include pressure effects. In the radiation era, we find that individual spherically symmetric adiabatic density perturbations smaller than the Jeans length flow outward like water waves instead of oscillating as infinite plane waves. It seems likely that the only primordial structures on scales smaller than the maximum Jeans length which could survive are very regular waves such as infinite plane waves. However, structure does build up in the correlation function over distances comparable with the maximum Jeans length in the radiation regime, and could lead to the eventual formation of galaxy superclusters. This scale (approx.10 17 Ω -2 M/sub sun)/therefore provides a natural dimension for large-scale structure arising out of the early universe. A general technique is described for constructing solutions for the evolution of the two-point correlation function, and applied to study white noise and power-law initial conditions for primordial inhomogeneities

  14. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    Science.gov (United States)

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  15. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    dc capacitor to realize power decoupling, but the conventional power decoupling control scheme for this half-bridge circuit is developed with equal storage capacitances, which may vary in practice and degrade the ac and dc performance. The intention of this paper is to quantify ac and dc...... imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  16. Detection of surface deformation and ionospheric perturbation by the North Korea nuclear test

    Science.gov (United States)

    Park, S. C.; Lee, W. J.; Sohn, D. H.; Lee, D. K.; Jung, H. S.

    2017-12-01

    We used remote sensing data to detect the changes on surface and ionosphere due to the North Korea nuclear test. To analyze the surface deformation before and after the 6th North Korea (NK) nuclear test, we used Satellite Aperture Radar (SAR) images. It was reported that there were some surface deformation with about 10 cm by the 4th test (Wei, 2017) and the 5th test (Jo, 2017) using Interferometric SAR (InSAR) technique. However we could not obtain surface deformation by the 6th test using InSAR with Advanced Land Observation Satellite 2 (ALOS-2) data because of low coherence in the area close to the epicenter. Although the low coherence can be occurred due to several reasons, the main reason may be large deformation in this particular case. Therefore we applied pixel offset method to measure the amount of surface deformation in the area with low coherence. Pixel offset method calculates the deformation in the directions along track and Line-of-Sight (LOS) using cross correlation of intensity of two SAR images before and after the event for a pixel and is used frequently to obtain large deformation of glacier (e.g. Lee et al., 2015). Applying pixel offset method to the area of the 6th NK nuclear test, we obtained about 3 m surface deformation in maximum. It seems that the larger deformation occurs as the mountain slope is steeper.We then analyzed ionospheric perturbation using Global Navigation Satellite System (GNSS) data. If acoustic wave by a nuclear test goes up to the ionosphere and disturbs electron density, then the changes in slant total electron content (STEC) may be detected by GNSS satellites. STEC perturbation has been reported in the previous NK nuclear tests (e.g. Park et al., 2011). We analyzed the third order derivatives of STEC for 51 GNSS stations in South Korea and found that some perturbation were appeared at 4 stations about 20 40 minutes after the test.

  17. End of multifield inflation and the perturbation spectrum

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk

    2007-01-01

    We investigate the dynamics of inflation models driven by multiple, decoupled scalar fields and calculate the Hubble parameter and the amplitude of the lightest field at the end of inflation which may be responsible for interesting, or possibly dangerous cosmological consequences after inflation. The results are very simple and similar to those of the single field inflation, mainly depending on the underlying spectrum of the masses. The mass distribution is heavily constrained by the power spectrum of density perturbations P and the spectral index n s . The overall mass scale gives the amplitude of P, and n s is affected by the number of fields and the spacing between masses in the distribution. The dropout effect of the massive fields makes the perturbation spectrum typically redder than the single field inflation spectrum. We illustrate this using two different mass distributions

  18. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  19. Procedure to decouple reflectance and down-shifting effects in luminescent down-shifting enhanced photovoltaics.

    Science.gov (United States)

    Gabr, Ahmed M; Walker, Alexandre W; Wilkins, Matthew M; Kleiman, Rafael; Hinzer, Karin

    2017-06-12

    The down-shifting (DS) process is a purely optical approach used to improve the short-wavelength response of a solar cell by shifting high-energy photons to the visible range, which can be more efficiently absorbed by the solar cell. In addition to the DS effect, coupling a DS layer to the top surface of a solar cell results in a change in surface reflectance. The two effects are intermixed and therefore, usually reported as a single effect. Here we propose a procedure to decouple the two effects. Analytical equations are derived to decouple the two effects, that consider the experimentally measured quantum efficiency of the solar cell with and without the DS layer, in addition to transfer matrix simulations of the parasitic absorption in the device structure. In this work, an overall degradation of 0.46 mA/cm 2 is observed when adding a DS layer composed of silicon nanocrystals embedded in a quartz matrix to a silicon solar cell of 11% baseline efficiency. To fully understand the contribution from each effect, the surface reflectance and DS effects are decoupled and quantified using the described procedure. We observe an enhancement of 0.27 mA/cm 2 in short-circuit current density due to the DS effect, while the surface reflectance effect leads to a degradation of 0.73 mA/cm 2 in short-circuit current density.

  20. Acoustic-sounder investigation of the effects of boundary-layer decoupling on long-distance polutant transport

    International Nuclear Information System (INIS)

    Miller, E.L.

    1976-01-01

    The formation of the nocturnal surface temperature inversion results in a decrease in vertical momentum transfer which, in turn, is accompanied by an associated reduction in the transfer of pollutants from the atmosphere to surface sinks, thus decoupling the surface layer from the layer above the inversion. The diurnal oscillation in the surface temperature profiles may therefore have a significant effect upon the transport of atmospheric pollutants over long distances. Flights of a large manned balloon with a diverse array of chemical and meteorological instrumentation aboard, known as Project de Vinci, provided a unique opportunity to combine acoustic-sounder observations of qualitative temperature structure in the atmospheric boundary layer with the chemical measurements necessary to gain increased understanding of this decoupling process and its consequences for pollutant transport. The data collected on ozone on the balloon and the grounds are reported

  1. Decoupling Revenue from Energy Sales

    International Nuclear Information System (INIS)

    Potocnik, V.

    2011-01-01

    Energy sector based on the fossil fuels combustion has the largest greenhouse gases emissions, causing the actual climate change with numerous negative impacts. Therefore, different measures for the climate change mitigation are performed, mostly by increasing ENEF-energy efficiency (saving), and by substituting fossil fuels with renewable energy (RE), mainly with limited results. One of the most serious obstacles for implementation of these measures is an opposition of the energy utilities (power and natural gas), whose energy sales, revenue and profit are thus reduced. Consequently, new solutions are asked to decouple utilities revenues from energy sales. Decoupling has started in the US, where most states have at least one utility with some decoupling experience. California has pioneering role since 1982., with impressive results. (author)

  2. Disturbance Decoupling of Switched Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  3. Decoupling, situated cognition and immersion in art.

    Science.gov (United States)

    Reboul, Anne

    2015-09-01

    Situated cognition seems incompatible with strong decoupling, where representations are deployed in the absence of their targets and are not oriented toward physical action. Yet, in art consumption, the epitome of a strongly decoupled cognitive process, the artwork is a physical part of the environment and partly controls the perception of its target by the audience, leading to immersion. Hence, art consumption combines strong decoupling with situated cognition.

  4. Robust Adaptive Sliding Mode Consensus of Multiagent Systems with Perturbed Communications and Actuators

    Directory of Open Access Journals (Sweden)

    Xiao-Zheng Jin

    2013-01-01

    Full Text Available This paper deals with the asymptotic consensus problem for a class of multiagent systems with time-varying additive actuator faults and perturbed communications. The L2 performance of systems is also considered in the consensus controller designs. The upper and lower bounds of faults and perturbations in actuators and communications and controller gains are assumed to be unknown but can be estimated by designing some indirect adaptive laws. Based on the information from the adaptive estimation mechanism, the distributed robust adaptive sliding mode controllers are constructed to automatically compensate for the effects of faults and perturbations and to achieve any given level of L2 gain attenuation from external disturbance to consensus errors. Through Lyapunov functions and adaptive schemes, the asymptotic consensus of resulting adaptive multiagent system can be achieved with a specified performance criterion in the presence of perturbed communications and actuators. The effectiveness of the proposed design is illustrated via a decoupled longitudinal model of F-18 aircraft.

  5. Geometrical method of decoupling

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  6. Inventory classification based on decoupling points

    Directory of Open Access Journals (Sweden)

    Joakim Wikner

    2015-01-01

    Full Text Available The ideal state of continuous one-piece flow may never be achieved. Still the logistics manager can improve the flow by carefully positioning inventory to buffer against variations. Strategies such as lean, postponement, mass customization, and outsourcing all rely on strategic positioning of decoupling points to separate forecast-driven from customer-order-driven flows. Planning and scheduling of the flow are also based on classification of decoupling points as master scheduled or not. A comprehensive classification scheme for these types of decoupling points is introduced. The approach rests on identification of flows as being either demand based or supply based. The demand or supply is then combined with exogenous factors, classified as independent, or endogenous factors, classified as dependent. As a result, eight types of strategic as well as tactical decoupling points are identified resulting in a process-based framework for inventory classification that can be used for flow design.

  7. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented, including...

  8. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Agarwal, Vipin [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsinghi, Hyderabad 500 075 (India)

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  9. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  10. Decoupling of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernreuther, W.

    1983-01-01

    Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme

  11. Is Decoupling GDP Growth from Environmental Impact Possible?

    Science.gov (United States)

    Ward, James D; Sutton, Paul C; Werner, Adrian D; Costanza, Robert; Mohr, Steve H; Simmons, Craig T

    2016-01-01

    The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.

  12. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue

    2004-01-01

    The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained

  13. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  14. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers.

    Science.gov (United States)

    Koslowski, Sebastian; Rosenblatt, Daniel; Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus; Schlickum, Uta

    2017-01-01

    With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal-molecule interaction, which decreases the HOMO-LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping.

  15. Decoupling, effective Lagrangian, and gauge hierarchy in spontaneously broken non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kazama, Y.; Yao, Y.

    1982-01-01

    In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy

  16. Dynamic decoupling of secondary systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Tembulkar, J.M.

    1984-01-01

    The dynamic analysis of primary systems must often be performed decoupled from the secondary system. In doing so, one should assure that the decoupling does not significantly affect the frequencies and the response of the primary systems. The practice consists of heuristic algorithms intended to limit changes in the frequencies. The change in response is not considered. In this paper, changes in both the frequencies and the response are considered. Rational, but simple algorithms are derived to make accurate predictions. Material up to MDOF primary-SDOF secondary system is presented in this paper. MDOF-MDOF systems are treated in a companion paper. (orig.)

  17. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  18. Premoderator optimization of decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Harada, Masahide; Teshigawara, Makoto; Kai, Tetsuya; Sakata, Hideaki; Watanabe, Noboru; Ikeda, Yujiro

    2001-03-01

    An optimization study on the premoderator, the reflector material choice and a length of the linear is carried out for the design of high performance decoupled hydrogen moderator. NMTC/JAM and MCNP-4C are used for the neutronics calculation. The result indicates that, assuming premoderator dimensions and decoupling energy is controlled, the decoupled hydrogen moderator with a premoderator can provide better pulse characteristics than that without the premoderator for a Be reflector. On the selection of the reflector material, it is clearly shown that Pb and Hg reflectors give merits in using the premoderator for higher intensity and reduction of energy deposition in moderator. It is also shown that a H 2 O premoderator provides a short tail while a D 2 O premoderator provides the high peak intensity. Minimum liner length is evaluated to be 20 cm from the viewpoint of neutronics. (author)

  19. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  20. Self-consistent collective-coordinate method for ''maximally-decoupled'' collective subspace and its boson mapping: Quantum theory of ''maximally-decoupled'' collective motion

    International Nuclear Information System (INIS)

    Marumori, T.; Sakata, F.; Maskawa, T.; Une, T.; Hashimoto, Y.

    1983-01-01

    The main purpose of this paper is to develop a full quantum theory, which is capable by itself of determining a ''maximally-decoupled'' collective motion. The paper is divided into two parts. In the first part, the motivation and basic idea of the theory are explained, and the ''maximal-decoupling condition'' on the collective motion is formulated within the framework of the time-dependent Hartree-Fock theory, in a general form called the invariance principle of the (time-dependent) Schrodinger equation. In the second part, it is shown that when the author positively utilize the invariance principle, we can construct a full quantum theory of the ''maximally-decoupled'' collective motion. This quantum theory is shown to be a generalization of the kinematical boson-mapping theories so far developed, in such a way that the dynamical ''maximal-decoupling condition'' on the collective motion is automatically satisfied

  1. Diagrammatic many-body perturbation expansion for atoms and molecules. Pt. 6

    International Nuclear Information System (INIS)

    Moncrieff, D.; Baker, D.J.; Wilson, S.

    1989-01-01

    The efficient evaluation of the second-order expression in the many-body perturbation theory expansion for the correlation energy on vector processing and parallel processing computers is discussed. It is argued that the linked diagram theorem not only leads to the well known theoretical advantages of the many-body perturbation theory approach which allows the calculation of correlation energies for large (i.e. extended molecules or species containing heavy atoms) systems but also decouples the many-electron problem allowing efficient implementation on parallel processing machines. Furthermore, the computation associated with each of the resulting subproblems is very well suited to vector processing machines. Timing tests are reported for the CRAY 1 and CDC Cyber 205 vector processors, for a 1 processor implementation on the CRAY X-MP/48 and the ETA-10E, and for a 4 processor implementation on the Cray X-MP/48. (orig.)

  2. Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    International Nuclear Information System (INIS)

    Wocjan, Pawel

    2006-01-01

    The task of decoupling, i.e., removing unwanted internal couplings of a quantum system and its couplings to an environment, plays an important role in quantum control theory. There are many efficient decoupling schemes based on combinatorial concepts such as orthogonal arrays, difference schemes, and Hadamard matrices. So far these combinatorial decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control, Viola and Knill proposed a method called 'Eulerian decoupling' that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the local structure of internal couplings and couplings to an environment that typically occur in multipartite quantum systems. In this paper we define a combinatorial structure called Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be used to remove both internal couplings and couplings to an environment of a multipartite quantum system. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes

  3. Development and test of decoupler for ICRF antenna in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gen, E-mail: chengen@ipp.ac.cn; Mao, Yuzhou; Zhao, Yanping; Yuan, Shuai; Zhang, Xinjun; Qing, Chengming

    2016-06-15

    Highlights: • The mechanism of decoupler for ICRF antenna is proposed. • Three candidate assembly positions for the decouper can be used. • The performance relies on the ohmic dissipation and the assembly position of decoupler. - Abstract: Ion Cyclotron Range of Frequency (ICRF) heating has been adopted in EAST tokamak as one of main auxiliary heating methods. The ICRF antenna usually consists of multiple launching elements because of limited port and space of tokamak device. Mutual coupling between straps has been observed in previous EAST ICRF current drive experiments. Due to adverse effects of such mutual coupling, many issues induced by cross power cannot be ignored, such as power imbalance in feed lines, high voltage standing wave ratio (VSWR), and etc. To restrain such mutual coupling, A device named decoupler was developed and tested in EAST ICRF system. According to the admittance matrix of load, three assembly positions (oscillation position, optimum position, and smooth position) along transmission line for the decoupler were taken into account and tested. The test results showed that ohmic dissipation in decoupler could not be neglected, which partly influenced the decoupling performance. The oscillation position and optimum position could restrain such adverse effects of ohmic dissipation and showed good decoupling performance. However, they cannot ensure the steady operation during H-mod due to the load variation. Finally, the smooth position has been adopted for EAST I port antenna because of steady decoupling performance comprised with engineering error and load resilience, which sincerely enhance the capability of system operation.

  4. Decoupling Responsible Management Education

    DEFF Research Database (Denmark)

    Rasche, Andreas; Gilbert, Dirk Ulrich

    Business schools increasingly aim to embed corporate responsibility, sustainability, and ethics into their curricular and extracurricular activities. This paper examines under what conditions business schools may decouple the structural effects of their engagement in responsible management educat...

  5. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

    Directory of Open Access Journals (Sweden)

    Sebastian Koslowski

    2017-07-01

    Full Text Available With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111 and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111 results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111, as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS and their shapes can be resolved by spectroscopic mapping.

  6. Shear Wave Generation by Decoupled and Partially Coupled Explosions

    National Research Council Canada - National Science Library

    Stevens, Jeffry L; Xu, Heming; Baker, G. E

    2008-01-01

    The objective of this project is to investigate the sources of shear wave generation by decoupled and partially coupled explosions, and the differences in shear wave generation between tamped and decoupled explosions...

  7. Coupling and decoupling

    International Nuclear Information System (INIS)

    Ravenal, E.C.

    1988-01-01

    This paper reports on the prospects of coupling and decoupling for extended deterrence. Thirty-eight years after the foundation of NATO, the defence of Western Europe still rests on the proposition that an American president will invite the destruction of US cities and the incineration of 100 million of its citizens to repel a Soviet incursion or resist a Soviet ultimatum in Western Europe. On its face, America's war plan---never denied by any president from Truman to Reagan, or by any Secretary of State from George Marshall to George Shultz---is the first use of nuclear weapons, if necessary, to defend Europe. Thus America threatens to turn local defeat into global holocaust. But under the surface, America's nuclear commitment to Europe is not so sure. The word that encapsulates this problem is coupling. Not the title of an Updike novel or an anthropological treatise by Margaret Mead, coupling is a term of art used by strategic analysts to connote the integrity of the chain of escalation, from conventional war in Europe, to theatre nuclear weapons, to the final use of America's ultimate strategic weapon

  8. Optimal Temporal Decoupling in Task Scheduling with Preferences

    NARCIS (Netherlands)

    Endhoven, L.; Klos, T.B.; Witteveen, C.

    2011-01-01

    Multi-agent planning and scheduling concerns finding a joint plan to achieve some set of common goals with several independent agents each aiming to find a plan or schedule for their part of the goals. To avoid conflicts in these individual plans or schedules decoupling is used. Such a decoupling

  9. DECOUPLER DESIGN FOR AN INTERACTING TANKS SYSTEM

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2013-05-01

    Full Text Available The mathematical model forthe two interacting tanks system was derived and the dynamic behavior of thissystem was studied by introducing a step change in inlet flow rate. In thispaper, the analysis of the interaction loops between the controlled variable(liquid level and manipulated variable (inlet flow rate was carried out usingthe relative gain array. Also decoupling technique is applied to eliminate theeffect this interaction by design suitable decouplers for the system. Theresults show that the gain of each loop is cut in half when the opposite loopis closed and the gain of other loop changes sign when the opposite loop isclosed. The decoupling method show that the liquid level of tank one isconstant when the second inlet flow changes and to keep the liquid level oftank two constant the first inlet flow must be changed.

  10. Decoupled Scheme for Time-Dependent Natural Convection Problem II: Time Semidiscreteness

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    stability and the corresponding optimal error estimates are presented. Furthermore, a decoupled numerical scheme is proposed by decoupling the nonlinear terms via temporal extrapolation; optimal error estimates are established. Finally, some numerical results are provided to verify the performances of the developed algorithms. Compared with the coupled numerical scheme, the decoupled algorithm not only keeps good accuracy but also saves a lot of computational cost. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled method for time-dependent natural convection problem.

  11. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  12. Data-free and data-driven spectral perturbations for RANS UQ

    Science.gov (United States)

    Edeling, Wouter; Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    Despite recent developments in high-fidelity turbulent flow simulations, RANS modeling is still vastly used by industry, due to its inherent low cost. Since accuracy is a concern in RANS modeling, model-form UQ is an essential tool for assessing the impacts of this uncertainty on quantities of interest. Applying the spectral decomposition to the modeled Reynolds-Stress Tensor (RST) allows for the introduction of decoupled perturbations into the baseline intensity (kinetic energy), shape (eigenvalues), and orientation (eigenvectors). This constitutes a natural methodology to evaluate the model form uncertainty associated to different aspects of RST modeling. In a predictive setting, one frequently encounters an absence of any relevant reference data. To make data-free predictions with quantified uncertainty we employ physical bounds to a-priori define maximum spectral perturbations. When propagated, these perturbations yield intervals of engineering utility. High-fidelity data opens up the possibility of inferring a distribution of uncertainty, by means of various data-driven machine-learning techniques. We will demonstrate our framework on a number of flow problems where RANS models are prone to failure. This research was partially supported by the Defense Advanced Research Projects Agency under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo), and the DOE PSAAP-II program.

  13. Decoupling of Solid 4He Layers under the Superfluid Overlayer

    Science.gov (United States)

    Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru

    2018-03-01

    It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.

  14. Evidence of a Transition Layer between the Free Surface and the Bulk

    KAUST Repository

    Ogieglo, Wojciech; Tempelman, Kristianne; Napolitano, Simone; Benes, Nieck E.

    2018-01-01

    The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.

  15. Evidence of a Transition Layer between the Free Surface and the Bulk

    KAUST Repository

    Ogieglo, Wojciech

    2018-02-21

    The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.

  16. Evidence of a Transition Layer between the Free Surface and the Bulk.

    Science.gov (United States)

    Ogieglo, Wojciech; Tempelman, Kristianne; Napolitano, Simone; Benes, Nieck E

    2018-03-15

    The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.

  17. Adaptive decoupled power control method for inverter connected DG

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe

    2014-01-01

    an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...

  18. Are CAP Decoupling Policies Really Production Neutral?

    OpenAIRE

    Katranidis, Stelios D.; Kotakou, Christina A.

    2008-01-01

    This paper examines the effects of decoupling policies on Greek cotton production. We estimate a system of cotton supply and input derived demand functions under the hypothesis that producers face uncertainty about prices. Using our estimation results we simulate the effects on cotton production under four alternative policy scenarios: the ‘Old’ CAP regime (i.e. the policy practiced until 2005), the Mid Term Review regime, a fully decoupled policy regime and a free trade-no policy scenario. O...

  19. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    Ren Shenggang; Hu Zhen

    2012-01-01

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO 2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO 2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO 2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO 2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  20. Optimal decoupling controllers revisited

    Czech Academy of Sciences Publication Activity Database

    Kučera, Vladimír

    2013-01-01

    Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory

  1. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    Science.gov (United States)

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Strings as perturbations of evolving spin networks

    International Nuclear Information System (INIS)

    Smolin, Lee

    2000-01-01

    One step in the construction of a background independent formulation of string theory is detailed, in which it is shown how perturbative strings may arise as small fluctuations around histories in a formulation of non-perturbative dynamics of spin networks due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) i s extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory

  3. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  4. Dynamics of a single ion in a perturbed Penning trap: Octupolar perturbation

    International Nuclear Information System (INIS)

    Lara, Martin; Salas, J. Pablo

    2004-01-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincare surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior

  5. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment

    DEFF Research Database (Denmark)

    Ruiz-Ramos, M.; Ferrise, Roberto; Rodríguez, A

    2018-01-01

    type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts....... However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T...

  6. Effects of stochastic noise on dynamical decoupling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Bernad, Jozsef Zsolt; Frydrych, Holger; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2013-07-01

    Dynamical decoupling is a well-established technique to protect quantum systems from unwanted influences of their environment by exercising active control. It has been used experimentally to drastically increase the lifetime of qubit states in various implementations. The efficiency of different dynamical decoupling schemes defines the lifetime. However, errors in control operations always limit this efficiency. We propose a stochastic model as a possible description of imperfect control pulses and discuss the impact of this kind of error on different decoupling schemes. In the limit of continuous control, i.e. if the number of pulses N → ∞, we derive a stochastic differential equation for the evolution of the density operator of the controlled system and its environment. In the context of this modified time evolution we discuss possibilities of protecting qubit states against environmental noise.

  7. Introduction to geometric nonlinear control; Linearization, observability, decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)

    2002-07-15

    These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)

  8. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  9. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)

    2016-01-28

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.

  10. 'Glocalization' versus Notions of Decoupling

    DEFF Research Database (Denmark)

    Jakobsen, Michael

    2011-01-01

    Discussing modes of political and/or economic decoupling in an era of economic globalization seems almost contradictory as the dominating keywords in the latter are increasing integration, interdependency and harmonization. For example, when looking towards the political realm it seems problemati...

  11. Non-perturbative scalar potential inspired by type IIA strings on rigid CY

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei [Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier,F-34095, Montpellier (France); Ketov, Sergei V. [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo,Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University,30 Lenin Ave., Tomsk 634050 (Russian Federation); Wakimoto, Yuki [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan)

    2016-11-10

    Motivated by a class of flux compactifications of type IIA strings on rigid Calabi-Yau manifolds, preserving N=2 local supersymmetry in four dimensions, we derive a non-perturbative potential of all scalar fields from the exact D-instanton corrected metric on the hypermultiplet moduli space. Applying this potential to moduli stabilization, we find a discrete set of exact vacua for axions. At these critical points, the stability problem is decoupled into two subspaces spanned by the axions and the other fields (dilaton and Kähler moduli), respectively. Whereas the stability of the axions is easily achieved, numerical analysis shows instabilities in the second subspace.

  12. High-order perturbations of a spherical collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-01-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  13. Efficiency of Decoupled Farm Programs under Distortionary Taxation

    OpenAIRE

    GianCarlo Moschini; Paolo Sckokai

    1994-01-01

    When lump-sum taxation is not feasible, decoupled transfers to farmers (which require raising government revenue) will entail welfare loss somewhere in the economy. Assuming the government's objective is to assure a given welfare level for farmers, we show that when decoupling is possible, free trade is always superior to some tariff protection for a small country, even under Distortionary taxation. As expected, for a large country there is scope for an optimal tariff policy that improves the...

  14. Evaluating Decoupling Process in OECD Countries: Case Study of Turkey

    Science.gov (United States)

    An, Nazan; Şengün Ucal, Meltem; Kurnaz, M. Levent

    2017-04-01

    Climate change is at the top of the present and future problems facing humanity. Climate change is now largely attributed to human activities and economic activities are the source of human activities that cause climate change by creating pressure on the environment. Providing the sustainability of resources for the future seems possible by reducing the pressure of these economic activities on the environment. Given the increasing population pressure and growth-focused economies, it is possible to say that achieving decoupling is not so easy on a global basis. It is known that there are some problems in developing countries especially in terms of accessing reliable data in transition and implementation process of decoupling. Developed countries' decoupling practices and proper calculation methods can also be a guide for developing countries. In this study, we tried to calculate the comparative decoupling index for OECD countries and Turkey in terms of data suitability, and we showed the differences between them. We tried to indicate the level of decoupling (weak, stable, strong) for each country. We think that the comparison of Turkey can be an example in terms of developing countries. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.

  15. Decoupling mechanisms-paying for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P.S.

    1993-07-15

    In 1988, the National Association of Regulatory Utility Commissioners issued a policy statement that said [open quotes]ratemaking practices should align utilities' pursuit of profit with least-cost planning.[close quotes] This policy coincided with then-current thinkingg at a number of state commissions about the much-touted goal of encouraging utilities to invest in conservation, or demand-side management (DSM) programs, rather than in generating resources to meet system load requirements. Besides utility concerns about recovering conservation program investments, regulators also notices a built-in [open quotes]disincentive[close quotes] to investment in the traditional ratemaking format: If profit is tied to sales, then utilities will always shy away from aggressively promoting conservation. Or so the thinkin went. [open quotes]Decoupling mechanisms[close quotes] were born to remove this disincentive. A number of states have implemented these mechanisms, while several others are investigating the issue. One chief drawback of the mechanisms is that if sales go down, rates go up to cover the shortfall. (Of course, rates go down if sales exceed forecasted levels.) A major problem has been that rate increases have occurred at exactly the wrong time, during economic slowdowns when utilities are struggling to retain price-sensitive customers and residential ratepayers are least likely to bear with quiet stoicism the burden placed on family budgets. Decoupling is seen by some as a step backwards in the move to competitive regulatory reforms that seek to encourage utilities to behave like free-market companies. Indeed, the newest decoupling mechanisms face serious challenge.

  16. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation

    Directory of Open Access Journals (Sweden)

    G. H. Gudmundsson

    2008-07-01

    Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.

  17. A Decoupling Control Algorithm for Unwinding Tension System Based on Active Disturbance Rejection Control

    Directory of Open Access Journals (Sweden)

    Shanhui Liu

    2013-01-01

    Full Text Available This paper presents a new control methodology based on active disturbance rejection control (ADRC for designing the tension decoupling controller of the unwinding system in a gravure printing machine. The dynamic coupling can be actively estimated and compensated in real time, which makes feedback control an ideal approach to designing the decoupling controller of the unwinding system. This feature is unique to ADRC. In this study, a nonlinear mathematical model is established according to the working principle of the unwinding system. A decoupling model is also constructed to determine the order and decoupling plant of the unwinding system. Based on the order and decoupling plant, an ADRC decoupling control methodology is designed to enhance the tension stability in the unwinding system. The effectiveness and capability of the proposed methodology are verified through simulation and experiments. The results show that the proposed strategy not only realises a decoupling control for the unwinding system but also has an effective antidisturbance capability and is robust.

  18. Decoupling as a mechanism of change in mindfulness and acceptance: a literature review.

    Science.gov (United States)

    Levin, Michael E; Luoma, Jason B; Haeger, Jack A

    2015-11-01

    A growing body of research within the acceptance and mindfulness-based therapies suggests that these treatments may function in part by reducing or eliminating (i.e., decoupling) the normative relationships between internal experiences and other internal/overt behavior. Examples of decoupling effects found in this review include reduced relationships between urges to smoke and smoking behavior, between dysphoric mood and depressive cognitions, and between pain intensity and persistence in a painful task. A literature review identified 44 studies on acceptance and mindfulness that demonstrated decoupling effects. Overall, preliminary evidence for decoupling effects were found across a broad range of problem areas, including substance abuse, depression, eating disorders, overeating, chronic pain, anxiety, relationships, anger, avoidance behavior, and self-harm, with the strongest evidence currently available in the area of substance abuse. However, the review also notes a general lack of replication studies on decoupling effects and the need for more well-powered and controlled research testing specific decoupling hypotheses. © The Author(s) 2015.

  19. Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.

  20. Renormalized Lie perturbation theory

    International Nuclear Information System (INIS)

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  1. State policy change: Revenue decoupling in the electricity market

    Science.gov (United States)

    McNeil, Kytson L.

    The study seeks to answer the question, why are states adopting revenue decoupling in the electricity market, by investigating the relationship between policy adoption and attributes of the electricity market, the structure of the state utility commissions, and the political climate of the state. The study examines the period 1978-2008. Two econometric models, the marginal risk set model and the conditional risk set model, are estimated to predict the influence of covariates on the probability of the state adopting revenue decoupling in the electricity market. The models are both variants of the Cox proportional hazard model and use different underlying assumptions about the nature of adoption of revenue decoupling and when the states are considered to be at risk of adoption. Results suggest that market attributes, such as the source of electricity generation in the state, state energy intensity, and the distribution of non-public and public utilities, significantly influence the adoption of the policy. Also, the method of selecting commissioners and the party affiliation of elected officials in the state are important factors. The study concludes by suggestions to improve the implementation and evaluation of revenue decoupling in the electricity markets.

  2. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  3. Optimally combining dynamical decoupling and quantum error correction.

    Science.gov (United States)

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  4. FAST AUTOMATED DECOUPLING AT RHIC

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program

  5. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    Science.gov (United States)

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5 th -generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  6. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.

  7. Decoupling - past trends and prospects for the future[Decoupling of economic growth and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Christian; Holmberg, John; Karlsson, Sten [Chalmers Univ. of Tech., Goeteborg (SE). Physical Resource Theory] [and others

    2002-05-01

    There are widespread demands in society for a dematerialization or decoupling of economic growth from environmental impact. Calls are being made for eco-efficiency and/or an improvement of resource efficiency by a factor of 10. At the same time, some analysts claim there is an environmental Kuznet's curve that supposedly implies a fall in environmental pressure, as we get richer. An improvement in the environmental situation has already been observed in many cases, but there are also many areas where the situation is deteriorating. The purpose of this report is to summarize some key trends of energy and material use over time in both developing and developed countries. We have focused on Sweden, the EU, Japan and the USA as well as China, India and Brazil. The main findings in this paper can be summarized as follows: Absolute emissions of CO{sub 2} have been increasing in most countries and periods studied. Some countries have experienced periods with constant or even falling emissions, but this is the exception rather than the rule, and it has been triggered by oil crises or economic recessions. In order to stabilize atmospheric CO{sub 2} concentrations, CO{sub 2} emissions have to be decoupled much more rapidly than has been the case in the past, and it is extremely unlikely that this will happen by itself. There was some decoupling of CO{sub 2} emissions from GDP in the major economies of the world from 1970 to 1998 in the EU, Japan and the US as well as in some major developing countries such as China, although India actually increased its emissions over GDP by 1.4 per cent/yr over this period. The drop in CO{sub 2} intensity has been prompted by some decoupling of energy from GDP and CO{sub 2} from energy, the latter being a consequence of an increased use of natural gas and nuclear power. In the South, fossil CO 2 per energy tends to increase from rather low levels. With industrialization, the proportion of biomass drops and the proportion of fossil

  8. A closer look at non-decoupling D-Terms

    CERN Document Server

    Staub, Florian

    2016-01-01

    Non-Decoupling D-Terms are an attractive possibility to enhance the tree-level mass of the standard model like Higgs boson in supersymmetric models. We discuss here for the case of a new Abelian gauge group two effects usually neglected in literature: (i) the size of the additional radiative corrections to the Higgs mass due to the presence of the new gauge coupling, and (ii) the impact of gauge kinetic mixing. It is shown that both effects reduce to some extent the positive effect of the non-decoupling D-terms on the Higgs mass.

  9. Use of bias sputtering to enhance decoupling in oxide composite perpendicular recording media

    International Nuclear Information System (INIS)

    Lee, Hwan-Soo; Bain, James A.; Laughlin, David E.

    2007-01-01

    The effects of substrate bias on two types of oxide composite perpendicular recording media CoCrPt-SiO 2 and FePt-MgO were investigated. The use of substrate bias greatly modified the thin film microstructure and resulted in the enhanced grain decoupling in the films. The growth characteristics due to preferential resputtering were interpreted to arise mainly from weak surface bonding to the growing films for nontextured growth, combined with strong cohesion for the textured growth

  10. Surface perturbations of a shallow viscous fluid heated from below and the (2+1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Kraenkel, R.A.; Pereira, J.G.; Manna, M.A.

    1991-01-01

    The (2+1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfy the condition R ≠ 30. A solution to this equation is explicity exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink. (author)

  11. Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of High-Frequency radar surface currents – application to the German Bight

    Directory of Open Access Journals (Sweden)

    A. Barth

    2010-02-01

    Full Text Available High-Frequency (HF radars measure the ocean surface currents at various spatial and temporal scales. These include tidal currents, wind-driven circulation, density-driven circulation and Stokes drift. Sequential assimilation methods updating the model state have been proven successful to correct the density-driven currents by assimilation of observations such as sea surface height, sea surface temperature and in-situ profiles. However, the situation is different for tides in coastal models since these are not generated within the domain, but are rather propagated inside the domain through the boundary conditions. For improving the modeled tidal variability it is therefore not sufficient to update the model state via data assimilation without updating the boundary conditions. The optimization of boundary conditions to match observations inside the domain is traditionally achieved through variational assimilation methods. In this work we present an ensemble smoother to improve the tidal boundary values so that the model represents more closely the observed currents. To create an ensemble of dynamically realistic boundary conditions, a cost function is formulated which is directly related to the probability of each boundary condition perturbation. This cost function ensures that the boundary condition perturbations are spatially smooth and that the structure of the perturbations satisfies approximately the harmonic linearized shallow water equations. Based on those perturbations an ensemble simulation is carried out using the full three-dimensional General Estuarine Ocean Model (GETM. Optimized boundary values are obtained by assimilating all observations using the covariances of the ensemble simulation.

  12. Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model

    Directory of Open Access Journals (Sweden)

    Jianbo Hu

    2017-05-01

    Full Text Available This paper uses the non-competitive I-O model and the Tapio decoupling model to comprehensively analyze the decoupling relationship between the output of the product sector in China and its embodied carbon emissions under trade openness. For this purpose, the Chinese input and output data in 2002, 2005, 2007, 2010, and 2012 are used. This approach is beneficial to identify the direct mechanism for the increased carbon emission in China from a micro perspective and provides a new perspective for the subsequent study about low-carbon economy. The obtained empirical results are as follows: (1 From overall perspective, the decoupling elasticity between the output of the product sector and its embodied carbon emissions decreased. Output and embodied carbon emissions showed a growth link from 2002 to 2005 and a weak decoupling relationship for the rest of the study period. (2 Among the 28 industries in the product sector, the increased growth rate of output in more and more product sectors was no longer accompanied by large CO2 emissions. The number of industries with strong decoupling relationships between output and embodied carbon emissions increased. (3 From the perspective of three industries, the output and embodied carbon emissions in the second and third industries exhibited a growth link only from 2002 to 2005; the three industries presented weak or strong decoupling for the rest of the study period. Through empirical analysis, this paper mainly through the construction of ecological and environmental protection of low carbon agriculture, low carbon cycle industrial system, as well as intensive and efficient service industry to reduce the carbon emissions of China’s product sector.

  13. Schlieren visualization of flow-field modification over an airfoil by near-surface gas-density perturbations generated by a nanosecond-pulse-driven plasma actuator

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Konno, Kaiki; Ando, Akira; Takashima, Keisuke; Kaneko, Toshiro; Tanaka, Naoki; Nonomura, Taku; Asai, Keisuke

    2017-01-01

    Gas-density perturbations near an airfoil surface generated by a nanosecond dielectric-barrier-discharge plasma actuator (ns-DBDPA) are visualized using a high-speed Schlieren imaging method. Wind-tunnel experiments are conducted for a wind speed of 20 m s −1 with an NACA0015 airfoil whose chord length is 100 mm. The results show that the ns-DBDPA first generates a pressure wave and then stochastic perturbations of the gas density near the leading edge of the airfoil. Two structures with different characteristics are observed in the stochastic perturbations. One structure propagates along the boundary between the shear layer and the main flow at a speed close to that of the main flow. The other propagates more slowly on the surface of the airfoil and causes mixing between the main and shear flows. It is observed that these two heated structures interact with each other, resulting in a recovery in the negative pressure coefficient at the leading edge of the airfoil. (paper)

  14. Li-air batteries: Decouple to stabilize

    Science.gov (United States)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  15. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  16. A closer look at non-decoupling D-terms

    Directory of Open Access Journals (Sweden)

    Florian Staub

    2016-07-01

    Full Text Available Non-decoupling D-terms are an attractive possibility to enhance the tree-level mass of the standard model like Higgs boson in supersymmetric models. We discuss here for the case of a new Abelian gauge group two effects usually neglected in literature: (i the size of the additional radiative corrections to the Higgs mass due to the presence of the new gauge coupling, and (ii the impact of gauge kinetic mixing. It is shown that both effects reduce to some extent the positive effect of the non-decoupling D-terms on the Higgs mass.

  17. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  18. Have Market-oriented Reforms Decoupled China’s CO2 Emissions from Total Electricity Generation? An Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Wei Shang

    2016-05-01

    Full Text Available Achieving the decoupling of electric CO2 emissions from total electricity generation is important in ensuring the sustainable socioeconomic development of China. To realize this, China implemented market-oriented reforms to its electric power industry at the beginning of 2003. This study used the Tapio decoupling index, the Laspeyres decomposition algorithm, and decoupling-related data from 1993 to 2012 to evaluate the effect of these reforms. Several conclusions can be drawn based on the empirical analysis. (1 The reforms changed the developmental trend of the decoupling index and facilitated its progress towards strong decoupling. (2 The results forecasted through fitting the curve to the decoupling index indicate that strong decoupling would be realized by 2030. (3 Limiting the manufacturing development and upgrading the generation equipment of the thermal power plants are essential for China to achieve strong decoupling at an early date. (4 China should enhance regulatory pressures and guidance for appropriate investment in thermal power plants to ensure the stable development of the decoupling index. (5 Transactions between multiple participants and electricity price bidding play active roles in the stable development of the decoupling index.

  19. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  20. Brain Emotional Learning Based Intelligent Decoupler for Nonlinear Multi-Input Multi-Output Distillation Columns

    Directory of Open Access Journals (Sweden)

    M. H. El-Saify

    2017-01-01

    Full Text Available The distillation process is vital in many fields of chemical industries, such as the two-coupled distillation columns that are usually highly nonlinear Multi-Input Multi-Output (MIMO coupled processes. The control of MIMO process is usually implemented via a decentralized approach using a set of Single-Input Single-Output (SISO loop controllers. Decoupling the MIMO process into group of single loops requires proper input-output pairing and development of decoupling compensator unit. This paper proposes a novel intelligent decoupling approach for MIMO processes based on new MIMO brain emotional learning architecture. A MIMO architecture of Brain Emotional Learning Based Intelligent Controller (BELBIC is developed and applied as a decoupler for 4 input/4 output highly nonlinear coupled distillation columns process. Moreover, the performance of the proposed Brain Emotional Learning Based Intelligent Decoupler (BELBID is enhanced using Particle Swarm Optimization (PSO technique. The performance is compared with the PSO optimized steady state decoupling compensation matrix. Mathematical models of the distillation columns and the decouplers are built and tested in simulation environment by applying the same inputs. The results prove remarkable success of the BELBID in minimizing the loops interactions without degrading the output that every input has been paired with.

  1. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  2. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi; Tzavaras, Athanasios

    2017-01-01

    system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré

  3. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  4. A hybrid perturbation-Galerkin technique for partial differential equations

    Science.gov (United States)

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  5. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  6. Second order classical perturbation theory for atom surface scattering: analysis of asymmetry in the angular distribution.

    Science.gov (United States)

    Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  7. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  8. Robust dynamical decoupling for quantum computing and quantum memory.

    Science.gov (United States)

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  9. Odd-parity perturbations of the self-similar LTB spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Emily M; Nolan, Brien C, E-mail: emilymargaret.duffy27@mail.dcu.ie, E-mail: brien.nolan@dcu.ie [School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-05-21

    We consider the behaviour of odd-parity perturbations of those self-similar LemaItre-Tolman-Bondi spacetimes which admit a naked singularity. We find that a perturbation which evolves from initially regular data remains finite on the Cauchy horizon. Finiteness is demonstrated by considering the behaviour of suitable energy norms of the perturbation (and pointwise values of these quantities) on natural spacelike hypersurfaces. This result holds for a general choice of initial data and initial data surface. Finally, we examine the perturbed Weyl scalars in order to provide a physical interpretation of our results. Taken on its own, this result does not support cosmic censorship; however, a full perturbation of this spacetime would include even-parity perturbations, so we cannot conclude that this spacetime is stable to all linear perturbations.

  10. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  11. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  12. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.

    Directory of Open Access Journals (Sweden)

    Hendrik Monsees

    Full Text Available In classical aquaponics (coupled aquaponic systems, 1-loop systems the production of fish in recirculating aquaculture systems (RAS and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH. Recently presented decoupled aquaponics (2-loop systems have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+, elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C, abiotic factors (temperature, pH, oxygen, and conductivity, fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

  13. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.

    Science.gov (United States)

    Monsees, Hendrik; Kloas, Werner; Wuertz, Sven

    2017-01-01

    In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

  14. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  15. Unmasking decoupling: Redefining the Resource Intensity of the Economy.

    Science.gov (United States)

    Bithas, Kostas; Kalimeris, Panos

    2018-04-01

    Interest in investigating the complex link between resources and developments has revived recently following studies which support striking "dematerialized" growth over the last hundred years or so. This so-called decoupling effect is defined as the declining quantity of resources required for producing one unit of GDP. Decoupling studies adopt aggregate GDP as the measure of the outcome of the economy. However, this outcome is contributed by the total population which differs over time and between countries. A valid comparison should use a comparable, standardized indicator that adjusts for population size. GDP per capita, the income index, defines in monetary terms the ultimate outcome of the economy and is adopted by international organizations as the standard index for comparing economies. The income index approximates, in monetary terms, the welfare produced by the economic system and enjoyed by individuals. Recently developed alternative indexes of welfare lack broad data coverage and have limited empirical application as yet. For this reason and for ensuring direct comparison with the standard decoupling estimates, our study remains within the monetary context. The present paper re-evaluates the resources-economy link from the perspective of "the resources required for the production of one unit of GDP per capita (Income)" and hence evaluates the efficiency of turning resources into the actual outcome of the economic system. Our estimates suggest that the dependence of global economic growth on natural resources has increased by over 60% in the last 110years (1900-2009), contrasting with the prevailing decoupling estimates which suggest a reduction by 63%. We find that the actual decoupling, which began in the mid-1970s in post-industrial economies, is counterbalanced by the intensified resource intensity of several developing economies. Accordingly, in the pursuit of sustainability, the dematerialization target needs to be more clearly incorporated into

  16. Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Du, H.; Garcia-Serrano, J.; Guemas, V.; Soufflet, Y. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Doblas-Reyes, F.J. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Wouters, B. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-10-15

    A coupled global atmosphere-ocean model is employed to investigate the impact of initial perturbation methods on the behaviour of five-member ensemble decadal re-forecasts. Three initial-condition perturbation strategies, atmosphere only, ocean only and atmosphere-ocean, have been used and the impact on selected variables have been investigated. The impact has been assessed in terms of climate drift, forecast quality and spread. The simulated global means of near-surface air temperature (T2M), sea surface temperature (SST) and sea ice area (SIA) for both Arctic and Antarctic show reasonably good quality, in spite of the non-negligible drift of the model. The skill in terms of correlation is not significantly affected by the particular perturbation method employed. The ensemble spread generated for T2M, SST and land surface precipitation (PCP) saturates quickly with any of the perturbation methods. However, for SIA, Atlantic meridional overturning circulation (AMOC) and ocean heat content (OHC), the spread increases substantially during the forecast time when ocean perturbations are applied. Ocean perturbations are particularly important for Antarctic SIA and OHC for the middle and deep layers of the ocean. The results will be helpful in the design of ensemble prediction experiments. (orig.)

  17. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  18. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Science.gov (United States)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  19. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    International Nuclear Information System (INIS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-01-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label

  20. A critical overview of industrial energy decoupling programs in six developing countries in Asia

    International Nuclear Information System (INIS)

    Luken, Ralph A.; Piras, Stefano

    2011-01-01

    In reviewing the journal literature on the decoupling of energy use and industrial output in the Asian region, particularly with respect to developing countries, we found little information about most country programs other than for China and India and only one article that compared the programs of these two countries. For this reason, we used diverse sources to identify the key programmatic features that have contributed, but clearly are not totally responsible for, decoupling achievements of two countries ( China and Thailand) and then, on the basis of these findings, reviewed emerging industrial energy decoupling programs in four other countries (India, Indonesia, Malaysia and Vietnam). We found that the design of the two successful on-going decoupling programs have common features, which are setting an explicit target for decoupling of energy use and industrial output, a government program that offers financial incentives and imposes specific auditing and reporting requirements and involvement of the manufacturing sector in designing and implementing targets as they apply to individual enterprises. We also found that the emerging programs in the other four countries lack some or all of these essential programmatic features. - Highlights: → We reviewed two on-going and four emerging industrial energy decoupling programs. → These six Asian developing countries have very different rates of decoupling. → The two successful on-going programs share three common features. → These are quantitative targets, supportive programs and industry involvement. → The four emerging programs lack some or all of these features.

  1. Importance of Plasma Response to Non-axisymmetric Perturbations in Tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Garofalo, Andrea M.; Schaffer, Michael J.; Hawryluk, Richard J.; Kaye, Stanley M.; Gerhardt, Stefan P.; Sabbagh, Steve A. and the NSTX Team

    2009-01-01

    Tokamaks are sensitive to deviations from axisymmetry as small as (delta)B/B 0 ∼ 10 -4 . These non-axisymmetric perturbations greatly modify plasma confinement and performance by either destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with associated non-ambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal perturbed equilibria and provides important basis for understanding the sensitivity of tokamak plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently the effect by ideally perturbed plasma currents, is essential to explain locking experiments on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also important for Neoclassical Toroidal Viscosity (NTV) in non-ambipolar transport. The consistency between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled with generalized NTV theory. These plasma response effects will be compared with the previous vacuum superpositions to illustrate the importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently accurate to predict the details of NTV transport, and can be inconsistent when currents associated with a toroidal torque become comparable to ideal perturbed currents

  2. Analysis of near-field data from a Soviet decoupling experiment

    International Nuclear Information System (INIS)

    Saikia, C.K.; McLaren, J.P.; Helmberger, D.V.

    1993-01-01

    Recently Adushkin et al. (1992a) presented some results on a decoupling experiment performed in a salt dome in Azghir near the Caspian Sea. A large coupled shot (64 kT) was followed five years later by a decoupled shot (8 kT) fired in the cavity formed by the earlier event. Both events were recorded locally and this data has been provided by the Soviet scientists in a cooperative effort to better understand the seismic coupling problem. This data, in conjunction with WWSSN observations, is analyzed in an effort to determine the RDP's and an estimate of t. Our preliminary results suggest that RDP appropriate for the large event is quite similar to that of LONGSHOT (80 kT event). Their teleseismic observations are difficult to distinguish in waveshape. The M s for LONGSHOT is 3.9 while that for the coupled Russian event is 3.3. The m b for the LONGSHOT (5.8) is slightly smaller than for the Russian event (m b = 6.0, ISC). This comparison of m b :M s appears to be common to most Azghir events as compared to the US experience. The t* appropriate for Amchitka (t* = 0.9) was established by near-field and teleseismic modeling of waveform data similar to this study where we obtain a t* = 0.5 to 0.6. The RDP for the small event is less well resolved but appears to be only partially decoupled. Prior estimates of decoupling factors range from 30 (based on this data by Adushkin) to 70 (for the Sterling/Salmon experiment). Our analysis produces a decoupling factor of about 15 using near-field data which is similar to the teleseismic modeling result

  3. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2012-01-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  4. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  5. Decoupling limit and throat geometry of non-susy D3 brane

    Energy Technology Data Exchange (ETDEWEB)

    Nayek, Kuntal, E-mail: kuntal.nayek@saha.ac.in; Roy, Shibaji, E-mail: shibaji.roy@saha.ac.in

    2017-03-10

    Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.

  6. Research on Coordinated Robotic Motion Control Based on Fuzzy Decoupling Method in Fluidic Environments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.

  7. Tourism-Related CO2 Emission and Its Decoupling Effects in China: A Spatiotemporal Perspective

    Directory of Open Access Journals (Sweden)

    Zi Tang

    2018-01-01

    Full Text Available The rapid development of the tourism industry has been accompanied by an increase in CO2 emissions and has a certain degree of impact on climate change. This study adopted the bottom-up approach to estimate the spatiotemporal change of CO2 emissions of the tourism industry in China and its 31 provinces over the period 2000–2015. In addition, the decoupling index was applied to analyze the decoupling effects between tourism-related CO2 emissions and tourism economy from 2000 to 2015. The results showed that the total CO2 emissions of the tourism industry rose from 37.95 Mt in 2000 to 100.98 Mt in 2015 with an average annual growth rate of 7.1%. The highest CO2 emissions from the tourism industry occurred in eastern coastal China, whereas the least CO2 emissions were in the west of China. Additionally, the decoupling of CO2 emissions from economic growth in China’s tourism industry had mainly gone through the alternations of negative decoupling and weak decoupling. The decoupling states in most of the Chinese provinces were desirable during the study period. This study may serve as a scientific reference regarding decision-making in the sustainable development of the tourism industry in China.

  8. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  9. Propagation Dynamics Associated with Resonant Magnetic Perturbation Fields in High-Confinement Mode Plasmas inside the KSTAR Tokamak.

    Science.gov (United States)

    Xiao, W W; Evans, T E; Tynan, G R; Yoon, S W; Jeon, Y M; Ko, W H; Nam, Y U; Oh, Y K

    2017-11-17

    The propagation dynamics of resonant magnetic perturbation fields in KSTAR H-mode plasmas with injection of small edge perturbations produced by a supersonic molecular beam injection is reported for the first time. The results show that the perturbation field first excites a plasma response on the q=3 magnetic surface and then propagates inward to the q=2 surface with a radially averaged propagation velocity of resonant magnetic perturbations field equal to 32.5  m/ s. As a result, the perturbation field brakes the toroidal rotation on the q=3 surface first causing a momentum transport perturbation that propagates both inward and outward. A higher density fluctuation level is observed. The propagation velocity of the resonant magnetic perturbations field is larger than the radial propagation velocity of the perturbation in the toroidal rotation.

  10. Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion

    Directory of Open Access Journals (Sweden)

    A. Solomon

    2011-10-01

    Full Text Available Observations suggest that processes maintaining subtropical and Arctic stratocumulus differ, due to the different environments in which they occur. For example, specific humidity inversions (specific humidity increasing with height are frequently observed to occur near cloud top coincident with temperature inversions in the Arctic, while they do not occur in the subtropics. In this study we use nested LES simulations of decoupled Arctic Mixed-Phase Stratocumulus (AMPS clouds observed during the DOE Atmospheric Radiation Measurement Program's Indirect and SemiDirect Aerosol Campaign (ISDAC to analyze budgets of water components, potential temperature, and turbulent kinetic energy. These analyses quantify the processes that maintain decoupled AMPS, including the role of humidity inversions. Key structural features include a shallow upper entrainment zone at cloud top that is located within the temperature and humidity inversions, a mixed layer driven by cloud-top cooling that extends from the base of the upper entrainment zone to below cloud base, and a lower entrainment zone at the base of the mixed layer. The surface layer below the lower entrainment zone is decoupled from the cloud mixed-layer system. Budget results show that cloud liquid water is maintained in the upper entrainment zone near cloud top (within a temperature and humidity inversion due to a down gradient transport of water vapor by turbulent fluxes into the cloud layer from above and direct condensation forced by radiative cooling. Liquid water is generated in the updraft portions of the mixed-layer eddies below cloud top by buoyant destabilization. These processes cause at least 20% of the cloud liquid water to extend into the inversion. The redistribution of water vapor from the top of the humidity inversion to its base maintains the cloud layer, while the mixed layer-entrainment zone system is continually losing total water. In this decoupled system, the humidity inversion is

  11. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    International Nuclear Information System (INIS)

    Huang Ling-Zhi; Xiao Yong; Wen Ji-Hong; Yang Hai-Bin; Wen Xi-Sen

    2016-01-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. (paper)

  12. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  13. Decoupling suspension controller based on magnetic flux feedback.

    Science.gov (United States)

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  14. Non-decoupling of heavy scalars in cosmology

    NARCIS (Netherlands)

    Hardeman, Sjoerd Reimer

    2012-01-01

    The theory describing physics at the highest energy scales likely contains extra dimensions, whose internal degrees of freedom result in many massive field and particles. At accelerator experiments these fields and particles generally decouple from the low energy physics. However, in cosmology

  15. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea. A satellite study

    Energy Technology Data Exchange (ETDEWEB)

    Tarkhova, T.I.; Permyakov, M.S.; Potalova, E.Yu.; Semykin, V.I. [V.I. Il' ichev Pacific Oceanological Institute of the Far Eastern Branch of Russian Academy of Sciences, Vladivostok (Russian Federation). Lab. of the Ocean and Atmosphere Interaction Studies

    2011-07-01

    Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summerautumn period of 2006-2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August- September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 C and wind speed lowered down to {proportional_to}7ms {sup -1} relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of {proportional_to}0.3 {sup -1} on 1 C. (orig.)

  16. Coupling Mechanism and Decoupled Suspension Control Model of a Half Car

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-01-01

    Full Text Available A structure decoupling control strategy of half-car suspension is proposed to fully decouple the system into independent front and rear quarter-car suspensions in this paper. The coupling mechanism of half-car suspension is firstly revealed and formulated with coupled damping force (CDF in a linear function. Moreover, a novel dual dampers-based controllable quarter-car suspension structure is proposed to realize the independent control of pitch and vertical motions of the half car, in which a newly added controllable damper is suggested to be installed between the lower control arm and connection rod in conventional quarter-car suspension structure. The suggested damper constantly regulates the half-car pitch motion posture in a smooth and steady operation condition meantime achieving the expected completely structure decoupled control of the half-car suspension, by compensating the evolved CDF.

  17. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    Science.gov (United States)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  18. A stable high-order perturbation of surfaces method for numerical simulation of diffraction problems in triply layered media

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu

    2017-02-01

    The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution of dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.

  19. Non-linear perturbations of a spherically collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David

    2009-01-01

    Linear perturbation theory has been a successful tool in General Relativity, and can be considered as complementary to full nonlinear simulations. Going to second and higher perturbative orders improves the approximation and offers a controlled way to analyze the nonlinearities of the theory, though the problem becomes much harder computationally. We present a systematic approach to the treatment of high order metric perturbations, focusing on the scenario of nonspherical perturbations of a dynamical spherical background. It is based on the combination of adapted geometrical variables and the use of efficient computer algebra techniques. After dealing with a number of theoretical issues, like the construction of gauge invariants, we apply the formalism to the particular case of a perfect fluid star surrounded by a vacuum exterior. We describe the regularization of the divergences of the perturbations at null infinity and the matching conditions through the surface of the star.

  20. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split

  1. Decoupling economic growth from CO2 emissions: A decomposition analysis of China's household energy consumption

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2016-09-01

    Full Text Available This paper analyzes Chinese household CO2 emissions in 1994–2012 based on the Logarithmic Mean Divisia Index (LMDI structure decomposition model, and discusses the relationship between household CO2 emissions and economic growth based on a decoupling indicator. The results show that in 1994–2012, household CO2 emissions grew in general and displayed an accelerated growth trend during the early 21st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO2 emission growth (an increase of 1.078 Gt CO2 with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO2 emission growth inhibition (0.723 Gt CO2 emission reduction with cumulative contribution rate of 38.27%. Meanwhile, household CO2 emissions are in a weak state of decoupling in general. The change in CO2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure fluctuates between a weak and a strong decoupling state.

  2. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  3. Principle of Global Decoupling with Coupling Angle Modulation

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

  4. Geometry of perturbed Gaussian states and quantum estimation

    International Nuclear Information System (INIS)

    Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A

    2011-01-01

    We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)

  5. Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-03-01

    Full Text Available Unprecedented economic achievement in China’s textile industry (TI has occurred along with rising water consumption. The goal of industrial sustainable development requires the decoupling of economic growth from resource consumption. This paper examines the relationship between water consumption and economic growth, and the internal influence mechanism of China’s TI and its three sub-sectors: the manufacture of textiles (MT sector, the Manufacture of Textile Wearing Apparel, Footwear, and Caps (MTWA sector, and the manufacture of chemical fibers (MCF sector. A decoupling analysis was performed and the Laspeyres decomposition method was applied to the period from 2001 to 2014. We showed that six of the fourteen years analyzed (2003, 2006, 2008, 2009, 2011, and 2013 exhibited a strong decoupling effect and three of the fourteen years (2005, 2007, and 2010 exhibited a weak decoupling effect. Overall, China’s TI experienced a good decoupling between economic growth and water consumption from 2002 to 2014. For the three sub-sectors, the MTWA sector experienced a more significant positive decoupling than the MT and MCF sectors. The decomposition results confirm that the industrial scale factor is the most important driving force of China’s TI water consumption increase, while the water efficiency factor is the most important inhibiting force. The industrial structure adjustment does not significantly affect water consumption. The industrial scale and water use efficiency factors are also the main determinants of change in water consumption for the three sub-sectors.

  6. Decoupling, re-engaging

    DEFF Research Database (Denmark)

    Rose, Jeremy; Schlichter, Bjarne Rerup

    2013-01-01

    the life of a major project and the complex demands of managing those fluctuations. We investigate evolving trust relationships in a longitudinal case analysis of a large integrated hospital system implementation for the Faroe Islands. Trust relationships suffered various breakdowns, but the project...... was able to recover and eventually meet its goals. Based on concepts from Giddens’ later work on modernity, we develop two approaches for managing dynamic trust relationships in implementation projects: decoupling and re-engaging....... in the project is contingent upon many factors, is likely to vary over time and should not be taken for granted. Previous studies have identified the relationship between trust and project outcomes and suggested trust-building strategies but have largely ignored the dynamic quality of trust relations through...

  7. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  8. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    Science.gov (United States)

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  9. Natural relations and Appelquist-Carazzone decoupling theorem

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Krawczyk, P.; Pokorski, S.

    1984-01-01

    It is pointed out that in some cases violation of the Appelquist-Carazzone decoupling theorem in spontaneously broken gauge theories is related to the presence in such theories of the so-called natural zeroth-order relations. In this context heavy-fermion effects in the Glashow-Salam-Weinberg model are discussed

  10. Decoupled simulations of offshore wind turbines with reduced rotor loads and aerodynamic damping

    Directory of Open Access Journals (Sweden)

    S. Schafhirt

    2018-02-01

    Full Text Available Decoupled load simulations are a computationally efficient method to perform a dynamic analysis of an offshore wind turbine. Modelling the dynamic interactions between rotor and support structure, especially the damping caused by the rotating rotor, is of importance, since it influences the structural response significantly and has a major impact on estimating fatigue lifetime. Linear damping is usually used for this purpose, but experimentally and analytically derived formulas to calculate an aerodynamic damping ratio often show discrepancies to measurement and simulation data. In this study decoupled simulation methods with reduced and full rotor loads are compared to an integrated simulation. The accuracy of decoupled methods is evaluated and an optimization is performed to obtain aerodynamic damping ratios for different wind speeds that provide the best results with respect to variance and equivalent fatigue loads at distinct output locations. Results show that aerodynamic damping is not linear, but it is possible to match desired output using decoupled models. Moreover, damping ratios obtained from the empirical study suggest that aerodynamic damping increases for higher wind speeds.

  11. Power corrections from decoupling of the charm quark

    Science.gov (United States)

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham; Alpha Collaboration

    2017-11-01

    Decoupling of heavy quarks at low energies can be described by means of an effective theory as shown by S. Weinberg in Ref. [1]. We study the decoupling of the charm quark by lattice simulations. We simulate a model, QCD with two degenerate charm quarks. In this case the leading order term in the effective theory is a pure gauge theory. The higher order terms are proportional to inverse powers of the charm quark mass M starting at M-2. Ratios of hadronic scales are equal to their value in the pure gauge theory up to power corrections. We show, by precise measurements of ratios of scales defined from the Wilson flow, that these corrections are very small and that they can be described by a term proportional to M-2 down to masses in the region of the charm quark mass.

  12. Improved Decoupling for 13C coil Arrays Using Non-Conventional Matching and Preamplifier Impedance

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Johansen, Daniel Højrup; Hansen, Rie Beck

    In this study, we describe a method to obtain improved preamplifier decoupling for receive-only coils. The method relies on the better decoupling obtained when coils are matched to an impedance higher than 50 . Preamplifiers with inductive imaginary impedance and low real impedance, increase...

  13. Benchmark of AC and DC Active Power Decoupling Circuits for Second-Order Harmonic Mitigation in Kilowatt-Scale Single-Phase Inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2016-01-01

    efficiency and high power density is identified and comprehensively studied, and the commercially available film capacitors, the circuit topologies, and the control strategies adopted for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed...... to further improve the performance of dc decoupling in terms of efficiency and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the simulation and experimental......This paper presents the benchmark study of ac and dc active power decoupling circuits for second order harmonic mitigation in kW scale single-phase inverters. First of all, a brief comparison of recently reported active power decoupling circuits is given, and the best solution that can achieve high...

  14. Decoupling control of vehicle chassis system based on neural network inverse system

    Science.gov (United States)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  15. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  16. Using a Combination of FEM and Perturbation Method in Frequency Split Calculation of a Nearly Axisymmetric Shell with Middle Surface Shape Defect

    Directory of Open Access Journals (Sweden)

    D. S. Vakhlyarskiy

    2016-01-01

    Full Text Available This paper proposes a method to calculate the splitting of natural frequency of the shell of hemispherical resonator gyro. (HRG. The paper considers splitting that arises from the small defect of the middle surface, which makes the resonator different from the rotary shell. The presented method is a combination of the perturbation method and the finite element method. The method allows us to find the frequency splitting caused by defects in shape, arbitrary distributed in the circumferential direction. This is achieved by calculating the perturbations of multiple natural frequencies of the second and higher orders. The proposed method allows us to calculate the splitting of multiple frequencies for the shell with the meridian of arbitrary shape.A developed finite element is an annular element of the shell and has two nodes. Projections of movements are used on the axis of the global cylindrical system of coordinates, as the unknown. To approximate the movements are used polynomials of the second degree. Within the finite element the geometric characteristics are arranged in a series according to the small parameter of perturbations of the middle surface geometry.Movements on the final element are arranged in series according to the small parameter, and in a series according to circumferential angle. With computer used to implement the method, three-dimensional arrays are used to store the perturbed quantities. This allows the use of regular expressions for the mass and stiffness matrices, when building the finite element, instead of analytic dependencies for each perturbation of these matrices of the required order with desirable mathematical operations redefined in accordance with the perturbation method.As a test task, is calculated frequency splitting of non-circular cylindrical resonator with Navier boundary conditions. The discrepancy between the results and semi-analytic solution to this problem is less than 1%. For a cylindrical shell is

  17. Oblique-wing research airplane motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  18. Multiple estimation channel decoupling and optimization method based on inverse system

    Science.gov (United States)

    Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.

  19. Method for decoupling error correction from privacy amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)

    2003-04-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.

  20. Method for decoupling error correction from privacy amplification

    International Nuclear Information System (INIS)

    Lo, Hoi-Kwong

    2003-01-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  1. Decoupling Identification for Serial Two-Link Two-Inertia System

    Science.gov (United States)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  2. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-01-01

    In surface and interstitial high-dose-rate brachytherapy with either 60 Co, 192 Ir, or 169 Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for 60 Co and 1 mm for both 192 Ir and 169 Yb. Transmission data for 60 Co and 192 Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898–4906) for brachytherapy facility shielding; for 169 Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified. (paper)

  3. Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2015-01-01

    studied, where the commercially available film capacitors, circuit topologies, and control strategies for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed to further improve the performance of dc decoupling in terms of efficiency...... and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the experimental results obtained on a 2 kW single-phase inverter.......This paper presents the benchmark study of ac and dc active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters. First of all, the best solutions of active power decoupling to achieve high efficiency and power density are identified and comprehensively...

  4. Reliability-based optimal structural design by the decoupling approach

    International Nuclear Information System (INIS)

    Royset, J.O.; Der Kiureghian, A.; Polak, E.

    2001-01-01

    A decoupling approach for solving optimal structural design problems involving reliability terms in the objective function, the constraint set or both is discussed and extended. The approach employs a reformulation of each problem, in which reliability terms are replaced by deterministic functions. The reformulated problems can be solved by existing semi-infinite optimization algorithms and computational reliability methods. It is shown that the reformulated problems produce solutions that are identical to those of the original problems when the limit-state functions defining the reliability problem are affine. For nonaffine limit-state functions, approximate solutions are obtained by solving series of reformulated problems. An important advantage of the approach is that the required reliability and optimization calculations are completely decoupled, thus allowing flexibility in the choice of the optimization algorithm and the reliability computation method

  5. Cladding technique for development of Ag-In-Cd decoupler

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Kikuchi, K.; Kogawa, H.; Ikeda, Y.; Kawai, M.; Kurishita, H.; Konashi, K.

    2005-01-01

    To develop a Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between two plates of the Al alloy (A6061-T6). We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 1 h, respectively, for small test pieces (φ 22 mm in diam. x 5 mm in height). Especially, a sandwich case (a Ag-In plate with thickness of 0.5 mm between two Ag-Cd plates with thickness of 1.25 mm) gave easier (or better) bonding results. Though a hardened layer is found in the bonding layer, the rupture strength of the bonding layer is more than 30 MPa, which is higher than the design stress in our application

  6. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-09-15

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.

  7. Tension perturbations of black brane spacetimes

    International Nuclear Information System (INIS)

    Traschen, Jennie; Fox, Daniel

    2004-01-01

    We consider black brane spacetimes that have at least one spatial translation Killing field that is tangent to the brane. A new parameter, the tension of a spacetime, is defined. The tension parameter is associated with spatial translations in much the same way that the ADM mass is associated with the time translation Killing field. In this work, we explore the implications of the spatial translation symmetry for small perturbations around a background black brane. For static-charged black branes we derive a law which relates the tension perturbation to the surface gravity times the change in the horizon area, plus terms that involve variations in the charges and currents. We find that as a black brane evaporates the tension decreases. We also give a simple derivation of a first law for black brane spacetimes. These constructions hold when the background stress-energy is governed by a Hamiltonian, and the results include arbitrary perturbative stress-energy sources

  8. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail: wangfujun@tju.edu.cn; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  9. Long-Term Adaptations to Unexpected Surface Perturbations: Postural Control During Stance and Gait in Train Conductors.

    Science.gov (United States)

    Baumgart, Christian; Hoppe, Matthias Wilhelm; Freiwald, Jürgen

    2016-01-01

    The authors aimed to evaluate the differences in postural control during stance and gait between train conductors and controls. Twenty-one train conductors and 21 office workers performed 6 unilateral and bilateral balance tests on stable and unstable surfaces as well as a gait analysis. In the balance tests, the mean velocity of the center of pressure and unstable surface was measured. In the bilateral balance tests the selected stance width was measured. During gait the length, width, frequency, and velocity of the steps were calculated from the ground reaction forces. Train conductors showed a significantly greater step width during gait (15.4 ± 4.7 vs. 13.0 ± 3.4 cm; p = .035) and stance width during the bilateral stance on the unstable surface (21.0 ± 5.1 vs. 17.8 ± 3.7 cm; p = .026) than the office workers, while no differences were revealed in balance variables. The revealed differences between train conductors and office workers may represent task-specific feedforward control strategies, which increase the base of support and may be helpful to resist unexpected perturbations in trains.

  10. Supersingular quantum perturbations

    International Nuclear Information System (INIS)

    Detwiler, L.C.; Klauder, J.R.

    1975-01-01

    A perturbation potential is called supersingular whenever generally every matrix element of the perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not have conventional perturbation expansions, say for energy eigenvalues. By invoking variational arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small values of the coupling constant of the supersingular perturbation

  11. Sensitivity theory for reactor burnup analysis based on depletion perturbation theory

    International Nuclear Information System (INIS)

    Yang, Wonsik.

    1989-01-01

    The large computational effort involved in the design and analysis of advanced reactor configurations motivated the development of Depletion Perturbation Theory (DPT) for general fuel cycle analysis. The work here focused on two important advances in the current methods. First, the adjoint equations were developed for using the efficient linear flux approximation to decouple the neutron/nuclide field equations. And second, DPT was extended to the constrained equilibrium cycle which is important for the consistent comparison and evaluation of alternative reactor designs. Practical strategies were formulated for solving the resulting adjoint equations and a computer code was developed for practical applications. In all cases analyzed, the sensitivity coefficients generated by DPT were in excellent agreement with the results of exact calculations. The work here indicates that for a given core response, the sensitivity coefficients to all input parameters can be computed by DPT with a computational effort similar to a single forward depletion calculation

  12. East Asia in World Trade: The Decoupling Fallacy, Crisis and Policy Challenges

    OpenAIRE

    Prema-chandra Athukorala; Archanun Kohpaiboon

    2010-01-01

    This paper examines the export experience of China and other East Asian economies in the aftermaths of the global financial crisis against the backdrop of pre-crisis trade patterns. The analysis is motivated by the ‘decoupling' thesis, which was a popular theme in the Asian policy circles in the lead-up to the onset of the recent financial crisis, and aims to probe three key issues: Was the East Asian trade integration story that underpinned the decoupling thesis simply a statistical artifact...

  13. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    Science.gov (United States)

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  14. General decoupling procedure for expectation values of four-operator products in electron–phonon quantum kinetics

    International Nuclear Information System (INIS)

    Teeny, Nicolas; Fähnle, Manfred

    2013-01-01

    In the density-matrix formalism of electron–phonon quantum kinetics, the hierarchy of infinitely many coupled equations of motion for the expectation values of products of electron and phonon creation and annihilation operators of arbitrary order is usually terminated on the level of the equations of motion for the expectation values of three-operator products by using decoupling procedures for the four-operator products occurring in these equations. In the literature, decoupling procedures are discussed for special types of electron and phonon states. In the present paper, generalized decoupling procedures are derived for arbitrary electron and phonon states. (paper)

  15. Application of homotopy perturbation method for a conductive–radiative fin with temperature dependent thermal conductivity and surface emissivity

    Directory of Open Access Journals (Sweden)

    Pranab Kanti Roy

    2015-09-01

    Full Text Available This work aimed at studying the effects of environmental temperature and surface emissivity parameter on the temperature distribution, efficiency and heat transfer rate of a conductive–radiative fin. The Homotopy Perturbation Method (HPM being one of the semi-numerical methods for highly nonlinear and inhomogeneous equations, the local temperature distribution efficiencies and heat transfer rates are obtained using HPM in which Newton–Raphson method is used for the insulated boundary condition. It is found that the results of the present works are in good agreement with results available in the literature.

  16. Decoupling - past trends and prospects for the future

    International Nuclear Information System (INIS)

    Azar, Christian; Holmberg, John; Karlsson, Sten

    2002-05-01

    There are widespread demands in society for a de materialization or decoupling of economic growth from environmental impact. Calls are being made for eco-efficiency and/or an improvement of resource efficiency by a factor of 10. At the same time, some analysts claim there is an environmental Kuznet's curve that supposedly implies a fall in environmental pressure, as we get richer. An improvement in the environmental situation has already been observed in many cases, but there are also many areas where the situation is deteriorating. The purpose of this report is to summarize some key trends of energy and material use over time in both developing and developed countries. We have focused on Sweden, the EU, Japan and the USA as well as China, India and Brazil. The main findings in this paper can be summarized as follows: Absolute emissions of CO 2 have been increasing in most countries and periods studied. Some countries have experienced periods with constant or even falling emissions, but this is the exception rather than the rule, and it has been triggered by oil crises or economic recessions. In order to stabilize atmospheric CO 2 concentrations, CO 2 emissions have to be decoupled much more rapidly than has been the case in the past, and it is extremely unlikely that this will happen by itself. There was some decoupling of CO 2 emissions from GDP in the major economies of the world from 1970 to 1998 in the EU, Japan and the US as well as in some major developing countries such as China, although India actually increased its emissions over GDP by 1.4 per cent/yr over this period. The drop in CO 2 intensity has been prompted by some decoupling of energy from GDP and CO 2 from energy, the latter being a consequence of an increased use of natural gas and nuclear power. In the South, fossil CO 2 per energy tends to increase from rather low levels. With industrialization, the proportion of biomass drops and the proportion of fossil energy rises in the energy supply mix

  17. Influence of perturbation velocity on balance control in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lars B Oude Nijhuis

    Full Text Available Underlying somatosensory processing deficits of joint rotation velocities may cause patients with Parkinson's disease (PD to be more unstable for fast rather than slow balance perturbations. Such deficits could lead to reduced proprioceptive amplitude feedback triggered by perturbations, and thereby to smaller or delayed stabilizing postural responses. For this reason, we investigated whether support surface perturbation velocity affects balance reactions in PD patients. We examined postural responses of seven PD patients (OFF medication and eight age-matched controls following backward rotations of a support-surface platform. Rotations occurred at three different speeds: fast (60 deg/s, medium (30 deg/s or slow (3.8 deg/s, presented in random order. Each subject completed the protocol under eyes open and closed conditions. Full body kinematics, ankle torques and the number of near-falls were recorded. Patients were significantly more unstable than controls following fast perturbations (26% larger displacements of the body's centre of mass; P<0.01, but not following slow perturbations. Also, more near-falls occurred in patients for fast rotations. Balance correcting ankle torques were weaker for patients than controls on the most affected side, but were stronger than controls for the least affected side. These differences were present both with eyes open and eyes closed (P<0.01. Fast support surface rotations caused greater instability and discriminated Parkinson patients better from controls than slow rotations. Although ankle torques on the most affected side were weaker, patients partially compensated for this by generating larger than normal stabilizing torques about the ankle joint on the least affected side. Without this compensation, instability may have been greater.

  18. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.

  19. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  20. The Circuit-Level Decoupling Modulation Strategy for Three-Level Neutral-Point-Clamped (TL-NPC) Inverter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2011-01-01

    In this paper, a circuit-level decoupling modulation strategy is proposed for the three-level (TL) neutral-point-clamped (NPC) inverters. With the proposed modulation scheme, the TL-NPC inverter can be decoupled into two three-level Buck converters in each defined operating section, which makes...

  1. Decoupling of charm beyond leading order

    OpenAIRE

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham

    2017-01-01

    We study the effective theory of decoupling of a charm quark at low energies. We do this by simulating a model, QCD with two mass-degenerate charm quarks. At leading order the effective theory is a pure gauge theory. By computing ratios of hadronic scales we have direct access to the power corrections in the effective theory. We show that these corrections follow the expected leading behavior, which is quadratic in the inverse charm quark mass.

  2. Empirical research on decoupling relationship between energy-related carbon emission and economic growth in Guangdong province based on extended Kaya identity.

    Science.gov (United States)

    Wang, Wenxiu; Kuang, Yaoqiu; Huang, Ningsheng; Zhao, Daiqing

    2014-01-01

    The decoupling elasticity decomposition quantitative model of energy-related carbon emission in Guangdong is established based on the extended Kaya identity and Tapio decoupling model for the first time, to explore the decoupling relationship and its internal mechanism between energy-related carbon emission and economic growth in Guangdong. Main results are as follows. (1) Total production energy-related carbon emissions in Guangdong increase from 4128 × 10⁴ tC in 1995 to 14396 × 10⁴ tC in 2011. Decoupling elasticity values of energy-related carbon emission and economic growth increase from 0.53 in 1996 to 0.85 in 2011, and its decoupling state turns from weak decoupling in 1996-2004 to expansive coupling in 2005-2011. (2) Land economic output and energy intensity are the first inhibiting factor and the first promoting factor to energy-related carbon emission decoupling from economic growth, respectively. The development speeds of land urbanization and population urbanization, especially land urbanization, play decisive roles in the change of total decoupling elasticity values. (3) Guangdong can realize decoupling of energy-related carbon emission from economic growth effectively by adjusting the energy mix and industrial structure, coordinating the development speed of land urbanization and population urbanization effectively, and strengthening the construction of carbon sink.

  3. A Decoupling Control Method for Shunt Hybrid Active Power Filter Based on Generalized Inverse System

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-01-01

    Full Text Available In this paper, a novel decoupling control method based on generalized inverse system is presented to solve the problem of SHAPF (Shunt Hybrid Active Power Filter possessing the characteristics of 2-input-2-output nonlinearity and strong coupling. Based on the analysis of operation principle, the mathematical model of SHAPF is firstly built, which is verified to be invertible using interactor algorithm; then the generalized inverse system of SHAPF is obtained to connect in series with the original system so that the composite system is decoupled under the generalized inverse system theory. The PI additional controller is finally designed to control the decoupled 1-order pseudolinear system to make it possible to adjust the performance of the subsystem. The simulation results demonstrated by MATLAB show that the presented generalized inverse system strategy can realise the dynamic decoupling of SHAPF. And the control system has fine dynamic and static performance.

  4. Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-10-01

    Full Text Available China has overtaken the United States as the world’s largest producer of carbon dioxide, with industrial carbon emissions (ICE accounting for approximately 65% of the country’s total emissions. Understanding the ICE decoupling patterns and factors influencing the decoupling status is a prerequisite for balancing economic growth and carbon emissions. This paper provides an overview of ICE based on decoupling elasticity and the Tapio decoupling model. Furthermore, the study identifies the factors contributing to ICE changes in China, using the Kaya identity and Log Mean Divisia Index (LMDI techniques. Based on the effects and contributions of ICE, we close with a number of recommendations. The results revealed a significant upward trend of ICE during the study period 1994 to 2013, with a total amount of 11,147 million tons. Analyzing the decoupling relationship indicates that “weak decoupling” and “expansive decoupling” were the main states during the study period. The decomposition analysis showed that per capita wealth associated with industrial outputs and energy intensity are the main driving force of ICE, while energy intensity of industrial output and energy structure are major determinants for ICE reduction. The largest contributing cumulative effect to ICE is per capita wealth, at 1.23 in 2013. This factor is followed by energy intensity, with a contributing cumulative effect of −0.32. The cumulative effects of energy structure and population are relatively small, at 0.01 and 0.08, respectively.

  5. Capillary and viscous perturbations to Helmholtz flows

    KAUST Repository

    Moore, M. R.; Ockendon, H.; Ockendon, J. R.; Oliver, J. M.

    2014-01-01

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  6. Capillary and viscous perturbations to Helmholtz flows

    KAUST Repository

    Moore, M. R.

    2014-02-21

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  7. Decoupled Multicamera Sensing for Flexible View Generation

    Directory of Open Access Journals (Sweden)

    Vivek K. Singh

    2016-01-01

    Full Text Available Any sensing paradigm has three important components, namely, the actor, the sensor, and the environment. Traditionally, the sensors have been attached to either the actor or the environment. This restricts the kind of sensing that can be undertaken. We study a newer decoupled sensing paradigm, which separates the sensors from both the actor and the environment and tremendously increases the flexibility with which the scenes can be viewed. For example, instead of showing just one view, “how the environment sees the actor” or “how the actor sees the environment,” a viewer can choose to see either one or both of these views and even choose to see the scene from any desired position in any desired direction. We describe a methodology using mobile autonomous sensors to undertake such decoupled sensing and study the feasible number as well as the placement of such sensors. Also, we describe how the sensors can coordinate their movements around a moving actor so as to continue capturing the required views with minimum overall cost. The practical results obtained demonstrate the viability of the proposed approach.

  8. Power decoupling method for single phase differential buck converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Tang, Yi; Zhang, Xiaobin

    2015-01-01

    inverter to improve the dc link power quality, and an improved active power decoupling method is proposed to achieve ripple power reduction for both AC-DC and DC-AC conversions. The ripple energy storage is realized by the filter capacitors, which are connected between the output terminal and the negative...... generation technique is proposed to provide accurate ripple power compensation, and closed-loop controllers are also designed based on small signal models. The effectiveness of this power decoupling method is verified by detailed simulation studies as well as laboratory prototype experimental results....... dc bus. By properly controlling the differential mode voltage of the capacitors, it is possible to transfer desired energy between the DC port and AC port. The common mode voltage is controlled in such a way that the ripple power on the dc side will be reduced. Furthermore, an autonomous reference...

  9. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    International Nuclear Information System (INIS)

    Potts, Matthew D; Kelley, Lisa C; Doll, Hannah M

    2013-01-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach. (letter)

  10. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    Science.gov (United States)

    Potts, Matthew D.; Kelley, Lisa C.; Doll, Hannah M.

    2013-06-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach.

  11. Cross-modal decoupling in temporal attention.

    Science.gov (United States)

    Mühlberg, Stefanie; Oriolo, Giovanni; Soto-Faraco, Salvador

    2014-06-01

    Prior studies have repeatedly reported behavioural benefits to events occurring at attended, compared to unattended, points in time. It has been suggested that, as for spatial orienting, temporal orienting of attention spreads across sensory modalities in a synergistic fashion. However, the consequences of cross-modal temporal orienting of attention remain poorly understood. One challenge is that the passage of time leads to an increase in event predictability throughout a trial, thus making it difficult to interpret possible effects (or lack thereof). Here we used a design that avoids complete temporal predictability to investigate whether attending to a sensory modality (vision or touch) at a point in time confers beneficial access to events in the other, non-attended, sensory modality (touch or vision, respectively). In contrast to previous studies and to what happens with spatial attention, we found that events in one (unattended) modality do not automatically benefit from happening at the time point when another modality is expected. Instead, it seems that attention can be deployed in time with relative independence for different sensory modalities. Based on these findings, we argue that temporal orienting of attention can be cross-modally decoupled in order to flexibly react according to the environmental demands, and that the efficiency of this selective decoupling unfolds in time. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  13. Delayed Antiwindup Control Using a Decoupling Structure

    Directory of Open Access Journals (Sweden)

    Huawei Zhu

    2013-01-01

    Full Text Available This paper investigates the antiwindup (AW control problem for plants with input saturation. The AW compensator is not activated as soon as input saturation occurs as usual. A delayed decoupling structure is first proposed. Then, appropriate linear matrix inequalities (LMIs are developed to determine a plant-order AW compensator. Effectiveness of the presented AW technique is illustrated by a fighter aircraft model.

  14. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  15. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  16. Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Oliver

    2009-05-25

    The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called

  17. Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography

    International Nuclear Information System (INIS)

    Kern, Oliver

    2009-01-01

    The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called

  18. Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes

    Science.gov (United States)

    Xiong, G. Z.; Wang, L.; Li, X. Q.; Liu, H. F.; Tang, C. J.; Huang, J.; Zhang, X.; Wang, X. Q.

    2017-06-01

    The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet-Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs.

  19. Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes

    International Nuclear Information System (INIS)

    Xiong, G Z; Liu, H F; Huang, J; Wang, X Q; Wang, L; Li, X Q; Tang, C J; Zhang, X

    2017-01-01

    The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet–Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs. (paper)

  20. Highly efficient F-19 heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation

    DEFF Research Database (Denmark)

    Equbal, Asif; Basse, Kristoffer; Nielsen, Niels Christian

    2016-01-01

    We present heteronuclear F-19 refocused CW (rCW) decoupling pulse sequences for solid-state magic-angle- spinning NMR applications. The decoupling sequences have been designed specifically to ensure suppression of the pertinent C-13-F-19 dipolar coupling interactions while simultaneously suppress...

  1. Geometric singular perturbation analysis of systems with friction

    DEFF Research Database (Denmark)

    Bossolini, Elena

    This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter......, two mechanical problems with two different formulations of the friction force are introduced and analysed. The first mechanical problem is a one-dimensional spring-block model describing earthquake faulting. The dynamics of earthquakes is naturally a multiple timescale problem: the timescale...... scales. The action of friction is generally explained as the loss and restoration of linkages between the surface asperities at the molecular scale. However, the consequences of friction are noticeable at much larger scales, like hundreds of kilometers. By using geometric singular perturbation theory...

  2. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  3. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  4. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  5. Modeling of tamped and decoupled explosions in salt (simulation is easy. Prediction is difficult exclamation point)

    International Nuclear Information System (INIS)

    Goldstein, P.; Glenn, L.A.

    1993-01-01

    We compare predictions of the strain hardening model of Glenn (1990), with and without damage, to free field and seismic observations of SALMON, STERLING, and 64 kt (tamped) and 8 kt (decoupled) explosions in an Azgir salt dome in the former Soviet Union (FSU). We find good agreement between the model (without damage) and observations of both SALMON and STERLING. In contrast, the average spectral ratio of the tamped to decoupled Azgir explosions is systematically smaller than predicted by the strain hardening model without damage. Much better agreement is obtained when damage is included in the model of the decoupled Azgir explosion

  6. Modeling of tamped and decoupled explosions in salt (Simulation is easy. Prediction is difficult exclamation point)

    International Nuclear Information System (INIS)

    Goldstein, P.; Glenn, L.A.

    1993-05-01

    We compare predictions of the strain hardening model of Glenn (1990), with and without damage, to free field and seismic observations of SALMON, STERLING, and 64 kt (tamped) and 8 kt (decoupled) explosions in an Azgir salt dome in the former Soviet Union (FSU). We find good agreement between the model (without damage) and observations of both SALMON and STERLING. In contrast, the average spectral ratio of the tamped to decoupled Azgir explosions is systematically smaller than predicted by the strain hardening model without damage. Much better agreement is obtained when damage is included in the model of the decoupled Azgir explosion

  7. Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali UAV Quadcopter

    Directory of Open Access Journals (Sweden)

    Muhammad Jadid Anggarjito

    2013-09-01

    Full Text Available Quadcopter merupakan salah salah satu jenis rotorcraft yang memiliki 4 buah rotor yang harus dikendalikan masing-masing rotornya untuk dapat menggerakkan quadcopter. Gerak lateral merupakan gerak quadcopter secara horizontal pada ketinggian atau gerak translasi, gerakan ini sangat vital untuk memenuhi kebutuhan quadcopter dalam mencapai way-to-way point yang telah ditentukan. Pada tugas akhir ini untuk mengatur gerakan lateral dari quadcopter digunakan sistem kendali PID dengan Decoupling Nonlinear. Ada 2 buah kontroler individual yang digunakan yaitu kontroler PID dengan Nonlinear Decoupling untuk mengatur pitch dan roll gerak rotasi, serta kontroler PD untuk mengatur translasi sumbu X dan sumbu Y. Perancangan sistem kontrol PID Decoupling Nonlinear pada simulasi yang digunakan untuk mempertahankan gerak lateral quadcopter dalam mencapai way-to-way point yang ditentukan. Nilai parameter yang didapatkan dari hasil tuning terstruktur pada simulasi adalah pada kontroler PID dengan Nonlinear Decoupling pitch dan roll Kp=5 Ki=0,01 Kd=10 sedangkan pada kontroler PD sumbu X dan sumbu Y Kp=0,05 Kd=0,2. Respon hasil implementasi pada quadcopter belum sesuai pada hasil simulasi. Pada hasil simulasi masih terdapat koreksi pada translasi sumbu X dan sumbu Y masih terdapat kesalahan sebesar ± 0,02 cm, sedangkan pada implementasi gerak lateral menggunakan remote control sistem dapat bergerak stabil menuju way-to-way point yang ditentukan.

  8. Decoupling from international food safety standards

    DEFF Research Database (Denmark)

    Mercado, Geovana; Hjortsø, Carsten Nico; Honig, Benson

    2018-01-01

    rural producers who, grounded in culturally-embedded food safety conceptions, face difficulties in complying. We address this gap here through a multiple case study involving four public school feeding programs that source meals from local rural providers in the Bolivian Altiplan. Institutional logics...... in the market. These include: (1) partial adoption of formal rules; (2) selective adoption of convenient rules; and (3) ceremonial adoption to avoid compliance. Decoupling strategies allow local actors to largely disregard the formal food safety regulations while accommodating traditional cultural practices...

  9. Pressure-driven amplification and penetration of resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Lazerson, S. A.; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2016-05-15

    We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma screw-pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the core. The response is significantly amplified with increasing plasma pressure. We present a rigorous verification of nonlinear equilibrium codes against linear theory, showing excellent agreement.

  10. Active power decoupling with reduced converter stress for single ...

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK

    Department of Electronic Systems Engineering, Indian Institute of Science, ... Single phase; double-frequency ripple; active power decoupling; reduced stress; ... sation of renewable energy sources (e.g., PV), potential ... In standard grid connected DC/AC H-bridge configuration, ..... solar inverter with reduced-size dc link.

  11. Neutronic performance of decoupled poisoned and unpoisoned composite moderators for high resolution experiments

    International Nuclear Information System (INIS)

    Kai, Tetsuya; Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    We studied decoupled poisoned and un-poisoned composite moderators consisting of 20 mm thick hydrogen and 30 mm thick light water. The neutron pulses from un-poisoned one were much broader with longer decay times than a simple decoupled hydrogen moderator in 50 mm thickness. It was also found that the poisoned composite moderator provides higher pulse peak intensities relative to the hydrogen moderator (poisoned at 20 mm) below several tens meV with no penalty of pulse width. (author)

  12. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  13. Research on Inverse Kinematics Program Optimization of 6R Decoupled Robot

    Directory of Open Access Journals (Sweden)

    Daode ZHANG

    2014-02-01

    Full Text Available According to complex analytic formula for the six degrees of freedom decoupled robot, a detailed analysis of the six degrees of freedom decoupled robot analytic formula of export process, as well the causes of multiple solutions. The method of increasing the local variables to avoid processor running the same statement repeatedly is proposed. The method to find the most frequency formula appeared in analytic solution replaced with local variables facilitate the use of loop to reduce the amount of code. It effectively reduces the computation time, optimize the computing process. Finally, taking PUMA560-like robot as an example, the calculation result is verified and simulated in Robotics Toolbox of MATLAB.

  14. The bispectrum of matter perturbations from cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk [Astronomy Centre, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  15. Discontinuous PWM Modulation Strategy with Circuit-Level Decoupling Concept of Three-Level Neutral-Point Clamped (NPC) Inverter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    inverters, but also reduces the switching loss of the inverter along with an inherent neutral point (NP) voltage control. Based on a circuit-level decoupling concept, the NPC inverter can be decoupled into two three-level Buck converters in every defined operating section, and thereby the controller design...... can be reduced by one third. In order to explain the operation of this topology properly, the decoupling principle including the driving signal synthesis and the NP potential variation are analyzed in detail in this paper. Finally the viability and performance of the proposed modulation scheme...

  16. Effects of stratospheric perturbations on the solar radiation budget

    International Nuclear Information System (INIS)

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  17. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Science.gov (United States)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  18. A Fully Symmetric and Completely Decoupled MEMS-SOI Gyroscope

    Directory of Open Access Journals (Sweden)

    Abdelhameed SHARAF

    2011-04-01

    Full Text Available This paper introduces a novel MEMS gyroscope that is capable of exciting the drive mode differentially. The structure also decouples the drive and sense modes via an intermediate mass and decoupling beams. Both drive and sense modes are fully differential enabling control over the zero-rate-output for the former and maximizing output sensitivity using a bridge circuit for the latter. Further, the structure is fully symmetric about the x- and y- axes which results in minimizing the temperature sensitivity problem. Complete analytical analysis based on the equations of motion was performed and verified using two commercially available finite element software packages. Results from both methods are in good agreement. The analysis of the sensor shows an electrical sensitivity of 1.14 (mV/(º/s. The gyroscope was fabricated using single mask and deep reactive ion etching. The measurement of the resonance frequency performed showing a good agreement with the analytical and numerical analysis.

  19. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  20. Decoupled Access-Execute on ARM big.LITTLE

    OpenAIRE

    Weber, Anton

    2016-01-01

    Decoupled Access-Execute (DAE) presents a novel approach to improve power efficiency with a combination of compile-time transformations and Dynamic Voltage Frequency Scaling (DVFS). DAE splits regions of the program into two distinct phases: a memory-bound access phase and a compute-bound execute phase. DVFS is used to run the phases at different frequencies, thus conserving energy while caching data from main memory and performing computations at maximum performance. This project analyses th...

  1. Asia’s decoupling: fact, forecast or fiction?

    OpenAIRE

    Lillie Lam; James Yetman

    2013-01-01

    Standard measures of real economic co-movement between Asia-Pacific economies and those elsewhere had been observed to follow a downward trend, leading some commentators to suggest that the region was decoupling. However, this process reversed in response to the International Financial Crisis, and co-movement increased to historically high levels for some economies. We examine co-movement patterns and show that these are very sensitive to changes in macroeconomic volatility over time. Control...

  2. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Xie, Zhiyong [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Du, Ai [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Ye, Junjian [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Zhang, Zhihua; Shen, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Bin, E-mail: zhoubin863@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-04-15

    Highlights: • Sinusoidal perturbed Al foil was prepared by single-point diamond turning. • Perturbed Al foil was measured by surface profiler and white light interferometer. • Perturbed Al foil and CH layer adhered with each other via a hot-press process. • Parameters and cross-section of the CH–Al perturbation target was characterized. - Abstract: A polystyrene (CH)/aluminum (Al) dual-layer perturbation target for hydrodynamic instability experiments in inertial confinement fusion (ICF) was designed and fabricated. The target was composed of a perturbed 40 μm Al foil and a CH layer. The detailed fabrication method consisted of four steps. The 40 μm Al foil was first prepared by roll and polish process; the perturbation patterns were then introduced on the surface of the Al foil by the single-point diamond turning (SPDT) technology; the CH layer was prepared via a simple method which called spin-coating process; finally, the CH layer was directly coated on the perturbation surface of Al foil by a hot-press process to avoid the use of a sticker and to eliminate the gaps between the CH layer and the Al foil. The parameters of the target, such as the perturbation wavelength (T) and perturbation amplitude (A), were characterized by a QC-5000 tool microscope, an alpha-step 500 surface profiler and a NT1100 white light interferometer. The results showed that T and A of the target were about 52 μm and 7.34 μm, respectively. Thickness of the Al foil (H1), thickness of the CH layer (H2), and cross-section of the dual-layer target were characterized by a QC-5000 tool microscope and a scanning electron microscope (SEM). H1 and H2 were about 40 μm and 15 μm, respectively, the cross-sectional photographs of the target showed that the CH layer and the Al foil adhered perfectly with each other.

  3. Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    approach may inevitably lead to low power density and limited system lifetime. An alternative approach is to use active power decoupling so that the ripple power can be diverted into other energy storage devices to gain an improved system performance. Nevertheless, all existing active methods have...... power decoupling method, and both the input current and output voltage of the converter can be well regulated even when very small dc-link capacitors are employed....

  4. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  5. Radial thermal diffusivity of toroidal plasma affected by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao

    2012-04-01

    We investigate how the radial thermal diffusivity of an axisymmetric toroidal plasma is modified by effect of resonant magnetic perturbations (RMPs), using a drift kinetic simulation code for calculating the thermal diffusivity in the perturbed region. The perturbed region is assumed to be generated on and around the resonance surfaces, and is wedged in between the regular closed magnetic surfaces. It has been found that the radial thermal diffusivity χ r in the perturbed region is represented as χ r = χ r (0) {1 + c r parallel 2 >}. Here r parallel 2 > 1/2 is the strength of the RMPs in the radial directions, means the flux surface average defined by the unperturbed (i.e., original) magnetic field, χ r (0) is the neoclassical thermal diffusivity, and c is a positive coefficient. In this paper, dependence of the coefficient c on parameters of the toroidal plasma is studied in results given by the δ f simulation code solving the drift kinetic equation under an assumption of zero electric field. We find that the dependence of c is given as c ∝ ω b /ν eff m in the low collisionality regime ν eff b , where ν eff is the effective collision frequency, ω b is the bounce frequency and m is the particle mass. In case of ν eff > ω b , the thermal diffusivity χ r evaluated by the simulations becomes close to the neoclassical thermal diffusivity χ r (0) . (author)

  6. Utilization of Spent Resources in Support of Eco-Economic Decoupling in Central Java

    Directory of Open Access Journals (Sweden)

    Nuril Fikri Aulia

    2015-09-01

    Full Text Available Implementation of the development is often cause adverse environmental impacts. Adverse effects are environmental degradation and decreasing availability of resources. To overcome this, it is necessary that the development can still continue, the environment is not damaged, and the availability of resources is maintained. One effort is through eco - economic decoupling activities with the use of spent resources. The aim of study to determine the potential of spent resources in Central Java, knows the problems in the utilization of spent resources in Central Java, and to determine the impact of the utilization of spent resources in Central Java by a qualitative descriptive method. The results show that in the study have the potential of eco-economic decoupling indicated by the availability of spent resources and had done utilization of spent resources. However, this potential has not been optimally developed, because there are still some problems in its utilization. Problems in the use of spent resources are the lack of knowledge about eco-economic decoupling and spent resources among stakeholder, there is no specific policy on eco - economic decoupling, the lack of Local Government 's role in the utilization of spent resource, and the lack of synergy programs and activities in supporting the utilization of spent resources. Utilization of spent resources have positive impact to reduce pressure on the environment and natural resources, create a new job, and increase incomes for society.

  7. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Xingpeng Chen

    2014-12-01

    Full Text Available As the largest solid waste (SW generator in the world, China is facing serious pollution issues induced by increasing quantities of SW. The sustainability assessment of SW management is very important for designing relevant policy for further improving the overall efficiency of solid waste management (SWM. By focusing on industrial solid waste (ISW and municipal solid waste (MSW, the paper investigated the sustainability performance of SWM by applying decoupling analysis, and further identified the main drivers of SW change in China by adopting Logarithmic Mean Divisia Index (LMDI model. The results indicate that China has made a great achievement in SWM which was specifically expressed as the increase of ISW utilized amount and harmless disposal ratio of MSW, decrease of industrial solid waste discharged (ISWD, and absolute decoupling of ISWD from economic growth as well. However, China has a long way to go to achieve the goal of sustainable management of SW. The weak decoupling, even expansive negative decoupling of ISW generation and MSW disposal suggests that China needs timely technology innovation and rational institutional arrangement to reduce SW intensity from the source and promote classification and recycling. The factors of investment efficiency and technology are the main determinants of the decrease in SW, inversely, economic growth has increased SW discharge. The effects of investment intensity showed a volatile trend over time but eventually decreased SW discharged. Moreover, the factors of population and industrial structure slightly increased SW.

  8. Private quantum decoupling and secure disposal of information

    International Nuclear Information System (INIS)

    Buscemi, Francesco

    2009-01-01

    Given a bipartite system, correlations between its subsystems can be understood as the information that each one carries about the other. In order to give a model-independent description of secure information disposal, we propose the paradigm of private quantum decoupling, corresponding to locally reducing correlations in a given bipartite quantum state without transferring them to the environment. In this framework, the concept of private local randomness naturally arises as a resource, and total correlations are divided into eliminable and ineliminable ones. We prove upper and lower bounds on the quantity of ineliminable correlations present in an arbitrary bipartite state, and show that, in tripartite pure states, ineliminable correlations satisfy a monogamy constraint, making apparent their quantum nature. A relation with entanglement theory is provided by showing that ineliminable correlations constitute an entanglement parameter. In the limit of infinitely many copies of the initial state provided, we compute the regularized ineliminable correlations to be measured by the coherent information, which is thus equipped with a new operational interpretation. In particular, our results imply that two subsystems can be privately decoupled if their joint state is separable.

  9. Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.

    Science.gov (United States)

    Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M

    2015-03-01

    In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p model, referred to as the thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Decoupling emissions of greenhouse gas, urbanization, energy and income: analysis from the economy of China.

    Science.gov (United States)

    Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang

    2018-05-08

    The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.

  11. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong

    2016-01-01

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  12. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  13. Feedforward control strategy for the state-decoupling Stand-alone UPS with LC output filter

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    . In order to further increase the load current disturbance rejection capability of the state-decoupling in UPS system, a feedforward control strategy is proposed. In addition, the design principle for the current and voltage regulators are discussed. Simulation and experimental results are provided......In this paper, the disturbance rejection performance of the cascaded control strategy for UPS system is investigated. The comparison of closed loop system performance between conventional cascaded control (CCC) strategy and state-decoupling cascaded control (SDCC) strategy are further explored...

  14. Decoupling among CSR policies, programs, and impacts : An empirical study

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    2016-01-01

    There are relatively few empirical studies on the impacts of corporate social responsibility (CSR) policies and programs. This article addresses the research gap by analyzing the incidence of, and the conditions that affect, decoupling (defined as divergence) among CSR policies, implementation of

  15. Decoupling Design and Verification of a Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2016-12-01

    Full Text Available This paper proposes a decoupling design approach for a free-piston linear generator (FPLG constituted of three key components, including a combustion chamber, a linear generator and a gas spring serving as rebounding device. The approach is based on the distribution of the system power and efficiency, which provides a theoretical design method from the viewpoint of the overall power and efficiency demands. The energy flow and conversion processes of the FPLG are analyzed, and the power and efficiency demands of the thermal-mechanical and mechanical-electrical energy conversion are confirmed. The energy and efficiency distributions of the expansion and compression strokes within a single stable operation cycle are analyzed and determined. Detailed design methodologies of crucial geometric dimensions and operational parameters of each key component are described. The feasibility of the proposed decoupling design approach is validated through several design examples with different output power.

  16. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  17. On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis

    Science.gov (United States)

    Shao, S.; Gao, Z.

    2017-10-01

    Stability of active disturbance rejection control (ADRC) is analysed in the presence of unknown, nonlinear, and time-varying dynamics. In the framework of singular perturbations, the closed-loop error dynamics are semi-decoupled into a relatively slow subsystem (the feedback loop) and a relatively fast subsystem (the extended state observer), respectively. It is shown, analytically and geometrically, that there exists a unique exponential stable solution if the size of the initial observer error is sufficiently small, i.e. in the same order of the inverse of the observer bandwidth. The process of developing the uniformly asymptotic solution of the system reveals the condition on the stability of the ADRC and the relationship between the rate of change in the total disturbance and the size of the estimation error. The differentiability of the total disturbance is the only assumption made.

  18. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  19. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  20. Decoupled Sliding Mode Control for a Novel 3-DOF Parallel Manipulator with Actuation Redundancy

    Directory of Open Access Journals (Sweden)

    Niu Xuemei

    2015-05-01

    Full Text Available This paper presents a decoupled nonsingular terminal sliding mode controller (DNTSMC for a novel 3-DOF parallel manipulator with actuation redundancy. According to kinematic analysis, the inverse dynamic model for a novel 3-DOF redundantly actuated parallel manipulator is formulated in the task space using Lagrangian formalism and decoupled into three entirely independent subsystems under generalized coordinates to significantly reduce system complexity. Based on the dynamic model, a decoupled sliding mode control strategy is proposed for the parallel manipulator; the idea behind this strategy is to design a nonsingular terminal sliding mode controller for each subsystem, which can drive states of three subsystems to the original equilibrium points simultaneously by two intermediate variables. Additionally, a RBF neural network is used to compensate the cross-coupling force and gravity to enhance the control precision. Simulation and experimental results show that the proposed DNTSMC can achieve better control performances compared with the conventional sliding mode controller (SMC and the DNTSMC without compensator.

  1. Automated smoother for the numerical decoupling of dynamics models.

    Science.gov (United States)

    Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S

    2007-08-21

    Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental

  2. Decoupling Water Consumption and Environmental Impact on Textile Industry by Using Water Footprint Method: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-02-01

    Full Text Available The rapid development of China’s textile industry has led to consumption and pollution of large volumes of water. Therefore, the textile industry has been the focus of water conservation and waste reduction in China’s 13th Five-Year Plan (2016–2020. The premise of sustainable development is to achieve decoupling of economic growth from water consumption and wastewater discharge. In this work, changes in the blue water footprint, grey water footprint, and the total water footprint of the textile industry from 2001 to 2014 were calculated. The relationship between water footprint and economic growth was then examined using the Tapio decoupling model. Furthermore, factors influencing water footprint were determined through logarithmic mean Divisia index (LMDI method. Results show that the water footprint of China’s textile industry has strongly decoupled for five years (2003, 2006, 2008, 2011, and 2013 and weakly decoupled for four years (2005, 2007, 2009, and 2010. A decoupling trend occurred during 2001–2014, but a steady stage of decoupling had not been achieved yet. Based on the decomposition analysis, the total water footprint mainly increased along with the production scale. On the contrary, technical level is the most important factor in inhibiting the water footprint. In addition, the effect of industrial structure adjustment is relatively weak.

  3. Accuracy of dynamical-decoupling-based spectroscopy of Gaussian noise

    Science.gov (United States)

    Szańkowski, Piotr; Cywiński, Łukasz

    2018-03-01

    The fundamental assumption of dynamical-decoupling-based noise spectroscopy is that the coherence decay rate of qubit (or qubits) driven with a sequence of many pulses, is well approximated by the environmental noise spectrum spanned on frequency comb defined by the sequence. Here we investigate the precise conditions under which this commonly used spectroscopic approach is quantitatively correct. To this end we focus on two representative examples of spectral densities: the long-tailed Lorentzian, and finite-ranged Gaussian—both expected to be encountered when using the qubit for nanoscale nuclear resonance imaging. We have found that, in contrast to Lorentz spectrum, for which the corrections to the standard spectroscopic formulas can easily be made negligible, the spectra with finite range are more challenging to reconstruct accurately. For Gaussian line shape of environmental spectral density, direct application of the standard dynamical-decoupling-based spectroscopy leads to erroneous attribution of long-tail behavior to the reconstructed spectrum. Fortunately, artifacts such as this, can be completely avoided with the simple extension to standard reconstruction method.

  4. Do 'green' taxes work? Decoupling environmental pressures and economic growth

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2005-01-01

    This essay intends to shed light on whether environmental taxation can help to decouple environmental pressures from economic growth, a policy outcome widely desired and particularly pressing in the context of climate change where radical measures are needed to curb CO2 build up....

  5. The anisotropy of the cosmic background radiation from local dynamic density perturbations

    International Nuclear Information System (INIS)

    Dyer, C.C.; Ip, P.S.S.

    1988-01-01

    Contrary to the usual assumption, it is shown here that the anisotropy of the cosmic background radiation need not be dominated by perturbations at the last scattering surface. The results of computer simulations are shown in which local dynamic density perturbations, in the form of Swiss cheese holes with finite, uniform density central lumps, are the main source of anisotropy of the cosmic background radiation. (author)

  6. A self-decoupling piezoresistive sensor for measuring microforce in horizontal and vertical directions

    International Nuclear Information System (INIS)

    Zhou, Jie; Rong, Weibin; Wang, Lefeng; Gao, Peng; Sun, Lining

    2016-01-01

    This paper presents the design, fabrication and calibration of a novel two-dimension microforce sensor with nano-Newton resolution. The sensor, mainly composed of a clamped–clamped beam (horizontal detecting beam), an overhanging beam (vertical detecting beam) and a half-folded beam, is highly sensitive to microforces in the horizontal (parallel to the probe of the designed sensor) and vertical (perpendicular to the wafer surface) directions. The four vertical sidewall surface piezoresistors (horizontal piezoresistors) and two surface piezoresistors (vertical piezoresistors) were fabricated to achieve the requirements of two-dimension microforce measurements. Combining the sensor structure with Wheatstone bridge configurations, the microforce decoupling among the x , y , and z direction can be realized. Accordingly, the sensor is capable of detecting microforces in the horizontal and vertical directions independently. The calibration results verified that the sensor sensitivities at room temperature are 210.58 V N −1 and 159.2 V N −1 in the horizontal and vertical directions, respectively. Additionally, the sensor’s corresponding force resolutions are estimated at 2 nN and 3 nN in theory, respectively. The sensor can be used to measure the contact force between manipulating tools and micro-objects, in fields such as microassembly and biological assays. (paper)

  7. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    . This highlights the need to improve modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. An aerosol optical model based on the mean intensive properties of smoke from the southern part of the Amazon basin produced a radiative flux perturbation efficiency (RFPE of −158 Wm−2/AOD550 nm at noon. This value falls between −154 Wm−2/AOD550 nm and −187 Wm−2/AOD550 nm, the range obtained when spatially varying optical models were considered. The 24 h average surface radiative flux perturbation over the biomass burning season varied from −55 Wm−2 close to smoke sources in the southern part of the Amazon basin and cerrado to −10 Wm−2 in remote regions of the southeast Brazilian coast.

  8. An analysis of the expected eccentricity perturbations for the second Radio Astronomy Explorer (RAE B)

    Science.gov (United States)

    Murphy, J. P.

    1972-01-01

    Analytical prediction of expected eccentricity perturbations for the RAE 2 lunar orbit shows that the eccentricity will grow linearly in time. Parametric inclination studies and analysis of perturbation equations establish a critical retrograde inclination of 116.565 at which the positive perturbation slope vanishes for a circular orbit about 1100 m above the lunar surface with an eccentricity constraint of less than 0.005 during a period of about one year.

  9. Customer Order Decoupling Point Selection Model in Mass Customization Based on MAS

    Institute of Scientific and Technical Information of China (English)

    XU Xuanguo; LI Xiangyang

    2006-01-01

    Mass customization relates to the ability of providing individually designed products or services to customer with high process flexibility or integration. Literatures on mass customization have been focused on mechanism of MC, but little on customer order decoupling point selection. The aim of this paper is to present a model for customer order decoupling point selection of domain knowledge interactions between enterprises and customers in mass customization. Based on the analysis of other researchers' achievements combining the demand problems of customer and enterprise, a model of group decision for customer order decoupling point selection is constructed based on quality function deployment and multi-agent system. Considering relatively the decision makers of independent functional departments as independent decision agents, a decision agent set is added as the third dimensionality to house of quality, the cubic quality function deployment is formed. The decision-making can be consisted of two procedures: the first one is to build each plane house of quality in various functional departments to express each opinions; the other is to evaluate and gather the foregoing sub-decisions by a new plane quality function deployment. Thus, department decision-making can well use its domain knowledge by ontology, and total decision-making can keep simple by avoiding too many customer requirements.

  10. Near extremal intersecting giants and new decoupled sectors in N = 4 SYM

    International Nuclear Information System (INIS)

    Fareghbal, R.; Gowdigere, C.N.; Mosaffa, A.E.; Sheikh-Jabbari, M. M.

    2008-01-01

    We study near-horizon limits of near-extremal charged black hole solutions to five-dimensional U(1) 3 gauged supergravity carrying two charges, extending the recent work of Balasubramanian et al. We show that there are two near-horizon decoupling limits for the near-extremal black holes, one corresponding to the near-BPS case and the other for the far from BPS case. Both of these limits are only defined on the 10d IIB uplift of the 5d black holes, resulting in a decoupled geometry with a six-dimensional part (conformal to) a rotating BTZ x S 3 . We study various aspects of these decoupling limits both from the gravity side and the dual field theory side. For the latter we argue that there should be two different, but equivalent, dual gauge theory descriptions, one in terms of the 2d CFT's dual to the rotating BTZ and the other as certain large R-charge sectors of d = 4, N = 4 U(N) SYM theory. We discuss new BMN-type sectors of the N = 4 SYM in the N → ∞ limit in which the engineering dimensions scale as N 3/2 (for the near-BPS case) and as N 2 (for the far from BPS case). (author)

  11. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Amanda E Nelson

    Full Text Available Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.

  12. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    Science.gov (United States)

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  13. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  14. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling

    Science.gov (United States)

    Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin

    2018-03-01

    In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.

  15. Four-fluxes and non-perturbative superpotentials in two dimensions

    International Nuclear Information System (INIS)

    Lerche, W.

    1998-01-01

    We show how certain non-perturbative superpotentials W(Σ), which are the two-dimensional analogs of the Seiberg-Witten prepotential in 4d, can be computed via geometric engineering from 4-folds. We analyze an explicit example for which the relevant compact geometry of the 4-fold is given by P 1 fibered over P 2 . In the field theory limit, this gives an effective U(1) gauge theory with N=(2,2) supersymmetry in two dimensions. We find that the analog of the SW curve is a K3 surface, and that the complex FI coupling is given by the modular parameter of this surface. The FI potential itself coincides with the middle period of a meromorphic differential. However, it only shows up in the effective action if a certain 4-flux is switched on, and then supersymmetry appears to be non-perturbatively broken. (orig.)

  16. Performance improvement of VAV air conditioning system through feedforward compensation decoupling and genetic algorithm

    International Nuclear Information System (INIS)

    Wang Jun; Wang Yan

    2008-01-01

    VAV (variable air volume) control system has the feature of multi-control loops. While all the control loops are working together, they interfere and influence each other. This paper designs the decoupling compensation unit in VAV system in the method of feedforward compensation. This paper also designs the controller parameters of VAV system by means of inverse deducing and the genetic algorithm. Experimental results demonstrate that the combination of the feedforward compensation decoupling and the controller optimization by genetic algorithm can improve the performance of the VAV control system

  17. Effects of 3D magnetic perturbations on toroidal plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2011-01-01

    Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic

  18. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: Loop overlapping rediscovered.

    Science.gov (United States)

    Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke

    2018-02-01

    To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. A critical realist perspective on decoupling negative environmental impacts from housing sector growth and economic growth

    DEFF Research Database (Denmark)

    Xue, Jin

    2012-01-01

    The question that motivates this article has been a matter of dispute: Is it possible to combine perpetual economic growth and longterm environmental sustainability based on the premise that economic growth can be fully decoupled from negative environmental impacts? The article addresses...... this question from the position of critical realism. An empirical study focusing on the housing sector is conducted, indicating that housing stock growth and economic growth have been, at best, weakly decoupled from environmental impacts. In the long run, it seems implausible that the degree of decoupling can...... be increased at a rate sufficient to compensate for continual growth in the volume of housing stock. A further elaboration of the topic at an ontological level leads to the conclusion that continual economic growth and long-term environmental sustainability can hardly be combined....

  1. Minimal Surfaces for Hitchin Representations

    DEFF Research Database (Denmark)

    Li, Qiongling; Dai, Song

    2018-01-01

    . In this paper, we investigate the properties of immersed minimal surfaces inside symmetric space associated to a subloci of Hitchin component: $q_n$ and $q_{n-1}$ case. First, we show that the pullback metric of the minimal surface dominates a constant multiple of the hyperbolic metric in the same conformal...... class and has a strong rigidity property. Secondly, we show that the immersed minimal surface is never tangential to any flat inside the symmetric space. As a direct corollary, the pullback metric of the minimal surface is always strictly negatively curved. In the end, we find a fully decoupled system...

  2. A decoupling approach to classical data transmission over quantum channels

    DEFF Research Database (Denmark)

    Dupont-Dupuis, Fréderic; Szehr, Oleg; Tomamichel, Marco

    2014-01-01

    be solved this way, one of the most basic coding problems remains impervious to a direct application of this method, sending classical information through a quantum channel. We will show that this problem can, in fact, be solved using decoupling ideas, specifically by proving a dequantizing theorem, which...

  3. Perturbative anyon gas

    International Nuclear Information System (INIS)

    Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75

    1992-06-01

    The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs

  4. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  5. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  6. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  7. Description of highly perturbed bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Joshi, P.C.; Sood, P.C.

    1976-01-01

    Recently some highly perturbed positive parity bands have been populated in odd-mass rare earth nuclei. The energy spacings and sometimes even the spin sequences are drastically different from the usual strong coupling rotational model picture. The levels belonging to 'odd and even' I+1/2 are found to make separate groupings. The levels belonging to odd values of I+1/2 are seen to be very much favoured in comparison to the levels for which I+1/2 is even. In some cases only the favoured levels have been identified. These bands have been studied in the frame-work of rotation aligned coupling scheme in which the odd neutron in the unique parity orbital (in this case the isub(13/2) orbital) is strongly decoupled from the body fixed symmetry axis by the Coriolis force so as to make the projection of its angular momentum α on the rotation axis approximately a good quantum number. A description of the energy levels is suggested by assigning the quantum number α-j to the favoured levels and α-j-1 to the unfavoured levels. The intraband transitions of the favoured and unfavoured bands are examined in comparison with those in the adjacent ground state bands in even-even nuclei. (author)

  8. The propagation of varied timescale perturbations in landscapes

    Science.gov (United States)

    Bingham, N.; Johnson, K. N.; Bookhagen, B.; Chadwick, O.

    2016-12-01

    The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions

  9. Ab-initio perturbed-cluster study of carbon monoxide adsorption at a stepped LiF(001) surface

    Science.gov (United States)

    Pisani, C.; Corà, F.; Orlando, R.; Nada, R.

    1993-02-01

    The perturbed-cluster ab-initio Hartree-Fock approach to the study of local defects in crystals [J. Chem. Phys. 92(1990)7448] is applied to the study of CO adsorption at a stepped LiF(001) surface. The step is simulated by a tablet of four ions superimposed on an infinite LiF(001) monolayer. The geometry of the step is first optimized, and corresponds to an important relaxation of cations and anions of the tablet inwards and outwards, respectively. The equilibrium configuration, adsorption energy and vibrational frequency of CO at a corner of the tablet occupied by a lithium cation are calculated. With respect to adsorption at a perfect (100) face, there is a large increase in interaction energy, especially when adsorption occurs via the oxygen atom. This difference is essentially related to modifications of the electrostatic field experienced by the adsorbed molecule.

  10. A hypersonic lift mechanism with decoupled lift and drag surfaces

    Science.gov (United States)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  11. Response to perturbations of the force-free aligned pulsar atmosphere

    International Nuclear Information System (INIS)

    Jackson, E.A.

    1978-01-01

    To clarify the likely structure of the pulsar atmosphere, the response of various plasma configurations near a rotating neutron star with aligned rotational and dipole magnetic axes is investigated. These configurations represent both general infinitesimal perturbations along B of the force-free (E.B = O) atmosphere, as well as a heuristic class of finite perturbations (shell atmospheres). It is shown that the general infinitesimal perturbations along B which preserve spatial ordering involve regions of both negative and positive work, whose boundaries are at the surfaces E.B = O(E is not equal to O) and those of zero charge density (cos 2 theta = 1/3). At the latter surfaces, and on one side of the system will produce mixing of charges of opposite sign. The intersecting E.B=O surface, the response of the recombination of these charges, and their removal by gravity, shows that the force-free atmosphere is physically unstable, favouring a lower density at mid-latitude. The response of various plasma shell atmospheres is also examined and confirms the likelihood of the plasma atmosphere previously predicted from a near-vacuum analysis, provided the density is not too large. Larger density shells are found to break up into 'striated' configurations, containing two electron and one or two ion groups, which however may not develop into stable configurations. Criteria on the plasma density related to this and other responses of the plasma shells are discussed. (author)

  12. Effects of core perturbations on the structure of the sun

    International Nuclear Information System (INIS)

    Sweigart, A.V.

    1983-01-01

    A number of numerical experiments have been carried out in order to investigate the sensivity of the solar luminosity and radius to perturbations within the radiative core. In these experiments the core was perturbed by suddenly mixing various parts of the composition profile during evolutionary sequences for the present Sun. The hydrostatic readjustment caused by these ''mixing events'' induced an immediate change in the surface luminosity and radius on both the hydrodynamic time scale (approx.15 minutes) and the thermal time scale of the superadiabatic layers (approx.1 day). The subsequent evolution of the luminosity and radius perturbations was followed for 5 x 10 5 yr after each mixing event. The time-dependent behavior of these perturbations was found to depend on where the mixing event occurred. In all cases, however, the ratio W(t) = Δ log R/Δ log L had an initial value of 0.71 and showed only a mild time dependence during the first several thousand years. Two other relationships between the luminosity and radius perturbations are also discussed. One of these, V(t) = (d log R/dd)/(d log L/dt), has a fairly constant value of 0.3 +- 0.1. Both perturbations in the mixing-length ratio α and perturbations in the magnetic pressure within the solar convective envelope yield the same value for V/(t). During the normal unperturbed evolution of the present Sun, V(t) = 0.4. Our results show that core perturbations such as the present mixing events cannot explain the decrease in the solar radius indicated by the solar eclipse data between 1925 and 1980

  13. A wearable vibrotactile biofeedback system improves balance control of healthy young adults following perturbations from quiet stance.

    Science.gov (United States)

    Ma, Christina Zong-Hao; Lee, Winson Chiu-Chun

    2017-10-01

    Maintaining postural equilibrium requires fast reactions and constant adjustments of the center of mass (CoM) position to prevent falls, especially when there is a sudden perturbation of the support surface. During this study, a newly developed wearable feedback system provided immediate vibrotactile clues to users based on plantar force measurement, in an attempt to reduce reaction time and CoM displacement in response to a perturbation of the floor. Ten healthy young adults participated in this study. They stood on a support surface, which suddenly moved in one of four horizontal directions (forward, backward, left and right), with the biofeedback system turned on or off. The testing sequence of the four perturbation directions and the two system conditions (turned on or off) was randomized. The resulting reaction time and CoM displacement were analysed. Results showed that the vibrotactile feedback system significantly improved balance control during translational perturbations. The positive results of this preliminary study highlight the potential of a plantar force measurement based biofeedback system in improving balance under perturbations of the support surface. Future system optimizations could facilitate its application in fall prevention in real life conditions, such as standing in buses or trains that suddenly decelerate or accelerate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    Science.gov (United States)

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  15. Developments in perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  16. PerturbationAnalyzer: a tool for investigating the effects of concentration perturbation on protein interaction networks.

    Science.gov (United States)

    Li, Fei; Li, Peng; Xu, Wenjian; Peng, Yuxing; Bo, Xiaochen; Wang, Shengqi

    2010-01-15

    The propagation of perturbations in protein concentration through a protein interaction network (PIN) can shed light on network dynamics and function. In order to facilitate this type of study, PerturbationAnalyzer, which is an open source plugin for Cytoscape, has been developed. PerturbationAnalyzer can be used in manual mode for simulating user-defined perturbations, as well as in batch mode for evaluating network robustness and identifying significant proteins that cause large propagation effects in the PINs when their concentrations are perturbed. Results from PerturbationAnalyzer can be represented in an intuitive and customizable way and can also be exported for further exploration. PerturbationAnalyzer has great potential in mining the design principles of protein networks, and may be a useful tool for identifying drug targets. PerturbationAnalyzer can be accessed from the Cytoscape web site http://www.cytoscape.org/plugins/index.php or http://biotech.bmi.ac.cn/PerturbationAnalyzer. Supplementary data are available at Bioinformatics online.

  17. Human hepatic carbohydrate metabolism. Dynamic observation using 13C MRS without proton decoupling

    International Nuclear Information System (INIS)

    Ikehira, H.; Obata, T.; Koga, M.; Yoshida, K.

    1997-01-01

    Purpose: Dynamic natural-abundance 13 C MR spectroscopy (MRS) studies without proton decoupling were performed in the human liver using commercial 1.5 T MR equipment. Material and methods: A single tuned custom-made circular surface coil with an OD of 20 cm operating at 16.04 MHz was used for the 13 C study. Seventy-five grams of glucose dissolved in water was administered for the natural-abundance 13 C-MRS dynamic study which lasted for approximately 40 to 60 min. Data acquisition was broken into 20-min and 1.7-min blocks. Localized proton shimming with a whole-body coil was performed with sufficient volume to include the observing area of the surface coil; the line width of the water signal was less than 20 Hz. Results and Conclusion: The glucose and glycogen spectra were clearly visible at 80 to 120 ppm after oral administration of the glucose solution. These data demonstrate that dynamic hepatic carbohydrate metabolism can be observed with commercially available MR equipment. Given that the human hepatic glycogen pool reaches maximum level within less than 10 min, this technique should provide a direct diagnosis of hepatic carbohydrate metabolic disorders. (orig.)

  18. Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control

    Directory of Open Access Journals (Sweden)

    Ivković Sanja

    2014-01-01

    Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.

  19. Note on the chemical potential of decoupled matter in the Universe

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Pombo, C.

    2011-01-01

    Textbooks on cosmology exhibit a thermodynamic inconsistency for free streaming, decoupled matter. It is connected here to the chemical potential, which deviates from its equilibrium value μ = @kBT , where @ is the usual parameter of the Fermi-Dirac or Bose-Einstein distribution function.

  20. A disturbance decoupling nonlinear control law for variable speed wind turbines

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Poulsen, Niels Kjølstad

    2007-01-01

    This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...

  1. Spin-chirality decoupling in Heisenberg spin glasses and related systems

    OpenAIRE

    Kawamura, Hikaru

    2006-01-01

    Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.

  2. Recombinant erythropoietin acutely decreases renal perfusion and decouples the renin-angiotensin-aldosterone system

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels J.; Christensen, Soren J.; Lisbjerg, Kristian

    2018-01-01

    The effect of recombinant erythropoietin (rhEPO) on renal and systemic hemodynamics was evaluated in a randomized double-blinded, cross-over study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO for 2 weeks, or high-dose rhEPO for 3 days. Subjects refrained from excessive salt...... that seems to decouple the activity of the renin-angiotensin-aldosterone system from changes in renal hemodynamics. This may serve as a negative feed-back mechanism on endogenous synthesis of EPO when circulating levels of EPO are high. These results demonstrates for the first time in humans a direct effect...... of rhEPO on renal hemodynamics and a decoupling of the renin-angiotensin-aldosterone system....

  3. Filter-design perspective applied to dynamical decoupling of a multi-qubit system

    International Nuclear Information System (INIS)

    Su Zhikun; Jiang Shaoji

    2012-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD helps to protect the decoherence-free subspace while NUDD destroys it; (iii) when the imperfect control pulses with finite width are considered, NUDD is affected in both the high-fidelity regime and coherence time regime while SDD is affected in the coherence time regime only. (paper)

  4. Anthropocene Dialogues: Decoupling Economic Prosperity from Carbon Emissions

    Science.gov (United States)

    Tewksbury, J.; Kohm, K.

    2017-12-01

    Anthropocene magazine is a new science magazine produced by Future Earth. Its mission is to bring together the world's leading scientists, technologists, and creatives to explore on-the-ground stories of sustainability science in action. For AGU 2017, Anthropocene magazine will stage an "Anthropocene Dialogue" based on its July 2017 issue. Anthropocene Dialogues are panel discussions about the successes and challenges of transformative science-policy collaborations by leading science journalists, researchers, and practitioners. The focus of this dialogue is: What are the scientific and technological innovations that drive the decarbonization of economies—from plugging artificial intelligence into electrical grids to new experiments in solar geoengineering. Panelist include: Robert Jackson of the Global Carbon Project discussing the historic decoupling of carbon emissions from GDP, Oliver Morton of The Economist speaking on how geoengineering can be a key element of a decoupling process; Robinson Meyer of The Atlantic outlining a coal "retirement plan" based on supply side economics; Wayt Gibbs of Scientific American tackling the quintessential question, How much energy will the world need? and Mark Harris of IEEE Spectrum looking at new experiments in artificial intelligence that could pull fossil fuels out of electrical grids, factories, data centers, and transit systems. For more information on these stories, visit: anthropocenemagazine.org/in-print/. Free sample copies of the magazine will be available at the session.

  5. Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath

    International Nuclear Information System (INIS)

    Ajoy, Ashok; Alvarez, Gonzalo A.; Suter, Dieter

    2011-01-01

    Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are 13 C nuclear spins and the environment consists of a 1 H nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.

  6. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  7. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  8. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon

    2016-09-15

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  9. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth's surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  10. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  11. Simple-decoupling treatment of high-Tc superconductors

    International Nuclear Information System (INIS)

    Misawa, S.

    1992-01-01

    The t-J model is examined within the framework of the Hubbard-I-type decoupling method of the Green's functions and by using the Fukuyama's expression for Hall coefficient R H . The superconducting transition temperature T c and the normal-state R H at finite temperature are calculated as functions of doping-fraction δ. The obtained results are symmetrical with respect to hole- and electron-doping. In the small hole-doping case, the extended s-wave state is favorable, and the behaviors of T c and R H as functions of δ are qualitatively in agreement with the experimental results. (orig.)

  12. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    Science.gov (United States)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  13. Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields

    OpenAIRE

    Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy

    1984-01-01

    A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.

  14. Effects of 3D Magnetic Perturbations on Toroidal Plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2010-01-01

    Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma

  15. High scale impact in alignment and decoupling in two-Higgs-doublet models

    Science.gov (United States)

    Basler, Philipp; Ferreira, Pedro M.; Mühlleitner, Margarete; Santos, Rui

    2018-05-01

    The two-Higgs-doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work, we discuss how the behavior of the model at high-energy scales causes it to have a scalar with properties very similar to those of the SM—which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with B -physics bounds, forces the model to be naturally decoupled. As a consequence, any nondecoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that the 2HDM is stable up to the Planck scale independently of which of the C P -even scalars is the discovered 125 GeV Higgs boson.

  16. U(1) decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relations in N=4 super Yang-Mills

    International Nuclear Information System (INIS)

    Jia Yin; Huang Rijun; Liu Changyong

    2010-01-01

    By using the Britto-Cachazo-Feng-Witten recursion relation of N=4 super Yang-Mills theory, we proved the color reflection, U(1) decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relations for color-ordered amplitudes of N=4 super Yang-Mills theory. This proof verified the conjectured Bern-Carrasco-Johansson relations of matter fields. The proof depended only on general properties of superamplitudes. We showed also that the color reflection relation and U(1)-decoupling relation are special cases of Kleiss-Kuijf relations.

  17. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry

    Directory of Open Access Journals (Sweden)

    Lin Boqiang

    2017-07-01

    Full Text Available China is facing huge pressure on CO2 emissions reduction. The heavy industry accounts for over 60% of China’s total energy consumption, and thus leads to a large number of energy-related carbon emissions. This paper adopts the Log Mean Divisia Index (LMDI method based on the extended Kaya identity to explore the influencing factors of CO2 emissions from China’s heavy industry; we calculate the trend of decoupling by presenting a theoretical framework for decoupling. The results show that labor productivity, energy intensity, and industry scale are the main factors affecting CO2 emissions in the heavy industry. The improvement of labor productivity is the main cause of the increase in CO2 emissions, while the decline in energy intensity leads to CO2 emissions reduction, and the industry scale has different effects in different periods. Results from the decoupling analysis show that efforts made on carbon emission reduction, to a certain extent, achieved the desired outcome but still need to be strengthened.

  18. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  19. Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS{sub 5}×S{sup 5}

    Energy Technology Data Exchange (ETDEWEB)

    Forini, V. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Tseytlin, A.A. [Theoretical Physics Group, Blackett Laboratory, Imperial College,London, SW7 2AZ (United Kingdom); Vescovi, E. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Institute of Physics, University of São Paulo,Rua do Matão 1371, 05508-090 São Paulo (Brazil)

    2017-03-01

    We revisit the computation of the 1-loop string correction to the “latitude' minimal surface in AdS{sub 5}×S{sup 5} representing 1/4 BPS Wilson loop in planar N=4 SYM theory previously addressed in https://arxiv.org/abs/1512.00841 and https://arxiv.org/abs/1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the AdS{sub 2} minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on AdS{sub 2}. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and k-wound circle.

  20. Decoupling and Sources of Structural Transformation of East Asian Economies: An International Input-Output Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Ko

    2014-03-01

    Full Text Available This study aims to answer two questions using input-output decomposition analysis: 1 Have emerging Asian economies decoupled? 2 What are the sources of structural changes in gross outputs and value-added of emerging Asian economies related to the first question? The main findings of the study are as follows: First, since 1990, there has been a trend of increasing dependence on exports to extra-regions such as G3 and the ROW, indicating no sign of "decoupling", but rather an increasing integration of emerging Asian countries into global trade. Second, there is a contrasting feature in the sources of structural changes between non-China emerging Asia and China. Dependence of non-China emerging Asia on intra-regional trade has increased in line with strengthening economic integration in East Asia, whereas China has disintegrated from the region. Therefore, it can be said that China has contributed to no sign of decoupling of emerging Asia as a whole.

  1. Effect of a static external magnetic perturbation on resistive mode stability in tokamaks

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1994-03-01

    The influence of a general static external magnetic perturbation on the stability of resistive modes in a tokamak plasma is examined. There are three main parts to this investigation. Firstly, the vacuum perturbation is expanded as a set of well-behaved toroidal ring functions and is, thereafter, specified by the coefficients of this expansion. Secondly, a dispersion relation is derived for resistive plasma instabilities in the presence of a general external perturbation and finally, this dispersion relation is solved for the amplitudes of the tearing and twisting modes driven in the plasma by a specific perturbation. It is found that the amplitudes of driven tearing and twisting modes are negligible until a certain critical perturbation strength is exceeded. Only tearing modes are driven in low-β plasmas with εβ p p ∼>1. For error-field perturbations made up of a large number of different poloidal and toroidal harmonics the critical strength to drive locked modes has a open-quote staircase close-quote variation with edge-q, characterized by strong discontinuities as coupled rational surfaces enter or leave the plasma. For single harmonic perturbations the variation with edge-q is far smoother. Both types of behaviour have been observed experimentally. The critical perturbation strength is found to decrease strongly close to an ideal external kink stability boundary. This is also in agreement with experimental observations

  2. Effects of resonant magnetic perturbation on the triggering and the evolution of double-tearing mode

    Science.gov (United States)

    Wang, L.; Lin, W. B.; Wang, X. Q.

    2018-02-01

    The effects of resonant magnetic perturbation on the triggering and the evolution of the double-tearing mode are investigated by using nonlinear magnetohydrodynamics simulations in a slab geometry. It is found that the double-tearing mode can be destabilized by boundary magnetic perturbation. Moreover, the mode has three typical development stages before it reaches saturation: the linear stable stage, the linear-growth stage, and the exponential-growth stage. The onset and growth of the double-tearing mode significantly depend on the boundary magnetic perturbations, particularly in the early development stage of the mode. The influences of the magnetic perturbation amplitude on the mode for different separations of the two rational surfaces are also discussed.

  3. On the decoupling of relaxation modes in a molecular liquid caused by isothermal introduction of 2 nm structural inhomogeneities.

    Science.gov (United States)

    Ueno, Kazuhide; Angell, C Austen

    2011-12-08

    To support a new interpretation of the origin of the dynamic heterogeneity observed pervasively in fragile liquids as they approach their glass transition temperatures T(g), we demonstrate that the introduction of ~2 nm structural inhomogeneities into a homogeneous glass former leads to a decoupling of diffusion from viscosity similar to that observed during the cooling of orthoterphenyl (OTP) below T(A,) where Arrhenius behavior is lost. Further, the decoupling effect grows stronger as temperature decreases (and viscosity increases). The liquid is cresol, and the ~2 nm inhomogeneities are cresol-soluble asymmetric derivatized tetrasiloxy-based (polyhedral oligomeric silsesquioxane (POSS)) molecules. The decoupling is the phenomenon predicted by Onsager in discussing the approach to a liquid-liquid phase separation with decreasing temperature. In the present case the observations support the notion of a polyamorphic transition in fragile liquids that is hidden below the glass transition. A similar decoupling can be expected as a globular protein is dissolved in dilute aqueous solutions or in protic ionic liquids. © 2011 American Chemical Society

  4. Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

    Science.gov (United States)

    Han, Jihyun; Lee, Meehye; Shang, Xiaona; Lee, Gangwoong; Emmons, Louisa K.

    2017-09-01

    We measured peroxyacetyl nitrate (PAN) and other reactive species such as O3, NO2, CO, and SO2 with aerosols including mass, organic carbon (OC), and elemental carbon (EC) in PM2. 5 and K+ in PM1. 0 at Gosan Climate Observatory in Korea (33.17° N, 126.10° E) during 19 October-6 November 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN mixing ratios ranged from 0.1 (detection limit) to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM2. 5 (Pearson correlation coefficient, γ = 0.79) than with O3 (γ = 0.67). In particular, the O3 level was highly elevated with SO2 at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase in PM2. 5 OC and EC, PM2. 5 mass, and PM1. 0 K+. The high K+ concentration and OC / EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O3 in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation of regional air quality in northeast Asia.

  5. Bilateral electromyogram response latency following platform perturbation in unilateral transtibial prosthesis users: influence of weight distribution and limb position.

    Science.gov (United States)

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2013-01-01

    Appropriate muscular response following an external perturbation is essential in preventing falls. Transtibial prosthesis users lack a foot-ankle complex and associated sensorimotor structures on the side with the prosthesis. The effect of this lack on rapid responses of the lower limb to external surface perturbations is unknown. The aim of the present study was to compare electromyogram (EMG) response latencies of otherwise healthy, unilateral, transtibial prosthesis users (n = 23, mean +/- standard deviation [SD] age = 48 +/- 14 yr) and a matched control group (n = 23, mean +/- SD age = 48 +/- 13 yr) following sudden support-surface rotations in the pitch plane (toes-up and toes-down). Perturbations were elicited in various weight-bearing and limb-perturbed conditions. The results indicated that transtibial prosthesis users have delayed responses of multiple muscles of the lower limb following perturbation, both in the intact and residual limbs. Weight-bearing had no influence on the response latency in the residual limb, but did on the intact limb. Which limb received the perturbation was found to influence the muscular response, with the intact limb showing a significantly delayed response when the perturbation was received only on the side with a prosthesis. These delayed responses may represent an increased risk of falling for individuals who use transtibial prostheses.

  6. SKATE: a docking program that decouples systematic sampling from scoring.

    Science.gov (United States)

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  7. Perturbative and constructive renormalization

    International Nuclear Information System (INIS)

    Veiga, P.A. Faria da

    2000-01-01

    These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)

  8. Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2010-01-01

    Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F s (x,Q 2 )=F s (F s0 (x),G 0 (x)), G(x,Q 2 )=G(F s0 (x), G 0 (x)). F s , G are known NLO functions and F s0 (x)≡F s (x,Q 0 2 ), G 0 (x)≡G(x,Q 0 2 ) are starting functions for evolution beginning at Q 2 =Q 0 2 . We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)

  9. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  10. Polar tent for reduced perturbation of NIF ignition capsules

    Science.gov (United States)

    Hammel, B. A.; Pickworth, L.; Stadermann, M.; Field, J.; Robey, H.; Scott, H. A.; Smalyuk, V.

    2016-10-01

    In simulations, a tent that contacts the capsule near the poles and departs tangential to the capsule surface greatly reduces the capsule perturbation, and the resulting mass injected into the hot-spot, compared to current capsule support methods. Target fabrication appears feasible with a layered tent (43-nm polyimide + 8-nm C) for increased stiffness. We are planning quantitative measurements of the resulting shell- ρR perturbation near peak implosion velocity (PV) using enhanced self-emission backlighting, achieved by adding 1% Ar to the capsule fill in Symcaps (4He + H). Layered DT implosions are also planned for an integrated test of capsule performance. We will describe the design and simulation predictions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  11. Hedge Funds and Risk-Decoupling

    DEFF Research Database (Denmark)

    Ringe, Georg

    2013-01-01

    The law must remain adaptive and responsive to the constantly changing challenges of our society and our business life. One of the most pressing challenges of the past years is the emergence of alternative investment funds, in particular hedge funds, which masterfully exploit the traditional cate...... to the traditional market expectations of shareholders. Based on the insight developed from these policy perspectives, this article develops regulatory reform proposals, particularly with regard to the EU context.......The law must remain adaptive and responsive to the constantly changing challenges of our society and our business life. One of the most pressing challenges of the past years is the emergence of alternative investment funds, in particular hedge funds, which masterfully exploit the traditional...... theoretical perspectives are used as an analytical framework to examine the vast challenges of risk-decoupling: (1) a classical agency costs approach; (2) an information costs perspective; and (3) a view from corporate finance. This Article argues that shareholders with hedged risk exposure do not correspond...

  12. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  13. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....

  14. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  15. Perturbations i have Known and Loved

    Science.gov (United States)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  16. Acoustic wavefield evolution as a function of source location perturbation

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-12-01

    The wavefield is typically simulated for seismic exploration applications through solving the wave equation for a specific seismic source location. The direct relation between the form (or shape) of the wavefield and the source location can provide insights useful for velocity estimation and interpolation. As a result, I derive partial differential equations that relate changes in the wavefield shape to perturbations in the source location, especially along the Earth\\'s surface. These partial differential equations have the same structure as the wave equation with a source function that depends on the background (original source) wavefield. The similarity in form implies that we can use familiar numerical methods to solve the perturbation equations, including finite difference and downward continuation. In fact, we can use the same Green\\'s function to solve the wave equation and its source perturbations by simply incorporating source functions derived from the background field. The solutions of the perturbation equations represent the coefficients of a Taylor\\'s series type expansion of the wavefield as a function of source location. As a result, we can speed up the wavefield calculation as we approximate the wavefield shape for sources in the vicinity of the original source. The new formula introduces changes to the background wavefield only in the presence of lateral velocity variation or in general terms velocity variations in the perturbation direction. The approach is demonstrated on the smoothed Marmousi model.

  17. Power decoupling techniques for single-phase power electronics systems — An overview

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    . In this paper, recently proposed state-of-the-art power decoupling techniques for ripple power reduction in these systems are presented and classified into different groups for performance comparison. The pros and cons of these techniques are discussed and identified, and the conclusions drawn will be useful...

  18. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  19. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  20. Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...

  1. Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions

    Science.gov (United States)

    Hammel, B. A.; Tommasini, R.; Clark, D. S.; Field, J.; Stadermann, M.; Weber, C.

    2016-05-01

    NIF capsules are supported in the hohlraum by two thin (∼15-110 nm) Formvar films (“tent”). Highly resolved HYDRA simulations indicate that a large (∼40% peak-average) areal density (ρR) perturbation develops on the capsule during acceleration as a consequence of this support geometry. This perturbation results in a jet of dense DT and, in some cases, CH that penetrates and cools the hot spot, significantly degrading the neutron yield (∼10-20% of 1D yield). We examine “low-foot” and “high-foot” pulse shapes, tent thicknesses, and geometries. Simulations indicate that thinner tents result in a smaller pR perturbation, however, the departure angle of the tent from the capsule surface is important, with steeper angles resulting in larger perturbations.

  2. Disformal transformation of cosmological perturbations

    Directory of Open Access Journals (Sweden)

    Masato Minamitsuji

    2014-10-01

    Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  3. Disformal transformation of cosmological perturbations

    International Nuclear Information System (INIS)

    Minamitsuji, Masato

    2014-01-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame

  4. Resonant interaction of energetic ions with Alfven-like perturbations in stellarators

    International Nuclear Information System (INIS)

    Karulin, N.; Wobig, H.

    1994-04-01

    The modification of passing guiding center orbits of 3.5 MeV alpha particles and 45 keV protons in the presence of global Alfven eigenmodes (GAE's) is studied in modular advanced stellarators. It is found that if resonances between particles and waves occur, drift surfaces form a set of island structures. The mode numbers of the perturbations, which are dangerous for the energetic particle confinement, are discussed for two particular stellarators (Helias reactor and Wendelstein 7-AS). The perturbation amplitudes corresponding to the onset of orbit stochasticity are studied numerically. The coefficient of the collisionless stochastic diffusion is estimated using the island width derived analytically. (orig.)

  5. Effects of outer perturbances on dynamics of wake vortices

    International Nuclear Information System (INIS)

    Baranov, N.A.; Belotserkovsky, A.S.; Turchak, L.I.

    2004-01-01

    One of the problems in aircraft flight safety is reduction of the risk related with aircraft encounter with wake vortices generated by other aircraft. An efficient approach to this problem is design of systems providing information on areas of potential danger of wake vortices to pilots in real time. The main components of such a system are a unit for calculations of wake vortices behind aircraft and a unit for calculations of areas of potential danger. A promising way to development of real time algorithms for calculation of wake vortices is the use of vortex methods in CFD based on the hypothesis of quasi-3D flow in the area of wake vorticity. The mathematical model developed by our team calculates positions and intensity of wake vortices past aircraft taking account of such effects as viscous dissipation of vortices, effects of ambient turbulence, wind shear, as well as viscous interaction between wake vortices and the underlying surface. The necessity of including the last factor could be stems from the fact that in the case where wake vortices are in close proximity of the rigid surface, the viscous interaction between the wake vortices and the surface boundary layer results in the boundary layer separation changing the overall intensity and dynamics of the wake vortices. To evaluate the boundaries of the danger areas the authors use an approach based on calculation of additional aerodynamic forces and moments acting on the aircraft encountering wake vortices by means of evaluation of the aircraft additional velocities and angular rates corresponding to distribution of disturbed velocities on the aircraft surface. These criteria could be based on local characteristics of the vorticity areas or on characteristics related to the perturbation effects on the aircraft. The latter characteristics include the actual aerodynamic roll moment, the maximum angular rate or the maximum roll of the aircraft under perturbations in the wake vortices. To estimate the accuracy

  6. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.

    Science.gov (United States)

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2010-04-01

    Compensatory stepping and grasping reactions are prevalent responses to sudden loss of balance and play a critical role in preventing falls. The ability to execute these reactions effectively is impaired in older adults. The purpose of this study was to evaluate a perturbation-based balance training program designed to target specific age-related impairments in compensatory stepping and grasping balance recovery reactions. This was a double-blind randomized controlled trial. The study was conducted at research laboratories in a large urban hospital. Thirty community-dwelling older adults (aged 64-80 years) with a recent history of falls or self-reported instability participated in the study. Participants were randomly assigned to receive either a 6-week perturbation-based (motion platform) balance training program or a 6-week control program involving flexibility and relaxation training. Features of balance reactions targeted by the perturbation-based program were: (1) multi-step reactions, (2) extra lateral steps following anteroposterior perturbations, (3) foot collisions following lateral perturbations, and (4) time to complete grasping reactions. The reactions were evoked during testing by highly unpredictable surface translation and cable pull perturbations, both of which differed from the perturbations used during training. /b> Compared with the control program, the perturbation-based training led to greater reductions in frequency of multi-step reactions and foot collisions that were statistically significant for surface translations but not cable pulls. The perturbation group also showed significantly greater reduction in handrail contact time compared with the control group for cable pulls and a possible trend in this direction for surface translations. Further work is needed to determine whether a maintenance program is needed to retain the training benefits and to assess whether these benefits reduce fall risk in daily life. Perturbation-based training

  7. Preheating curvaton perturbations

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  8. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  9. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  10. Decoupling in an expanding universe boundary RG-flow affects initial conditions for inflation

    CERN Document Server

    Schalm, K; Van der Schaar, J P; Schalm, Koenraad; Shiu, Gary; Schaar, Jan Pieter van der

    2004-01-01

    We study decoupling in FRW spacetimes, emphasizing a Lagrangian description throughout. To account for the vacuum choice ambiguity in cosmological settings, we introduce an arbitrary boundary action representing the initial conditions. RG flow in these spacetimes naturally affects the boundary interactions. As a consequence the boundary conditions are sensitive to high-energy physics through irrelevant terms in the boundary action. Using scalar field theory as an example, we derive the leading dimension four irrelevant boundary operators. We discuss how the known vacuum choices, e.g. the Bunch-Davies vacuum, appear in the Lagrangian description and square with decoupling. For all choices of boundary conditions encoded by relevant boundary operators, of which the known ones are a subset, backreaction is under control. All, moreover, will generically feel the influence of high-energy physics through irrelevant (dimension four) boundary corrections. Having established a coherent effective field theory framework ...

  11. Insight into structural phase transitions from the decoupled anharmonic mode approximation.

    Science.gov (United States)

    Adams, Donat J; Passerone, Daniele

    2016-08-03

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  12. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China

    International Nuclear Information System (INIS)

    Lu, Qinli; Yang, Hong; Huang, Xianjin; Chuai, Xiaowei; Wu, Changyan

    2015-01-01

    ICE (Industrial carbon emission) is one of most important sources of anthropogenic carbon emissions. To reduce the carbon emissions, many countries, particularly China, have adjusted their industrial structures and improved energy efficiency. The complete decomposition technique and decoupling method were used to investigate and quantitatively analyze the main factors influencing the energy-related ICE in Jiangsu, the Chinese province with the largest energy consumption and carbon emissions. The importance of the sectoral dimension was taken into account by dividing the industry into three main departments consisting of 38 sub-sectors. The results indicated that the industry of Jiangsu was in a weak decoupling state from 2005 to 2012. The industrial output growth was the biggest driver of the increase in ICE, while energy efficiency advancement was the main cause for the reduction, in a weakening trend. The year of 2008 was an important breaking point when the optimization of industry structure came into play and global financial crisis took place. The biggest dilemma in Jiangsu is heavy industry is still dominant, especially the five sectors of them made the biggest contribution (88.2%) to ICE. Thankfully, there were five manufacturing industries had achieved low carbon economy at various degrees. - Highlights: • Multi-sectoral decomposition and decoupling were conducted to evaluate the ICE. • The industry of Jiangsu was in a weak decoupling state with an increasing trend. • The industrial output growth was the biggest driver for ICE from 2005 to 2012. • The optimization of industry structure came into play for the reduction since 2008. • Five backward and advanced industries were identified

  13. Fast in vivo volume dose reconstruction via reference dose perturbation

    International Nuclear Information System (INIS)

    Lu, Weiguo; Chen, Mingli; Mo, Xiaohu; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel

    2014-01-01

    Purpose: Accurate on-line reconstruction of in-vivo volume dose that accounts for both machine and patient discrepancy is not clinically available. We present a simple reference-dose-perturbation algorithm that reconstructs in-vivo volume dose fast and accurately. Methods: We modelled the volume dose as a function of the fluence map and density image. Machine (output variation, jaw/leaf position errors, etc.) and patient (setup error, weight loss, etc.) discrepancies between the plan and delivery were modelled as perturbation of the fluence map and density image, respectively. Delivered dose is modelled as perturbation of the reference dose due to change of the fluence map and density image. We used both simulated and clinical data to validate the algorithm. The planned dose was used as the reference. The reconstruction was perturbed from the reference and accounted for output-variations and the registered daily image. The reconstruction was compared with the ground truth via isodose lines and the Gamma Index. Results: For various plans and geometries, the volume doses were reconstructed in few seconds. The reconstruction generally matched well with the ground truth. For the 3%/3mm criteria, the Gamma pass rates were 98% for simulations and 95% for clinical data. The differences mainly appeared on the surface of the phantom/patient. Conclusions: A novel reference-dose-perturbation dose reconstruction model is presented. The model accounts for machine and patient discrepancy from planning. The algorithm is simple, fast, yet accurate, which makes online in-vivo 3D dose reconstruction clinically feasible.

  14. Vertical Propagation and Temporal Growth of Perturbations in the Winter Atmosphere

    Science.gov (United States)

    Christiansen, B.

    2001-12-01

    We present a general circulation model study of the temporal growth and vertically propagation of perturbations following vertical confined forcings. Both transient and sustained forcings are considered. The motivation for the study is the recent recognition of downward propagation of anomalies from the stratosphere to the troposphere and its implications both for medium range forecasts and for a possible physical mechanism for stratospheric impacts on weather and climate. The dynamical link might also offer a mechanism for changes in the upper atmosphere to affect the tropospheric climate. Here we are thinking of changes in trace gases such as ozone, but also of modulations of the upper atmospheric structure related to the 11-year solar cycle. The model atmosphere is chaotic and shows growth of perturbations no matter which level is forced. The perturbations grow to a size comparable to the variability of the unperturbed atmosphere on a time-scale of 20 - 25 days in the troposphere and 30 - 40 days in the stratosphere. After the initial period of growth the perturbations have the same structure as the unperturbed atmosphere. Although the forcing is restricted to the northern hemisphere the perturbations encompass the whole atmosphere and develop on the same time scale on both hemispheres. Perturbations grow with time squared both when zonal mean and single cell values are considered. Such a power law growth suggest the existence of a finite predictability time which is independent of the initial perturbation as long as it is small. In the unperturbed atmosphere the stratospheric variability has the form of downward propagating stratospheric vacillations. However, in the initial period of growth the perturbations do not propagate downward and seem in general uncoupled to the background vacillations. This suggests that the downward propagation is a robust feature determined more by the processes in the troposphere than the state of the stratosphere. We note that

  15. The Hagedorn temperature in a decoupled sector of AdS/CFT

    International Nuclear Information System (INIS)

    Harmark, T.; Kristjansson, K.; Orselli, M.

    2007-01-01

    We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on R x S 3 to the Hagedorn temperature of string theory on Ads 5 x S 5 . The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. On the gauge theory side we are taking a decoupling limit in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX 1/2 Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperature and the thermodynamics of the Heisenberg spin chain. On the string theory side, we identify the dual limit which is taken of string theory on a maximally symmetric pp-wave background with a flat direction, obtained from a Penrose limit of Ads 5 x S 5 . We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge theory side. Finally, we discuss a modified decoupling limit in which planar N=4 SYM reduces to the XXX 1/2 Heisenberg spin chain with an external magnetic field. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. DECOUPLING CONTROL OF TITO SYSTEM SUPPORTED BY DOMINANT POLE PLACEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Novak N. Nedić

    2017-08-01

    Full Text Available Appropriate approach to the nature of systems is a significant precondition for its successful control. An always actual issue of its mutual coupling is considered in this paper. A multivariable system with two-inputs and two-outputs (TITO is in the focus here. The dominant pole placement method is used in trying to tune the PID controllers that should support the decoupling control. The aim is to determine parameters of the PID controllers which, in combination with decoupler, can obtain a good dynamical behavior of the system. Therefore, this kind of the centralized analytically obtained controller is used for object control. Another goal is to simplify the tuning procedure of PID controllers and enlarge the possibility for introducing the given approach into practice. But the research results indicate that the proposed procedure leads to the usage of P controllers because they enable the best performances for the considered object. Also, it is noticed that some differences from the usual rules in selection of the dominant poles gives better results. The research is supported by simulations and, therefore, the proposed method effectiveness, regarding the system behavior quality, is presented on several examples.

  17. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    International Nuclear Information System (INIS)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli

    2010-01-01

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  18. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits

    Science.gov (United States)

    McGee, Kiaran P.; Stormont, Robert S.; Lindsay, Scott A.; Taracila, Victor; Savitskij, Dennis; Robb, Fraser; Witte, Robert J.; Kaufmann, Timothy J.; Huston, John, III; Riederer, Stephen J.; Borisch, Eric A.; Rossman, Phillip J.

    2018-04-01

    The growth in the use of magnetic resonance imaging (MRI) data for radiation therapy (RT) treatment planning has been facilitated by scanner hardware and software advances that have enabled RT patients to be imaged in treatment position while providing morphologic and functional assessment of tumor volumes and surrounding normal tissues. Despite these advances, manufacturers have been slow to develop radiofrequency (RF) coils that closely follow the contour of a RT patient undergoing MR imaging. Instead, relatively large form surface coil arrays have been adapted from diagnostic imaging. These arrays can be challenging to place on, and in general do not conform to the patient’s body habitus, resulting in sub optimal image quality. The purpose of this study is to report on the characterization of a new flexible and highly decoupled RF coil for use in MR imaging of RT patients. Coil performance was evaluated by performing signal-to-noise ratio (SNR) and noise correlation measurements using two coil (SNR) and four coil (noise correlation) element combinations as a function of coil overlap distance and comparing these values to those obtained using conventional coil elements. In vivo testing was performed in both normal volunteers and patients using a four and 16 element RF coil. Phantom experiments demonstrate the highly decoupled nature of the new coil elements when compared to conventional RF coils, while in vivo testing demonstrate that these coils can be integrated into extremely flexible and form fitting substrates that follow the exact contour of the patient. The new coil design addresses limitations imposed by traditional surface coil arrays and have the potential to significantly impact MR imaging for both diagnostic and RT applications.

  19. Real-space decoupling transformation for quantum many-body systems.

    Science.gov (United States)

    Evenbly, G; Vidal, G

    2014-06-06

    We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).

  20. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  1. Base case and perturbation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  2. Scalar cosmological perturbations

    International Nuclear Information System (INIS)

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  3. Divergent Perturbation Series

    International Nuclear Information System (INIS)

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  4. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinyu, E-mail: xyuwei@mail.xjtu.edu.cn; Wang, Pengfei, E-mail: pengfeixiaoli@yahoo.cn; Zhao, Fuyu, E-mail: fuyuzhao_xj@163.com

    2016-08-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  5. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    International Nuclear Information System (INIS)

    Wei, Xinyu; Wang, Pengfei; Zhao, Fuyu

    2016-01-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  6. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  7. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    Science.gov (United States)

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Large-order perturbation theory

    International Nuclear Information System (INIS)

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  9. The Energy Footprint of China’s Textile Industry: Perspectives from Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Laili Wang

    2017-09-01

    Full Text Available Energy is the essential input for operations along the industrial manufacturing chain of textiles. China’s textile industry is facing great pressure on energy consumption reduction. This paper presents an analysis of the energy footprint (EFP of China’s textile industry from 1991 to 2015. The relationship between EFP and economic growth in the textile industry was investigated with a decoupling index approach. The logarithmic mean Divisia index approach was applied for decomposition analysis on how changes in key factors influenced the EFP of China’s textile industry. Results showed that the EFP of China’s textile industry increased from 41.1 Mt in 1991 to 99.6 Mt in 2015. EFP increased fastest in the period of 1996–2007, with an average annual increasing rate of 7.7 percent, especially from 2001 to 2007 (8.5 percent. Manufacture of textile sector consumed most (from 58 percent to 76 percent of the energy among the three sub-sectors, as it has lots of energy-intensive procedures. EFP and economic growth were in a relative decoupling state for most years of the researched period. Their relationship showed a clear tendency toward decoupling. Industrial scale was the most important factor that led to the increase of EFP, while decreasing energy intensity contributed significantly to reducing the EFP. The promoting effect of the factors was larger than the inhibiting effect on EFP in most years from 1991 to 2015.

  10. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  11. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  12. The neutron field perturbation effect in the Dalat Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The perturbation effect of the thermal neutron field of the Dalat reactor is investigated when a fuel element is replaced by a water column or a plexiglass rod. In consequence, it is possible to replace the measurement of the relative distribution of the thermal neutron field on the surface of fuel element by that in the water column or in the plexiglass rod. (author). 5 refs. 4 figs. 4 tabs.

  13. Investigation about decoupling capacitors of PMT voltage divider effects on neutron-gamma discrimination

    International Nuclear Information System (INIS)

    Divani, Nazila; Firoozabadi, Mohammad M.; Bayat, Esmail

    2014-01-01

    Scintillators are almost used in any nuclear laboratory. These detectors combine of scintillation materials, PMT and a voltage divider. Voltage dividers are different in resistive ladder design. But the effect of decoupling capacitors and damping resistors haven’t discussed yet. In this paper at first a good equilibrium circuit designed for PMT, and it was used for investigating about capacitors and resistors in much manner. Results show that decoupling capacitors have great effect on PMT output pulses. In this research, it was tried to investigate the effect of Capacitor’s value and places on PMT voltage divider in Neutron-Gamma discrimination capability. Therefore, the voltage divider circuit for R329-02 Hamamatsu PMT was made and Zero Cross method used for neutron-gamma discrimination. The neutron source was a 20Ci Am-Be. Anode and Dynode pulses and discrimination spectrum were saved. The results showed that the pulse height and discrimination quality change with the value and setting of capacitors

  14. Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD

    Energy Technology Data Exchange (ETDEWEB)

    Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States); Ha, Phuoc [Towson University, Department of Physics, Astronomy and Geosciences, Towson, MD (United States); McKay, Douglas W. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States)

    2010-10-15

    Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F{sub s}(x,Q{sup 2})=F{sub s}(F{sub s0}(x),G{sub 0}(x)), G(x,Q{sup 2})=G(F{sub s0}(x), G{sub 0}(x)). F{sub s}, G are known NLO functions and F{sub s0}(x){identical_to}F{sub s}(x,Q{sub 0}{sup 2}), G{sub 0}(x){identical_to}G(x,Q{sub 0}{sup 2}) are starting functions for evolution beginning at Q{sup 2}=Q{sub 0}{sup 2}. We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)

  15. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  16. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect

    Science.gov (United States)

    Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Zhao, Jian-xin

    2017-02-01

    Many factors influence the seasonal changes in δ13C levels in coral skeletons; consequently, the climatic and environmental significance of such changes is complicated and controversial. However, it is widely accepted that the secular declining trend of coral δ13C over the past 200 years reflects the changes in the additional flux of anthropogenic CO2 from the atmosphere into the surface oceans. Even so, the centennial-scale variations, and their significance, of coral δ13C before the Industrial Revolution remain unclear. Based on an annually resolved coral δ13C record from the northern South China Sea, the centennial-scale variations of coral δ13C over the past millennium were studied. The coral δ13C and total solar irradiance (TSI) have a significant positive Pearson correlation and coupled variation during the Medieval Warm Period and Little Ice Age, when natural forcing controlled the climate and environment. This covariation suggests that TSI controls coral δ13C by affecting the photosynthetic activity of the endosymbiotic zooxanthellae over centennial timescales. However, there was a decoupling of the coral skeletal δ13C and TSI during the Current Warm Period, the period in which the climate and environment became linked to anthropogenic factors. Instead, coral δ13C levels have a significant Pearson correlation with both the atmospheric CO2 concentration and δ13C levels in atmospheric CO2. The correlation between coral δ13C and atmospheric CO2 suggests that the oceanic 13C Suess effect, caused by the addition of increasing amounts of anthropogenic 12CO2 to the surface ocean, has led to the decoupling of coral δ13C and TSI at the centennial scale.

  17. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  18. Postural control in children with spastic diplegia : Muscle activity during perturbations in sitting

    NARCIS (Netherlands)

    Brogren, E; HaddersAlgra, M; Forssberg, H

    To clarify the neural mechanisms controlling equilibrium during sitting, and the implications for the optimal sitting position for children with CP, automatic postural adjustments after perturbations of the support surface during sitting were investigated in seven children with spastic diplegia and

  19. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi

    2017-01-31

    Shear bands are narrow zones of intense shear observed during plastic deformations of metals at high strain rates. Because they often precede rupture, their study attracted attention as a mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using a simple model from viscoplasticity. We exploit the properties of scale invariance of the model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism of shear band formation. The key step is to desingularize a reduced system of singular ordinary differential equations and reduce the problem into the construction of a heteroclinic orbit for an autonomous system of three first-order equations. The associated dynamical system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré--Bendixson theorem to construct a heteroclinic orbit.

  20. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  1. Experimental and Theoretical Analysis for a Fluid-Loaded, Simply Supported Plate Covered by a Damping and Decoupling Composite Acoustic Coating

    Directory of Open Access Journals (Sweden)

    Baihua Yuan

    2017-01-01

    Full Text Available This work presents a vibroacoustic response model for a fluid-loaded, simply supported rectangular plate covered by a composite acoustic coating consisting of damping and decoupling layers. The model treated the damping layer and base plate as a unified whole under pure bending moments and the decoupling layer as a three-dimensional, isotropic, linear elastic solid. The validity of the model was verified by both numerical analysis and experiments and was shown to accurately extend previous studies that were limited to a plate covered by a single damping or decoupling layer with an evaluation confined solely to numerical analysis. The trends of the numerical and experimental results are generally consistent, with some differences due to the influences of water pressure and the frequency dependence of the material parameters, which are not taken into account by the numerical analysis. Both experimental and numerical results consistently show that the radiated noise reduction effect of the composite coating is superior to that of single-type coatings, which is attributed to the fact that the composite coating combines the merits of both the high vibration suppression performance of the damping layer and the superior vibration isolation performance of the decoupling layer.

  2. Systematic Design Method and Experimental Validation of a 2-DOF Compliant Parallel Mechanism with Excellent Input and Output Decoupling Performances

    Directory of Open Access Journals (Sweden)

    Yao Jiang

    2017-06-01

    Full Text Available The output and input coupling characteristics of the compliant parallel mechanism (CPM bring difficulty in the motion control and challenge its high performance and operational safety. This paper presents a systematic design method for a 2-degrees-of-freedom (DOFs CPM with excellent decoupling performance. A symmetric kinematic structure can guarantee a CPM with a complete output decoupling characteristic; input coupling is reduced by resorting to a flexure-based decoupler. This work discusses the stiffness design requirement of the decoupler and proposes a compound flexure hinge as its basic structure. Analytical methods have been derived to assess the mechanical performances of the CPM in terms of input and output stiffness, motion stroke, input coupling degree, and natural frequency. The CPM’s geometric parameters were optimized to minimize the input coupling while ensuring key performance indicators at the same time. The optimized CPM’s performances were then evaluated by using a finite element analysis. Finally, a prototype was constructed and experimental validations were carried out to test the performance of the CPM and verify the effectiveness of the design method. The design procedure proposed in this paper is systematic and can be extended to design the CPMs with other types of motion.

  3. Decoupled deblurring filter and its application to elastic migration and inversion

    KAUST Repository

    Feng, Zongcai

    2017-08-17

    We present a decoupled deblurring filter that approximates the multiparameter Hessian inverse by using local filters to approximate its submatrices for the same and different parameter classes. Numerical tests show that the filter not only reduces the footprint noise, balances the amplitudes and increases the resolution of the elastic migration images, but also mitigates the crosstalk artifacts. When used as a preconditioner, it accelerates the convergence rate for elastic inversion.

  4. Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Science.gov (United States)

    Kunz, Barbara E.; Regis, Daniele; Engi, Martin

    2018-03-01

    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U-Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P-T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U-Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure.

  5. Pseudo-spin flip in doubly decoupled structures and identical bands

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Cardona, M.A.; Somacal, H.; Debray, M.E.; Hojman, D.; Davidson, J.; Davidson, M.; De Acuna, D.; Napoli, D.R.; Rico, J.; Bazzacco, D.; Burch, R.; Lenzi, S.M.; Rossi Alvarez, C.; Blasi, N.; Lo Bianco, G.

    1995-01-01

    Unfavored components of doubly decoupled bands are reported for the first time. They can be interpreted as having the pseudo-spin flipped relative to the orientation in the favored components, i.e. antialigned with respect to the rotation axis. In addition, the differences in consecutive transition energies along the favored and unfavored sequences are strikingly similar among them up to I π =15 + and 14 + respectively. This feature arises from a cancellation of differences in alignments and moments of inertia. ((orig.))

  6. Status of perturbative QCD

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs

  7. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  8. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  9. Chaotic inflation with metric and matter perturbations

    International Nuclear Information System (INIS)

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  10. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  11. Stability analysis of a pressure-solution surface

    Science.gov (United States)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  12. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  13. Gauge-invariant cosmological density perturbations

    International Nuclear Information System (INIS)

    Sasaki, Misao.

    1986-06-01

    Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)

  14. Twisting perturbed parafermions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  15. Dynamic Modeling and Fuzzy Self-Tuning Disturbance Decoupling Control for a 3-DOF Serial-Parallel Hybrid Humanoid Arm

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2013-01-01

    Full Text Available A unique fuzzy self-tuning disturbance decoupling controller (FSDDC is designed for a serial-parallel hybrid humanoid arm (HHA to implement the throwing trajectory-tracking mission. Firstly, the dynamic model of the HHA is established and the input signal of the throwing process is obtained by studying the throwing process of human's arm. Secondly, the FSDDC, incorporating the disturbance decoupling controller (DDC and the fuzzy logic controller (FLC, is designed to ensure trajectory tracking of the HHA in the presence of uncertainties and disturbances. With the FSDDC method, the HHA system can be decoupled by actively estimating and rejecting the effects of both the internal plant dynamics and external disturbances. The self-tuning parameters are adapted online to improve the performance of the FSDDC; thus, it does not require detailed system parameters of the presented FSDDC. Finally, the controller introduced is compared with a PD controller which is commonly used for the robot manipulators control in industry. The effectiveness of the designed FSDDC is illustrated by simulations.

  16. Effect of Hydrotherapy on Static and Dynamic Balance in Older Adults: Comparison of Perturbed and Non-Perturbed Programs

    Directory of Open Access Journals (Sweden)

    Elham Azimzadeh

    2013-01-01

    Full Text Available Objectives: Falling is a main cause of mortality in elderly. Balance training exercises can help to prevent falls in older adults. According to the principle of specificity of training, the perturbation-based trainings are more similar to the real world. So these training programs can improve balance in elderly. Furthermore, exercising in an aquatic environment can reduce the limitations for balance training rather than a non-aquatic on. The aim of this study is comparing the effectiveness of perturbed and non-perturbed balance training programs in water on static and dynamic balance in aforementioned population group. Methods & Materials: 37 old women (age 80-65, were randomized to the following groups: perturbation-based training (n=12, non-perturbation-based training (n=12 and control (n=13 groups. Static and dynamic balance had been tested before and after the eight weeks of training by the postural stability test of the Biodex balance system using dynamic (level 4 and static platform. The data were analyzed by one sample paired t-test, Independent t-test and ANOVA. Results: There was a significant improvement for all indexes of static and dynamic balance in perturbation-based training (P<0.05. However, in non-perturbed group, all indexes were improved except ML (P<0.05. ANOVA showed that perturbed training was more effective than non-perturbed training on both static and dynamic balances. Conclusion: The findings confirmed the specificity principle of training. Although balance training can improve balance abilities, these kinds of trainings are not such specific for improving balance neuromuscular activities.The perturbation-based trainings can activate postural compensatory responses and reduce falling risk. According to results, we can conclude that hydrotherapy especially with perturbation-based programs will be useful for rehabilitation interventions in elderly .

  17. Equicontrollability and its application to model-following and decoupling.

    Science.gov (United States)

    Curran, R. T.

    1971-01-01

    Discussion of 'model following,' a term used to describe a class of problems characterized by having two dynamic systems, generically known as the 'plant' and the 'model,' it being required to find a controller to attach to the plant so as to make the resultant compensated system behave, in an input/output sense, in the same way as the model. The approach presented to the problem takes a structural point of view. The result is a complex but informative definition which solves the problem as posed. The application of both the algorithm and its basis, equicontrollability, to the decoupling problem is considered.

  18. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  20. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S ( ⋅ ) may not be densely defined and the perturbation operator is a bounded linear operator from D ( A ) ¯ into () such that = on D ( A ) ¯ ...

  1. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S(⋅) may not be densely defined and the perturbation operator is a bounded linear operator from ¯D(A) into () such that = ...

  2. A Fracture Decoupling Experiment

    Science.gov (United States)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  3. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  4. Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.

    Science.gov (United States)

    Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav

    2017-11-01

    Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, PBalance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, PBalance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.

  5. Plasma diffusion in systems with disrupted magnetic surfaces

    International Nuclear Information System (INIS)

    Morozov, D.K.; Pogutse, O.P.

    1982-01-01

    Plasma diffusion is analyzed in the case in which the system of magnetic surfaces is disrupted by a stochastic perturbation of the magnetic field. The diffusion coefficient is related to the statistical properties of the field. The statistical characteristics of the field are found when the magnetic surfaces near the separatrix are disrupted by an external perturbation. The diffusion coefficient is evaluated in the region in which the magnetic surfaces are disrupted. In this region the diffusion coefficient is of the Bohm form

  6. Influence of the plasma profile and the antenna geometry on the matching and current distribution control of the ITER ICRF antenna array. Optimization of the decoupling-matching system

    Energy Technology Data Exchange (ETDEWEB)

    Messiaen, A., E-mail: a.messiaen@fz-juelich.de [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium); Swain, D. [US ITER Team, ORNL (United States); Vervier, M.; Dumortier, P.; Durodié, F.; Grine, D. [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium)

    2013-10-15

    Highlights: ► Analysis of the matching-decoupling system of the ICRF antenna array of ITER. ► Control of the array phasing by the decouplers for the same power of power sources. ► Computation for the 2012 design status of the antenna plug. ► 7 decouplers needed but 10 can be used to decrease the ratings of components. ► Effects of plasma profile and antenna geometry. -- Abstract: The eight triplets of straps of the ITER ICRF antenna array are fed through 8 matching circuits and 4 hybrids to ensure load resilience. Decouplers are used to mitigate the effects of triplet mutual coupling. They also control the array phasing. The electrical constraints on the decouplers for different layouts with heating (H) or current drive (CD) phasing are compared starting from the TOPICA matrix computed for the last antenna plug design and the reference (most pessimistic) plasma profile “2010low” provided by IO. It is shown that this last profile provides a significant decrease of plasma coupling and increase of mutual coupling with respect to the previous reference profile “Sc2short17”. This results in a larger range of decoupler reactance X{sub dec} and voltage V{sub Xdec} needed. This range can be reduced when using 10 decouplers instead of the 7 needed for the same forward power P{sub Gk+} of the 4 power sources. For H phasing only 4 decouplers could be used but with different P{sub Gk+} (P{sub Gk+} ratio up to 1.5–2.5). For CD phasing and same plasma profile the power capability P{sub tot} is increased by 25% with a decoupler layout allowing much smaller poloidal phasing than the 90° provided by the hybrids. A decrease of the distance antenna-plasma profile reduces the normalized decoupler voltage V{sub Xdec}/√P{sub tot} with no significant change of the X{sub dec} range. The recess of the vertical septa between the strap boxes increases the plasma coupling but has the drawback of also increasing the mutual coupling between triplets: the needed range of X

  7. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  8. Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability

    Science.gov (United States)

    Shao, Shubao; Tian, Zheng; Song, Siyang; Xu, Minglong

    2018-05-01

    Because mechanical cross coupling between its axes would lead to degradation of the scanning precision of a piezo-driven fast steering mirror (PFSM), a two-degrees-of-freedom (2-DoF) PFSM with a cross-axis decoupling capability, in which 2-DoF flexure hinges are used, is proposed in this work. The overall structure of the proposed PFSM is first introduced and then both static and dynamic models are established analytically; in addition, the decoupling mechanism is described in detail and the low dynamic cross coupling ratios that occur between the two DoFs are shown. Because of the decoupling property of the PFSM, the 2-DoF motion is treated as a combination of two independent one-degree-of-freedom (1-DoF) motions and two independent proportional-integral-derivative controllers are thus used separately in the control of the two DoFs. Based on this control strategy, experiments involving both 1-DoF trajectory tracking and 2-DoF trajectory tracking are implemented. The test results show that the proposed PFSM can achieve the tilt range of ±7 mrad for both axes with the low coupling ratios that are less than 2% (-34 dB), and the bandwidths of both axes are higher than 810 Hz; in addition, the maximal tracking full scale range errors for 1-DoF trajectory tracking and 2-DoF trajectory tracking are less than 0.2% and 1%, respectively, where the larger error of 2-DoF trajectory tracking is mainly caused by the remaining cross coupling between axes.

  9. A Method of Retrieving BRDF from Surface-Reflected Radiance Using Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Directory of Open Access Journals (Sweden)

    Alexander Radkevich

    2018-04-01

    Full Text Available Bi-directional reflection distribution function (BRDF defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT modeling used in aerosol retrievals, cloud retrievals, atmospheric modeling, and other applications. Ground based measurements of reflected radiance draw increasing attention as a source of information about anisotropy of surface reflection. Derivation of BRDF from surface radiance requires atmospheric correction. This study develops a new method of retrieving BRDF on its whole domain, making it immediately suitable for further atmospheric RT modeling applications. The method is based on the integral equation relating surface-reflected radiance, BRDF, and solutions of two auxiliary atmosphere-only RT problems. The method requires kernel-based BRDF. The weights of the kernels are obtained with a quickly converging iterative procedure. RT modeling has to be done only one time before the start of iterative process.

  10. Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

    Directory of Open Access Journals (Sweden)

    J. Han

    2017-09-01

    Full Text Available We measured peroxyacetyl nitrate (PAN and other reactive species such as O3, NO2, CO, and SO2 with aerosols including mass, organic carbon (OC, and elemental carbon (EC in PM2. 5 and K+ in PM1. 0 at Gosan Climate Observatory in Korea (33.17° N, 126.10° E during 19 October–6 November 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN mixing ratios ranged from 0.1 (detection limit to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM2. 5 (Pearson correlation coefficient, γ =  0.79 than with O3 (γ =  0.67. In particular, the O3 level was highly elevated with SO2 at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase in PM2. 5 OC and EC, PM2. 5 mass, and PM1. 0 K+. The high K+ concentration and OC ∕ EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O3 in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation of regional air quality in northeast Asia.

  11. Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-01-01

    We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)][M. M. Block, Eur. Phys. J. C 68, 683 (2010)] allow us to write fully decoupled solutions for the singlet structure function F s (x,Q 2 ) and G(x,Q 2 ) as F s (x,Q 2 )=F s (F s0 (x 0 ),G 0 (x 0 )) and G(x,Q 2 )=G(F s0 (x 0 ),G 0 (x 0 )), where the x 0 are the Bjorken x values at Q 0 2 . Here F s and G are known functions--found using LO DGLAP splitting functions--of the initial boundary conditions F s0 (x)≡F s (x,Q 0 2 ) and G 0 (x)≡G(x,Q 0 2 ), i.e., the chosen starting functions at the virtuality Q 0 2 . For both G(x) and F s (x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy--a computational fractional precision of O(10 -9 ). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F s distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)], starting from their initial values at Q 0 2 =1 GeV 2 and 1.69 GeV 2 , respectively, using their choice of α s (Q 2 ). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and F s satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both Q

  12. Compactness of the difference between the porous thermoelastic semigroup and its decoupled semigroup

    Directory of Open Access Journals (Sweden)

    El Mustapha Ait Benhassi

    2015-06-01

    Full Text Available Under suitable assumptions, we prove the compactness of the difference between the porous thermoelastic semigroup and its decoupled one. This will be achieved by proving the norm continuity of this difference and the compactness of the difference between the resolvents of their generators. Applications to porous thermoelastic systems are given.

  13. Synthesis of Zinc Diethyldithiocarbamate (ZDEC) and Structure Characterization using Decoupling 1H NMR

    International Nuclear Information System (INIS)

    Sujarit, Jenjira; Phutdhawong, Weerachai

    2003-10-01

    A synthesis of zinc diethyldithiocarbamate (ZDEC) has been studied. The optimization mole ratio of the synthetic process was 2: 2: 2: 1 of diethylamine, carbondisulfide, sodium hydroxide, and zinc chloride. Characterization was carried out mainly by analyzing its spectroscopic properties especially decoupling 1 H NMR technique. ZDEC was obtained in 48.5% yield

  14. Photon density of states for deformed surfaces

    International Nuclear Information System (INIS)

    Emig, T

    2006-01-01

    A new approach to the Helmholtz spectrum for arbitrarily shaped boundaries and a rather general class of boundary conditions is introduced. We derive the boundary induced change of the density of states in terms of the free Green's function from which we obtain both perturbative and non-perturbative results for the Casimir interaction between deformed surfaces. As an example, we compute the lateral electrodynamic Casimir force between two corrugated surfaces over a wide parameter range. Universal behaviour, fixed only by the largest wavelength component of the surface shape, is identified at large surface separations. This complements known short distance expansions which are also reproduced

  15. Non-perturbative effects in supersymmetry

    International Nuclear Information System (INIS)

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  16. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  17. Determining decoupling points in a supply chain networks using NSGA II algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimiarjestan, M.; Wang, G.

    2017-07-01

    Purpose: In the model, we used the concepts of Lee and Amaral (2002) and Tang and Zhou (2009) and offer a multi-criteria decision-making model that identify the decoupling points to aim to minimize production costs, minimize the product delivery time to customer and maximize their satisfaction. Design/methodology/approach: We encounter with a triple-objective model that meta-heuristic method (NSGA II) is used to solve the model and to identify the Pareto optimal points. The max (min) method was used. Findings: Our results of using NSGA II to find Pareto optimal solutions demonstrate good performance of NSGA II to extract Pareto solutions in proposed model that considers determining of decoupling point in a supply network. Originality/value: So far, several approaches to model the future have been proposed, of course, each of them modeled a part of this concept. This concept has been considered more general in the model that defined in follow. In this model, we face with a multi-criteria decision problem that includes minimization of the production costs and product delivery time to customers as well as customer consistency maximization.

  18. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    Science.gov (United States)

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Decoupling between policy and practice through the lens of sensemaking and sensegiving

    Directory of Open Access Journals (Sweden)

    Austen Agata

    2016-05-01

    Full Text Available Any organizations, pursuing their goals, they should take into account others, as they are compelled to a joint coexistence. In order to grow, they need plans and rules of conduct. But not always what was intended is actually implemented. That discrepancy is called decoupling. This phenomenon may be due to different levels of acceptance and implementation of rules, which is associated with the process of sensemaking and sensegiving. The first phenomenon involves the creation of meaning, where the new rule is not yet fully developed and understood, and so it must be properly interpreted only to implement the action. In this process, people give meaning to their experiences. If the process of creating a sense is successful, occurring practices are accepted by the members of the organization, and finally implemented. Sensegiving is about exerting influence in terms of the proper understanding of the rules, in order to create an appropriate definition of organizational reality. Moral attitude of employees may be important in minimizing the effect of negative attitudes associated with decoupling. Therefore, there is a need for constant training of employees in ethical issues.

  20. Determining decoupling points in a supply chain networks using NSGA II algorithm

    International Nuclear Information System (INIS)

    Ebrahimiarjestan, M.; Wang, G.

    2017-01-01

    Purpose: In the model, we used the concepts of Lee and Amaral (2002) and Tang and Zhou (2009) and offer a multi-criteria decision-making model that identify the decoupling points to aim to minimize production costs, minimize the product delivery time to customer and maximize their satisfaction. Design/methodology/approach: We encounter with a triple-objective model that meta-heuristic method (NSGA II) is used to solve the model and to identify the Pareto optimal points. The max (min) method was used. Findings: Our results of using NSGA II to find Pareto optimal solutions demonstrate good performance of NSGA II to extract Pareto solutions in proposed model that considers determining of decoupling point in a supply network. Originality/value: So far, several approaches to model the future have been proposed, of course, each of them modeled a part of this concept. This concept has been considered more general in the model that defined in follow. In this model, we face with a multi-criteria decision problem that includes minimization of the production costs and product delivery time to customers as well as customer consistency maximization.

  1. Role of magnetic flux perturbations in confinement bifurcations in TUMAN-3M

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.

    2003-01-01

    Poloidal magnetic flux variations in the small tokamak TUMAN-3M allowed observation of transitions between different confinement modes. The possibility of switching on/off the ohmic H-mode by edge poloidal magnetic flux perturbations has been found. The flux perturbations were created by fast current ramp up/down or by magnetic compression/decompression produced by fast increase/decrease in the toroidal magnetic field. It was found that positive flux perturbations (current ramp-up and magnetic compression scenarios) are useful means of H-mode triggering. If a negative flux perturbation (current ramp-down or magnetic decompression) is applied, the H-mode terminated. Various mechanisms involved in the L-H and H-L transition physics in the flux perturbation experiments were analyzed. The experimental observations of the transitions between confinement modes might be understood in terms of the model of a sheared radial electric field generation, which takes into account the electron Ware drift in a perturbed longitudinal electric field. Another scenario of improved confinement was observed in the initial phase of an ohmic discharge, when change in the poloidal flux is associated with current ramp-up. Variation of the rates of current ramp-up and working gas puffing in the beginning of a discharge resulted in a fast increase in the electron temperature near the axis. The increase correlates with low m/n MHD mode growth. The observed core electron confinement improvement is apparently connected with the rate of current ramp. Deviation from the optimal rate results in disappearance of the improvement. The role of magnetic shear profile and rational magnetic surfaces in the core electron confinement improvement in the initial phase of ohmic discharges is discussed. (author)

  2. Effective methods in QCD and the phenomenology of hadrons

    International Nuclear Information System (INIS)

    Chemtob, M.

    1989-01-01

    To place the problem in perspective I will first discuss the decoupling of heavy quarks in QCD which is a simpler perturbative problem. Then, I will review two experimental observables (the σ-term in πN scattering and the polarised deep inelastic scattering) which diagnose the possibility of non-perturbative effects associated with the decoupling of the strange quark and will next discuss their possible interpretation on the basis of the skyrme model. I will also present some simple-minded results for a related low-energy application to the meson-nucleon scattering lengths obtained in a chiral effective lagrangian approach

  3. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  4. Local perturbations perturb—exponentially–locally

    International Nuclear Information System (INIS)

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  5. Perturbation theory in large order

    International Nuclear Information System (INIS)

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  6. Some remarks on perturbation in flame photometry; Quelques remarques sur les perturbations dans la photometrie de flamme

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After classifying the various types of perturbations, the author attempts to explain their causes. He then gives examples of possibilities of suppressing them. (author) [French] Ayant classe les divers types de perturbations en categories, l'auteur essaie d'expliquer les causes de ces perturbations. Il donne ensuite des exemples de possibilites de les supprimer. (auteur)

  7. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  8. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    Science.gov (United States)

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  9. Policy Mixes to Achieve Absolute Decoupling: A Case Study of Municipal Waste Management

    Directory of Open Access Journals (Sweden)

    Francesca Montevecchi

    2016-05-01

    Full Text Available Studying the effectiveness of environmental policies is of primary importance to address the unsustainable use of resources that threatens the entire society. Thus, the aim of this paper is to investigate on the effectiveness of environmental policy instruments to decouple waste generation and landfilling from economic growth. In order to do so, the paper analyzes the case study of the Slovakian municipality of Palarikovo, which has drastically improved its waste management system between 2000 and 2012, through the utilization of differentiated waste taxes and awareness-raising and education campaigns, as well as targeting increased recycling and municipal composting. We find evidence of absolute decoupling for landfilled waste and waste generation, the latter being more limited in time and magnitude. These policy instruments could therefore play an important role in municipalities that are still lagging behind in waste management. More specifically, this policy mix was effective in moving away from landfilling, initiating recycling systems, and to some extent decreasing waste generation. Yet, a more explicit focus on waste prevention will be needed to address the entirety of the problem effectively.

  10. Development of aluminum (Al5083)-clad ternary Ag-In-Cd alloy for JSNS decoupled moderator

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-01-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces (φ22 mm in dia. x 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 x 200 x 30 mm 3 ), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength

  11. Means-ends decoupling and academic identities in Ukrainian university after the Revolution of Dignity

    NARCIS (Netherlands)

    Hladchenko, Myroslava; Westerheijden, Don F.

    2018-01-01

    This article aims to explore the academic identities under the conditions of means-ends decoupling at the nation-state level. For empirical evidence we choose Ukraine. In 2014, after the Revolution of Dignity despite the adoption of the policies aimed to construct academic identities like in the

  12. How decoupled is the Single Farm Payment and does it matter for international trade?

    DEFF Research Database (Denmark)

    Urban, Kirsten; Jensen, Hans Grinsted; Brockmeier, Martina

    2016-01-01

    a comprehensive representation of domestic support. By considering and modeling a range of different assumptions regarding the SFP’s degree of decoupling, we investigate the SFP’s effect on the model’s results. The results of our analysis reveal substantially different effects that depend on the degree...

  13. A Fast-Processing Modulation Strategy for Three-Phase Four-Leg Neutral-Point-Clamped Inverter Based on the Circuit-Level Decoupling Concept

    DEFF Research Database (Denmark)

    Ghoreishy, Hoda; Zhang, Zhe; Thomsen, Ole Cornelius

    2012-01-01

    In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying the propo......In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying...... the proposed modulation strategy, the four-leg NPC inverter can be decoupled into three three-level Buck converters in each defined operating section. This makes the controller design much simpler compared to the conventional four-leg NPC inverter controllers. Also, this technique can be implemented...

  14. On the non-perturbative effects

    International Nuclear Information System (INIS)

    Manjavidze, J.; Voronyuk, V.

    2004-01-01

    The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)

  15. Fully Decoupled Compliant Parallel Mechanism: a New Solution for the Design of Multidimensional Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-08-01

    Full Text Available In this paper, a novel multidimensional accelerometer is proposed based on fully decoupled compliant parallel mechanism. Three separated chains, which are served as the elastic body, are perpendicular to each other for sensing the kinetic information in different directions without decoupling process. As the crucial part of the whole sensor structure, the revolute and prismatic joints in three pairwise orthogonal branches of the parallel mechanism are manufactured with the alloy aluminium as flexure hinge-based compliant joints. The structure development is first introduced, followed by the comprehensive finite-element analysis including the strain of the sensitive legs, modal analysis for total deformation under different frequency, and the performance of harmonic response. Then, the shape optimization is conducted to reduce the unnecessary parts. Compliance optimization with particle swarm algorithm is implemented to redesign the dimension of the sensitive legs. The research supplies a new viewpoint for the mechanical design of physical sensor, especially acceleration sensor.

  16. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    Science.gov (United States)

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.

  17. Decoupling the short- and long-term behavior of stochastic volatility

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Lunde, Asger; Pakkanen, Mikko

    behavior) from long memory and persistence (long-term behavior) in a simple and parsimonious way, which allows us to successfully model volatility at all intraday time scales. Our prime model is based on the so-called Brownian semistationary process and we derive a number of theoretical properties...... measures of close to two thousand individual US equities, we find that both roughness and persistence appear to be universal properties of volatility. Inspired by the empirical findings, we introduce a new class of continuous-time stochastic volatility models, capable of decoupling roughness (short-term...

  18. Perturbative analysis of transport and fluctuation studies on RFX

    International Nuclear Information System (INIS)

    Martini, S.

    2002-01-01

    On the RFX reversed field pinch different transport mechanisms govern the centre and the edge of the plasma. Core transport is driven by parallel transport in a stochastic magnetic field, giving rise to an outward directed particle convection velocity. At the edge, roughly corresponding to the region outside the toroidal field reversal surface (where q=0), electrostatic fluctuations are an important loss channel, but more than 50% of the power losses have been associated to localized plasma-wall interaction due to the non-axisymmetric magnetic perturbations caused by locked modes. In the paper we present the most recent progress made in the modeling and understanding of the above mechanisms underlying particle and energy transport. The paper also discusses the correlations between core and edge transport phenomena. The main tools are perturbative transport studies by pellet injection and the analysis of the contribution of intermittency processes to particle transport in the edge. (author)

  19. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  20. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  1. Nonperturbative perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.

    1989-01-01

    In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  2. Voltage Management in Unbalanced Low Voltage Networks Using a Decoupled Phase-Tap-Changer Transformer

    DEFF Research Database (Denmark)

    Coppo, Massimiliano; Turri, Roberto; Marinelli, Mattia

    2014-01-01

    The paper studies a medium voltage-low voltage transformer with a decoupled on load tap changer capability on each phase. The overall objective is the evaluation of the potential benefits on a low voltage network of such possibility. A realistic Danish low voltage network is used for the analysis...

  3. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  4. Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-12-01

    Full Text Available Aiming to relieve the large amount of wind power curtailment during the heating period in the North China region, a thermal-electric decoupling (TED approach is proposed to both bring down the constraint of forced power output of combined heat and power plants and increase the electric load level during valley load times that assist the power grid in consuming more wind power. The operating principles of the thermal-electric decoupling approach is described, the mathematical model of its profits is developed, the constraint conditions of its operation are listed, also, an improved parallel conjugate gradient is utilized to bypass the saddle problem and accelerate the optimal speed. Numerical simulations are implemented and reveal an optimal allocation of TED which with a rated power of 280 MW and 185 MWh heat storage capacity are possible. This allocation of TED could bring approximately 16.9 billion Yuan of economic profit and consume more than 80% of the surplus wind energy which would be curtailed without the participation of TED. The results in this article verify the effectiveness of this method that could provide a referential guidance for thermal-electric decoupling system allocation in practice.

  5. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  6. Kerr-CFT and gravitational perturbations

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Reall, Harvey S.; Santos, Jorge E.

    2009-01-01

    Motivated by the Kerr-CFT conjecture, we investigate perturbations of the near-horizon extreme Kerr spacetime. The Teukolsky equation for a massless field of arbitrary spin is solved. Solutions fall into two classes: normal modes and traveling waves. Imposing suitable (outgoing) boundary conditions, we find that there are no unstable modes. The explicit form of metric perturbations is obtained using the Hertz potential formalism, and compared with the Kerr-CFT boundary conditions. The energy and angular momentum associated with scalar field and gravitational normal modes are calculated. The energy is positive in all cases. The behaviour of second order perturbations is discussed.

  7. The power of perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2017-05-10

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  8. Surface states in crystals with low-index surfaces

    International Nuclear Information System (INIS)

    Wang Hui-Ping; Tao Rui-Bao

    2015-01-01

    For most of the conventional crystals with low-index surfaces, the hopping between the nearest neighbor (1NN) crystal planes (CPs) is dominant and the ones from the nNN (2 ≤ n < ∞) CPs are relatively weak, considered as small perturbations. The recent theoretical analysis [1] has demonstrated the absence of surface states at the level of the hopping approximation between the 1NN CPs when the original infinite crystal has the geometric reflection symmetry (GRS) for each CP. Meanwhile, based on the perturbation theory, it has also been shown that small perturbations from the hopping between the nNN (2 ≤ n < ∞) CPs and surface relaxation have no impact on the above conclusion. However, for the crystals with strong intrinsic spin-orbit coupling (SOC), the dominant terms of intrinsic SOC associate with two 1NN bond hoppings. Thus SOC will significantly contribute the hoppings from the 1NN and/or 2NN CPs except the ones within each CP. Here, we will study the effect of the hopping between the 2NN CPs on the surface states in model crystals with three different type structures (Type I: “···–P–P–P–P–···”, Type II: “···–P–Q–P–Q–···” and Type III: “···–P=Q–P=Q–···” where P and Q indicate CPs and the signs “−” and “=” mark the distance between the 1NN CPs). In terms of analytical and numerical calculations, we study the behavior of surface states in three types after the symmetric/asymmetric hopping from the 2NN CPs is added. We analytically prove that the symmetric hopping from the 2NN CPs cannot induce surface states in Type I when each CP has only one electron mode. The numerical calculations also provide strong support for the conclusion, even up to 5NN. However, in general, the coupling from the 2NN CPs (symmetric and asymmetric) is favorable to generate surface states except Type I with single electron mode only. (paper)

  9. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  10. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  11. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  12. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  13. Between green growth and degrowth: Decoupling, rebound effects and the politics for long-term sustainability

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen; Xue, Jin

    2016-01-01

    Taking the simple equation: I(impact) = P(population) A(affluence) T(technology) as the point of departure, this chapter discusses the delusion of decoupling economic activities from environmental impacts by resorting to reduce eco-intensities through technological advancement alone. It is argued...

  14. Perturbation theory and collision probability formalism. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Perturbation theory is commonly used in evaluating the activity effects, particularly those resulting from small and localized perturbation in multiplying media., e.g. in small sample reactivity measurements. The Boltzmann integral transport equation is generally used for evaluating the direct and adjoint fluxes in the heterogenous lattice cells to be used in the perturbation equations. When applying perturbation theory in this formalism, a term involving the perturbation effects on the special transfer kernel arises. This term is difficult to evaluate correctly, since it involves an integration all over the entire system. The main advantage of the perturbation theory which is the limitation of the integration procedure on the perturbation region is found to be of no practical use in such cases. In the present work, the perturbation equation in the collision probability formalism is analyzed. A mathematical treatment of the term in question is performed. A new mathematical expression for this term is derived. The new expression which can be estimated easily is derived.

  15. Decoupled Implementation of New-Wave Land Reforms

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Hundsbæk

    2012-01-01

    Decentralisation is a key element in the new wave of land reforms that have been introduced in sub-Saharan Africa. However, not much research has been carried out into their implementation at the local level. Consequently, reforms are described in old-fashioned terms. Through comparative case stu...... the local level as a part of the land administration structure.......Decentralisation is a key element in the new wave of land reforms that have been introduced in sub-Saharan Africa. However, not much research has been carried out into their implementation at the local level. Consequently, reforms are described in old-fashioned terms. Through comparative case...... studies in Tanzania, this article unpacks implementation as a process consisting of multiple administrative layers and potential actors. It concludes that implementation is slow and uneven due to the decoupling of layers within the formal land administration. Greater attention should be directed towards...

  16. Domain walls and perturbation theory in high-temperature gauge theory: SU(2) in 2+1 dimensions

    International Nuclear Information System (INIS)

    Korthals Altes, C.; Michels, A.; Teper, M.; Stephanov, M.

    1997-01-01

    We study the detailed properties of Z 2 domain walls in the deconfined high-temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter g 2 /T is close to unity. The quantities studied include the surface tension, the action density profiles, roughening, and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool. copyright 1997 The American Physical Society

  17. Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, P. [International Institute for Applied Systems Analysis, Laxenburg (Austria); De Groot, H.L.F. [Faculty of Economics and Business Administration, Vrije Universiteit, Amsterdam (Netherlands)

    2004-07-01

    This paper provides an empirical analysis of decoupling economic growth and energy use and its various determinants by exploring trends in energy- and labour productivity across 10 manufacturing sectors and 14 OECD countries for the period 1970-1997. We explicitly aim to trace back aggregate developments in the manufacturing sector to developments at the level of individual subsectors. A cross-country decomposition analysis reveals that in some countries structural changes contributed considerably to aggregate manufacturing energy-productivity growth and, hence, to decoupling, while in other countries they partly offset energy-efficiency improvements. In contrast, structural changes only play a minor role in explaining aggregate manufacturing labour-productivity developments. Furthermore, we find labour-productivity growth to be higher on average than energy-productivity growth. Over time, this bias towards labour-productivity growth is increasing in the aggregate manufacturing sector, while it is decreasing in most manufacturing subsectors.

  18. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Clarisse, J.M.

    2007-01-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  19. Secondary isocurvature perturbations from acoustic reheating

    Science.gov (United States)

    Ota, Atsuhisa; Yamaguchi, Masahide

    2018-06-01

    The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.

  20. Multidimensional periodic Schrödinger operator perturbation theory and applications

    CERN Document Server

    Veliev, Oktay

    2015-01-01

    The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the ...

  1. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  2. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  3. Gravitational, shear and matter waves in Kantowski-Sachs cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Keresztes, Zoltán; Gergely, László Á. [Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Forsberg, Mats; Bradley, Michael [Department of Physics, UmeåUniversity (Sweden); Dunsby, Peter K.S., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: forsberg.mats.a.b@gmail.com, E-mail: michael.bradley@physics.umu.se, E-mail: peter.dunsby@uct.ac.za, E-mail: gergely@physx.u-szeged.hu [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2015-11-01

    A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.

  4. Stepping stability: effects of sensory perturbation

    Directory of Open Access Journals (Sweden)

    Krebs David E

    2005-05-01

    Full Text Available Abstract Background Few tools exist for quantifying locomotor stability in balance impaired populations. The objective of this study was to develop and evaluate a technique for quantifying stability of stepping in healthy people and people with peripheral (vestibular hypofunction, VH and central (cerebellar pathology, CB balance dysfunction by means a sensory (auditory perturbation test. Methods Balance impaired and healthy subjects performed a repeated bench stepping task. The perturbation was applied by suddenly changing the cadence of the metronome (100 beat/min to 80 beat/min at a predetermined time (but unpredictable by the subject during the trial. Perturbation response was quantified by computing the Euclidian distance, expressed as a fractional error, between the anterior-posterior center of gravity attractor trajectory before and after the perturbation was applied. The error immediately after the perturbation (Emax, error after recovery (Emin and the recovery response (Edif were documented for each participant, and groups were compared with ANOVA. Results Both balance impaired groups exhibited significantly higher Emax (p = .019 and Emin (p = .028 fractional errors compared to the healthy (HE subjects, but there were no significant differences between CB and VH groups. Although response recovery was slower for CB and VH groups compared to the HE group, the difference was not significant (p = .051. Conclusion The findings suggest that individuals with balance impairment have reduced ability to stabilize locomotor patterns following perturbation, revealing the fragility of their impairment adaptations and compensations. These data suggest that auditory perturbations applied during a challenging stepping task may be useful for measuring rehabilitation outcomes.

  5. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  6. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  7. Instabilities in mimetic matter perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  8. A high-order perturbation of surfaces method for scattering of linear waves by periodic multiply layered gratings in two and three dimensions

    Science.gov (United States)

    Hong, Youngjoon; Nicholls, David P.

    2017-09-01

    The capability to rapidly and robustly simulate the scattering of linear waves by periodic, multiply layered media in two and three dimensions is crucial in many engineering applications. In this regard, we present a High-Order Perturbation of Surfaces method for linear wave scattering in a multiply layered periodic medium to find an accurate numerical solution of the governing Helmholtz equations. For this we truncate the bi-infinite computational domain to a finite one with artificial boundaries, above and below the structure, and enforce transparent boundary conditions there via Dirichlet-Neumann Operators. This is followed by a Transformed Field Expansion resulting in a Fourier collocation, Legendre-Galerkin, Taylor series method for solving the problem in a transformed set of coordinates. Assorted numerical simulations display the spectral convergence of the proposed algorithm.

  9. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  10. Output synchronization of chaotic systems under nonvanishing perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mancilla, Didier [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico)], E-mail: didier@uabc.mx; Cruz-Hernandez, Cesar [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2008-08-15

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included.

  11. Output synchronization of chaotic systems under nonvanishing perturbations

    International Nuclear Information System (INIS)

    Lopez-Mancilla, Didier; Cruz-Hernandez, Cesar

    2008-01-01

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included

  12. Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering

    International Nuclear Information System (INIS)

    Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2011-01-01

    We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.

  13. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  14. Isocurvature perturbations in the Ekpyrotic Universe

    International Nuclear Information System (INIS)

    Notari, A.; Riotto, A.

    2002-01-01

    The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parameterizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isocurvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature perturbations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations

  15. The impact of perceived similarity on tacit coordination: propensity for matching and aversion to decoupling choices.

    Science.gov (United States)

    Chierchia, Gabriele; Coricelli, Giorgio

    2015-01-01

    Homophily, or "love for similar others," has been shown to play a fundamental role in the formation of interpersonal ties and social networks. Yet no study has investigated whether perceived similarities can affect tacit coordination. We had 68 participants attempt to maximize real monetary earnings by choosing between a safe but low paying option (that could be obtained with certainty) and a potentially higher paying but "risky" one, which depended on the choice of a matched counterpart. While making their choices participants were mutually informed of whether their counterparts similarly or dissimilarly identified with three person-descriptive words as themselves. We found that similarity increased the rate of "risky" choices only when the game required counterparts to match their choices (stag hunt games). Conversely, similarity led to decreased risk rates when they were to tacitly decouple their choices (entry games). Notably, though similarity increased coordination in the matching environment, it did not did not increase it in the decoupling game. In spite of this, similarity increased (expected) payoffs across both coordination environments. This could shed light on why homophily is so successful as a social attractor. Finally, this propensity for matching and aversion to decoupling choices was not observed when participants "liked" their counterparts but were dissimilar to them. We thus conclude that the impact of similarity of coordination should not be reduced to "liking" others (i.e., social preferences) but it is also about predicting them.

  16. The impact of perceived similarity on tacit coordination: propensity for matching and aversion to decoupling choices

    Directory of Open Access Journals (Sweden)

    Gabriele eChierchia

    2015-07-01

    Full Text Available Homophily, or love for similar others, has been shown to play a fundamental role in the formation of interpersonal ties and social networks. Yet no study has investigated whether perceived similarities can affect tacit coordination. We had 68 participants attempt to maximize real monetary earnings by choosing between a safe but low paying option (that could be obtained with certainty and a potentially higher paying but risky one, which depended on the choice of a matched counterpart. While making their choices participants were mutually informed of whether their counterparts similarly or dissimilarly identified with 3 person-descriptive words as themselves. We found that similarity increased the rate of risky choices only when the game required counterparts to match their choices (stag hunt games. Conversely, similarity led to decreased risk rates when they were to tacitly decouple their choices (entry games. Notably, though similarity increased coordination in the matching environment, it did not did not increase it in the decoupling game. In spite of this, similarity increased (expected payoffs across both coordination environments. This could shed light on why homophily is so successful as a social attractor. Finally, this propensity for matching and aversion to decoupling choices was not observed when participants liked their counterparts but were dissimilar to them. We thus conclude that the impact of similarity of coordination should not be reduced to liking others (i.e. social preferences but it is also about predicting them.

  17. Continual integral in perturbation theory

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  18. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    Science.gov (United States)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  19. Measurements of laser-imprinted perturbations and Rayleigh--Taylor growth with the Nike KrF laser

    International Nuclear Information System (INIS)

    Pawley, C.J.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Obenschain, S.P.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Bodner, S.E.; Colombant, D.; Dahlburg, J.P.; Schmitt, A.J.; Gardner, J.H.; Brown, C.; Seely, J.F.; Lehecka, T.; Aglitskiy, Y.; Deniz, A.V.; Chan, Y.; Metzler, N.; Klapisch, M.

    1997-01-01

    Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity left-angle ΔI/I right-angle of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by √(37), to (ΔI/I)congruent 0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh--Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Angstrom rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion

  20. Effect of cognitive challenge on the postural control of patients with ACL reconstruction under visual and surface perturbations.

    Science.gov (United States)

    Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel

    2018-02-01

    Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.