WorldWideScience

Sample records for surface ozone o3

  1. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  2. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  3. Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation

    International Nuclear Information System (INIS)

    Manivel, Arumugam; Lee, Gang-Juan; Chen, Chin-Yi; Chen, Jing-Heng; Ma, Shih-Hsin; Horng, Tzzy-Leng; Wu, Jerry J.

    2015-01-01

    Highlights: • Synthesis of one-dimensional MoO 3 nanostructures using hydrothermal, microwave, and sonochemical methods. • Sonochemical synthesized MoO 3 presents the best efficiency for the dye removal by catalytic ozonation. • Efficient environmental remediation process. - Abstract: One-dimensional molybdenum trioxide nanostructures were prepared in three different approaches, including thermal, microwave, and sonochemical methods. The physicochemical properties of the obtained MoO 3 nanoparticles were investigated by diffused reflectance spectroscopy, X-ray diffraction analysis, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Among the methods as investigated, sonochemical synthesis gave well-dispersed fine MoO 3 nanoparticles compared with the other approaches. All the synthesized MoO 3 nanostructures were examined for the catalytic ozonation to degrade azo dye in aqueous environment. Different performances were obtained for the catalyst prepared in different methods and the catalytic efficiencies were found to be the order of sonochemical, microwave, and then thermal methods. The sonochemical MoO 3 catalyst allowed the total dye removal within 20 min and its good performance was justified according to their higher surface area with higher number of active sites that provide effective dye interaction for better degradation

  4. What is Eating Ozone? Thermal Reactions between SO2 And O3: Implications for Icy Environments

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2016-01-01

    Laboratory studies are presented, showing for the first time that thermally driven reactions in solid H2O+SO2+O3 mixtures can occur below 150 K, with the main sulfur-containing product being bisulfate (HSO4(-)). Using a technique not previously applied to the low-temperature kinetics of either interstellar or solar system ice analogs, we estimate an activation energy of 32 kJ per mol for HSO4(-) formation. These results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making detection of these molecules in the same vicinity unlikely. Our results also explain why O3 has not been detected on Callisto and why the SO2 concentration on Callisto appears to be highest on that world's leading hemisphere. Furthermore, our results predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. Our work suggests that thermal reactions in ices play a much more important role in surface and sub-surface chemistry than generally appreciated, possibly explaining the low abundance of sulfur-containing molecules and the lack of ozone observed in comets and interstellar ices.

  5. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  6. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  7. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  8. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  9. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  10. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  11. Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment

    International Nuclear Information System (INIS)

    Castagna, A.; Ranieri, A.

    2009-01-01

    Plants react to O 3 threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O 3 uptake, differences in O 3 tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O 3 -driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O 3 sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  12. SPIROMETRIC RESPONSE TO OZONE (O3) IN YOUNG ADULTS AS A FUNCTION OF BODY MAASS INDEX (BMI)

    Science.gov (United States)

    Recent studies in murine models of obesity have shown enhanced responsiveness to ozone in obese vs. lean mice. To assess whether previous human ozone exposure data from our laboratory support an effect of BMI on the spirometric response to ozone we analyzed the post-O3 percent de...

  13. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    Science.gov (United States)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  14. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    Science.gov (United States)

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  15. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  16. Assessment of Ga2O3 technology

    Science.gov (United States)

    2016-09-15

    this article has given the emerging technology of GaN a valuable push in term of encouragement to stay with it while the painful technology development...Ga2O3 α-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 poly - Ga2O3 β-Ga2O3 Epi-layer Growth Method MBE (ozone) MBE (ozone) MBE (ozone) Mist-CVD MBE (ozone... pains to treat the wafer surface with BCl3 RIE to create charges at the interface. The gate contact was also barely a Schottky contact evidenced by

  17. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  18. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings by Vairamuthu Raj and Mohamed Sirajudeen Mumjitha. (pp 1411–1418).

  19. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  20. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  1. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  2. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  3. Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles

    Directory of Open Access Journals (Sweden)

    A. Laeng

    2014-11-01

    Full Text Available We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofísica de Andalucía MIPAS (Michelson Interferometer for Passive Atmospheric Sounding research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005–April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014, is found: the known high bias around the ozone vmr (volume mixing ratio peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5%; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.

  4. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

    International Nuclear Information System (INIS)

    Medellin-Castillo, Nahum A.; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D.

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H 2 O 2 , O 3 /AC, O 3 /H 2 O 2 ) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O 3 /H 2 O 2 and O 3 /AC systems is faster than that with only O 3 . The technologies based on AOPs (UV/H 2 O 2 , O 3 /H 2 O 2 , O 3 /AC) significantly improve the degradation of DEP compared to conventional technologies (O 3 , UV). AC adsorption, UV/H 2 O 2 , O 3 /H 2 O 2 , and O 3 /AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O 3 /AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: ► Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. ► The pH solution did not significantly affect the photodegradation kinetics of DEP. ► The O 3 /H 2 O 2 and O 3 /AC systems were more efficient than O 3 to degrade DEP. ► The generation of HO • from O 3 was enhanced by ACs, mainly by those of basic nature. ► O

  5. Study of the solid-solid surface adsorption of Eu2O3 on various Al2O3 supports

    International Nuclear Information System (INIS)

    Liu Rongchuan; Yu Zhi; Zhou Yuan; Yoshitake Yamazaki

    1997-12-01

    Solid-solid surface interactions of Eu 2 O 3 on various oxide substrates are investigated with X-ray and Moessbauer experiments. The results indicate that the interaction of Eu 2 O 3 on the complex support differs from that having simple support. An incorporation model is used to explain how Eu 2 O 3 disperses onto the surface of γ-alumina or η-alumina

  6. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  7. LiNbO3 surfaces from a microscopic perspective

    Science.gov (United States)

    Sanna, Simone; Gero Schmidt, Wolf

    2017-10-01

    A large number of oxides has been investigated in the last twenty years as possible new materials for various applications ranging from opto-electronics to heterogeneous catalysis. In this context, ferroelectric oxides are particularly promising. The electric polarization plays a crucial role at many oxide surfaces, and it largely determines their physical and chemical properties. Ferroelectrics offer in addition the possibility to control/switch the electric polarization and hence the surface chemistry, allowing for the realization of domain-engineered nanoscale devices such as molecular detectors or highly efficient catalysts. Lithium niobate (LiNbO3) is a ferroelectric with a high spontaneous polarization, whose surfaces have a huge and largely unexplored potential. Owing to recent advances in experimental techniques and sample preparation, peculiar and exclusive properties of LiNbO3 surfaces could be demonstrated. For example, water films freeze at different temperatures on differently polarized surfaces, and the chemical etching properties of surfaces with opposite polarization are strongly different. More important, the ferroelectric domain orientation affects temperature dependent surface stabilization mechanisms and molecular adsorption phenomena. Various ab initio theoretical investigations have been performed in order to understand the outcome of these experiments and the origin of the exotic behavior of the lithium niobate surfaces. Thanks to these studies, many aspects of their surface physics and chemistry could be clarified. Yet other puzzling features are still not understood. This review gives a résumé on the present knowledge of lithium niobate surfaces, with a particular view on their microscopic properties, explored in recent years by means of ab initio calculations. Relevant aspects and properties of the surfaces that need further investigation are briefly discussed. The review is concluded with an outlook of challenges and potential payoff

  8. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  9. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  10. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  11. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    Science.gov (United States)

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  12. Health burdens of surface ozone in the UK for a range of future scenarios

    OpenAIRE

    Heal, Mathew R.; Heaviside, Clare; Doherty, Ruth M.; Vieno, Massimo; Stevenson, David S.; Vardoulakis, Sotiris

    2013-01-01

    Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5 km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a + 5 °C increase in air temperature on ...

  13. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    Science.gov (United States)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  14. Percutaneous intradiscal ozone (O3)-injection: an experimental study in canines

    International Nuclear Information System (INIS)

    Yu Zhijian; He Xiaofeng; Chen Yong; Zeng Qingle; Liu Chihong; Zhao Zhongqing; Lu Yong; Li Yanhao

    2002-01-01

    Objective: To evaluate the influence of ozone on normal nucleus pulpous and the safety of intradiscal ozone-injection for the treatment of herniated lumbar disc. Methods: Ozone was injected into selected lumbar discs (3 ml) and the para-spinal space (7 ml) with 20 G Chiba needle under fluoroscopy in five canines. The ozone concentration was 30 μg/ml and 50 μg/ml respectively. Two discs were selected for each concentration. Total 20 discs were injected. Three of the canines were given one-time ozone-injection and were sacrificed for pathology one week, one month and two months respectively after the procedure, and the other two canines were given two-time ozone-injection and were sacrificed one month and two months respectively after the procedure. The specimens including nucleus pulpous, end-plate, spinal cord, nerve root, and greater psoas muscle were observed macroscopically and microscopically. Results: No serious behavior abnormalities were observed in all animals. The atrophy of nucleus pulpous could be observed one month after ozone-injection due to significant reduction of water and extensive proliferation of collagenous fiber. The influence on the atrophy of nucleus pulpous demonstrated no apparent difference between the selected two concentrations of ozone, but was more apparent with two-time injection than that with one-time injection. The end-plates increased slightly or moderately in thickness in 16 simples and a few of fibers in greater psoas muscle suffered slight atrophy in 5 samples. Conclusion: It is suggested that percutaneous intradiscal ozone-injection is a safe method, and can cause gradual atrophy of nucleus pulpous. This study provides the evidence of the feasibility and value of this procedure's application in clinics

  15. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    Science.gov (United States)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  16. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Booth, J P; Rousseau, A

    2013-01-01

    Ozone production is studied in a pulsed O 2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O 3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O 2 pressure and is favoured by the presence of OH groups and adsorbed H 2 O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  17. Analysis of observed surface ozone in the dry season over Eastern Thailand during 1997-2012

    Science.gov (United States)

    Assareh, Nosha; Prabamroong, Thayukorn; Manomaiphiboon, Kasemsan; Theramongkol, Phunsak; Leungsakul, Sirakarn; Mitrjit, Nawarat; Rachiwong, Jintarat

    2016-09-01

    This study analyzed observed surface ozone (O3) in the dry season over a long-term period of 1997-2012 for the eastern region of Thailand and incorporated several technical tools or methods in investigating different aspects of O3. The focus was the urbanized and industrialized coastal areas recently recognized as most O3-polluted areas. It was found that O3 is intensified most in the dry-season months when meteorological conditions are favorable to O3 development. The diurnal variations of O3 and its precursors show the general patterns of urban background. From observational O3 isopleth diagrams and morning ratios of non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx), the chemical regime of O3 formation was identified as VOC-sensitive, and the degree of VOC sensitivity tends to increase over the years, suggesting emission control on VOC to be suitable for O3 management. Both total oxidant analysis and back-trajectory modeling (together with K-means clustering) indicate the potential role of regional transport or influence in enhancing surface O3 level over the study areas. A meteorological adjustment with generalized linear modeling was performed to statistically exclude meteorological effects on the variability of O3. Local air-mass recirculation factor was included in the modeling to support the coastal application. The derived trends in O3 based on the meteorological adjustment were found to be significantly positive using a Mann-Kendall test with block bootstrapping.

  18. Surface and catalytic properties of MoO3/Al2O3 system doped with Co3O4

    International Nuclear Information System (INIS)

    Zahran, A.A.; Shaheen, W.M.; El-Shobaky, G.A.

    2005-01-01

    Thermal solid-solid interactions in cobalt treated MoO 3 /Al 2 O 3 system were investigated using X-ray powder diffraction. The solids were prepared by wet impregnation method using Al(OH) 3 , ammonium molybdate and cobalt nitrate solutions, drying at 100 deg. C then calcination at 300, 500, 750 and 1000 deg. C. The amount of MoO 3 , was fixed at 16.67 mol% and those of cobalt oxide were varied between 2.04 and 14.29 mol% Co 3 O 4 . Surface and catalytic properties of various solid samples precalcined at 300 and 500 deg. C were studied using nitrogen adsorption at -196 deg. C, conversion of isopropanol at 200-500 deg. C and decomposition of H 2 O 2 at 30-50 deg. C. The results obtained revealed that pure mixed solids precalcined at 300 deg. C consisted of AlOOH and MoO 3 phases. Cobalt oxide-doped samples calcined at the same temperature consisted also of AlOOH, MoO 3 and CoMoO 4 compounds. The rise in calcination temperature to 500 deg. C resulted in complete conversion of AlOOH into very poorly crystalline γ-Al 2 O 3 . The further increase in precalcination temperature to 750 deg. C led to the formation of Al 2 (MoO 4 ) 3 , κ-Al 2 O 3 besides CoMoO 4 and un-reacted portion of Co 3 O 4 in the samples rich in cobalt oxide. Pure MoO 3 /Al 2 O 3 preheated at 1000 deg. C composed of MoO 3 -αAl 2 O 3 solid solution (acquired grey colour). The doped samples consisted of the same solid solution together with CoMoO 4 and CoAl 2 O 4 compounds. The increase in calcination temperature of pure and variously doped solids from 300 to 500 deg. C increased their specific surface areas and total pore volume which suffered a drastic decrease upon heating at 750 deg. C. Doping the investigated system with small amounts of cobalt oxide (2.04 and 4 mol%) followed by heating at 300 and 500 deg. C increased its catalytic activity in H 2 O 2 decomposition. This increase, measured at 300 deg. C, attained 25.4- and 12.9-fold for the solids precalcined at 300 and 500 deg. C, respectively

  19. Characteristics of surface ozone in Agra, a sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    Nidhi Verma

    2018-04-09

    Apr 9, 2018 ... In the present study, measurements of surface ozone (O3) and its precursors (NO and NO2) were carried out at a ...... from road traffic in Great Britain; Atmos. Environ. 54 ... L, Doddridge B G and Holben B N 1997 The impact of.

  20. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  1. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  2. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    International Nuclear Information System (INIS)

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  3. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  4. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.

    Science.gov (United States)

    Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph

    2016-03-07

    There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.

  5. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics

    Science.gov (United States)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2018-03-01

    The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.

  6. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3.

    Science.gov (United States)

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO 3 and iron doped SrTiO 3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO 3 and compared it to DOS of iron-doped SrTiO 3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO 3 and iron-doped SrTiO 3 . Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO 3 , are accessible only on TiO 2 terminated SrTiO 3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction.

  7. Effect of solar radiation on surface ozone in Cairo

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, H F.S. [National Research Centre, Air Pollution Research Dept., Cairo (Egypt)

    1992-04-01

    Measurements of surface ozone content over an urban area in Cairo were conducted during a year, May 1989 to April 1990, while solar radiation at the same area was measured. Low and high concentrations of ozone are compared with those recommended by the WHO expert committee regarding the daily cycle of ozone concentration. 15 refs.

  8. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China

    International Nuclear Information System (INIS)

    Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Zhao, Zhuzi; Dong, Jungang; Wang, Linqing; Wang, Qiyuan; Li, Guohui; Liu, Suixin; Zhang, Qian

    2014-01-01

    Surface O 3 was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O 3 ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O 3 followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O 3 showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O 3 . It was found that O 3 was poorly correlated with solar radiation due to the insufficient NO x in the ambient air, thus limiting O 3 formation under strong solar radiation. In contrast, high O 3 levels always coincided with strong winds, suggesting that stratospheric O 3 and long range transport might be the main sources of O 3 in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O 3 was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O 3 chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O 3 and transport might be the main sources of O 3 in this area

  9. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  10. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  11. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  12. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  13. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A.M.

    2016-01-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  14. Atomic layer deposition and post-growth thermal annealing of ultrathin MoO3 layers on silicon substrates: Formation of surface nanostructures

    Science.gov (United States)

    Liu, Hongfei; Yang, Ren Bin; Yang, Weifeng; Jin, Yunjiang; Lee, Coryl J. J.

    2018-05-01

    Ultrathin MoO3 layers have been grown on Si substrates at 120 °C by atomic layer deposition (ALD) using molybdenum hexacarbonyl [Mo(CO)6] and ozone (O3) as the Mo- and O-source precursors, respectively. The ultrathin films were further annealed in air at Tann = 550-750 °C for 15 min. Scanning-electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy have been employed to evaluate the morphological and elemental properties as well as their evolutions upon annealing of the thin films. They revealed an interfacial SiOx layer in between the MoO3 layer and the Si substrate; this SiOx layer converted into SiO2 during the annealing; and the equivalent thickness of the MoO3 (SiO2) layer decreased (increased) with the increase in Tann. Particles with diameters smaller than 50 nm emerged at Tann = 550 °C and their sizes (density) were reduced (increased) by increasing Tann to 650 °C. A further increase of Tann to 750 °C resulted in telephone-cord-like MoO3 structures, initiated from isolated particles on the surface. These observations have been discussed and interpreted based on temperature-dependent atomic interdiffusions, surface evaporations, and/or melting of MoO3, which shed new light on ALD MoO3 towards its electronic applications.

  15. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  16. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  17. Using satellite data to guide emission control strategies for surface ozone pollution

    Science.gov (United States)

    Jin, X.; Fiore, A. M.

    2017-12-01

    Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.

  18. Variability of surface ozone with cloud coverage over Kolkata, India

    Indian Academy of Sciences (India)

    Critical analysis of experimental surface ozone data and cloud coverage is reported over Kolkata during the period January 2011 to December 2011. Significant relationship between these two parameters is observed. Analysis shows that the trend of surface ozone concentration and cloud coverage follow opposite ...

  19. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  20. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    International Nuclear Information System (INIS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-01-01

    Thin layers of Al 2 O 3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p + emitters, due to a high density of fixed negative charges. Recent results indicate that Al 2 O 3 can also provide a good passivation of certain phosphorus-diffused n + c-Si surfaces. In this work, we studied the recombination at Al 2 O 3 passivated n + surfaces theoretically with device simulations and experimentally for Al 2 O 3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al 2 O 3 interface. This pronounced maximum was also observed experimentally for n + surfaces passivated either with Al 2 O 3 single layers or stacks of Al 2 O 3 capped by SiN x , when activated with a low temperature anneal (425 °C). In contrast, for Al 2 O 3 /SiN x stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n + diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al 2 O 3 /SiN x stacks can provide not only excellent passivation on p + surfaces but also on n + surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments

  1. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  2. Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yun-xiang; Mei, Donghai; Liu, Chang-jun; Ge, Qingfeng

    2011-05-03

    In the present work, hydrogen adsorption on the Ga2O3 surfaces was investigated using Fourier transform infrared spectroscopy (FTIR) measurements and periodic density functional theory (DFT) calculations. Both the FTIR and DFT studies suggest that H2 dissociates on the Ga2O3 surfaces, producing OH and GaH species. The FTIR bands at 3730, 3700, 3630 and 3600 cm-1 are attributed to the vibration of the OH species whereas those at 2070 and 1990 cm-1 to the GaH species. The structures of the species detected in experiments are established through a comparison with the DFT calculated stretching frequencies. The O atom of the experimentally detected OH species is believed to originate from the surface O3c atom. On the other hand, the H atom that binds the coordinately unsaturated Ga atom results in the experimentally detected GaH species. Dissociation of H2 on the perfect Ga2O3 surface, with the formation of both OH and GaH species, is endothermic and has an energy barrier of 0.90 eV. In contrast, H2 dissociation on the defective Ga2O3 surface with oxygen vacancies, which mainly produces GaH species, is exothermic, with an energy barrier of 0.61 eV. Accordingly, presence of the oxygen vacancies promotes H2 dissociation and production of GaH species on the Ga2O3 surfaces. Higher temperatures are expected to favor oxygen vacancy creation on the Ga2O3 surfaces, and thereby benefit the production of GaH species. This analysis is consistent with the FTIR results that the bands assigned to GaH species become stronger at higher temperatures. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring...

  4. Sorption of U(VI) in surfaces of SrTiO3

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M.

    2004-01-01

    In this work is presented the physico chemical characterization and evaluation of those surface properties and of sorption of U on the SrTiO 3 like possible candidate for contention barrier in the deep geological confinement. The made studies showed that the SrTiO 3 presents maximum levels of sorption of positive nature species (mainly UO 2 2+ and UO 2 NO 3 + ). (Author)

  5. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  6. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China

    Science.gov (United States)

    Tong, Lei; Zhang, Huiling; Yu, Jie; He, Mengmeng; Xu, Nengbin; Zhang, Jingjing; Qian, Feizhong; Feng, Jiayong; Xiao, Hang

    2017-05-01

    Surface ozone (O3) is a harmful air pollutant that has attracted growing concern in China. In this study, the mixing ratios of O3 and nitrogen oxides (NOx) at three different sites (urban, suburban and rural) of Ningbo were continuously measured to investigate the spatiotemporal characteristics of O3 and its relationships with environmental variables. The diurnal O3 variations were characterized by afternoon maxima (38.7-53.1 ppb on annual average) and early morning minima (11.7-26.2 ppb) at all the three sites. Two seasonal peaks of O3 were observed in spring (April or May) and autumn (October) with minima being observed in winter (December). NOx levels showed generally opposite variations to that of O3 with diurnal and seasonal maxima occurring in morning/evening rush-hours and in winter, respectively. As to the inter-annual variations of air pollutants, generally decreasing and increasing trends were observed in NO and O3 levels, respectively, from 2012 to 2015 at both urban and suburban sites. O3 levels were positively correlated with temperature but negatively correlated with relative humidity and NOx levels. Significant differences in O3 levels were observed for different wind speeds and wind directions (p variation, higher levels of O3 were observed at the suburban and rural sites where less O3 was depleted by NO titration. In contrast, the urban site exhibited lower O3 but higher NOx levels due to the influence of traffic emissions. Larger amplitudes of diurnal and monthly O3 variations were observed at the suburban site than those at the urban and rural sites. In general, the O3 levels at the non-urban sites were more affected by the background transport, while both the local and regional contributions played roles in urban O3 variations. The annual average O3 mixing ratios (22.7-37.7 ppb) in Ningbo were generally similar to those of other regions around the world. However, the recommended air quality standards for O3 were often exceeded during warm

  7. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    Science.gov (United States)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  8. Acid-base properties of the surface of the α-Al2O3 suspension

    Science.gov (United States)

    Ryazanov, M. A.; Dudkin, B. N.

    2009-12-01

    The distribution of the acid-base centers on the surface of α-Al2O3 suspension particles was studied by potentiometric titration, and the corresponding p K spectra were constructed. It was inferred that the double electric layer created by the supporting electrolyte substantially affected the screening of the acid-base centers on the particle surface of the suspension.

  9. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  10. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  11. Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures

    Directory of Open Access Journals (Sweden)

    R. Jangir

    2016-03-01

    Full Text Available In this work three different growth methods have been used to grow β-Ga2O3 nanostructures. The nanostructures were characterized by Grazing Incident X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Photoluminescence Spectroscopy. Photoluminescence spectra for all the samples of β-Ga2O3 nanostructures exhibit an UV and blue emission band. The relative intensity of UV and blue luminescence is strongly affected by the surface defects present on the nanostructures. Our study shows that Photoluminescence intensity of UV and blue luminescence can be reliably used to determine the quality of β-Ga2O3 nanostructures. Further the work opens up the possibility of using UV excitation and subsequent Photoluminescence analysis as a possible means for oxygen sensing. The Photoluminescence mechanism in β-Ga2O3 nanostructures is also discussed.

  12. Characterization of Al2O3 surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Albadri, Abdulrahman M.

    2014-01-01

    A study of the passivation of silicon surface by aluminum oxide (Al 2 O 3 ) is reported. A correlation of fixed oxide charge density (Q f ) and interface trap density (D it ) on passivation efficiency is presented. Low surface recombination velocity (SRV) was obtained even by as-deposited Al 2 O 3 films and this was found to be associated to the passivation of interface states. Fourier transfer infrared spectroscopy spectra show the existence of an interfacial silicon oxide thin layer in both as-deposited and annealed Al 2 O 3 films. Q f is found positive in as-deposited films and changing to negative upon subsequent annealing, providing thus an enhancement of the passivation in p-type silicon wafers, associated to field effects. Secondary ion mass spectrometry analysis confirms the correlation between D it and hydrogen concentration at the Al 2 O 3 /Si interface. A lowest SRV of 15 cm/s was obtained after an anneal at 400 °C in nitrogen atmosphere. - Highlights: • Al 2 O 3 provides superior passivation for silicon surfaces. • Atomic layer deposition-Al 2 O 3 was deposited at a low temperature of 200 °C. • A lowest surface passivation velocity of 15 cm/s was obtained after an anneal at 400 °C in nitrogen. • As-deposited Al 2 O 3 films form very thin SiO 2 layer responsible of low interface trap densities. • High negative fixed charge density of (− 2 × 10 12 cm −2 ) was achieved upon annealing at 400 °C

  13. Chemisorption of SO2 at the surface of In2O3 modified by zink

    International Nuclear Information System (INIS)

    Vinokurova, M.V.; Derlyukova, L.E.; Vinokurov, A.A.

    2005-01-01

    Chemisorption of SO 2 and O 2 at the surface of In 2 O 3 involving zink addition (0.4-2.7 at.%) are investigated in the temperature range 22-200 Deg C. No less than three forms of sorbed SO 2 are available at the surface of modified In 2 O 3 . Temperature effects on the ratio of forms of SO 2 sorption and, consequently, on varying the electric conductivity. Previous sorption of O 2 is favorable to the formation of donor form of chemisorbed SO 2 [ru

  14. Surface structures and dielectric response of ultrafine BaTiO3 particles

    International Nuclear Information System (INIS)

    Jiang, B.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Characteristic differences are observed for the dielectric response and microstructures of BaTiO 3 nanoscale fine powders prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. Atomic resolution images of both varieties showed a high density of interesting surface steps and facets. Computer simulated images of surface structure models showed that the outer (100) surface was typically a BaO layer and that at corners and ledges the steps are typically finished with Ba+2 ions; i.e. the surfaces and steps are Ba-rich. Otherwise the surfaces were typically clean and free of amorphous layers. The relationship between the observed surfaces structures and theoretical models for size effects on the dielectric properties is discussed. (authors)

  15. Characteristics of UV-MicroO3 Reactor and Its Application to Microcystins Degradation during Surface Water Treatment

    Directory of Open Access Journals (Sweden)

    Guangcan Zhu

    2015-01-01

    Full Text Available The UV-ozone (UV-O3 process is not widely applied in wastewater and potable water treatment partly for the relatively high cost since complicated UV radiation and ozone generating systems are utilized. The UV-microozone (UV-microO3, a new advanced process that can solve the abovementioned problems, was introduced in this study. The effects of air flux, air pressure, and air humidity on generation and concentration of O3 in UV-microO3 reactor were investigated. The utilization of this UV-microO3 reactor in microcystins (MCs degradation was also carried out. Experimental results indicated that the optimum air flux in the reactor equipped with 37 mm diameter quartz tube was determined to be 18∼25 L/h for efficient O3 generation. The air pressure and humidity in UV-microO3 reactor should be low enough in order to get optimum O3 output. Moreover, microcystin-RR, YR, and LR (MC-RR, MC-YR, and MC-LR could be degraded effectively by UV-microO3 process. The degradation of different MCs was characterized by first-order reaction kinetics. The pseudofirst-order kinetic constants for MC-RR, MC-YR, and MC-LR degradation were 0.0093, 0.0215, and 0.0286 min−1, respectively. Glucose had no influence on MC degradation through UV-microO3. The UV-microO3 process is hence recommended as a suitable advanced treatment method for dissolved MCs degradation.

  16. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  17. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  18. Comparative studies on the degradation of aqueous 2-chloroaniline by O3 as well as by UV-light and γ-rays in the presence of ozone

    International Nuclear Information System (INIS)

    Winarno, Ermin Katrin; Getoff, Nikola

    2002-01-01

    Chlorinated anilines are frequently used in the industry as starting materials for chemical synthesis. Hence, such compounds can occur as pollutants in waste waters. In the present study 2-chloroaniline (2-ClA) was selected as the representative model for this class of compounds. The objectives of the work concerned 2-ClA degradation in water by ozonation as well as by photolysis (UV-light of 254 nm) and radiolysis (γ-rays) in the presence of ozone. In all three series of experiments, the same amount ozone was passed through the 2-ClA solution at pH=6.9 during the treatment. The degradation process was followed as a function of the action time and by chemical analysis of the major products. Based on the actinometry of the monochromatic UV-light (λ=254 nm, E=4.88 eV/hν) and dosimetry data, the obtained degradation yields and products by the three series of experiments are compared. It was established that the synergic effect of γ-rays and ozone leads to the most efficient degradation of 2-ClA, followed by UV/O 3 -combination and pure ozonation. The same sequence is also observed by cleavage of the Cl-atom. The formation of the other major products: ammonia, formaldehyde, oxalic acid and the total yield of carboxylic acids depend on the media. Probable reaction mechanisms are suggested for explanation of the experimental results

  19. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Science.gov (United States)

    Fiore, A. M.; Lin, M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Levy, H.; Langford, A. O.; Johnson, B. J.; Oltmans, S. J.; Senff, C. J.

    2011-12-01

    As the National Ambient Air Quality (NAAQS) standard for ozone (O_{3}) is lowered, it pushes closer to policy-relevant background levels (O_{3} concentrations that would exist in the absence of North American anthropogenic emissions), making attainment more difficult with local controls. We quantify the Asian and stratospheric components of this North American background, with a primary focus on the western United States. Prior work has identified this region as a hotspot for deep stratospheric intrusions in spring. We conduct global simulations at 200 km and 50 km horizontal resolution with the GFDL AM3 model, including a stratospheric O_{3} tracer and two sensitivity simulations with anthropogenic emissions from Asia and North America turned off. The model is evaluated with a suite of in situ and satellite measurements during the NOAA CalNex campaign (May-June 2010). The model reproduces the principle features in the observed surface to near tropopause distribution of O_{3} along the California coast, including its latitudinal variation and the development of regional high-O_{3} episodes. Four deep tropopause folds are diagnosed and we find that the remnants of these stratospheric intrusions are transported to the surface of Southern California and Western U.S. Rocky Mountains, contributing 10-30 ppbv positive anomalies relative to the simulated campaign mean stratospheric component in the model surface layer. We further examine the contribution of North American background, including its stratospheric and Asian components, to the entire distribution of observed MDA8 O_{3} at 12 high-elevation CASTNet sites in the Mountain West. We find that the stratospheric O_{3} tracer constitutes 50% of the North American background, and can enhance surface maximum daily 8-hour average (MDA8) O_{3} by 20 ppb when observed surface O_{3} is in the range of 60-80 ppbv. Our analysis highlights the potential for natural sources such as deep stratospheric intrusions to contribute

  20. Exposure of metallic copper surface on Cu-Al2O3-carbon catalysts

    NARCIS (Netherlands)

    Menon, P.G.; Prasad, J.

    1970-01-01

    The bifunctional nature of Cu---Al2O3-on-carbon catalysts, used in the direct catalytic conversion of ethanol to ethyl acetate, prompted an examination of the dispersion of Cu on the composite catalyst. For this, the N2O-method of Osinga et al. for estimation of bare metallic copper surface on

  1. Damages of surface ozone: evidence from agricultural sector in China

    Science.gov (United States)

    Yi, Fujin; McCarl, Bruce A.; Zhou, Xun; Jiang, Fei

    2018-03-01

    This study measures the damages that surface ozone pollution causes within the Chinese agricultural sector under 2014 conditions. It also analyzes the agricultural benefits of ozone reductions. The analysis is done using a partial equilibrium model of China’s agricultural sector. Results indicate that there are substantial, spatially differentiated damages that are greatest in ozone-sensitive crop growing areas with higher ozone concentrations. The estimated damage to China’s agricultural sector range is between CNY 1.6 trillion and 2.2 trillion, which for comparison is about one fifth of 2014 agricultural revenue. When considering concentration reduction we find a 30% ozone reduction yields CNY 678 billion in sectoral benefits. These benefits largely fall to consumers with producers losing as the production gains lead to lower prices.

  2. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    Science.gov (United States)

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  3. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Science.gov (United States)

    Pommier, Matthieu; Fagerli, Hilde; Gauss, Michael; Simpson, David; Sharma, Sumit; Sinha, Vinay; Ghude, Sachin D.; Landgren, Oskar; Nyiri, Agnes; Wind, Peter

    2018-01-01

    Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030) and medium-term (2050) futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3) and fine particulate matter (PM2.5) for India in a world of changing emissions and climate. The reference scenario (for present-day) is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O3 (r = 0.9) and high spatial correlation for PM2.5 (r = 0.5 and r = 0.8 depending on the data set) between the model results and observations. While the overall bias in PM2.5 is small (lower than 6 %), the model overestimates O3 by 35 %. The underestimation in NOx titration is probably the main reason for the O3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data.For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region in the north characterized by a statistically significant increase by up to 4 % (2 ppb) and one in the south by a decrease up to -3 % (-1.4 ppb). This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds.Our calculations suggest that PM2.5 will increase by up to 6.5 % over the Indo-Gangetic Plain by the 2050s. The increase over India

  4. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Directory of Open Access Journals (Sweden)

    M. Pommier

    2018-01-01

    Full Text Available Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030 and medium-term (2050 futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3 and fine particulate matter (PM2.5 for India in a world of changing emissions and climate. The reference scenario (for present-day is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O3 (r =  0.9 and high spatial correlation for PM2.5 (r =  0.5 and r =  0.8 depending on the data set between the model results and observations. While the overall bias in PM2.5 is small (lower than 6 %, the model overestimates O3 by 35 %. The underestimation in NOx titration is probably the main reason for the O3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data.For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region in the north characterized by a statistically significant increase by up to 4 % (2 ppb and one in the south by a decrease up to −3 % (−1.4 ppb. This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds.Our calculations suggest that PM2.5 will increase by up to 6.5 % over the Indo

  5. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  6. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  7. Deposition temperature dependence of material and Si surface passivation properties of O3-based atomic layer deposited Al2O3-based films and stacks

    International Nuclear Information System (INIS)

    Bordihn, Stefan; Mertens, Verena; Müller, Jörg W.; Kessels, W. M. M.

    2014-01-01

    The material composition and the Si surface passivation of aluminum oxide (Al 2 O 3 ) films prepared by atomic layer deposition using Al(CH 3 ) 3 and O 3 as precursors were investigated for deposition temperatures (T Dep ) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H]  2 O 3 /SiN x stacks complemented the work and revealed similar levels of surface passivation as single-layer Al 2 O 3 films, both for the chemical and field-effect passivation. The fixed charge density in the Al 2 O 3 /SiN x stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10 12  cm −2 to 3·10 11  cm −2 when T Dep was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T Dep . When firing films prepared at of low T Dep , blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al 2 O 3 -based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen

  8. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    Science.gov (United States)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  9. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    Science.gov (United States)

    Vira, J.; Sofiev, M.

    2015-02-01

    This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.

  10. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  11. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    Science.gov (United States)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  12. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  13. Characteristics of Surface Ozone in Agra, a Sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    65

    Ozone (O3) is a secondary pollutant which has an important effect on air quality, climate. 49 change and atmospheric chemistry (Solomon et al., 2000; Sitch et al., 2007). Depending on its. 50 location in the atmosphere, O3 can influence human health and climate; in the stratosphere, O3. 51 filters out detrimental ultraviolet ...

  14. Ab Initio Calculations for the BaTiO3 (001) Surface Structure

    Institute of Scientific and Technical Information of China (English)

    XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie

    2004-01-01

    @@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.

  15. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is made available (http://disc.gsfc.nasa.gov/Aura/OMI/omto3_v003.shtml) from the NASA...

  16. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    Science.gov (United States)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  17. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  18. Al2O3 dielectric layers on H-terminated diamond: Controlling surface conductivity

    Science.gov (United States)

    Yang, Yu; Koeck, Franz A.; Dutta, Maitreya; Wang, Xingye; Chowdhury, Srabanti; Nemanich, Robert J.

    2017-10-01

    This study investigates how the surface conductivity of H-terminated diamond can be preserved and stabilized by using a dielectric layer with an in situ post-deposition treatment. Thin layers of Al2O3 were grown by plasma enhanced atomic layer deposition (PEALD) on H-terminated undoped diamond (100) surfaces. The changes of the hole accumulation layer were monitored by correlating the binding energy of the diamond C 1s core level with electrical measurements. The initial PEALD of 1 nm Al2O3 resulted in an increase of the C 1s core level binding energy consistent with a reduction of the surface hole accumulation and a reduction of the surface conductivity. A hydrogen plasma step restored the C 1s binding energy to the value of the conductive surface, and the resistance of the diamond surface was found to be within the range for surface transfer doping. Further, the PEALD growth did not appear to degrade the surface conductive layer according to the position of the C 1s core level and electrical measurements. This work provides insight into the approaches to establish and control the two-dimensional hole-accumulation layer of the H-terminated diamond and improve the stability and performance of H-terminated diamond electronic devices.

  19. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-01-01

    Microstructure in single crystalline Al 2 O 3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 10 13 to 1.0 × 10 15 ions/cm 2 . After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al 2 O 3 , high-density S e causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 10 13 ions/cm 2 for single crystalline Al 2 O 3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al 2 O 3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al 2 O 3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 10 14 ions/cm 2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures

  20. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    Science.gov (United States)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-11-01

    Microstructure in single crystalline Al2O3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 1013 to 1.0 × 1015 ions/cm2. After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al2O3, high-density Se causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 1013 ions/cm2 for single crystalline Al2O3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al2O3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al2O3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 1014 ions/cm2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures.

  1. Luminescent Properties of Surface Functionalized BaTiO3 Embedded in Poly(methyl methacrylate)

    Science.gov (United States)

    Requena, Sebastian; Lacoul, Srijan; Strzhemechny, Yuri M.

    2014-01-01

    As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (APTES) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV. PMID:28788468

  2. Luminescent Properties of Surface Functionalized BaTiO3 Embedded in Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Sebastian Requena

    2014-01-01

    Full Text Available As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyltriethoxysilane (APTES and mixed with poly(methyl methacrylate/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

  3. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    International Nuclear Information System (INIS)

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  4. Surface study and thickness control of thin Al2O3 film on Cu-9%Al(111) single crystal

    International Nuclear Information System (INIS)

    Yamauchi, Yasuhiro; Yoshitake, Michiko; Song Weijie

    2004-01-01

    We were successful in growing a uniform flat Al 2 O 3 film on the Cu-9%Al(111) surface using the improved cleaning process, low ion energy and short time sputtering. The growth of ultra-thin film of Al 2 O 3 on Cu-9%Al was investigated using Auger electron spectroscopy (AES) and a scanning electron microscope (SEM). The Al 2 O 3 film whose maximum thickness was about 4.0 nm grew uniformly on the Cu-9%Al surface. The Al and O KLL Auger peaks of Al 2 O 3 film shifted toward low kinetic energy, and the shifts were related to Schottky barrier formation and band bending at the Al 2 O 3 /Cu-9%Al interface. The thickness of Al 2 O 3 film on the Cu-9%Al surface was controlled by the oxygen exposure

  5. Growth and surface modification of LaFeO3 thin films induced by reductive annealing

    International Nuclear Information System (INIS)

    Flynn, Brendan T.; Zhang, Kelvin H.L.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-01-01

    Highlights: • LaFeO 3 was grown by molecular beam epitaxy on ZrO 2 :Y 2 O 3 . • The film was highly oriented but not single crystalline. • Angle resolved XPS revealed differences between surface and bulk oxygen. • Annealing the film in vacuum resulted in the sequential reduction of Fe cations. • A greater degree of Fe reduction was found at the surface. - Abstract: The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO 3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications

  6. Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins.

    Science.gov (United States)

    Coleman, B K; Wells, J R; Nazaroff, W W

    2010-02-01

    The reaction of ozone with permethrin can potentially form phosgene. Published evidence on ozone levels and permethrin surface concentrations in aircraft cabins indicated that significant phosgene formation might occur in this setting. A derivatization technique was developed to detect phosgene with a lower limit of detection of 2 ppb. Chamber experiments were conducted with permethrin-coated materials (glass, carpet, seat fabric, and plastic) exposed to ozone under cabin-relevant conditions (150 ppb O(3), 4.5/h air exchange rate, means of material-balance modeling indicates that the upper limit on the phosgene level in aircraft cabins resulting from this chemistry is approximately 1 microg/m(3) or approximately 0.3 ppb. It was thus determined that phosgene formation, if it occurs in aircraft cabins, is not likely to exceed relevant, health-based phosgene exposure guidelines. Phosgene formation from ozone-initiated oxidation of permethrin in the aircraft cabin environment, if it occurs, is estimated to generate levels below the California Office of Environmental Health Hazard Assessment acute reference exposure level of 4 microg/m(3) or approximately 1 ppb.

  7. Leaky surface acoustic waves in Z-LiNbO3 substrates with epitaxial AIN overlays

    International Nuclear Information System (INIS)

    Bu, G.; Ciplys, D.; Shur, M.S.; Namkoong, G.; Doolittle, W.A.; Hunt, W.D.

    2004-01-01

    The properties of leaky surface acoustic waves (LSAW) in MBE grown AIN layer on Z-cut LiNbO 3 structures have been studied by numerical simulation and experimental measurements and compared with those of Rayleigh waves in the same structure. In the range of AIN layer thicknesses studied (0 3 substrate was essentially constant at around 4400 m/s. The measured electromechanical coupling coefficients (K 2 ) for the LSAW are roughly 1/4 of the predicted values, which might be due to the strong attenuation of the leaky wave unaccounted for during the parameter extraction. The thin AIN film slightly improved the measured temperature coefficient of frequency for the LSAW over that attained for the Z-cut, X-propagating LiNbO 3 substrate alone

  8. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  9. OMI/Aura Ozone (O3) Profile 1-Orbit L2 Swath 13x48km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Ozone Profile data product OMO3PR (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omo3pr_v003.shtml ) from the NASA Goddard...

  10. Microscopic characterization of Fe nanoparticles formed on SrTiO3(001 and SrTiO3(110 surfaces

    Directory of Open Access Journals (Sweden)

    Miyoko Tanaka

    2016-06-01

    Full Text Available Fe nanoparticles grown on SrTiO3 (STO {001} and {110} surfaces at room temperature have been studied in ultrahigh vacuum by means of transmission electron microscopy and scanning tunnelling microscopy. It was shown that some Fe nanoparticles grow epitaxially. They exhibit a modified Wulff shape: nanoparticles on STO {001} surfaces have truncated pyramid shapes while those on STO {110} surfaces have hexagonal shapes. From profile-view TEM images, approximate values of the adhesion energy of the nanoparticles for both shapes are obtained.

  11. Nano surface engineering of Mn 2 O 3 for potential light-harvesting application

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Ghosh, Srabanti; Parida, Manas R.; Liu, Bo; Mohammed, Omar F.; Lemmens, Peter; Pal, Samir Kumar

    2015-01-01

    Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a "physical" filter of suspended particulates. However, it works as a "chemical" filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence

  12. Changes in the surface ozone after the windstorm in 2004, in the High Tatras

    Directory of Open Access Journals (Sweden)

    Bičárová Svetlana

    2015-06-01

    Full Text Available Extreme wind event in November 2004 caused spacious destruction of slope forests in the Tatra National Park, Slovakia. Relevant changes of land cover motivated researchers to investigate damaged forest ecosystem and its response to different environmental conditions. Surface ozone (O3 is a minor but not negligible compound of the ambient air. Control strategies for the reduction of O3 precursor emissions have been applied in Europe during the last two decades. In spite of these reductions, air quality indices for O3 suggest that highland sites are more vulnerable to health and environmental risk than lowlands where mostly emissions from road transport and industry are produced. Both anthropogenic sources and biogenic precursors (BVOC from forest vegetation play a relevant role in the tropospheric photochemistry, especially at mountainous and rural locations. The parameters of air quality are measured at background station Stará Lesná in the High Tatras region since 1992 in frame of an European project EMEP. Long-term data series (1992-2013 of O3 concentrations obtained for site Stará Lesná provide specific opportunity to investigate the response of BVOC reduction on O3 variability after windstorm 2004. Evaluation of these data indicates moderate increase of annual, monthly and hourly O3 means for the period from 2005 to 2013 in comparison with the previous period 1992-2004. Temporal interpolation shows evident changes of O3 concentrations, especially ~30% increase for night hours in spring season and on the contrary ~15% decrease for daylight afternoon hours in summer season. Statistically significant changes were identified for spring months (April and May, 0-6 hours and summer months (July, 12-20 hours. Increasing O3 values in the night may be associated with the absence of BVOC for ozonolysis reaction that is one of the mechanism for O3 depletion. On the other hand, the decline of daylight O3 values in summer suggests lower O3 production

  13. Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.

    Science.gov (United States)

    Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun

    2018-01-17

    We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.

  14. The Impact of Iodide-Mediated Ozone Deposition and Halogen Chemistry on Surface Ozone Concentrations Across the Continental United States

    Science.gov (United States)

    The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and m...

  15. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  16. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  17. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  18. Variability of surface ozone with cloud coverage over Kolkata, India

    Indian Academy of Sciences (India)

    influences the weather and climate of a place, thus acting as an ... earth by absorbing the most energetic part of the ... effect of cloud coverage on the surface ozone over. Kolkata. 2. ..... Burrows W R 1997 CART regression models for predicting.

  19. Comparison between Al2O3 surface passivation films deposited with thermal ALD, plasma ALD and PECVD

    NARCIS (Netherlands)

    Dingemans, G.; Engelhart, P.; Seguin, R.; Mandoc, M.M.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Surface passivation schemes based on Al2O3 have enabled increased efficiencies for silicon solar cells. The key distinguishing factor of Al2O3 is the high fixed negative charge density (Qf = 1012-1013 cm-2), which is especially beneficial for p- and p+ type c-Si, as it leads to a high level of

  20. A DFT+U investigation of hydrogen adsorption on the LaFeO3(010) surface

    NARCIS (Netherlands)

    Boateng, Isaac W.; Tia, Richard; Adei, Evans; Dzade, N.Y.; Catlow, C. Richard A.; de Leeuw, Nora H.

    2017-01-01

    The ABO3 perovskite lanthanum ferrite (LaFeO3) is a technologically important electrode material for nickel–metal hydride batteries, energy storage and catalysis. However, the electrochemical hydrogen adsorption mechanism on LaFeO3 surfaces remains under debate. In the present study, we have

  1. Overview of surface ozone variability in East Asia-North Pacific region during IGAC/APARE (1994--1996).

    Science.gov (United States)

    Lam, K S; Wang, T J; Wang, T; Tang, J; Kajii, Y; Liu, C M; Shim, S G

    2004-01-01

    Surface ozone (O3) was measured at Oki Island (Japan), Cheju Island (South Korea), Lanyu Island (Taiwan Province, China), Cape D'Aguilar (Hong Kong SAR) and Lin'an, Longfenshan, Waliguan (China mainland) during January 1994--December 1996 as a component of IGAC/APARE (International Global Atmospheric Chemistry/East Asia-North Pacific Regional Experiment). This paper gave a joint discussion on the observational results at these stations over the study region. Investigations showed that the average of surface O3 mixing ratios at the seven sites are 47.9+/-15.8, 48.1+/-17.9, 30.2+/-16.4, 31.6+/-17.5, 36.3+/-17.5, 34.8+/-11.5 and 48.2+/-9.5 ppbv, respectively. Significant diurnal variations of surface O3 have been observed at Oki, Cheju, D'Aguilar, Lin'an and Longfenshan. Their annual averaged diurnal differences range from 8 to 23 ppbv and differ in each season. Surface O3 at Lanyu and Waliguan do not show strong diurnal variability. Seasonal cycles of surface O3 showed difference at the temperate and the subtropical remote sites. Oki has a summer minimum-spring maximum, while Lanyu has a summer minimum-autumn maximum. The suburban sites at D'Aguilar and Lin'an report high-level O3 in autumn and low level O3 in summer. Surface O3 remains-high in autumn and low in winter at the rural site Longfenshan. For the global background station Waliguan, surface O3 exhibits a broad spring-summer maximum and autumn-winter minimum. The backward air trajectories to these sites have shown different pathways of long-range transport of air pollution from East Asia Continent to North Pacific Ocean. Surface O3 was found to be strongly and positively correlated with CO at Oki and Lanyu, especially in spring and autumn, reflecting the substantial photochemical buildup of O3 on a regional scale. It is believed that the regional sources of pollution in East Asia have enhanced the average surface O3 concentrations in the background atmosphere of North Pacific.

  2. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  3. Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO 3 nanoparticles for energy storage applications

    KAUST Repository

    Almadhoun, Mahmoud Nassar Mahmoud

    2012-01-01

    A facile surface hydroxylation treatment using hydrogen peroxide to modify the surface of BaTiO 3 nanofillers dispersed in a ferroelectric copolymer host has been investigated. We demonstrate that the surface functionalization of the BaTiO 3 nanofillers (<100 nm) with hydroxyl groups results in as much as two orders of magnitude reduction in the leakage current of nanocomposite thin-film capacitors. This reduction is observed concurrently with the enhancement of the effective permittivity and breakdown strength of the thin-film nanocomposites. Surface modified BaTiO 3 particles display better dispersion within the polymer matrix, resulting in enhanced relative permittivity and reduced dielectric loss. The dielectric behavior of the nanocomposite films containing up to 30 vol.% BaTiO 3 agreed well with the Bruggeman model. These results demonstrate the potential of facile surface hydroxylation of nanoparticles towards the fabrication of higher energy-density nanocomposites. © 2012 The Royal Society of Chemistry.

  4. Surface chemistry of a pine-oil cleaner and other terpene mixtures with ozone on vinyl flooring tiles.

    Science.gov (United States)

    Ham, Jason E; Wells, J Raymond

    2011-04-01

    Indoor environments are dynamic reactors where consumer products (such as cleaning agents, deodorants, and air fresheners) emit volatile organic compounds (VOCs) that can subsequently interact with indoor oxidants such as ozone (O(3)), hydroxyl radicals, and nitrate radicals. Typically, consumer products consist of mixtures of VOCs and semi-VOCs which can react in the gas-phase or on surfaces with these oxidants to generate a variety of oxygenated products. In this study, the reaction of a pine-oil cleaner (POC) with O(3) (100ppb) on a urethane-coated vinyl flooring tile was investigated at 5% and 50% relative humidity. These results were compared to previous α-terpineol+O(3) reactions on glass and vinyl surfaces. Additionally, other terpene and terpene alcohol mixtures were formulated to understand the emission profiles as seen in the POC data. Results showed that the α-terpineol+O(3) reaction products were the prominent species that were also observed in the POC/O(3) surface experiments. Furthermore, α-terpineol+O(3) reactions generate the largest fraction of oxygenated products even in equal mixtures of other terpene alcohols. This finding suggests that the judicial choice of terpene alcohols for inclusion in product formulations may be useful in reducing oxidation product emissions. Published by Elsevier Ltd.

  5. Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO3 Nanotubes.

    Science.gov (United States)

    Bandura, Andrei V; Kuruch, Dmitry D; Evarestov, Robert A

    2015-07-20

    We have studied the adsorption of water molecules on the inner and outer surfaces of nanotubes generated by rolling (001) layers of SrTiO3 cubic crystals. The stability and the atomic and electronic structures of the adsorbed layers are determined by using hybrid density functional theory. The absorption energy and the preferred adsorbate structure are essentially governed by the nature of the surface of the nanotube. Dissociative adsorption prevails on the outer nanotube surfaces. The stability of the adsorbed layers on the inner surfaces is related to the possibility of the formation of hydrogen bonds between water molecules and surface oxygen atoms, and depends on the surface curvature. The presence of water molecules on the inner surface of the nanotubes leads to an increase of the electronic band gap. Externally TiO2 -terminated nanotubes could be used for the photocatalytic decomposition of water by ultraviolet radiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    Science.gov (United States)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors

    Directory of Open Access Journals (Sweden)

    G. Osterman

    2009-06-01

    Full Text Available The impact of surface emissions on the zonal structure of tropical tropospheric ozone and carbon monoxide is investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions.Vertical ozone profiles from the Tropospheric Emission Spectrometer (TES and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ network show elevated concentrations of ozone over Indonesia and Australia (60–70 ppb in the lower troposphere against the backdrop of the well-known zonal "wave-one" pattern with ozone concentrations of (70–80 ppb centered over the Atlantic . Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT CO profiles (Jones et al., 2009. These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30–40% over Indonesia. The response of the free tropospheric chemical state to the changes in these emissions is investigated for ozone, CO, NOx, and PAN. Model simulations indicate that ozone over Indonesian/Australian is sensitive to regional changes in surface emissions of NOx but relatively insensitive to lightning NOx. Over sub-equatorial Africa and South America, free tropospheric NOx was reduced in response to increased surface emissions potentially muting ozone production.

  8. Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014

    Directory of Open Access Journals (Sweden)

    L. C. Cheadle

    2017-11-01

    Full Text Available High mixing ratios of ozone (O3 in the northern Front Range (NFR of Colorado are not limited to the urban Denver area but were also observed in rural areas where oil and gas activity is the primary source of O3 precursors. On individual days, oil and gas O3 precursors can contribute in excess of 30 ppb to O3 growth and can lead to exceedances of the EPA O3 National Ambient Air Quality Standard. Data used in this study were gathered from continuous surface O3 monitors for June–August 2013–2015 as well as additional flask measurements and mobile laboratories that were part of the FRAPPE/DISCOVER-AQ field campaign of July–August 2014. Overall observed O3 levels during the summer of 2014 were lower than in 2013, likely due to cooler and damper weather than an average summer. This study determined the median hourly surface O3 mixing ratio in the NFR on summer days with limited photochemical production to be approximately 45–55 ppb. Mobile laboratory and flask data collected on three days provide representative case studies of different O3 formation environments in and around Greeley, Colorado. Observations of several gases (including methane, ethane, CO, nitrous oxide along with O3 are used to identify sources of O3 precursor emissions. A July 23 survey demonstrated low O3 (45–60 ppb while August 3 and August 13 surveys recorded O3 levels of 75–80 ppb or more. August 3 exemplifies influence of moderate urban and high oil and gas O3 precursor emissions. August 13 demonstrates high oil and gas emissions, low agricultural emissions, and CO measurements that were well correlated with ethane from oil and gas, suggesting an oil and gas related activity as a NOx and O3 precursor source. Low isoprene levels indicated that they were not a significant contributor to O3 precursors measured during the case studies.

  9. Characteristics of Surface Ozone in Agra, a Sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    65

    Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra. 4. 282110, India ... location in the atmosphere, O3 can influence human health and climate; in the stratosphere, O3. 51 ...... ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia;. 582.

  10. Surface Photochemistry of Adsorbed Nitrate: The Role of Adsorbed Water in the Formation of Reduced Nitrogen Species on α-Fe2O3 Particle Surfaces

    NARCIS (Netherlands)

    Nanayakkara, C.E.; Jayaweera, P.M.; Rubasinghege, G; Baltrusaitis, Jonas; Grassian, V.H.

    2014-01-01

    The surface photochemistry of nitrate, formed from nitric acid adsorption, on hematite (α-Fe2O3) particle surfaces under different environmental conditions is investigated using X-ray photoelectron spectroscopy (XPS). Following exposure of α-Fe2O3 particle surfaces to gas-phase nitric acid, a peak

  11. Investigations of surface related electronic properties in SmB6 and LaAlO3/SrTiO3 heterostructures

    Science.gov (United States)

    Adhikari, Sanjay

    This dissertation reports research performed on two types of two-dimensional. systems: SmB6 and LaAlO3/SrTiO3 (LAO/STO). SmB6 has been proposed to be. a topological Kondo insulator at low temperature. In order to understand carriers/. lattice dynamics and their interactions, femtosecond pump-probe spectroscopy. is performed in SmB6 single crystals and thin lms at variable temperatures. The. collective oscillation modes in GHz - THz and the change of carrier relaxations is. observed as a function of temperature. From the temperature dependent results. f 􀀀?d hybridization, opening of the hybridization gap, phonon bottleneck", and th. possible topological surface state formation is revealed. The topological surface state. should support helical Dirac dispersion with momentum-spin lockage. This dissertation. reports on current injection in SmB6 thin lm with circularly polarized light. at oblique incidence. This spin polarized photocurrent is concluded to be a direct. result of spin momentum lockage in SmB6. LAO/STO interface shows 2-dimensional electron gas (2DEG) at the interface. when the thickness of LAO is more than 3 unit cell. Carrier properties at the. LAO/STO interfaces are highly sensitive to the top surface termination of LAO. The spontaneous dissociation of water on LAO surface is systematically studied by. density functional theory and experimental surface characterizations. Extrinsic effects. from surface adsorbates were often ignored in the previous studies of the 2DEG. From the experiments, it is found that the dissociated water molecules, especially the. surface protons, strongly aect the interface density of states, electron distributions. and lattice distortions. The investigations also reveal the importance of additional. molecular water layers. These additional water layers, through hydrogen bonds, provide. an energetically feasible pathway for manipulating the surface-bonded protons. and thus, the interface electrical characteristics.

  12. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  13. The surface structure of SrTiO3 at high temperatures under influence of oxygen

    International Nuclear Information System (INIS)

    Hesselberth, M. B. S.; Molen, S. J. van der; Aarts, J.

    2014-01-01

    We use low energy electron microscopy to investigate the structure of the SrTiO 3 (001) surface at elevated temperatures and different oxygen pressures. Upon varying the temperature between 500 °C and 900 °C in oxygen pressures ranging from 10 −9 millibar to 10 −4 millibar, two surface transitions are found to be present. The lower temperature (1 × 1) → (2 × 1) transition that is known to occur in ultrahigh vacuum can be reversed by increasing the oxygen pressure. At higher temperatures, we observe a (2 × 1) → disordered (1 × 1) transition which is irreversible in the experimental parameter range. The observations are expected to have a strong bearing on the growth of interface structures

  14. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    Science.gov (United States)

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. First principles study of elemental mercury (Hg0) adsorption on low index CoMnO3 surfaces

    International Nuclear Information System (INIS)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen; Shen, Zhemin; Fan, Maohong

    2017-01-01

    Highlights: • Hg 0 adsorption on low index CoMnO 3 surface was predicted by DFT method. • Hg 0 is adsorbed on the CoMnO 3 surface with chemisorption interaction. • Hg 0 has highest adsorption energy on CoMnO 3 (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg 0 has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg 0 ) adsorption on CoMnO 3 surface for the first time. GGA/PBE functional were selected to determine the potential Hg 0 capture mechanisms. The results show that Hg 0 has good affinity with CoMnO 3 surfaces with chemical adsorption. The adsorption energy of Hg 0 -CoMnO 3 (1 0 0), Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg 0 was oxidized to its valence state of 0.236 on Mn site in CoMnO 3 (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) with 0.209e − and 0.189e − transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO 3 catalyst performed excellent in Hg 0 oxidation. Exposing CoMnO 3 (1 0 0) is most favorable in Hg 0 control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  16. Adsorption of Cu and Pd on alpha-Al2O3(0001) surfaces with different stoichiometries

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Nørskov, Jens Kehlet

    2001-01-01

    We report density functional theory calculations of the interaction of Cu and Pd with the (0001) surface of alpha -Al2O3. The interaction of those metals with the oxide surface varies from covalent-like for the aluminum rich surface to ionic-like for the oxygen terminated surface. Stoichiometric ...

  17. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  18. Adsorption of UO22+ in surfaces of SrTiO3

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M.

    2005-01-01

    The internationally accepted solution in the administration of the high level radioactive residuals is the multi barrier deep geologic storage which should guarantee that do not exist flights neither transfer of residuals to the atmosphere in time periods of at least 10,000 years. In this confinement type exists the interest to study materials that can be used as engineering barriers as well as the diverse interaction phenomena between these and the radionuclides. In this work it is presented the physicochemical characterization and evaluation of the surface properties and of adsorption of U(VI) in form of UO 2 (NO 3 ) 2 on the SrTiO 3 like possible candidate for contention barrier in the deep geologic confinement. The made studies showed that the SrTiO 3 is stable to temperatures between 0 and 800 C. At the same time it could settle down that the maximum sorption percentages are reached to near pH to the isoelectric point, where chemical species prevail in solution of the type UO 2 (X) - . (Author)

  19. Tuning the electronic properties of LaAlO3/SrTiO3 interfaces by irradiating the LaAlO3 surface with low-energy cluster ion beams

    Science.gov (United States)

    Ridier, Karl; Aureau, Damien; Bérini, Bruno; Dumont, Yves; Keller, Niels; Vigneron, Jackie; Etcheberry, Arnaud; Domengès, Bernadette; Fouchet, Arnaud

    2018-01-01

    We have investigated the effects of low-energy ion beam irradiations using argon clusters on the chemical and electronic properties of LaAlO3/SrTiO3 (LAO/STO) heterointerfaces by combining x-ray photoelectron spectroscopy (XPS) and electrical transport measurements. Due to its unique features, we demonstrate that a short-time cluster ion irradiation of the LAO surface induces significant modifications in the chemical properties of the buried STO substrate with (1) a lowering of Ti atoms oxidation states (from Ti4 + to Ti3 + and Ti2 +) correlated to the formation of oxygen vacancies at the LAO surface and (2) the creation of new surface states for Sr atoms. Contrary to what is generally observed by using higher energy ion beam techniques, this leads to an increase of the electrical conductivity at the LAO/STO interface. Our XPS data clearly reveal the existence of dynamical processes on the titanium and strontium atoms, which compete with the effect of the cluster ion beam irradiation. These relaxation effects are in part attributed to the diffusion of the ion-induced oxygen vacancies in the entire heterostructure since an increase of the interfacial metallicity is also evidenced far from the irradiated area. This paper highlights the possibility of tuning the electrical properties of LAO/STO interfaces by surface engineering, confirming experimentally the intimate connection between LAO chemistry and electronic properties of LAO/STO interfaces.

  20. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  1. Surface Level Ozone and its Adverse Effects on Crops and Forests: A Need for an Interdisciplinary Understanding

    Directory of Open Access Journals (Sweden)

    Sagar V. Krupa

    2001-01-01

    Full Text Available Surface level ozone (O3 is clearly a global scale problem with regard to its adverse effects on crops, forests and native, terrestrial plant ecosystems. Photochemists and meteorologists are continuing to define the chemistry and physics of the prevalence of O3 at the ground level. Similarly, plant scientists in the U.S. and Europe have examined the effects of O3 on crops and tree seedlings or saplings through large-scale studies. Examples include the U.S. National Crop Loss Assessment Network (NCLAN, the U.S. EPA’s (Environmental Protection Agency’s San Bernardino National Forest Photochemical Oxidant Study, European Open-top Chambers Programme (EOTCP, and several ongoing EU (European Union projects. In addition, there have been studies on mature tree responses through field measurements and by simulation modeling.

  2. Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends.

    Science.gov (United States)

    Wang, H; Morrison, G

    2010-06-01

    Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

  3. Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-04-01

    Full Text Available Both observations and a 3-D chemical transport model suggest that surface ozone over populated eastern China features a summertime trough and that the month when surface ozone peaks differs by latitude and region. Source-receptor analysis is used to quantify the contributions of background ozone and Chinese anthropogenic emissions on this variability. Annual mean background ozone over China shows a spatial gradient from 55 ppbv in the northwest to 20 ppbv in the southeast, corresponding with changes in topography and ozone lifetime. Pollution background ozone (annual mean of 12.6 ppbv shows a minimum in the summer and maximum in the spring. On the monthly-mean basis, Chinese pollution ozone (CPO has a peak of 20–25 ppbv in June north of the Yangtze River and in October south of it, which explains the peaks of surface ozone in these months. The summertime trough in surface ozone over eastern China can be explained by the decrease of background ozone from spring to summer (by −15 ppbv regionally averaged over eastern China. Tagged simulations suggest that long-range transport of ozone from northern mid-latitude continents (including Europe and North America reaches a minimum in the summer, whereas ozone from Southeast Asia exhibits a maximum in the summer over eastern China. This contrast in seasonality provides clear evidence that the seasonal switch in monsoonal wind patterns plays a significant role in determining the seasonality of background ozone over China.

  4. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  5. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  6. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2015-06-03

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  7. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal; Shahid, Muhammad; Nagaraju, Doddahalli H.; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  8. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  9. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  10. A two-dimensional atmospheric chemistry modeling investigation of Earth's Phanerozoic O3 and near-surface ultraviolet radiation history

    Science.gov (United States)

    Harfoot, Michael B. J.; Beerling, David J.; Lomax, Barry H.; Pyle, John A.

    2007-04-01

    We use the Cambridge two-dimensional (2-D) chemistry-radiation transport model to investigate the implications for column O3 and near-surface ultraviolet radiation (UV), of variations in atmospheric O2 content over the Phanerozoic (last 540 Myr). Model results confirm some earlier 1-D model investigations showing that global annual mean O3 column increases monotonically with atmospheric O2. Sensitivity studies indicate that changes in temperature and N2O exert a minor influence on O3 relative to O2. We reconstructed Earth's O3 history by interpolating the modeled relationship between O3 and O2 onto two Phanerozoic O2 histories. Our results indicate that the largest variation in Phanerozoic column O3 occurred between 400 and 200 Myr ago, corresponding to a rise in atmospheric O2 to ˜1.5 times the present atmospheric level (PAL) and subsequent fall to ˜0.5 PAL. The O3 response to this O2 decline shows latitudinal differences, thinning most at high latitudes (30-40 Dobson units (1 DU = 0.001 atm cm) at 66°N) and least at low latitudes (5-10 DU at 9°N) where a "self-healing" effect is evident. This O3 depletion coincides with significant increases in the near-surface biologically active UV radiation at high latitudes, +28% as weighted by the Thimijan spectral weighting function. O3 and UV changes were exacerbated when we incorporated a direct feedback of the terrestrial biosphere on atmospheric chemistry, through enhanced N2O production as the climate switched from an icehouse to a greenhouse mode. On the basis of a summary of field and laboratory experimental evidence, we suggest that these UV radiation increases may have exerted subtle rather than catastrophic effects on ecosystem processes.

  11. Relationship between surface, free tropospheric and total column ozone in 2 contrasting areas in South-Africa

    CSIR Research Space (South Africa)

    Combrink, J

    1995-04-01

    Full Text Available Measurements of surface ozone in two contrasting areas of South Africa are compared with free tropospheric and Total Ozone Mapping Spectrometer (TOMS) total column ozone data. Cape Point is representative of a background monitoring station which...

  12. Surface resistance of YBa2Cu3O7 films deposited on LaGaO3 substrates

    International Nuclear Information System (INIS)

    Cooke, D.W.; Gray, E.R.; Houlton, R.J.; Javadi, H.H.S.; Maez, M.A.; Bennett, B.L.; Rusnak, B.; Meyer, E.A.; Arendt, P.N.; Beery, J.G.; Brown, D.R.; Garzon, F.H.; Raistriek, I.D.; Bolmaro, B.; Elliott, N.E.; Rollett, A.D.; Klein, N.; Muller, G.; Orbach, S.; Piel, H.; Josefowicz, J.Y.; Rensch, O.B.; Drabeck, L.; Gruner, G.

    1989-01-01

    Superconducting films of YBa 2 Cu 3 O 7 deposited onto LaGaO 3 substrates were prepared by e-beam and magnetron sputtering techniques. Surface resistance measurements made at 22 GHz, 86 GHz, and 148 GHz show that these films are superior to those deposited by similar techniques onto SrTiO 3 . Typical surface resistance values measured at 22 GHz and 12 K are ∼2 m(cgom) with the lowest value being 0.2 m(cgom), which is only 2 to 4 times higher than Nb. The surface resistance is proportional to the square of the measuring frequency

  13. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  14. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  15. The impacts of surface ozone pollution on winter wheat productivity in China – An econometric approach

    International Nuclear Information System (INIS)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. - Highlights: • We examine the impacts of the surface ozone exposure on winter wheat yield in China. • An econometric method is used to measure the ozone impacts. • The results conclude that surface ozone is harmful to winter wheat yield in China. • We confirm that stress conditions such as drought and air particles can mitigate the adverse effect of ozone. - Surface ozone pollution is harmful to winter wheat yield in China by considering socio-economic determinants, weather, and other stress conditions like drought and air particles.

  16. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3

    NARCIS (Netherlands)

    Hoex, B.; Gielis, J.J.H.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    Al2 O3 is a versatile high- ¿ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface

  17. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites

    International Nuclear Information System (INIS)

    Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.

    2014-01-01

    Highlights: • Surface treatment of Fe 2 O 3 with amino propyl tri methoxy silane. • The surface chemistry pigments were affected by the chemical treatment. • Surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. • The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles. - Abstract: Fe 2 O 3 nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles

  18. A First Principles Study of H2 Adsorption on LaNiO3(001 Surfaces

    Directory of Open Access Journals (Sweden)

    Changchang Pan

    2017-01-01

    Full Text Available The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001/H2 systems were calculated and indicated through the calculated surface energy that the (001 surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001 surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001 surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface.

  19. Industrially relevant Al2O3 deposition techniques for the surface passivation of Si solar cells

    NARCIS (Netherlands)

    Schmidt, J.; Werner, F.; Veith, B.; Zielke, D.; Bock, R.; Tiba, M.V.; Poodt, P.; Roozeboom, F.; Li, A.; Cuevas, A.; Brendel, R.

    2010-01-01

    We present independently confirmed efficiencies of 21.4% for PERC cells with plasma-assisted atom-ic-layer-deposited (plasma ALD) Al2O3 rear passivation and 20.7% for cells with thermal ALD-Al2O3. Additionally, we evaluate three different industrially relevant techniques for the deposition of

  20. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    Science.gov (United States)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  1. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    Science.gov (United States)

    Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua

    2018-04-01

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

  2. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  3. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    International Nuclear Information System (INIS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Wu, Yan; Li, Jie

    2013-01-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O 3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O 3 generation was approximate 4 mg kJ −1 ; moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  4. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Science.gov (United States)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  5. High definition surface micromachining of LiNbO 3 by ion implantation

    Science.gov (United States)

    Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.

    2010-10-01

    High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).

  6. Native SrTiO3 (001) surface layer from resonant Ti L2,3 reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valvidares, Manuel; Huijben, Mark; Yu, Pu; Ramesh, Ramamoorthy; Kortright, Jeffrey

    2010-11-03

    We quantitatively model resonant Ti L2,3 reflectivity Rs,p(q, hn) from several SrTiO3 (001) single crystals having different initial surface preparations and stored in ambient conditions before and between measurements. All samples exhibit unexpected 300 K Rs(hn) - Rp(hn) anisotropy corresponding to weak linear dichroism and tetragonal distortion of the TiO6 octahedra indicating a surface layer with properties different from cubic SrTiO3. Oscillations in Rs(q) confirm a ubiquitous surface layer 2-3 nm thick that evolves over a range of time scales. Resonant optical constant spectra derived from Rs,p(hn) assuming a uniform sample are refined using a single surface layer to fit measured Rs(q). Differences in surface layer and bulk optical properties indicate that the surface is significantly depleted in Sr and enriched in Ti and O. While consistent with the tendency of SrTiO3 surfaces toward non-stoichiometry, this layer does not conform simply to existing models for the near surface region and apparently forms via room temperature surface reactions with the ambient. This new quantitative spectral modeling approach is generally applicable and has potential to study near-surface properties of a variety of systems with unique chemical and electronic sensitivities.

  7. O3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013

    Directory of Open Access Journals (Sweden)

    S. J. Oltmans

    2016-10-01

    Full Text Available Abstract Instrumented aircraft measuring air composition in the Uinta Basin, Utah, during February 2012 and January-February 2013 documented dramatically different atmospheric ozone (O3 mole fractions. In 2012 O3 remained near levels of ∼40 ppb in a well-mixed 500–1000 m deep boundary layer while in 2013, O3 mole fractions >140 ppb were measured in a shallow (∼200 m boundary layer. In contrast to 2012 when mole fractions of emissions from oil and gas production such as methane (CH4, non-methane hydrocarbons (NMHCs and combustion products such as carbon dioxide (CO2 were moderately elevated, in winter 2013 very high mole fractions were observed. Snow cover in 2013 helped produce and maintain strong temperature inversions that capped a shallow cold pool layer. In 2012, O3 and CH4 and associated NMHCs mole fractions were not closely related. In 2013, O3 mole fractions were correlated with CH4 and a suite of NMHCs identifying the gas field as the primary source of the O3 precursor NMHC emissions. In 2013 there was a strong positive correlation between CH4 and CO2 suggesting combustion from oil and natural gas processing activities. The presence of O3 precursor NMHCs through the depth of the boundary layer in 2013 led to O3 production throughout the layer. In 2013, O3 mole fractions increased over the course of the week-long episodes indicating O3 photochemical production was larger than dilution and deposition rates, while CH4 mole fractions began to level off after 3 days indicative of some air being mixed out of the boundary layer. The plume of a coal-fired power plant located east of the main gas field was not an important contributor to O3 or O3 precursors in the boundary layer in 2013.

  8. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2017-12-01

    Full Text Available We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem with the second-generation Regional Acid Deposition Model (RADM2 chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP, the Intercontinental Chemical Transport Experiment phase B (INTEX-B and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS. Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30, are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP, central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  9. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Science.gov (United States)

    Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.

    2017-12-01

    We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  10. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  11. Adsorption of small palladium clusters on the relaxed α-Al2O3(0001) surface

    DEFF Research Database (Denmark)

    Gomes, J.R.B.; Lodziana, Zbiegniew; Illas, F.

    2003-01-01

    of supported Pd-3 is largely distorted from the gas-phase equilibrium geometry whereas the structure of supported Pd-4 is less distorted and reminiscent of the most stable gas-phase isomer. Consequently, the adhesion energy of Pd-3 on the relaxed alpha-Al2O3(0001) surface is smaller than that of Pd-4...... adsorption on other oxide surfaces, there are no preferred adsorption sites for Pd deposited on the corundum surface....

  12. Effects of surface acidities of MCM-41 modified with MoO3 on adsorptive desulfurization of gasoline

    International Nuclear Information System (INIS)

    Shao Xinchao; Zhang Xiaotong; Yu Wenguang; Wu Yuye; Qin Yucai; Sun Zhaolin; Song Lijuan

    2012-01-01

    Highlights: ► The MoO 3 -MCM-41 samples prepared by spontaneous monolayer dispersion and impregnation with a different MoO 3 filling have been studied. ► The relative concentration of hydroxyl groups present on before and after containing MoO 3 samples was monitored by in situ FTIR to speculate the bonding style of MoO 3 and MCM-41. ► The surface acidities of the MoO 3 -MCM-41 adsorbents were investigated systematically and correlated with the desulfurization performance. - Abstract: A series of MCM-41 samples containing molybdenum oxide as active species in the mesoporous channels loaded by spontaneous monolayer dispersion (SMD) and impregnation (IM) have been prepared and characterized using XRD, N 2 adsorption–desorption analysis, Fourier transform infrared spectroscopy (FTIR) and intelligent gravimetric analyzer (IGA). The relative number of hydroxy on the adsorbents was investigated by in situ FTIR. Surface acidities of the adsorbents were studied by infrared spectroscopy of adsorbed pyridine and correlated with reactivity for adsorptive desulfurization. The IGA technique was employed to investigate adsorption behavior of thiophene and benzene on the adsorbents at 303 K. It is shown that MoO 3 can be highly dispersed up to 0.2 g g −1 in the MCM-41 channels by the SMD strategy with the ordered mesoporous structure of the MoMM samples remaining intact. The ordered mesostructure of MCM-41 is, however, destroyed at higher MoO 3 contents of 0.26 and 0.32 g g −1 with particle sizes of 1.2 nm and 3.6 nm, respectively, observed. For the MoMI(0.2) sample prepared by the IM method, the aggregation of the MoO 3 particles takes place with a particle size of 6.5 nm obtained. The results are also revealed that the dispersion extent of the MoO 3 species is related to the abundant surface hydroxy of MCM-41. The host species and guest species undergo solid-state reaction to form Si-O-Mo bonds in the mixtures which enhance both the Lewis acid and Brönsted acid of

  13. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  14. OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and...

  15. Trends in Surface Level Ozone Observations from Human-health Relevant Metrics: Results from the Tropospheric Ozone Assessment Report (TOAR)

    Science.gov (United States)

    Fleming, Z. L.; von Schneidemesser, E.; Doherty, R. M.; Malley, C.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Ozone is an air pollutant formed in the atmosphere from precursor species (NOx, VOCs, CH4, CO) that is detrimental to human health and ecosystems. The global Tropospheric Ozone Assessment Report (TOAR) initiative has assembled a global database of surface ozone observations and generated ozone exposure metrics at thousands of measurement sites around the world. This talk will present results from the assessment focused on those indicators most relevant to human health. Specifically, the trends in ozone, comparing different time periods and patterns across regions and among metrics will be addressed. In addition, the fraction of population exposed to high ozone levels and how this has changed between 2000 and 2014 will also be discussed. The core time period analyzed for trends was 2000-2014, selected to include a greater number of sites in East Asia. Negative trends were most commonly observed at many US and some European sites, whereas many sites in East Asia showed positive trends, while sites in Japan showed more of a mix of positive and negative trends. More than half of the sites showed a common direction and significance in the trends for all five human-health relevant metrics. The peak ozone metrics indicate a reduction in exposure to peak levels of ozone related to photochemical episodes in Europe and the US. A considerable number of European countries and states within the US have shown a decrease in population-weighted ozone over time. The 2000-2014 results will be augmented and compared to the trend analysis for additional time periods that cover a greater number of years, but by necessity are based on fewer sites. Trends are found to be statistically significant at a larger fraction of sites with longer time series, compared to the shorter (2000-2014) time series.

  16. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    Science.gov (United States)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation

  17. Semiconductor Sensors Application for Definition of Factor of Ozone Heterogeneous Destruction on Teflon Surface

    Directory of Open Access Journals (Sweden)

    Nataliya V. Finogenova

    2003-12-01

    Full Text Available In our paper we present the results of our research, which was carried out by means of semiconductor sensor techniques (SCS, which allowed evaluating heterogeneous death-rate of ozone (γ Teflon surface. When ozone concentration is near to Ambient Air Standard value, γ is assessed to be equal to 6,57*10-7. High technique response provide possibility to determine ozone contents in the air media and the percentage of ozone, decomposed on the communication surfaces and on the surfaces of installation in the low concentration range (1–100 ppb.

  18. Surface ozone in China: present-day distribution and long-term changes

    Science.gov (United States)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  19. Electric controlling of surface metal-insulator transition in the doped BaTiO3 film

    Directory of Open Access Journals (Sweden)

    Wei Xun

    2017-07-01

    Full Text Available Based on first-principles calculations, the BaTiO3(BTO film with local La-doping is studied. For a selected concentration and position of doping, the surface metal-insulator transition occurs under the applied electric field, and the domain appears near the surface for both bipolar states. Furthermore, for the insulated surface state, i.e., the downward polarization state in the doped film, the gradient bandgap structure is achieved, which favors the absorption of solar energy. Our investigation can provide an alternative avenue in modification of surface property and surface screening effect in polar materials.

  20. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Science.gov (United States)

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai

    2018-01-01

    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  1. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China

    International Nuclear Information System (INIS)

    Li, Li; Manning, William J.; Tong, Lei; Wang, Xiaoke

    2015-01-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O 3 ) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012–2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (A sat ) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O 3 – induced reductions in A sat , Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O 3 . - Highlights: • The response of Acer truncatum Bunge to drought and ozone was investigated. • Drought could mitigate the foliage injury and leaf photosynthetic pigments. • The O 3 -induced reductions in Asat, Gs and total biomass were enhanced by drought. - Drought didn't protect Shantung maple from O 3 effects but rather cause more reductions in biomass

  2. Influence of ozone precursors and particulate matter on the variation of surface ozone at an urban site of Delhi, India

    Directory of Open Access Journals (Sweden)

    Ashima Sharma

    2016-03-01

    Full Text Available Continuous measurements of surface O3 and its precursors (NO, NO2, CO, CH4 and NMHCs at an urban site of Delhi, India during January 2012 to December 2013 are presented. In the present study, the annual average mixing ratios of surface O3, NO, NO2, CO, CH4 and NMHC were 30 ± 6 ppb, 24 ± 6 ppb, 15 ± 4 ppb, 1.5 ± 0.4 ppm, 2.4 ± 0.4 ppm and 0.4 ± 0.1 ppm, respectively. The maximum average mixing ratios of surface O3, NO and NO2 were observed during the summer, whereas, the minimum average mixing ratios of ambient NO and NO2 were during monsoon seasons. The surface O3, NO and NO2 have shown the prominent diurnal variations during all the seasons at the observational site of Delhi. The result reveals that the surface O3 was negatively correlated with NOx and CO during the study. The linear scatter plot analysis shows that the PM2.5 and PM10 present in the ambient air of Delhi influence the production of surface O3 at observational site.

  3. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  4. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval

    Directory of Open Access Journals (Sweden)

    V. A. Yankovsky

    2006-11-01

    Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.

  5. DFT simulations of water adsorption and activation on low-index α-Ga2O3 surfaces.

    Science.gov (United States)

    Zhou, Xin; Hensen, Emiel J M; van Santen, Rutger A; Li, Can

    2014-06-02

    Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α-Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low-index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron-energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α-Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improved silicon surface passivation of APCVD Al2O3 by rapid thermal annealing

    NARCIS (Netherlands)

    Black, L.E.; Allen, T.; McIntosh, K.R.; Cuévas, A.

    2016-01-01

    Short-duration post-deposition thermal treatments at temperatures above those normally used for annealing activation have the potential to further improve the already excellent passivation of crystalline silicon (c-Si) achieved by Al2O3, but have so far received little attention. In this work we

  7. O(3P) + C2H4 Potential Energy Surface: Study at the Multireference Level

    Czech Academy of Sciences Publication Activity Database

    West, A. C.; Kretchmer, J. S.; Sellner, B.; Park, K.; Hase, W. L.; Lischka, Hans; Windus, T. L.

    2009-01-01

    Roč. 113, č. 45 (2009), s. 12663-12674 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen combustion * multireference methods * O(3P)+C2H4 reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  8. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  9. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization

    International Nuclear Information System (INIS)

    Gosavi, Priti V.; Biniwale, Rajesh B.

    2010-01-01

    Three different wet chemistry routes, namely co-precipitation, combustion and sol-gel methods were used to synthesize LaFeO 3 perovskite with improved surface area. The synthesized perovskite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) nitrogen adsorption, ultraviolet diffused reflectance spectroscopy (UVDRS) and Fourier transform infrared (FTIR) spectroscopy techniques. Improved surface area was observed for all three methods as compared to the previously reported values. The perovskite synthesized using sol-gel method yields comparatively pure, crystalline phase of LaFeO 3 and relatively higher surface area of 16.5 m 2 g -1 and porosity. The material synthesized using co-precipitation method yielded other phases in addition to the targeted phase. The morphology of perovskite synthesized using co-precipitation method was uniform agglomerates. Combustion method yields flakes type morphology and that of sol-gel method was open pore type morphology. The selection of method for perovskite synthesis largely depends on the targeted application and the desired properties of perovskites. The results reported in this study are useful for establishing a simple scalable method for preparation of high surface area LaFeO 3 as compared to solid-oxide method. Further, the typical heating cycle followed for calcinations resulted in relatively high surface area in the case of all three methods.

  10. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Shu, Lei; Wang, Ti-jian; Liu, Qian; Gao, Da; Li, Shu; Zhuang, Bing-liang; Han, Yong; Li, Meng-meng; Chen, Pu-long

    2017-02-01

    The natural emissions of ozone precursors (NOx and VOCs) are sensitive to climate. Future climate change can impact O3 concentrations by perturbing these emissions. To better estimate the variation of natural emissions under different climate conditions and understand its effect on surface O3, we model the present and the future air quality over the Yangtze River Delta (YRD) region by running different simulations with the aid of the WRF-CALGRID model system that contains a natural emission module. Firstly, we estimate the natural emissions at present and in IPCC A1B scenario. The results show that biogenic VOC emission and soil NOx emission over YRD in 2008 is 657 Gg C and 19.1 Gg N, respectively. According to climate change, these emissions in 2050 will increase by 25.5% and 11.5%, respectively. Secondly, the effects of future natural emissions and meteorology on surface O3 are investigated and compared. It is found that the variations in meteorological fields can significantly alter the spatial distribution of O3 over YRD, with the increases of 5-15 ppb in the north and the decreases of -5 to -15 ppb in the south. However, only approximately 20% of the surface O3 increases caused by climate change can be attributed to the natural emissions, with the highest increment up to 2.4 ppb. Finally, Ra (the ratio of impacts from NOx and VOCs on O3 formation) and H2O2/HNO3 (the ratio between the concentrations of H2O2 and HNO3) are applied to study the O3 sensitivity in YRD. The results show that the transition value of H2O2/HNO3 will turn from 0.3 to 0.5 in 2008 to 0.4-0.8 in 2050. O3 formation in the YRD region will be insensitive to VOCs under future climate condition, implying more NOx need to be cut down. Our findings can help us understand O3 variation trend and put forward the reasonable and effective pollution control policies in these famous polluted areas.

  11. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  12. LiNbO3 Coating on Concrete Surface: A New and Environmentally Friendly Route for Artificial Photosynthesis

    Directory of Open Access Journals (Sweden)

    Ranjit K. Nath

    2013-01-01

    Full Text Available The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm2, allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.

  13. Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions

    Science.gov (United States)

    Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.

    2018-05-01

    Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although

  14. First-principles study of the adsorption of methanol at the α-Al2O3(0001) surface

    International Nuclear Information System (INIS)

    Borck, Oeyvind; Schroeder, Elsebeth

    2006-01-01

    We present density functional theory calculations of methanol molecular adsorption at the (0001) surface of α-Al 2 O 3 , for methanol coverages of 1/4 to 1 monolayer (ML). Adsorption energies, adsorption-induced restructuring of the surface, and induced changes to the electronic structure are calculated. We find that methanol bonds with its O atom to Al atoms at the α-Al 2 O 3 (0001) surface with an adsorption energy of 1.23 eV at coverage 1/4 ML, decreasing with coverage to 1.03 eV at 1 ML coverage. From calculations of the relaxed adsorption geometry and the angular dependence of the total energy, we predict an orientation of the adsorbed methanol molecule that has the molecular COH plane tilted away from the surface normal. The adsorption of methanol significantly restructures α-Al 2 O 3 (0001), especially for the outermost Al layer. Upon adsorption a small charge transfer from the molecule to the substrate takes place

  15. Front Surface Tandem Filters using Sapphire (Al2O3) Substrates for Spectral Control in thermophotovoltaic Energy Conversion Systems

    International Nuclear Information System (INIS)

    T Rahmlow, Jr.; J Lazo-Wasem; E Gratrix; P Fourspring; D DePoy

    2005-01-01

    Front surface filters provide an effective means of improving thermophotovoltaic (TPV) system efficiency through spectral control of incident radiant energy. A front surface filter reflects the below band gap photons that can not be converted by the TPV cell back towards the high temperature radiator and allows convertible above band gap photons to pass through the filter into the TPV cell for conversion to electricity. The best spectral control efficiency to date has been demonstrated by front surface, tandem filters that combine an interference filter and an InPAs layer (plasma filter) in series. The InPAs material is a highly doped, epitaxially grown layer on an InP substrate. These tandem filter designs have been fabricated with energy and angle weighted spectral efficiencies of 76% for TPV cells with a 2.08(micro)m (0.6eV) band gap [1]. An alternative to the InPAs layer on an InP substrate is an Al 2 O 3 (sapphire) substrate. The use of Al 2 O 3 may increase transmission of above band gap photons, increase the mechanical strength of the tandem filter, and lower the cost of the tandem filter, all at the expense of lower spectral efficiency. This study presents design and fabrication results for front surface tandem filters that use an Al 2 O 3 substrate for 2.08(micro)m band gap TPV cells

  16. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    Science.gov (United States)

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  17. BaTiO3–P(VDF-HFP) nanocomposite dielectrics—Influence of surface modification and dispersion additives

    International Nuclear Information System (INIS)

    Ehrhardt, Claudia; Fettkenhauer, Christian; Glenneberg, Jens; Münchgesang, Wolfram; Pientschke, Christoph; Großmann, Thomas; Zenkner, Mandy; Wagner, Gerald; Leipner, Hartmut S.; Buchsteiner, Alexandra; Diestelhorst, Martin; Lemm, Sebastian; Beige, Horst; Ebbinghaus, Stefan G.

    2013-01-01

    Highlights: • Polymer composites were prepared using a sol–gel synthesized BaTiO 3 . • BaTiO 3 surface hydroxyle groups act as linkers for surfactant molecules. • The effect of chemical adjustment between surfactant and polymer host is studied. • A positive effect of an additional dispersant was found. • Dielectric properties of the resulting composite films are presented. -- Abstract: We report on BaTiO 3 –polymer composites as dielectrics for film capacitors. BaTiO 3 was synthesized by a sol–gel soft-chemistry method leading to spherical nanoparticles with a high degree of surface hydroxyl groups which turned out to be important for the bonding of surfactant molecules. As surfactants, n-octylphosphonic acid and 2,3,4,5,6-pentafluorobenzyl phosphonic acid were used to inhibit particle agglomeration and to improve the wetting behaviour with the polymer. The phosphonic acid-coated BaTiO 3 nanoparticles were dispersed in solutions of poly(vinylidefluoride-co-hexafluoropropylene). Composite films were prepared by the spin-coating technique. A systematic study was performed on the influence of varying oxide fractions, different surfactants and the effect of additional dispersion aids such as sodium dodecyl sulphate or BYK-W 9010 on the quality and dielectric properties of the films obtained. The chemical adjustment of the 2,3,4,5,6-pentaflourobenzyl phosphonic acid within the fluorinated organic host form a more uniform particle distribution and increase relative permittivity of the resulting composite material compared to the unflourinated surfactant. Additionally, an enhancement of the relative permittivity can be realized by adding of dispersants. These two components can increase the relative permittivity by factor 5 compared to the pure polymer material

  18. Adsorption of aromatic hydrocarbons and ozone at environmental aqueous surfaces.

    Science.gov (United States)

    Vácha, Robert; Cwiklik, Lukasz; Rezác, Jan; Hobza, Pavel; Jungwirth, Pavel; Valsaraj, Kalliat; Bahr, Stephan; Kempter, Volker

    2008-06-05

    Adsorption of environmentally important aromatic molecules on a water surface is studied by means of classical and ab initio molecular dynamics simulations and by reflection-absorption infrared spectroscopy. Both techniques show strong activity and orientational preference of these molecules at the surface. Benzene and naphthalene, which bind weakly to water surface with a significant contribution of dispersion interactions, prefer to lie flat on water but retain a large degree of orientational flexibility. Pyridine is more rigid at the surface. It is tilted with the nitrogen end having strong hydrogen bonding interactions with water molecules. The degree of adsorption and orientation of aromatic molecules on aqueous droplets has atmospheric implications for heterogeneous ozonolysis, for which the Langmuir-Hinshelwood kinetics mechanism is discussed. At higher coverages of aromatic molecules the incoming ozone almost does not come into contact with the underlying aqueous phase. This may rationalize the experimental insensitivity of the ozonolysis on the chemical nature of the substrate on which the aromatic molecules adsorb.

  19. The lateral In2O3 nanowires and pyramid networks manipulation by controlled substrate surface energy in annealing evolution

    Science.gov (United States)

    Shariati, Mohsen; Darjani, Mojtaba

    2016-02-01

    The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.

  20. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Science.gov (United States)

    Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong

    2017-09-01

    Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a

  1. Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning

    Science.gov (United States)

    Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.

    2017-12-01

    High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.

  2. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  3. Evaluation of fitting functions for the representation of an O(3P)+H2 potential energy surface. I

    International Nuclear Information System (INIS)

    Wagner, A.F.; Schatz, G.C.; Bowman, J.M.

    1981-01-01

    The DIM surface of Whitlock, Muckerman, and Fisher for the O( 3 P)+H 2 system is used as a test case to evaluate the usefulness of a variety of fitting functions for the representation of potential energy surfaces. Fitting functions based on LEPS, BEBO, and rotated Morse oscillator (RMO) forms are examined. Fitting procedures are developed for combining information about a small portion of the surface and the fitting function to predict where on the surface more information must be obtained to improve the accuracy of the fit. Both unbiased procedures and procedures heavily biased toward the saddle point region of the surface are investigated. Collinear quasiclassical trajectory calculations of the reaction rate constant and one and three dimensional transition state theory rate constant calculations are performed and compared for selected fits and the exact DIM test surface. Fitting functions based on BEBO and RMO forms are found to give quite accurate results

  4. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  5. Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Elokhov, A.S.; Makarov, O.V.; Mokhov, I.I. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics)

    1993-01-01

    Surface ozone measurements were carried out at Molodezhnaya and Mirny stations in spring 1987-autumn 1988. The data show an annual variation with a summer minimum at 15 ppbv value. The striking feature of the surface ozone record is two types of day-to-day variability. One of the types is characterized by large day-to-day variations with about 10 ppbv magnitude. The likely mechanism of such variations is the vertical transport induced by cyclonic activity. The other type occurs in synoptically quiet periods (frequent in summer) when the day-to-day ozone variations are significant but not so large. The most likely mechanism of these variations is the slope katabatic wind which transports ozone from inside the Antarctic continent. The latitudinal distribution of surface ozone for this period, measured aboard an aircraft, showed a slight increase towards Vostok station. (26 refs., 3 figs.).

  6. Global impacts of surface ozone changes on crop yields and land use

    NARCIS (Netherlands)

    Chuwah, C.D.; Noije, van Twan; Vuuren, van Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the

  7. Global impacts of surface ozone changes on crop yields and land use

    NARCIS (Netherlands)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the crops

  8. Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models.

    Science.gov (United States)

    Nadzir, Mohd Shahrul Mohd; Ashfold, Matthew J; Khan, Md Firoz; Robinson, Andrew D; Bolas, Conor; Latif, Mohd Talib; Wallis, Benjamin M; Mead, Mohammed Iqbal; Hamid, Haris Hafizal Abdul; Harris, Neil R P; Ramly, Zamzam Tuah Ahmad; Lai, Goh Thian; Liew, Ju Neng; Ahamad, Fatimah; Uning, Royston; Samah, Azizan Abu; Maulud, Khairul Nizam; Suparta, Wayan; Zainudin, Siti Khalijah; Wahab, Muhammad Ikram Abdul; Sahani, Mazrura; Müller, Moritz; Yeok, Foong Swee; Rahman, Nasaruddin Abdul; Mujahid, Aazani; Morris, Kenobi Isima; Sasso, Nicholas Dal

    2018-01-01

    The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O 3 ) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O 3 data was measured continuously for 23 days using an EcoTech O 3 analyzer. To understand more about the distribution of surface O 3 over the Antarctic, we present the spatial and temporal of surface O 3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O 3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O 3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O 3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O 3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O 3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O 3 cycle has a maximum during the winter of 30 to 35

  9. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.

    Science.gov (United States)

    Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2015-10-14

    Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.

  10. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  11. Influence of stratospheric airmasses on tropospheric vertical O3 columns based on GOME (Global Ozone Monitoring Experiment measurements and backtrajectory calculation over the Pacific

    Directory of Open Access Journals (Sweden)

    A. Ladstätter-Weißenmayer

    2004-01-01

    Full Text Available Satellite based GOME (Global Ozone Measuring experiment data are used to characterize the amount of tropospheric ozone over the tropical Pacific. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM. In the tropical Pacific a significant seasonal variation is detected. Tropospheric excess ozone is enhanced during the biomass burning season from September to November due to outflow from the continents. In September 1999 GOME data reveal an episode of increased excess ozone columns over Tahiti (18.0° S; 149.0° W (Eastern Pacific compared to Am. Samoa (14.23° S; 170.56° W and Fiji (18.13° S; 178.40° E, both situated in the Western Pacific. Backtrajectory calculations show that none of the airmasses arriving over the three locations experienced anthropogenic pollution (e. g. biomass burning. Consequently other sources of ozone have to be considered. One possible process leading to an increase of tropospheric ozone is stratosphere-troposphere-exchange. An analysis of the potential vorticity along trajectories arriving above each of the locations reveals that airmasses at Tahiti are subject to enhanced stratospheric influence, compared to Am. Samoa and Fiji. As a result this study shows clear incidents of transport of airmasses from the stratosphere into the troposphere.

  12. The stability of the hydroxylated (0001) surface of alpha-Al2O3

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Nørskov, Jens Kehlet; Stoltze, Per

    2003-01-01

    Self-consistent density functional calculations of the hydroxylated (0001) corundum surfaces are presented. It is demonstrated that the hydroxylated surfaces are the most stable under most, but not all, conditions. Hydroxylation significantly lowers the surface free energy of alpha-alumina. The s......Self-consistent density functional calculations of the hydroxylated (0001) corundum surfaces are presented. It is demonstrated that the hydroxylated surfaces are the most stable under most, but not all, conditions. Hydroxylation significantly lowers the surface free energy of alpha......-alumina. The stability of the hydrated surface resolves the discrepancies between the morphology of the alpha-alumina (0001) surface observed under ultra-high vacuum, and at ambient conditions. A method for the calculation of the equilibrium surface stoichiometry is proposed. The proposed approach provides a valuable...

  13. A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3 Surfaces

    Directory of Open Access Journals (Sweden)

    Nelson Y. Dzade

    2014-02-01

    Full Text Available The reactivity of mineral surfaces in the fundamental processes of adsorption, dissolution or growth, and electron transfer is directly tied to their atomic structure. However, unraveling the relationship between the atomic surface structure and other physical and chemical properties of complex metal oxides is challenging due to the mixed ionic and covalent bonding that can occur in these minerals. Nonetheless, with the rapid increase in computer processing speed and memory, computer simulations using different theoretical techniques can now probe the nature of matter at both the atomic and sub-atomic levels and are rapidly becoming an effective and quantitatively accurate method for successfully predicting structures, properties and processes occurring at mineral surfaces. In this study, we have used Density Functional Theory calculations to study the adsorption of benzene on hematite (α-Fe2O3 surfaces. The strong electron correlation effects of the Fe 3d-electrons in α-Fe2O3 were described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach, which was found to provide an accurate description of the electronic and magnetic properties of hematite. For the adsorption of benzene on the hematite surfaces, we show that the adsorption geometries parallel to the surface are energetically more stable than the vertical ones. The benzene molecule interacts with the hematite surfaces through π-bonding in the parallel adsorption geometries and through weak hydrogen bonds in the vertical geometries. Van der Waals interactions are found to play a significant role in stabilizing the absorbed benzene molecule. Analyses of the electronic structures reveal that upon benzene adsorption, the conduction band edge of the surface atoms is shifted towards the valence bands, thereby considerably reducing the band gap and the magnetic moments of the surface Fe atoms.

  14. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  15. Adsorption of H atoms on cubic Er2O3 (0 0 1) surface: A DFT study

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Shimura, Kenichiro; Suzuki, Akihiro; Yamaguchi, Kenji; Terai, Takayuki

    2013-01-01

    First-principles plane wave calculations based on spin-polarized density functional theory (DFT) and generalized gradient approximation (GGA) have been used to study the adsorption of H atoms on cubic Er 2 O 3 (0 0 1) surface. We identify stable adsorption positions and find that H preferentially adsorbs on top of fourfold-hollow sites and transfers electrons to the surface, resulting in the formations of covalent bonds to the nearest neighboring four oxygen atoms. In the most energetically favorable adsorption sites, It was found that H bonds with O atoms at the cubic Er 2 O 3 (0 0 1) surface with an adsorption energy of −295.68 kJ mol −1 at coverage 1/8 ML, and the adsorption energy is inclined to decrease with the increase of H coverage (>1/4 ML). In addition, our calculations indicate that the dissociative H atom configurations have adsorption energies that are at least 152.64 kJ mol −1 greater than the H 2 molecule configurations on the surface. These results discussed in the context of erbium oxide slabs are employed to rationalize some processes regarding to the hydrogen isotope permeation behavior of tritium permeation barrier

  16. Surface ozone and NOx trends observed over Kannur, a South Indian coastal location of weak industrial activities

    Science.gov (United States)

    Kumar, Satheesh Mk; T, Nishanth; M, Praseeed K.

    South India is a peninsular region surrounded by the three belts of Arabian Sea, Bay of Bengal and Indian Ocean. Usually, coastal regions experience relatively high air quality compared to that of the interior land masses owing to the abundance of OH over ocean surface which acts as detergent in the atmosphere. Kannur (11.9 N, 75.4E, 5 m AMSL) is a coastal location along the Arabian Sea which is located in the northern district of Kerala State with fairly low industrial activities. A continuous observation of surface ozone (O3), NOx and OX (NO2+ O3) which has been initiated at this coastal site since 2009 reveals the enhancement in the concentrations of these trace species quite significantly. It is observed that surface O3 mixing ratio is increased at a rate of 1.51 ± 0.5 ppbv/year during the four year period from 2009 at Kannur. The enhancement rate in the mixing ratios of NOx is 1.01 ± 0.4 ppbv/year and OX is 1.49±0.42 ppbv/year respectively. The increase of O3 may be attributed due to the increase in methane and non-methane organic emissions from the wet lands and vehicles may enhance O3 production and fairly low rate of change of NO concentration at this site. This paper describes the rate of changes of O3, NOx and OX during the period of observation in detail. Likewise, the increase in nighttime concentrations of O3 and PM10 observed during the festival occasions in the summer month of April in all years is explained. Being a weak industrialized location, the main source of pollution is by vehicular emissions and the increase in these trace gases in the context of rapid enhancement in the number of vehicles is well correlated. These results may be helpful for improving government policies to control the photochemical formation of secondary air pollutants in the rural coastal sites that has a significant influence on the onset of monsoon and the outcome of this study have significant relevance for gradual transformation of pristine locations into polluted

  17. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  18. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    Science.gov (United States)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  19. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  20. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  1. Surface adhesion study of La2O3 thin film on Si and glass substrate for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2017-01-01

    Adhesive property can be described as an interchangeably with some ink and substance which was applied to one surface of two separate items that bonded together. Lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent or printing ink. This metal deposit was embedded on Silica (Si) wafer and glass substrate using Magnetron Sputtering technique. The choose of Lanthanum oxide as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer and glass substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). This research will focus on 3 narrow scan regions which are C 1s, O 1s and La 3d. Further discussion of the spectrum evaluation will be discussed in detail. Here, it is proposed that from the adhesive and surface chemical properties of La is the best on glass substrate which suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal in a practice of micro-flexography printing.

  2. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  3. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  4. Surface Monitoring Data for PM2.5 and Ozone

    Data.gov (United States)

    Washington University St Louis — AIRNOW is an EPA program in collaboration with the States to gather and distribute hourly near-realtime data from several hundred continuous PM2.5 and ozone monitors.

  5. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  6. Surface Passivation Mechanism of Atomic Layer Deposited Al2O3 Films on c-Si Studied by Optical Second-Harmonic Generation

    NARCIS (Netherlands)

    Gielis, J.J.H.; Verlaan, V.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.; Terlinden, N.M.

    2009-01-01

    Recently, it was shown that Al2O3 thin films synthesized by (plasmaassisted) atomic layer deposition (ALD) provide excellent surface passivation of n, p and p+ type c-Si as highly relevant for c-Si photovoltaics. It was found that a large negative fixed charge density (up to 1013 cm-2) in the Al2O3

  7. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  8. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local

  9. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion

    Science.gov (United States)

    Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing

    2018-05-01

    Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.

  10. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance

    Science.gov (United States)

    Chen, Ying; Li, Hui; Ma, Qian; Che, Quande; Wang, Junpeng; Wang, Gang; Yang, Ping

    2018-05-01

    A series of hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with tunable morphologies and superior ethanol gas-sensing performance were successfully synthesized via the facile multi-step reaction processes. Hexagonal-like α-Fe2O3 nanoplates with uniform size around 150 nm are employed as new sensor substrates for loading the well-distributed ZnO and Au nanoparticles with adjustable size distribution on the different surfaces. Brunauer-EmmeQ-Teller (BET) surface areas of α-Fe2O3 and α-Fe2O3/ZnO samples are evaluated to be 37.94 and 61.27 m2/g, respectively, while α-Fe2O3/ZnO/Au composites present the highest value of 79.08 m2/g. These α-Fe2O3-based functional materials can exhibit outstanding sensing properties to ethanol. When the ethanol concentration is 100 ppm, the response value of α-Fe2O3/ZnO/Au composites can reach up to 170, which is 14.6 and 80.3 times higher than that of α-Fe2O3/ZnO and pure α-Fe2O3, respectively. The recycling stability and long-time effectiveness can be availably maintained within 30 days, as well as the response and recovery times are shortened to 4 and 5 s, respectively. Significantly, the response value of α-Fe2O3/ZnO/Au composite is still up to 63 at an operating temperature of 280 °C even though the ethanol concentration decreases to 10 ppm. The enhanced gas sensing mechanism would be focused on the synergistic effects of phase compositions, surface heterogeneous structures, large specific surface area, and the selective depositions of Au nanoparticles in α-Fe2O3/ZnO/Au sensors. The synergistic effect of different surface heterostructures referring to α-Fe2O3/Au and α-Fe2O3/ZnO/Au and their novel electron transport processes on the surfaces are first investigated and discussed in details. It is expected that hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with excellent sensing performance can be the promising highly-sensitive materials in the actual application for monitoring and detecting ethanol.

  11. The historic surface ozone record, 1896-1975, and its relation to modern measurements

    Science.gov (United States)

    Galbally, I. E.; Tarasick, D. W.; Stähelin, J.; Wallington, T. J.; Steinbacher, M.; Schultz, M.; Cooper, O. R.

    2017-12-01

    Tropospheric ozone is a greenhouse gas, a key component of atmospheric chemistry, and is detrimental to human health and plant productivity. The historic surface ozone record 1896-1975 has been constructed from measurements selected for (a) instrumentation whose ozone response can be traced to modern tropospheric ozone measurement standards, (b) samples taken when there is low probability of chemical interference and (c) sampling locations, heights and times when atmospheric mixing will minimise vertical gradients of ozone in the planetary boundary layer above and around the measurement location. Early measurements with the Schönbein filter paper technique cannot be related to modern methods with any degree of confidence. The potassium iodide-arsenite technique used at Montsouris for 1876-1910 is valid for measuring ozone; however, due to the presence of the interfering gases sulfur dioxide, ammonia and nitrogen oxides, the measured ozone concentrations are not representative of the regional atmosphere. The use of these data sets for trend analyses is not recommended. In total, 58 acceptable sets of measurements are currently identified, commencing in Europe in 1896, Greenland in 1932 and globally by the late 1950's. Between 1896 and 1944 there were 21 studies (median duration 5 days) with a median mole fraction of 23 nmol mol-1 (range of study averages 15-62 nmol mol-1). Between 1950 and 1975 there were 37 studies (median duration approx. 21 months) with a median mole fraction of 22 nmol mol-1 (range of study averages 13-49 nmol mol-1), all measured under conditions likely to give ozone mole fractions similar to those in the planetary boundary layer. These time series are matched with modern measurements from the Tropospheric Ozone Assessment Report (TOAR) Ozone Database and used to examine changes between the historic and modern observations. These historic ozone levels are higher than previously accepted for surface ozone in the late 19th early 20th Century

  12. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  13. Surface modeling and chemical solution deposition of SrO(SrTiO3)n Ruddlesden-Popper phases

    International Nuclear Information System (INIS)

    Zschornak, M.; Gemming, S.; Gutmann, E.; Weissbach, T.; Stoecker, H.; Leisegang, T.; Riedl, T.; Traenkner, M.; Gemming, T.; Meyer, D.C.

    2010-01-01

    Strontium titanate (STO) is a preferred substrate material for functional oxide growth, whose surface properties can be adjusted through the presence of Ruddlesden-Popper (RP) phases. Here, density functional theory (DFT) is used to model the (1 0 0) and (0 0 1) surfaces of SrO(SrTiO 3 ) n RP phases. Relaxed surface structures, electronic properties and stability relations have been determined. In contrast to pure STO, the near-surface SrO-OSr stacking fault can be employed to control surface roughness by adjusting SrO and TiO 2 surface rumpling, to stabilize SrO termination in an SrO-rich surrounding or to increase the band gap in the case of TiO 2 termination. RP thin films have been epitaxially grown on (0 0 1) STO substrates by chemical solution deposition. In agreement with DFT results, the fraction of particular RP phases n = 1-3 changes with varying heating rate and molar ratio Sr:Ti. This is discussed in terms of bulk formation energy.

  14. OMI/Aura Ozone (O3) DOAS Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMDOAO3G (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omdoao3g_v003.shtml ) from the...

  15. OMI/Aura Ozone (O3) Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMTO3G (Version 003) is made available ( http://disc.gsfc.nasa.gov/Aura/OMI/omto3g_v003.shtml ) from the NASA...

  16. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone

    Science.gov (United States)

    Polyansky, Oleg L.; Zobov, Nikolai F.; Mizus, Irina I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-05-01

    Monitoring ozone concentrations in the Earth's atmosphere using spectroscopic methods is a major activity which undertaken both from the ground and from space. However there are long-running issues of consistency between measurements made at infrared (IR) and ultraviolet (UV) wavelengths. In addition, key O3 IR bands at 10 μm, 5 μm and 3 μm also yield results which differ by a few percent when used for retrievals. These problems stem from the underlying laboratory measurements of the line intensities. Here we use quantum chemical techniques, first principles electronic structure and variational nuclear-motion calculations, to address this problem. A new high-accuracy ab initio dipole moment surface (DMS) is computed. Several spectroscopically-determined potential energy surfaces (PESs) are constructed by fitting to empirical energy levels in the region below 7000 cm-1 starting from an ab initio PES. Nuclear motion calculations using these new surfaces allow the unambiguous determination of the intensities of 10 μm band transitions, and the computation of the intensities of 10 μm and 5 μm bands within their experimental error. A decrease in intensities within the 3 μm is predicted which appears consistent with atmospheric retrievals. The PES and DMS form a suitable starting point both for the computation of comprehensive ozone line lists and for future calculations of electronic transition intensities.

  17. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  18. Comparison between assimilated and non-assimilated experiments of the MACCii global reanalysis near surface ozone

    Science.gov (United States)

    Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos

    2014-05-01

    In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.

  19. Evaluating a Space-Based Indicator of Surface Ozone-NO x -VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends.

    Science.gov (United States)

    Jin, Xiaomeng; Fiore, Arlene M; Murray, Lee T; Valin, Lukas C; Lamsal, Lok N; Duncan, Bryan; Boersma, K Folkert; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S

    2017-10-16

    Determining effective strategies for mitigating surface ozone (O 3 ) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO 2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O 3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O 3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO 2 vertical profiles. We compare four combinations of two OMI HCHO and NO 2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO 2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O 3 air quality more now than it would have a decade ago.

  20. Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3

    Science.gov (United States)

    Stirner, Thomas; Scholz, David; Sun, Jizhong

    2018-05-01

    The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.

  1. Selective hydrodechlorination of 1,2-dichloroethane to ethylene over Pd-Ag/Al_2O_3 catalysts prepared by surface reduction

    International Nuclear Information System (INIS)

    Han, Yuxiang; Gu, Guangfeng; Sun, Jingya; Wang, Wenjuan; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2015-01-01

    Graphical abstract: - Highlights: • Surface reduction method was used for preparation of Pd-Ag(Cu) bimetallic catalysts. • Hydrodechlorination of 1,2-dichloroethane was investigated for production of ethylene. • Ag(Cu) selectively deposited on Pd surface during surface reduction process. • Ethylene selectivity was enhanced over Pd-Ag(Cu)/Al_2O_3 catalyst prepared by surface reduction. • Isolated Pd site is the key species for ethylene selectivity. - Abstract: Alumina supported Pd-Ag and (Cu) bimetallic catalysts (denoted as sr-Pd-Ag/Al_2O_3 or sr-Pd-Cu/Al_2O_3) with varied Pd/Ag (or Cu) ratios were prepared using the surface reduction method, and the gas-phase catalytic hydrodechlorination of 1,2-dichloroethane over the catalysts were investigated. For comparison, Pd-Ag bimetallic catalysts were prepared by the conventional co-impregnation method (denoted as im-Pd-Ag/Al_2O_3). The catalysts were characterized by N_2 adsorption, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and CO chemisorption. Characterization results indicated that surface reduction led to selective deposition of metallic Ag on the surface of Pd particles, while Pd and Ag just disorderly mixed in the catalyst prepared by impregnation method. Therefore, sr-Pd-Ag/Al_2O_3 exhibited a higher ethylene selectivity than im-Pd-Ag/Al_2O_3 for hydrodechlorination of 1,2-dichloroethane at a similar Ag loading amount. Moreover, among sr-Pd-Ag/Al_2O_3, sr-Pd-Cu/Al_2O_3 and im-Pd-Ag/Al_2O_3 catalysts, the ethylene selectivity decreased over these catalysts following the order: sr-Pd-Ag/Al_2O_3 > sr-Pd-Cu/Al_2O_3 > im-Pd-Ag/Al_2O_3. The present results indicate that surface reduction can be used as a potential method to synthesize catalyst with enhanced ethylene selectivity in hydrodechlorination of 1,2-dichloroethane.

  2. Influence of excess sodium ions on the specific surface area formation in a NiO-Al2O3 catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Lazić M.M.

    2008-01-01

    Full Text Available The influence of sodium ions on the specific surface area of a NiO-Al2O3 catalyst in dependence of nickel loading (5, 10, and 20 wt% Ni, temperature of heat treatment (400, 700 and 1100oC and the method of sample preparation was investigated. Low temperature nitrogen adsorption (LTNA, X-ray diffraction (XRD and scanning electron microscopy (SEM were applied for sample characterization. Dramatic differences in the specific surface area were registered between non-rinsed and rinsed Al2O3 and NiO-Al2O3 samples. The lagged sodium ions promote sintering of non-rinsed catalyst samples.

  3. Electronic structure and topography of annealed SrTiO3(1 1 1) surfaces studied with MIES and STM

    International Nuclear Information System (INIS)

    Goemann, Anissa; Goemann, Karsten; Frerichs, Martin; Kempter, Volker; Borchardt, Guenter; Maus-Friedrichs, Wolfgang

    2005-01-01

    Perovskites of ABO 3 type like strontium titanate (SrTiO 3 ) are of great practical concern as materials for oxygen sensors operating at high temperatures. It is well known that the surface layer shows different properties compared to the bulk. Numerous studies exist for the SrTiO 3 (1 0 0) and (1 1 0) surfaces which have investigated the changes in the electronic structure and topography as a function of the preparation conditions. They have indicated a rather complex behaviour of the surface and the near surface region of SrTiO 3 at elevated temperatures. Up to now, the behaviour of the SrTiO 3 (1 1 1) surfaces under thermal treatment is not sufficiently known. This contribution is intended to work out the relation between alteration of the surface topography with respect to the preparation conditions and the simultaneous changes of the electronic structure. We applied scanning tunneling microscopy (STM) to investigate the surface topography and, additionally, metastable impact electron spectroscopy (MIES) to study the surface electronic structure of reconstructed SrTiO 3 (1 1 1) surfaces. The crystals were heated up to 1000 deg. C under reducing and oxidizing conditions. Both preparation conditions cause strong changes of the surface topography and electronic structure. A microfaceting of the topmost layers is found

  4. Controlling the surface termination of NdGaO3 (110): the role of the gas atmosphere.

    Science.gov (United States)

    Cavallaro, Andrea; Harrington, George F; Skinner, Stephen J; Kilner, John A

    2014-07-07

    In this work the effect of gas atmosphere on the surface termination reconstruction of single crystal NdGaO3 (110) (NGO) during thermal annealing was analyzed. Using Low Energy Ion Scattering (LEIS) it has been possible to study the chemical composition of the first atomic layer of treated NGO single crystal samples. NGO has been analyzed both as-received and after a specific thermal treatment at 1000 °C under different gas fluxes (argon, nitrogen, static air, synthetic air, nitrogen plus 5% hydrogen and wet synthetic air respectively). Thermal annealing of perovskite single crystals, as already reported in the literature, is used to obtain a fully A-cation surface termination. Nevertheless the effect of the gas-atmosphere on this process has not been previously reported. By the use of sequential low energy Ar(+) sputtering combined with the primary ion LEIS analysis, the reconstruction of the outermost atomic layers has allowed the clarification of the mechanism of NGO neodymium surface enrichment. It is proposed that the gallium at the surface is submitted to a reduction/evaporation mechanism caused by low oxygen partial pressure and/or high water pressure in the vector gas. Below the first surface atomic layers of an as-received NGO single-crystal a gallium-rich phase has also been observed.

  5. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  6. Surface tiny grain-dependent enhanced rate performance of MoO3 nanobelts with pseudocapacitance contribution for lithium-ion battery anode

    Science.gov (United States)

    Cao, Liyun; He, Juju; Li, Jiayin; Yan, Jingwen; Huang, Jianfeng; Qi, Ying; Feng, Liangliang

    2018-07-01

    In order to improve the rate performance of MoO3, a novel MoO3 nanobelt with tiny grains on surface (named as d-MoO3) is fabricated via one-step facile hydrothermal method with citric acid adding, in which citric acid (CA) serves as a weak reductant as well as surface modification agent. When tested as an anode in LIBs, d-MoO3 displays an improved discharge capacity of 787 mAh·g-1 at 0.1 A g-1 over 100 cycles with capacity retention of ∼91% while MoO3 decays to 50 mAh·g-1 in the 100th cycle. Notably, d-MoO3 delivers enhanced rate capability (536 and 370 mAh·g-1 at high rates of 5 and 10 A g-1 respectively). We consider these excellent electrochemical properties of d-MoO3 electrode are associated with the tiny grains on MoO3 surface, which effectively maintains the electrode's structural integrity. Even though d-MoO3 nanobelt suffers from a degree of in-situ pulverization after several cycles, these pulverized active particles can still maintain stable electrochemical contact and are highly exposed to electrolyte, realizing ultrahigh e-/Li+ diffusion kinetics. In addition, part extrinsic pseudocapacitance contribution to the Li+ storage also explains the high-rate performance. Combining all these merits, d-MoO3 is potentially a high-energy, high-power and well-stable anode material for Li ion batteries (LIBs).

  7. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Directory of Open Access Journals (Sweden)

    X. Yin

    2017-09-01

    Full Text Available Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of  ∼ 5 years (January 2011 to October 2015, which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau

  8. Effect of UV/ozone treatment on the nanoscale surface properties of gold implanted polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kisić, Danilo; Nenadović, Miloš [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade (Serbia); Štrbac, Svetlana [ICTM Institute of Electrochemistry, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Adnadjević, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Rakočević, Zlatko, E-mail: zlatkora@vinca.rs [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade (Serbia)

    2014-07-01

    The effect of ultraviolet (UV) ozone treatment on the surface properties of gold implanted high density polyethylene (HDPE) was investigated at a nanoscale using Atomic Force Microscopy (AFM). HDPE samples were modified by the implantation of gold ions at a dose of 5 × 10{sup 15} ions/cm{sup 2}, using energies of 50, 100, 150, and 200 keV, and subsequently treated with UV/ozone. AFM surface topography images revealed that after UV/ozone treatment, the surface roughness of all Au/HDPE samples increased, while Power Spectral Density function increased only for samples implanted using higher energies, with a maximum for 150 keV. The chemical surface composition was homogenous in all cases, which was evidenced by the appearance of single peaks in the histograms obtained from the phase AFM images. For UV/ozone treated samples, the shift of the peaks positions in the histograms to the higher values of the phase lag with respect to untreated ones indicated the decrease of surface hardness. Besides, a significant change of fractal dimension of surface grains is observed after UV/ozone treatment.

  9. Impact of near-surface atmospheric composition on ozone formation in Russia

    Science.gov (United States)

    Berezina, Elena; Moiseenko, Konstantin; Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Elansky, Nikolai

    2017-04-01

    natural and anthropogenic sources of VOCs. The quantitative contribution of aromatic VOCs to ozone formation in urban areas and in Russian regions along the railway is estimated. The greatest impact of aromatic VOCs to ozone formation (up to 7.5 ppb of O3) is obtained in the large cities along the Trans-Siberian Railway, with the highest concentrations of aromatic VOCs (1-1.7 ppb) and nitrogen oxides (> 20 ppb) being observed. The results show a significant contribution of anthropogenic emissions of VOCs to the photochemical ozone generation (30-50%) in the large cities along the Trans-Siberian railway in hot and dry weather conditions against natural isoprene emissions determining the regional balance of ground-level ozone in summer. This study was supported by the Russian Science Foundation (grant no. 14-47-00049) and by the Russian Foundation for Basic Research (grant no. 16-35-00158). References: 1. Xie, X., Shao, M., Liu, Y., Lu, S., Chang, C. C., and Chen, Z. M. // Atmos. Environ., 2008, 42, pp. 6000-6010. 2. Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., Fall, R. // Atmospheric Environment, 2000, 34, pp. 2205-2230. 3. Dreyfus, G. B., Schade G. W., Goldstein A. H. // J. Geophys. Res., 2002, 107(D19): 4365, doi:10.1029/2001JD001490.

  10. Surface ozone variation at Bhubaneswar and intra-corelationship ...

    Indian Academy of Sciences (India)

    availability of ozone precursors control its forma- tion and decay ... izer and food processing industries along with ther- mal power ... radic growth of different industries such as cement, ...... Miller J, Preston E and Weinstein L 1982 Assessment of ... measurements at urban coastal site Chennai, in India;. J. Hazard. Mater.

  11. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  12. Direct observation of the lattice precursor of the metal-to-insulator transition in V2O3 thin films by surface acoustic waves

    Science.gov (United States)

    Kündel, J.; Pontiller, P.; Müller, C.; Obermeier, G.; Liu, Z.; Nateprov, A. A.; Hörner, A.; Wixforth, A.; Horn, S.; Tidecks, R.

    2013-03-01

    A surface acoustic wave (SAW) delay line is used to study the metal-to-insulator (MI) transition of V2O3 thin films deposited on a piezoelectric LiNbO3 substrate. Effects contributing to the sound velocity shift of the SAW which are caused by elastic properties of the lattice of the V2O3 films when changing the temperature are separated from those originating from the electrical conductivity. For this purpose the electric field accompanying the elastic wave of the SAW has been shielded by growing the V2O3 film on a thin metallic Cr interlayer (coated with Cr2O3), covering the piezoelectric substrate. Thus, the recently discovered lattice precursor of the MI transition can be directly observed in the experiments, and its fine structure can be investigated.

  13. Reactivity of Surface Nitrates in H2-Assisted SCR of NOx Over Ag/Al2O3 Catalyst

    DEFF Research Database (Denmark)

    Sadokhina, N. A.; Doronkin, Dmitry E.; Baeva, G. N.

    2013-01-01

    The role of nitrate ad-species in H2-assisted SCR over Ag/Al2O3 was compared in NH3-SCR and n-C6H14-SCR processes. It was found that nitrates could be reduced by NH3 or n-C6H14 at similar rates with H2 co-feeding which indicates a common rate-limiting step. However, contributions of surface nitrate...... reduction to the overall NH3-SCR or n-C6H14-SCR are different as revealed by comparing the rates of nitrate reduction with the rates of steady-state processes. The rate of the steady-state n-C6H14-SCR is virtually identical to the rate of surface nitrate reduction suggesting a significant contribution...... of the surface nitrates reduction to the overall n-C6H14-SCR process. On the other hand, the steady-state rate of NH3-SCR is by ~15 times higher, which indicates that the reduction of surface nitrates plays a marginal role in the overall NH3-SCR....

  14. Surface structural reconstruction of SrVO3 thin films on SrTiO3 (001)

    Science.gov (United States)

    Wang, Gaomin; Saghayezhian, Mohammad; Chen, Lina; Guo, Hangwen; Zhang, Jiandi

    Paramagnetic metallic oxide SrVO3>(SVO) is an itinerant system known to undergo thickness-induced metal-insulator-transition (MIT) in ultrathin film form, which makes it a prototype system for the study of the mechanism behind metal-insulator-transition like structure distortion, electron correlations and disorder-induced localization. We have grown SrVO3 thin film with atomically flat surface through the layer-by-layer deposition by laser Molecular Beam Epitaxy (laser-MBE) on SrTiO3 (001) surface. Low Energy Electron Diffraction (LEED) measurements reveal that there is a (√2X √2) R45°surface reconstruction independent of film thickness. By using LEED-I(V) structure refinement, we determine the surface structure. In combination with X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM), we discuss the implication on the MIT in ultrathin films below 2-3 unit cell thickness. This work is supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  15. Evolution of interface and surface structures of ZnO/Al2 O3 multilayers upon rapid thermal annealing

    Science.gov (United States)

    Liu, H. H.; Chen, Q. Y.; Chang, C. F.; Hsieh, W. C.; Wadekar, P. V.; Huang, H. C.; Liao, H. H.; Seo, H. W.; Chu, W. K.

    2015-03-01

    ZnO ∖Al2O3 multilayers were deposited on sapphires by atomic layer deposition at 85°C. This low substrate temperature ensures good interface smoothness useful for study of interfacial reaction or interdiffusion. Our study aimed at the effects of rapid thermal annealing at different annealing temperatures, times and PAr:PO2. XRR and XRD techniques were used to investigate the kinetics from which various terms of the activation energies could be determined. HR-TEM and electron diffraction were carried out to correlate the microstructures and interfacial alignments as a result of the reactions. AFM were used to assist SEM profiling of the surface morphological evolution in association with the TEM observations.

  16. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  17. Why do models overestimate surface ozone in the Southeast United States?

    Directory of Open Access Journals (Sweden)

    K. R. Travis

    2016-11-01

    Full Text Available Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx  ≡  NO + NO2 and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°  ×  0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI for NOx from the US Environmental Protection Agency (EPA is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes

  18. Why do Models Overestimate Surface Ozone in the Southeastern United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang

    2018-01-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease

  19. Why do Models Overestimate Surface Ozone in the Southeastern United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; hide

    2016-01-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 deg. x 0.3125 deg. horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a 15 regression of ozone and NOx oxidation products. However, the model is still biased high by 8 +/- 13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone

  20. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China.

    Science.gov (United States)

    Li, Li; Manning, William J; Tong, Lei; Wang, Xiaoke

    2015-06-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O3) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012-2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (Asat) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O3 - induced reductions in Asat, Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Preliminary SEM Observations on the Surface of Elastomeric Impression Materials after Immersion or Ozone Disinfection

    Science.gov (United States)

    Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos

    2016-01-01

    Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993

  2. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    Science.gov (United States)

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as

  3. Steady-state pool boiling heat transfer on nicr wire surface submerged in Al2O3 nano-fluids

    International Nuclear Information System (INIS)

    Dereje Shiferaw; Hyun Sun Park; Bal Raj Sehgal

    2005-01-01

    found in similar experiments with distilled water. The experiments have also shown that if some nano-particles stick to the surface of the hot sphere (in the event that the surface is not washed in-between the experiments), film boiling practically disappears and the quench proceeds very rapidly. Both of these results offer possibilities: the greater stability of film could suppress steam explosions or decrease the range where they occur; the rapid quenching could provide faster coolability of a degraded core in the early part of the severe accident, when most fuel bundles are still standing but are close to the Zircaloy oxidation temperature. In this study, pool boiling heat transfer of Al 2 O 3 nano-fluids is investigated. The experiment was performed in a pool boiling test facility which consists of a test vessel, a NiCr wire, a DC power supply with variable current up to 20 A, a data acquisition system for the measurement of temperatures and a CCD high-speed camera (up to 8000 fps). The Al 2 O 3 particles with an average size of 33 nm are dispersed by Ultrasonic vibrator into distilled water to prepare the nano-fluids having very dilute concentrations of 0.01 to 1.0 g/liter. In this paper, the nucleate pool boiling heat transfer process on a thin wire surface at atmospheric pressure in dilute Al 2 O 3 nano-fluids is observed and carefully analyzed. In addition, the effects of different parameters contributing to CHF are investigated to understand the CHF enhancement in nano-fluids. Pictures taken with a high-speed CCD camera for the vapor characteristics such as vapor formation, departure and accumulation rates are analyzed. (authors)

  4. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    Science.gov (United States)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  5. Studies on Gas Sensing Performance of Pure and Surface Modified SrTiO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. Gaikwad

    2009-08-01

    Full Text Available Strontium Titanate (SrTiO3 (ST was prepared mechanochemically from Sr(OH2 and TiO2. XRD confirms the Perovskite phase of material. Thick films of ST were prepared by screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to CO gas at 350 oC for 100 ppm gas concentration. To improve the sensitivity and selectivity of the film towards a particular gas, ST thick films were surface modified by dipping them in a solution of nano copper for different intervals of time. These surface modified ST films showed larger sensitivity to H2S gas (100 ppm at 300 oC than pure ST film. A systematic study, of sensing performance of the sensor, indicates the key role-played by the nano copper species on the surface .The sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  6. Spectral and magnetic properties of hematite Fe2O3 (001) surface: results from DFT+DMFT

    Science.gov (United States)

    Kabir, Alamgir; Turkowski, Volodymyr; Rahman, Talat S.

    2015-03-01

    It has been demonstrated that strong correlation effects may significantly modify the spectrum of a system, in particular leading to an increase of the bandgap and to a change in the orbital occupancies, which affects the magnetic properties of the system. With this in mind, we have examined the spectral and magnetic properties of the hematite Fe2O3 film system with (001) surface orientation by using the combined density functional theory (DFT) and dynamical mean-field theory (DMFT) approach. We pay special attention to the surface geometry and electronic structure, magnetization and magnetic anisotropy (MA) of the system by performing calculations at different values of the parameters for the local Coulomb repulsion and exchange energy. To calculate the MA of the system, we propose and apply a combined Bruno model within DMFT, and demonstrate that under-coordinated surface Fe atoms contribute significantly to the MA of the film. We also compare our results with the DFT+U solution and show that the dynamical effects taken into account by the DMFT significantly affect system properties, notably leading to a decrease of the atomic magnetic moments. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  7. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    Science.gov (United States)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; hide

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  8. Description of the surface water filtration and ozone treatment system at the Northeast Fishery Center

    Science.gov (United States)

    A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...

  9. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    Science.gov (United States)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  10. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  11. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in vapor phase packed bed reactor

    Science.gov (United States)

    The hydrogenation of furfural to furfuryl alcohol over a CuOCeO2/'-Al2O3 catalyst in a flow reactor is reported. The catalyst was prepared by the wet impregnation of Cu onto a CeO2/'-Al2O3 precursor. The calcined catalyst was then treated with HNO3 to remove surface CuO resulting in a mixed CuCe oxi...

  12. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  13. Surface modification of Fe_2O_3/Fe_3O_4 nanocomposites for use in immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T.; Santos, P.T.A.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2017-01-01

    The increase in the number of people with diabetes in recent years and the high cost-benefit ratio of the existing biosensor technology have increased the interest for the development of glucose detection biosensor based on immobilization of glucose-oxidase (GOD) mainly using magnetic nanoparticles. In this context, nanocomposites of Fe_2O_3/Fe_3O_4 were prepared by combustion reaction and their surface was functionalized with 3-aminopropyltriethoxysilane via silanization reaction and with chitosan via functionalization to obtain a hybrid material that was evaluated as possible GOD immobilizer. The samples were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, transmission electron microscopy, magnetic properties and in vitro cytotoxicity. The results revealed that it was possible to obtain the ferrimagnetic composite, the surface modification reduced the saturation magnetization, but maintained the ferrimagnetic characteristics, and all samples were considered non-toxic. For preliminary testing of the GOD immobilization it was revealed that the nanocomposite modified with silane and chitosan showed the better result, about 2.7 mg of immobilized GOD for 100 mg of nanocomposite, which makes this material a potential alternative to manufacture GOD biosensors. (author)

  14. Surface modification of 2014 aluminium alloy-Al2O3 particles composites by nickel electrochemical deposition

    International Nuclear Information System (INIS)

    Molina, J.M.; Saravanan, R.A.; Narciso, J.; Louis, E.

    2004-01-01

    A method to modify the surface of aluminium matrix composites (AMC) by electrochemical nickel deposition has been developed. Deposition was carried out in a stirred standard Watt's bath, whereas potential and time were varied to optimize coating characteristics. The method, that allowed to overcome the serious difficulties associated to electrochemical deposition of an inherently inhomogeneous material, was used to nickel coat composites of 2014 aluminium alloy-15 vol.% Al 2 O 3 particles. Coats with a good adherence and up to 60 μm thick were easily obtained. In order to improve surface properties, the coated composite was subjected to rather long (from 10 to 47.5 h) heat treatments at a temperature of 520 deg,C. The heat treatments improved the uniformity of the deposited layer and promoted the formation of Al-Ni intermetallics (mainly Al 3 Ni 2 , as revealed by X-ray diffraction and energy-dispersive X-ray analysis (EDX)). Experimental results indicate that growth of the intermetallic layer is diffusion limited

  15. Nonlinear acoustic effects in the propagation of surface acoustic waves in SrTiO3 near the structural phase transition

    International Nuclear Information System (INIS)

    Balashova, E.V.; Lemanov, V.V.; Sherman, A.B.

    1986-01-01

    Generation process of a surface acoustic wave with summarized frequency in collinear propagation of two surface acoustic waves in SrTiO 3 crystal near crystal-phase transition O n → D 4h (T c ≅ 105 K) is investigated. Anomalous increase of a nonlinear parameter Γ ∼ (T-T c ) -1 attributed to a fluctuation mechanism is observed. It is shown that the presence of a surface layer in SrTiO 3 having a higher, than in crystal volume, temperature of phase transition results in summarized frequency signal oscillation

  16. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Science.gov (United States)

    Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.

    2018-01-01

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797

  17. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Directory of Open Access Journals (Sweden)

    Takahiro Fujioka

    2018-04-01

    Full Text Available A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

  18. Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi; Osawa, Naoki; Wedaa, Hassan; Otani, Yoshio

    2016-06-01

    The aim of this study is to investigate the effect of the intermediate frequency (1-10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect.

  19. Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production

    International Nuclear Information System (INIS)

    Abdelaziz, Ayman A; Ishijima, Tatsuo; Seto, Takafumi; Otani, Yoshio; Osawa, Naoki; Wedaa, Hassan

    2016-01-01

    The aim of this study is to investigate the effect of the intermediate frequency (1–10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO 2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect. (paper)

  20. Experimental study of surface dielectric barrier discharge in air and its ozone production

    International Nuclear Information System (INIS)

    Pekárek, Stanislav

    2012-01-01

    For surface dielectric barrier discharge in air we studied the effects of frequency of the driving voltage on dissipated power, asymmetry of amplitudes of the discharge voltage, discharge UV emission, ozone production, ozone production of the discharge with TiO 2 and of the discharge in magnetic field. We found that for a particular voltage the dissipated power is higher for the frequency of the driving voltage of 26.3 kHz than for the frequency of 10.9 kHz; peak values of the positive half-periods of the discharge voltage are higher than peak values of the negative half-periods; intensity of the discharge UV emissions for wavelengths of 320-420 nm is for both frequencies a linear function of power; maximum ozone concentration for the frequency of the driving voltage of 26.3 kHz is obtained with smaller power than for the frequency of 10.9 kHz; placement of TiO 2 particles into the discharge chamber increases for both frequencies of the driving voltage maximum ozone concentration produced by the discharge and for the frequency of the driving voltage of 26.3 kHz increases ozone production yield. Finally, there is no observable effect of magnetic field on concentration of ozone produced by the discharge as well as on production yield. (paper)

  1. How to most effectively expand the global surface ozone observing network

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2016-02-01

    Full Text Available Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere–biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean. Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12–17 % show significant gaps. Antarctica is surprisingly well observed (78 %. Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics are significantly under-observed. The current network is unlikely to see the impact of the El Niño–Southern Oscillation (ENSO but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new

  2. How to most effectively expand the global surface ozone observing network

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close

  3. Al atom on MoO3(010) surface: adsorption and penetration using density functional theory.

    Science.gov (United States)

    Wu, Hong-Zhang; Bandaru, Sateesh; Wang, Da; Liu, Jin; Lau, Woon Ming; Wang, Zhenling; Li, Li-Li

    2016-03-14

    Interfacial issues, such as the interfacial structure and the interdiffusion of atoms at the interface, are fundamental to the understanding of the ignition and reaction mechanisms of nanothermites. This study employs first-principle density functional theory to model Al/MoO3 by placing an Al adatom onto a unit cell of a MoO3(010) slab, and to probe the initiation of interfacial interactions of Al/MoO3 nanothermite by tracking the adsorption and subsurface-penetration of the Al adatom. The calculations show that the Al adatom can spontaneously go through the topmost atomic plane (TAP) of MoO3(010) and reach the 4-fold hollow adsorption-site located below the TAP, with this subsurface adsorption configuration being the most preferred one among all plausible adsorption configurations. Two other plausible configurations place the Al adatom at two bridge sites located above the TAP of MoO3(010) but the Al adatom can easily penetrate below this TAP to a relatively more stable adsorption configuration, with a small energy barrier of merely 0.2 eV. The evidence of subsurface penetration of Al implies that Al/MoO3 likely has an interface with intermixing of Al, Mo and O atoms. These results provide new insights on the interfacial interactions of Al/MoO3 and the ignition/combustion mechanisms of Al/MoO3 nanothermites.

  4. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  5. Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation.

    Science.gov (United States)

    Soltermann, Fabian; Abegglen, Christian; Götz, Christian; von Gunten, Urs

    2016-09-20

    Bromide measurements and mass balances in the catchments of major Swiss rivers revealed that chemical industry and municipal waste incinerators are the most important bromide sources and account for ∼50% and ∼20%, respectively, of the ∼2000 tons of bromide discharged in the Rhine river in 2014 in Switzerland. About 100 wastewater treatment plants (WWTPs) will upgrade their treatment for micropollutant abatement in the future to comply with Swiss regulations. An upgrade with ozonation may lead to unintended bromate formation in bromide-containing wastewaters. Measured bromide concentrations were industry). Wastewater ozonation formed little bromate at specific ozone doses of ≤0.4 mg O3/mg DOC, while the bromate yields were almost linearly correlated to the specific ozone dose for higher ozone doses. Molar bromate yields for typical specific ozone doses in wastewater treatment (0.4-0.6 mg O3/mg DOC) are ≤3%. In a modeled extreme scenario (in which all upgraded WWTPs release 10 μg L(-1) of bromate), bromate concentrations increased by major Swiss rivers and by several micrograms per liter in receiving water bodies with a high fraction of municipal wastewater.

  6. The effects of rare earths on activity and surface properties of Ru/γ-Al2O3 catalyst for water gas shift reaction

    Directory of Open Access Journals (Sweden)

    Laitao Luo

    2007-04-01

    Full Text Available A series of Ru-RE/γ- Al2O3 (RE = Ce, Pr, La, Sm, Tb or Gd and Ru/γ- Al2O3 catalysts were prepared by impregnation method. The influence of rare earths on the catalytic performance of Ru/γ- Al2O3 catalyst for the water gas shift reaction was studied. The catalysts were characterized by X-ray diffraction (XRD, temperature programmed reduction (TPR, temperature programmed desorption (TPD, and CO chemisorption. The results show that the addition of rare earths increases the catalytic activity of Ru based catalyst. Among these cerium is the most remarkably. The addition of cerium increases the active surface area, improves the dispersion of ruthenium, and weakens the interaction between ruthenium and the support. Cerium also affects the adsorption and reduction properties of Ru/γ-Al2O3 catalyst.

  7. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3 Coatings

    Science.gov (United States)

    Góral, Anna; Lityńska-Dobrzyńska, Lidia; Kot, Marcin

    2017-05-01

    Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt's-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings' microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.

  8. Improvement of Surface Flashover Performance of Al2O3 Ceramics in Vacuum by Adopting A-B-A Insulation System

    International Nuclear Information System (INIS)

    Li Shengtao; Zhang Tuo; Huang Qifeng; Li Weiwei; Ni Fengyan; Li Jianying

    2011-01-01

    A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al 2 O 3 cermet-Al 2 O 3 ceramic-Mo/Al 2 O 3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al 2 O 3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al 2 O 3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of TJ1 decreases while that of TJ2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained. (fusion engineering)

  9. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  10. Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations

    International Nuclear Information System (INIS)

    Chen, Yongchang; Sun, Zhaolin; Song, Lijuan; Li, Qiang; Xu, Ming

    2012-01-01

    Ethene hydrogenation reaction, catalyzed by an iridium atom adsorbed on γ-Al 2 O 3 (001) surface, is studied via ab initio calculations based on density functional theory (DFT). The catalyzed reaction process and activation energy are compared with the counterparts of a reaction occurs in vacuum condition. It is found that the activation energy barrier is substantially lowered by the adsorbed Ir atom on the γ-Al 2 O 3 (001). The catalyzed reaction is modeled in two steps: (1) Hydrogen molecular dissolution and then bonded with C 2 H 4 molecular. (2) Desorption of the C 2 H 6 molecular from the surface. -- Highlights: ► The ethene hydrogenation reaction is simulated with nudged elastic band methods. ► The catalytic effect of the Ir atom on γ-Al 2 O 3 (001) surface is modeled. ► Details of the catalytic reaction are exhibited.

  11. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    Science.gov (United States)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  12. Solid-gate control of insulator to 2D metal transition at SrTiO3 surface

    Science.gov (United States)

    Schulman, Alejandro; Stoliar, Pablo; Kitoh, Ai; Rozenberg, Marcelo; Inoue, Isao H.

    As miniaturization of the semiconductor transistor approaches its limit, semiconductor industries are facing a major challenge to extend information processing beyond what can be attainable by conventional Si-based transistors. Innovative combinations of new materials and new processing platforms are desired. Recent discovery of the 2D electron gas (2DEG) at the surface of SrTiO3 (STO) and its electrostatic control, have carried it to the top of promising materials to be utilized in innovative devices. We report an electrostatic control of the carrier density of the 2DEG formed at the channel of bilayer-gated STO field-effect devices. By applying a gate electric field at room temperature, its highly insulating channel exhibits a transition to metallic one. This transition is accompanied by non-monotonic voltage-gain transfer characteristic with both negative and positive slope regions and unexpected enhancement of the sheet carrier density. We will introduce a numerical model to rationalize the observed features in terms of the established physics of field-effect transistors and the physics of percolation. Furthermore, we have found a clear signature of a Kondo effect that arises due to the interaction between the dilute 2DEG and localized Ti 3d orbitals originated by oxygen vacancies near the channel. On leave from CIC nanoGUNE, Spain.

  13. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe_2O_3) nanocrystals

    International Nuclear Information System (INIS)

    Luna, Carlos; Cuan-Guerra, Aída D.; Barriga-Castro, Enrique D.; Núñez, Nuria O.; Mendoza-Reséndez, Raquel

    2016-01-01

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe_2O_3) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects

  14. Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation

    International Nuclear Information System (INIS)

    Olivares, J.; Garcia, G.; Agullo-Lopez, F.; Agullo-Rueda, F.; Kling, A.; Soares, J.C.

    2005-01-01

    The refractive-index profiles induced by high-energy (5 MeV, 7.5 MeV) silicon irradiation in LiNbO 3 have been systematically determined as a function of ion fluence in the range 10 13 -10 15 cm -2 . At variance with irradiations at lower energies, an optically isotropic ('amorphous') homogeneous surface layer is generated whose thickness increases with fluence. These results have been associated with an electronic excitation mechanism. They are discussed in relation to the well-documented phenomenon of latent (amorphous) track generation under ion irradiation, requiring a threshold value S e,th for the electronic stopping power S e . Our optical data have yielded a value of ∼5 keV/nm for such a threshold, within the range reported by independent single-track measurements. The propagation of the amorphous boundary into the crystal during irradiation indicates that the threshold value decreases on increasing the fluence. Complementary Rutherford backscattering-channeling and micro-Raman (on samples irradiated at 30 MeV) experiments have been performed to monitor the induced structural changes. (orig.)

  15. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  16. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis

    Science.gov (United States)

    Feng, Zhaozhong; Kobayashi, Kazuhiko

    Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.

  17. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007

    Directory of Open Access Journals (Sweden)

    T. Wang

    2009-08-01

    Full Text Available Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2 column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs as well in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81% to the rate of increase in "total ozone" at an urban site in Hong Kong

  18. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria

    International Nuclear Information System (INIS)

    Mahfoudh, Ahlem; Barbeau, Jean; Moisan, Michel; Leduc, Annie; Seguin, Jacynthe

    2010-01-01

    Surfaces of materials can be modified to ensure specific interaction features with microorganisms. The current work discloses biocidal properties of polystyrene (PS) Petri-dish surfaces that have been exposed to a dry gaseous-ozone flow. Such treated PS surfaces are able to inactivate various species of vegetative and sporulated bacteria on a relatively short contact time. Denaturation of proteins seems likely based on a significant loss of enzymatic activity of the lysozyme protein. Characterization of these surfaces by atomic-force microscopy (AFM), Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals specific structural and chemical modifications as compared to untreated PS. Persistence of the biocidal properties of these treated surfaces is observed. This ozone-induced process is technically simple to achieve and does not require active precursors as in grafting.

  19. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview

    NARCIS (Netherlands)

    Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, J.P.; Levelt, P.F.

    2007-01-01

    We present an overview of the theoretical and algorithmic aspects of the Ozone Monitoring Instrument (OMI) aerosol and surface UV algorithms. Aerosol properties are derived from two independent algorithms. The nearUV algorithm makes use of OMI observations in the 350-390 nm spectral region to

  20. Surface ozone scenario at Pune and Delhi during the decade of 1990s

    Indian Academy of Sciences (India)

    and the climate change as one of the green house gases. It comes into direct .... Pune is one of the highly polluted cities in India. The pollution in this ... cities in India. The pollution in this city is caused mainly by numerous industrial and vehicular activities in and around the city area. 3. Data and methodology. Surface ozone ...

  1. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis

    Science.gov (United States)

    Chen, Wei; Hu, Yin; Ba, Mingwei

    2018-03-01

    Ru nanoparticles supported on perovskite NaNbO3 with cubic crystal structure and nanoflower-like morphology was prepared by a convenient solvothermal method combined with photo-deposition technique. Crystal structure, chemical component and surface valence states determined by XRD, XPS, TEM and SEM demonstrated the metastable cubic phase of perovskite NaNbO3, and its modified surface by Ru species. Optical and electrochemical analysis, such as UV-vis DRS, OTCS and EIS, indicated the excellent photoelectrochemical properties and the efficient electron transfer of the composites. Compared with naked and Ru-doped NaNbO3, the composite photocatalyst exhibited outstanding performance for the degradation of RhB under visible light irradiation due to the dye self-photosensitization and the surface interaction between Ru metal nanoparticles and semiconductor. In-situ reduction of surface Ru oxide species in the photocatalytic process assisted the further improvement of the photocatalytic activity and stability. Investigation of the main active species during the photocatalysis confirmed the efficient transfer of the photo-generated electrons and the positive effect of oxygen defects in NaNbO3. Finally, possible mechanism of the present visible-light driven photocatalysis was proposed in detail. This work provided an alternative strategy to enhance the visible-light photocatalytic efficiency of the catalyst with wide band gap on the basis of the synergistic effect of dye self-photosensitization, interaction between NaNbO3 and its surface Ru nanoparticles, and the "self-doping" of oxygen defects in NaNbO3.

  2. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes.

    Science.gov (United States)

    Nicholas, R; Dunton, P; Tatham, A; Fielding, L

    2013-08-01

    The effects of gaseous ozone and open air factor (OAF) on environmental Listeria monocytogenes attached to three common food contact surfaces were investigated. Listeria monocytogenes on different food contact surfaces was treated with ozone and OAF. Microbiological counts, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. Ozone at 10 ppm gave <1-log reduction when L. monocytogenes was attached to stainless steel, while 45 ppm gave a log reduction of 3.41. OAF gave better log reductions than 10 ppm ozone, but lower log reductions than 45 ppm. Significant differences were found between surfaces. Biofilm organisms were significantly more resistant than those surface attached on stainless steel. SEM and AFM demonstrated different membrane and cell surface modifications following ozone or OAF treatment. The strain used demonstrated higher resistance to ozone than previous studies. This may be due to the fact that it was isolated from a food manufacturing premises that used oxidizing disinfectants. OAF was more effective at reducing the levels of the organism than an ozone concentration of 10 ppm. Pathogen management strategies must account for resistance of environmental strains when validating cleaning and disinfection. OAF has shown potential for surface decontamination compared with ozone. SEM and AFM are valuable tools for determining mechanisms of action of antimicrobial agents. © 2013 The Society for Applied Microbiology.

  3. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors

    Science.gov (United States)

    Hong, Kootak; Lee, Tae Hyung; Suh, Jun Min; Park, Jae-Sung; Kwon, Hyung-Soon; Choi, Jaeho; Jang, Ho Won

    2018-05-01

    Insulation resistance (IR) degradation in BaTiO3 is a key issue for developing miniaturized multilayer ceramic capacitors (MLCCs) with high capacity. Despite rapid progress in BaTiO3-based MLCCs, the mechanism of IR degradation is still controversial. In this study, we demonstrate the Al doping effect on IR degradation behavior of BaTiO3 MLCCs by electrical measurements and scanning Kelvin probe microscopy (SKPM). As the Al doping concentration in BaTiO3 increases, IR degradation of MLCCs seems to be suppressed from electrical characterization results. However, SKPM results reveal that the conductive regions near the cathode become lager with Al doping after IR degradation. The formation of conducting regions is attributed to the migration of oxygen vacancies, which is the origin of IR degradation in BaTiO3, in dielectric layers. These results imply that acceptor doping in BaTiO3 solely cannot suppress the IR degradation in MLCC even though less asymmetric IR characteristics and IR degradation in MLCCs with higher Al doping concentration are observed from electrical characterization. Our results strongly suggest that observing the surface potential distribution in IR degraded dielectric layers using SKPM is an effective method to unravel the mechanism of IR degradation in MLCCs.

  5. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  6. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    Science.gov (United States)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  7. Effect of Al_2O_3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

    Science.gov (United States)

    Zhelezny, Vitaly; Geller, Vladimir; Semenyuk, Yury; Nikulin, Artem; Lukianov, Nikolai; Lozovsky, Taras; Shymchuk, Mykola

    2018-03-01

    This paper presents results of an experimental study of the density, saturated vapor pressure, surface tension and viscosity of Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. Studies of the thermophysical properties of nanofluids were performed at various temperatures and concentrations of Al_2O_3 nanoparticles. The paper gives considerable attention to a turbidimetric analysis of the stability of nanofluid samples. Samples of nanofluids remained stable over the range of parameters of the experiments, ensuring the reliability of the thermophysical property data for the Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. The studies show that the addition of Al_2O_3 nanoparticles leads to an increase of the density, saturated vapor pressure and viscosity, as well as a decrease for the surface tension of isopropyl alcohol. The information reported in this paper on the various thermophysical properties for the isopropyl alcohol/Al_2O_3 nanoparticle model system is useful for the development of thermodynamically consistent models for predicting properties of nanofluids and correct modeling of the heat exchange processes.

  8. Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics.

    Science.gov (United States)

    Jaiswal, Jyoti; Mourya, Satyendra; Malik, Gaurav; Chandra, Ramesh

    2018-05-01

    In the present work, we have fabricated plasmonic gold/alumina nanocomposite (Au/Al 2 O 3 NC) thin films on a glass substrate at room temperature by RF magnetron co-sputtering. The influence of the film thickness (∼10-40  nm) on the optical and other physical properties of the samples was investigated and correlated with the structural and compositional properties. The X-ray diffractometer measurement revealed the formation of Au nanoparticles with average crystallite size (5-9.2 nm) embedded in an amorphous Al 2 O 3 matrix. The energy-dispersive X ray and X-ray photoelectron spectroscopy results confirmed the formation of Au/Al 2 O 3 NC quantitatively and qualitatively and it was observed that atomic% of Au increased by increasing thickness. The optical constants of the plasmonic Au/Al 2 O 3 NC thin films were examined by variable angle spectroscopic ellipsometry in the wide spectral range of 246-1688 nm, accounting the surface characteristics in the optical stack model, and the obtained results are expected to be unique. Additionally, a thickness-dependent blueshift (631-590 nm) of surface plasmon resonance peak was observed in the absorption spectra. These findings of the plasmonic Au/Al 2 O 3 NC films may allow the design and fabrication of small, compact, and efficient devices for optoelectronic and photonic applications.

  9. Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain).

    Science.gov (United States)

    Carnero, Jose A Adame; Bolívar, Juan P; de la Morena, Benito A

    2010-02-01

    Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change. For these reasons, it is necessary to carry out investigations that determine the behaviour of ozone at different locations. The aim of this work is to understand the levels and temporal variations of surface ozone in an industrial-urban region of the Southwest Iberian Peninsula. The study is based on ozone hourly data recorded during a 6-year period, 2000 to 2005 at four stations and meteorological data from a coastal station. The stations used were El Arenosillo and Cartaya--both coastal stations, Huelva--an urban site and Valverde--an inland station 50 km away from the coastline. The general characteristics of the ozone series, seasonal and daily ozone cycles as well as number of exceedances of the threshold established in the European Ozone Directive have been calculated and analysed. Analysis of the meteorological data shows that winter-autumn seasons are governed by the movement of synoptic weather systems; however, in the spring-summer seasons, both synoptic and mesoescale conditions exist. Average hourly ozone concentrations range from 78.5 +/- 0.1 microg m(-3) at Valverde to 57.8 +/- 0.2 microg m(-3) at Huelva. Ozone concentrations present a seasonal variability with higher values in summer months, while in wintertime, lower values are recorded. A seasonal daily evolution has also been found with minimum levels around 08:00 UTC, which occurs approximately 1-1.5 h after sunrise, whereas the maximum is reached at about 16:00 UTC. Furthermore, during summer, the maximum value

  10. Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection

    Science.gov (United States)

    Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo

    2018-04-01

    In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.

  11. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    NARCIS (Netherlands)

    Terlinden, N.M.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ~ 5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical

  12. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    Science.gov (United States)

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  13. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  14. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gastrow, Guillaume von, E-mail: guillaume.von.gastrow@aalto.fi [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Li, Shuo [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Putkonen, Matti [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, FI-00076 Aalto, Espoo (Finland); Laitinen, Mikko; Sajavaara, Timo [University of Jyvaskyla, Department of Physics, FIN-40014 University of Jyvaskyla (Finland); Savin, Hele [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland)

    2015-12-01

    Highlights: • The ALD Al{sub 2}O{sub 3} passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al{sub 2}O{sub 3} interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al{sub 2}O{sub 3} Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10{sup 11} eV{sup −1} cm{sup −2}, and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  15. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games.

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen

    2012-01-01

    The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.

  16. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  17. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  18. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  19. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  20. On possibility of BaCeO3 production when depositing YBa2Cu3O7-χ films on a cerium oxide surface

    International Nuclear Information System (INIS)

    Mashtakov, A.D.; Kotelyanskij, I.M.; Luzanov, V.A.; Mozhaev, P.B.; Ovsyannikov, G.A.; Bdikin, I.D.

    1997-01-01

    Consideration is given to experimental results of investigation into crystallographic parameters of hetero-structural (1102)Al 2 O 3 /(001)CeO 2 (001)YBa 2 Cu 3 O 7-χ films, prepared by the method of cathode sputtering at substrate temperature, equal to 600-800 deg C. It is shown that main limitation for precipitation temperature of YBa 2 Cu 3 O 7-χ film on CeO 2 surface is caused by chemical interaction of YBa 2 Cu 3 O 7-χ with CeO 2 with formation of polycrystalline BaCeO 3 layer

  1. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  2. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

    Science.gov (United States)

    Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.

    2017-12-01

    Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more

  3. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.

    Science.gov (United States)

    Liu, Yang; Hudak, Nicholas S; Huber, Dale L; Limmer, Steven J; Sullivan, John P; Huang, Jian Yu

    2011-10-12

    Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al(2)O(3) surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al(2)O(3) layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al(2)O(3) layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium-alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al(2)O(3) onto the active materials or electrodes.

  4. Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu–Cr–Zr alloy electrodes

    Directory of Open Access Journals (Sweden)

    Ping Luo

    2015-03-01

    Full Text Available To improve electrode life during the resistance spot welding of galvanized steel plates, an Al2O3–TiB2 composite coating was synthesized on the surfaces of spot-welding electrodes through an electrospark deposition process. The microstructure, elemental composition, phase structure, and mechanical properties of the coating were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and microhardness testing. It was found that extensive cracking occurred in the monolithic Al2O3–TiB2 coating and at the coating–electrode interface. When the Al2O3–TiB2 coating was deposited on electrodes precoated with Ni, the number of defects decreased significantly. Further, delamination did not occur, and fewer cracks were formed. The average hardness of the multilayered Al2O3–TiB2/Ni coating was approximately 2200 HV and higher than that of the monolithic Al2O3–TiB2 coating (1100 HV.

  5. The photodeposition of surface plasmon Ag metal on SiO2@α-Fe2O3 nanocomposites sphere for enhancement of the photo-Fenton behavior

    Science.gov (United States)

    Uma, Kasimayan; Arjun, Nadarajan; Pan, Guan-Ting; Yang, Thomas C.-K.

    2017-12-01

    In this study, a simple sol-gel method was used for the synthesis of a core-shell structure of SiO2@α-Fe2O3 nanocomposites for employment as a visible light photocatalyst. It was observed that Ag nanoparticles about 20 nm in size were successfully deposited on the surface of the SiO2@α-Fe2O3 nanocomposites. The photocatalytic activity of the Ag-SiO2@α-Fe2O3 nanocomposites catalyst was investigated by observing the degradation of methylene blue (MB) dye in a photo-Fenton process. The results showed that the Ag nanoparticles acted as centers for photo induced electron transfer. The catalytic activity in the SiO2@α-Fe2O3 nanocomposites were enhanced due to the plasmoni c effect of Ag metal under visible light irradiation. The addition of H2O2 played an important role, generating more OH radicals which improved the photo-Fenton catalytic activity, resulting in quicker degradation of the MB dye using the Ag-SiO2@α-Fe2O3 nanocomposite catalyst.

  6. Analysis of surface ozone using a recurrent neural network.

    Science.gov (United States)

    Biancofiore, Fabio; Verdecchia, Marco; Di Carlo, Piero; Tomassetti, Barbara; Aruffo, Eleonora; Busilacchio, Marcella; Bianco, Sebastiano; Di Tommaso, Sinibaldo; Colangeli, Carlo

    2015-05-01

    Hourly concentrations of ozone (O₃) and nitrogen dioxide (NO₂) have been measured for 16 years, from 1998 to 2013, in a seaside town in central Italy. The seasonal trends of O₃ and NO₂ recorded in this period have been studied. Furthermore, we used the data collected during one year (2005), to define the characteristics of a multiple linear regression model and a neural network model. Both models are used to model the hourly O₃ concentration, using, two scenarios: 1) in the first as inputs, only meteorological parameters and 2) in the second adding photochemical parameters at those of the first scenario. In order to evaluate the performance of the model four statistical criteria are used: correlation coefficient, fractional bias, normalized mean squared error and a factor of two. All the criteria show that the neural network gives better results, compared to the regression model, in all the model scenarios. Predictions of O₃ have been carried out by many authors using a feed forward neural architecture. In this paper we show that a recurrent architecture significantly improves the performances of neural predictors. Using only the meteorological parameters as input, the recurrent architecture shows performance better than the multiple linear regression model that uses meteorological and photochemical data as input, making the neural network model with recurrent architecture a more useful tool in areas where only weather measurements are available. Finally, we used the neural network model to forecast the O₃ hourly concentrations 1, 3, 6, 12, 24 and 48 h ahead. The performances of the model in predicting O₃ levels are discussed. Emphasis is given to the possibility of using the neural network model in operational ways in areas where only meteorological data are available, in order to predict O₃ also in sites where it has not been measured yet. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO_3(0 0 1)

    International Nuclear Information System (INIS)

    Suwanwong, S.; Eknapakul, T.; Rattanachai, Y.; Masingboon, C.; Rattanasuporn, S.; Phatthanakun, R.; Nakajima, H.; King, P.D.C.; Hodak, S.K.; Meevasana, W.

    2015-01-01

    Highlights: • The dynamics of UV-induced oxygen vacancy is studied from the change of surface resistance. • The formation of 2DEG at the insulating surface of SrTiO_3 is confirmed by ARPES. • The UV-induced change in resistance responds differently to oxygen/gas exposure. • The behavior of resistance recovery suggests an alternative method of low-pressure sensing. - Abstract: The effect of ultra-violet (UV) irradiation on the electronic structure and the surface resistance of an insulating SrTiO_3(0 0 1) crystal is studied in this work. Upon UV irradiation, we show that the two-dimensional electron gas (2DEG) emerges at the insulating SrTiO_3 surface and there is a pronounced change in the surface resistance. By combining the observations of the change in valance band and the resistance change under different environments of gas pressure and gas species, we find that UV-induced oxygen vacancies at the surface plays a major role in the resistance change. The dynamic of the resistance change at different oxygen pressures also suggests an alternative method of low-pressure sensing.

  8. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst

    Science.gov (United States)

    Dou, Maobin; Zhang, Minhua; Chen, Yifei; Yu, Yingzhe

    2018-06-01

    The interactions between ZrO2 support and In2O3 catalyst play pivotal role in the catalytic conversion of CO2 to methanol. Herein, a density functional theory study has been conducted to research the mechanism of methanol synthesis from CO2 and CO hydrogenation on the defective ZrO2 supported In2O3(110) surface (D surface). The calculations reveal that methanol is produced mainly via the HCOO reaction pathway from CO2 hydrogenation on D surface, and the hydrogenation of HCOO to form H2COO species with an activation barrier of 1.21 eV plays the rate determining step for the HCOO reaction pathway. The direct dissociation of CO2 to CO on D surface is kinetically and energetically prohibited. Methanol synthesis from CO hydrogenation on D surface is much facile comparing with the elementary steps involved in CO2 hydrogenation. The rate determining step of CO hydrogenation to methanol is the formation of H3CO species on the vacancy site with a barrier of 0.51 eV. ZrO2 support has significant effect on the suppressing of the dissociation of CO2 and stabilization of H2COO species on the surface of In2O3 catalyst.

  9. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    Science.gov (United States)

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Optimal Extraction of Tropospheric Ozone Column by Simultaneous Use of OMI and TES Data and the Surface Temperature

    Science.gov (United States)

    Mobasheri, M. R.; Shirazi, H.

    2015-12-01

    This article aims to increase the accuracy of Ozone data from tropospheric column (TOC) of the OMI and TES satellite instruments. To validate the estimated amount of satellite data, Ozonesonde data is used. The vertical resolution in both instruments in the tropospheric atmosphere decreases so that the degree of freedom signals (DOFS) on the average for TES is reduced to 2 and for OMI is reduced to1. But this decline in accuracy in estimation of tropospheric ozone is more obvious in urban areas so that estimated ozone in both instruments alone in non-urban areas show a high correlation with Ozonesonde. But in urban areas this correlation is significantly reduced, due to the ozone pre-structures and consequently an increase on surface-level ozone in urban areas. In order to improve the accuracy of satellite data, the average tropospheric ozone data from the two instruments were used. The aim is to increase the vertical resolution of ozone profile and the results clearly indicate an increase in correlations, but nevertheless the satellite data have a positive bias towards the earth data. To reduce the bias, with the solar flux and nitrogen dioxide values and surface temperatures are calculated as factors of ozone production on the earth's surface and formation of mathematical equations based on coefficients for each of the mentioned values and multiplication of these coefficients by satellite data and repeated comparison with the values of Ozonesonde, the results showed that bias in urban areas is greatly reduced.

  11. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Li

    2006-01-01

    Full Text Available Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS, the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8×1014 molecule cm-3] oxidation by O3 [(1.2–12×1014 molecule cm-3] was determined to be (1.4±0.3×10-7 using the BET area as the reactive area and (7.7±1.6×10-4 using the geometric area. A two-stage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.

  12. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...

  13. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  14. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  15. Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission

    Science.gov (United States)

    Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James; hide

    2014-01-01

    To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 analysis.

  16. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing

    International Nuclear Information System (INIS)

    Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A.

    2009-01-01

    In this study, a new processing technique, friction stir processing (FSP) was attempted to incorporate nano-sized Al 2 O 3 into 6082 aluminum alloy to form particulate composite surface layer. Samples were subjected to various numbers of FSP passes from one to four, with and without Al 2 O 3 powder. Microstructural observations were carried out by employing optical and scanning electron microscopy (SEM) of the cross sections both parallel and perpendicular to the tool traverse direction. Mechanical properties include microhardness and wear resistance, were evaluated in detail. The results show that the increasing in number of FSP passes causes a more uniform in distribution of nano-sized alumina particles. The microhardness of the surface improves by three times as compared to that of the as-received Al alloy. A significant improvement in wear resistance in the nano-composite surfaced Al is observed as compared to the as-received Al

  17. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  18. Modelled long term trends of surface ozone over South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2011-09-01

    Full Text Available focused on SA Highveld, 2006 ? Keeping all CAMx inputs ?standardized?, leaving only meteorology as a variable ? CSIR 2010 Slide 11 CAMx data flow CAMx Met model USGS surface data Emissions Initial & boundary Haze & albedo Photolysis rates...

  19. Modification of Ag nanoparticles on the surface of SrTiO3 particles and resultant influence on photoreduction of CO2

    Science.gov (United States)

    Shao, Kunjuan; Wang, Yanjie; Iqbal, Muzaffar; Lin, Lin; Wang, Kai; Zhang, Xuehua; He, Meng; He, Tao

    2018-03-01

    Modification of a wide-bandgap semiconductor with noble metals that can exhibit surface plasmon effect is an effective approach to make it responsive to the visible light. In this work, a series of cubic and all-edge-truncated SrTiO3 with and without thermal pretreatment in air are modified by Ag nanoparticles via photodeposition method. The crystal structure, morphology, loading amount of Ag nanoparticles, and optical properties of the obtained Ag-SrTiO3 nanomaterials are well characterized by powder X-ray diffraction, scanning microscope, transmission electron microscope, energy disperse X-ray spectroscopy, ICP-MS and UV-vis diffuse-reflection spectroscopy. The loading amount and size of the Ag nanoparticles can be controlled to some extent by tuning the photodeposition time via growth-dissolution mechanism. The Ag nanoparticles are inclined to deposit on different locations on the surface of cubic and truncated SrTiO3 with and without thermal pretreatment. The resultant SrTiO3 modified by Ag nanoparticles exhibits visible light activity for photocatalytic reduction of CO2, which is closely related to the oxygen vacancy induced by thermal pretreatment, size and amount of Ag nanoparticles. Accordingly, there is an optimized photodeposition time for the synthesis of the photocatalyst that exhibits the highest photocatalytic activity.

  20. Extruded Al-Al2O3 composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area

    International Nuclear Information System (INIS)

    Balog, Martin; Simancik, Frantisek; Walcher, Martin; Rajner, Walter; Poletti, Cecilia

    2011-01-01

    Highlights: → 25 gas atomised Al 99.5% powders with particle size 2 O 3 dispersoids. → Compacts showed good thermal stability due to grain pinning of Al 2 O 3 dispersoids. - Abstract: Twenty-five samples of commercially available, gas-atomised Al (99.5%) powders with particle sizes 2 O 3 composites formed in situ during extrusion. The effect of particle size, surface area, oxygen content and atomisation atmosphere of the powder on the microstructure and mechanical properties of the extruded compacts were studied by Brunauer, Emmett, Teller (BET) analysis, hot gas extraction, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. Thermal stability of the compacts and the individual strengthening mechanisms operating in the compacts were discussed. It was found that the properties of the compacts stemmed from the extraordinary grain boundary strengthening effect of the ultrafine-grained compacts due to their microstructures. The efficiency of the grain boundary strengthening was significantly enhanced by the presence of nano-metric Al 2 O 3 dispersoids introduced in situ. The strength of the compacts was closely related to the surface area of the powder particles. In addition, the entrapped gasses and chemically bonded humidity had a negative effect on the mechanical properties of the compacts.

  1. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites.

    Science.gov (United States)

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana

    2014-09-24

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  2. Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors

    Science.gov (United States)

    Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael

    2018-03-01

    Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.

  3. Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pekárek, S.; Prukner, Václav

    2012-01-01

    Roč. 32, č. 4 (2012), s. 743-754 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA202/09/0176 Institutional research plan: CEZ:AV0Z20430508 Keywords : ozone * surface DBD * synthetic air * nitrogen oxides * production efficiency Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.728, year: 2012 http://www.springerlink.com/content/h7p1j46381150510/fulltext.pdf

  4. Influence of Power Modulation on Ozone Production Using an AC Surface Dielectric Barrier Discharge in Oxygen

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pekárek, S.; Prukner, Václav

    2010-01-01

    Roč. 30, č. 5 (2010), s. 607-617 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA202/09/0176 Institutional research plan: CEZ:AV0Z20430508 Keywords : Ozone * Surface DBD * Oxygen * Production efficiency Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.798, year: 2010 http://www.springerlink.com/content/28539775w5243513/

  5. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    Science.gov (United States)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  6. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    Science.gov (United States)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  7. Study on adsorption of O2 on LaFe1−xMgxO3 (0 1 0) surface by density function theory calculation

    International Nuclear Information System (INIS)

    Liu, Xing; Cheng, Bin; Hu, Jifan; Qin, Hongwei

    2012-01-01

    Highlights: ► Mg-doping can change the electronic properties of LaFeO 3 (0 1 0) surface by decreasing the band gap. ► The position and content of Mg-doping can both affect the ability to adsorb O 2 . ► The strong hybridization between O 2 p and Fe d orbital is the origin of binding mechanism. - Abstract: The adsorption of O 2 on the clean and Mg doped LaFeO 3 (0 1 0) surface has been investigated using the density functional theory (DFT) method. Calculation results show that Mg-doping can change the electronic properties of LaFeO 3 (0 1 0) surface by decreasing the band gap. When Mg ions were not on the first layer of the surface, with increasing Mg content the adsorption of O 2 was enhanced. When Mg ions were on the first layer, the adsorption of O 2 was weakened with the increase of Mg content. The analysis results of the DOS indicated that the Mg ion and adsorbed O 2 had no strong hybridization, and the bonding mechanism was originated from the strong hybridization between the O p and Fe d orbital. Referring to all the calculation results, it was found that except for the increase of stability of oxygen adsorption, the Mg doping could not improve the sensitivity to O 2 .

  8. Scanning Tunneling Microscopy Study of Carbon Tetrachloride Adsorption and Degradation on a Natural a-Fe2O3(0001) Surface in Ultrahigh Vacuum

    Science.gov (United States)

    Taeg Rim, Kwang; Fitts, Jeffrey; Adib, Kaveh; Camillone, Nicholas, III; Schlosser, Peter; Osgood, Richard, Jr.; Flynn, George; Joyce, Stephen

    2001-03-01

    Scanning tunneling microscopy and low energy electron diffraction have been used to study a natural a-Fe2O3(0001) surface and the adsorption and degradation of carbon tetrachloride on the reduced Fe3O4(111) terminated surface. A natural a-Fe2O3 (0001) surface was prepared by repeated cycles of Ar+ ion sputtering and annealing in vacuum or in O2 at 850 K. STM images and a LEED pattern indicate that an Fe3O4(111) terminated surface and a bi-phase can be formed depending on annealing conditions. The Fe3O4(111) terminated surface was dosed with CCl4 at room temperature, and flashed up to 590 K and 850 K. STM images show adsorbates on the surface at room temperature and the degradation products of CCl4 are isolated on the surface as the flashing temperature increases up to 850 K. Results from a companion temperature programmed desorption investigation are used in conjunction with the STM images to propose site specific reactions of CCl4 on the Fe3O4(111) terminated surface.

  9. Ab initio supercell calculations of the (0001) α-Cr2O3 surface with a partially or totally Al-substituted external layer

    International Nuclear Information System (INIS)

    Sun Jizhong; Stirner, Thomas

    2009-01-01

    Ab initio supercell calculations employing the periodic Hartree-Fock formalism are presented of the (0001) α-Cr 2 O 3 surface with a partially or totally Al-substituted external layer. In the simulations a fraction of the Cr atoms at the surface of the chromia slab are replaced by Al atoms, and the Al surface coverage is varied between zero (pure chromia) and 100% (Al-terminated chromia). The surface Al atoms are found to relax inwards considerably, with the magnitude of the relaxation decreasing with increasing Al surface coverage. The calculations also reveal that the surface energy of the slab decreases with increasing Al coverage. Finally, the electronic properties at the surface of the Al-substituted (0001) α-Cr 2 O 3 slabs are investigated. Here the calculations show that the substitution of Cr by Al gives rise to an increase in the covalency of the Al-O bonds compared to slabs of pure alumina. In contrast, the influence of the surface Al atoms on the electrostatic potential in the (0001) plane of metal ions is relatively small. These findings support the utilisation of α-chromia substrates for the templated growth of α-alumina, which is consistent with recent experiments.

  10. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al2O3(110D) surface in slurry bed.

    Science.gov (United States)

    Bai, Bing; Bai, Hui; Cao, Hao-Jie; Gao, Zhi-Hua; Zuo, Zhi-Jun; Huang, Wei

    2018-04-27

    Despite numerous studies devoted to the various properties of γ-Al2O3, the explorations of its catalytic activity remain scarce. In this study, density functional theory calculations are performed to study the elementary adsorption and reaction mechanisms for syngas conversion on partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin. It is found that the partially hydroxylated γ-Al2O3(110D) surface with the hydroxyl coverage of 8.9 OH nm-2 is formed by two dissociative adsorptions of H2O on the dry γ-Al2O3(110D) surface. The hydroxyl coverage conditions play a key role in determining the dominant reaction mechanism on account of the existence of strong hydrogen bonds. The preferential pathway for syngas conversion with assistance of methanol over the partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin has been proven to be CH3OH → CH3O + H → CH3 + OH, CH3 + CO → CH3CO. C2H5OH is then formed by successive hydrogenation via the pathway CH3CO + 3H → CH3CHO + 2H → CH3CH2O + H → C2H5OH. Here, CH3CHO formation by CH3CO hydrogenation is not inhibited. Actually, with the assistance of partially hydroxylated γ-Al2O3, CH3CHO has been synthesized with high selectivity in our previous experiment by the reaction of methanol and syngas, which provides favorable evidence for our results. The rate-limiting step is the formation of CH3O from CH3OH dehydrogenation with an activation barrier of 122.2 kJ mol-1. Moreover, the reaction barrier of CO insertion into the adsorbed CH3 group is at least 89.4 kJ mol-1, lower than those of CH4, C2H6, and CH3OCH3 formations. ADCH charge and ESP analyses indicate that the typical (Al, O) Lewis acid-base pair may have a significant effect upon the initial C-C chain formation. Thus, the present study provides a new approach for the rational tailoring and designing of new catalysts with superior reactivity involved in syngas conversion.

  11. Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3

    NARCIS (Netherlands)

    Berenov, A.; Atkinson, A.; Kilner, J.; Ananyev, M.; Eremin, V.; Porotnikova, N.; Farlenkov, A.; Kurumchin, E.; Bouwmeester, Henricus J.M.; Bucher, E.; Sitte, W.

    2014-01-01

    The oxygen tracer diffusion coefficient, Db⁎, and the oxygen tracer surface exchange coefficient, k, were measured in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF5582) over the temperature range of 310–800 °C and the oxygen partial pressure range of 1.3 × 10−3–0.21 bar. Several measurement techniques were used:

  12. Study of thin films and V2O3 monocrystals in the range of phase transformations by the method of the surface acoustic waves

    International Nuclear Information System (INIS)

    Boborykina, E.N.; Nikitin, S.E.; Chudnovskij, F.A.

    1995-01-01

    A study was made on acoustic-electron interaction in films and V 2 O 3 monocrystals in 80-450 K range, including the region of metal-antiferromagnetic insulator phase transformation (PTM↔AFI) and the region of high-temperature anomalies. Temperature dependences of absorption and change of surface acoustic wave (SAW) velocity were measured. The maximum on temperature dependences of absorption and change of SAW velocity in the region of PTM↔AFI was revealed. 9 refs.; 4 figs

  13. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  14. A study on 2% PdO/Al2O3 by means of free positron annihilation technique in the solid surface layer

    International Nuclear Information System (INIS)

    Shi Zikang; Huang Cunping

    1992-01-01

    The relationship between heat treatment and space structure of the PdO layer in 2% PdO/Al 2 O 3 was studied by the positrons from 2 2N a radiative source, and grain size was calculated by the positron annihilation parameters, demonstrating that the free positron annihilation technique for the solid surface layer can be applied can be applied to catalyst research

  15. Surface characterization of poly(methylmethacrylate) based nanocomposite thin films containing Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Lewis, S.; Haynes, V.; Wheeler-Jones, R.; Sly, J.; Perks, R.M.; Piccirillo, L.

    2010-01-01

    Poly(methylmethacrylate) (PMMA) based nanocomposite electron beam resists have been demonstrated by spin coating techniques. When TiO 2 and Al 2 O 3 nanoparticles were directly dispersed into the PMMA polymer matrix, the resulting nanocomposites produced poor quality films with surface roughnesses of 322 and 402 nm respectively. To improve the surface of the resists, the oxide nanoparticles were encapsulated in toluene and methanol. Using the zeta potential parameter, it was found that the stabilities of the toluene/oxide nanoparticle suspensions were 7.7 mV and 19.4 mV respectively, meaning that the suspension was not stable. However, when the TiO 2 and Al 2 O 3 nanoparticles were encapsulated in methanol the zeta potential parameter was 31.9 mV and 39.2 mV respectively. Therefore, the nanoparticle suspension was stable. This method improved the surface roughness of PMMA based nanocomposite thin films by a factor of 6.6 and 6.4, when TiO 2 and Al 2 O 3 were suspended in methanol before being dispersed into the PMMA polymer.

  16. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  17. Influences of the variation in inflow to East Asia on surface ozone over Japan during 1996–2005

    Directory of Open Access Journals (Sweden)

    S. Chatani

    2011-08-01

    Full Text Available Air quality simulations in which the global chemical transport model CHASER and the regional chemical transport model WRF/chem are coupled have been developed to consider the dynamic transport of chemical species across the boundaries of the domain of the regional chemical transport model. The simulation captures the overall seasonal variations of surface ozone, but overestimates its concentration over Japanese populated areas by approximately 20 ppb from summer to early winter. It is deduced that ozone formation around Northeast China and Japan in summer is overestimated in the simulation. On the other hand, the simulation well reproduces the interannual variability and the long-term trend of observed surface ozone over Japan. Sensitivity experiments have been performed to investigate the influence of the variation in inflow to East Asia on the interannual variability and the long-term trend of surface ozone over Japan during 1996–2005. The inflow defined in this paper includes the recirculation of species with sources within the East Asian region as well as the transport of species with sources out of the East Asian region. Results of sensitivity experiments suggest that inflow to East Asia accounts for approximately 30 % of the increasing trend of surface ozone, whereas it has much less influence on the interannual variability of observed surface ozone compared to meteorological processes within East Asia.

  18. Hydrological controls on the tropospheric ozone greenhouse gas effect

    Directory of Open Access Journals (Sweden)

    Le Kuai

    2017-03-01

    Full Text Available The influence of the hydrological cycle in the greenhouse gas (GHG effect of tropospheric ozone (O3 is quantified in terms of the O3longwave radiative effect (LWRE, which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3absorption. The O3LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3column. The zonally averaged subtropical LWRE is ~0.2 W m-2higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3LWRE over the Middle East (>1 W/m2 are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m-2 is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

  19. First-principles investigations of electronic and magnetic properties of SrTiO3 (001) surfaces with adsorbed ethanol and acetone molecules

    Science.gov (United States)

    Adeagbo, Waheed A.; Fischer, Guntram; Hergert, Wolfram

    2011-05-01

    First-principles methods based on density functional theory are used to investigate the electronic and magnetic properties of molecular interaction of the TiO2 terminated SrTiO3 (100) surface with ethanol or acetone. Both the perfect surface and the surface with an oxygen or a titanium vacancy in the top layer are considered. Ethanol and acetone are preferentially adsorbed molecularly via their respective oxygen atom on top of the Ti atom on the perfect surface. In case of an oxygen vacancy the adsorption of ethanol or acetone occurs directly on top of the vacancy and does not significantly affect the magnetism caused by the vacancy. In the case of a titanium vacancy both adsorbates occupy positions above Ti atoms. During this adsorption process the ethanol molecule dissociates into a CH3CO radical and three hydrogen atoms. The latter form hydroxide bonds with three of the four dangling oxygen bonds around the Ti vacancy and any magnetic moment induced by the Ti vacancy is annihilated. Thus the ethanol and acetone have a different impact on the surface magnetism of the SrTiO3 (100) surface.

  20. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study

    Science.gov (United States)

    Lin, Changfeng; Qin, Wu; Dong, Changqing

    2016-11-01

    Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.

  1. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  2. Investigation of 'surface donors' in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties

    Science.gov (United States)

    Ťapajna, M.; Stoklas, R.; Gregušová, D.; Gucmann, F.; Hušeková, K.; Haščík, Š.; Fröhlich, K.; Tóth, L.; Pécz, B.; Brunner, F.; Kuzmík, J.

    2017-12-01

    III-N surface polarization compensating charge referred here to as 'surface donors' (SD) was analyzed in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) heterojunctions using scaled oxide films grown by metal-organic chemical vapor deposition at 600 °C. We systematically investigated impact of HCl pre-treatment prior to oxide deposition and post-deposition annealing (PDA) at 700 °C. SD density was reduced down to 1.9 × 1013 cm-2 by skipping HCl pre-treatment step as compared to 3.3 × 1013 cm-2 for structures with HCl pre-treatment followed by PDA. The nature and origin of SD was then analyzed based on the correlation between electrical, micro-structural, and chemical properties of the Al2O3/GaN interfaces with different SD density (NSD). From the comparison between distributions of interface traps of MOS heterojunction with different NSD, it is demonstrated that SD cannot be attributed to interface trapped charge. Instead, variation in the integrity of the GaOx interlayer confirmed by X-ray photoelectron spectroscopy is well correlated with NSD, indicating SD may be formed by border traps at the Al2O3/GaOx interface.

  3. Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition

    Science.gov (United States)

    Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.

    2017-02-01

    Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.

  4. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )

    Science.gov (United States)

    Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-01

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  5. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    Science.gov (United States)

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  6. Comparative Analysis of the Surface Ozone Regime Over Russia and Europe

    Science.gov (United States)

    Kuznetsov, G. I.; Tarasova, O. A.; Elansky, N. F.; Beloglazov, M. I.

    2004-05-01

    The data of the measurements of the surface ozone concentration (SOC) at several Russian cites, in TROICA expeditions, data of EMEP network as well as the results of LOTOS model application were used to compare the main characteristics of ozone spatial and temporal variability over Russia and Europe. To carry out this investigation the number of new methods of data analysis were developed and applied. Their complex application gave us possibility to separate clearly the contribution of photochemical processes having mainly periodical component (daily and seasonal). Hence more attention could be paid to the dynamical mechanism impacting SOC regime, their spatial and temporal variability including trends estimation. Spectral windowing application to the filtered database of EMEP network showed that among the different processes providing annual and shorter variability the main part (about 40% of dispersion) is governed by local and synoptical scale processes in the range of 2-7 days. At the same time the spatial distribution of these percentage contribution is non-uniform over Europe. One of the important mechanisms providing this type of variability as well as the longer ones is air transport. To study the impact of air transport the correlation fields were calculated for the transport indices using 2D NILU trajectories and SOC at EMEP network. They showed that at the Eastern border of Europe the growth of the westerlies provides not the decrease but the growth of observed SOC. This approach was use to study the features of the zonal and meridianal transport, its seasonal characteristics and annual variability. Moreover at Kislovodsk High Mountain Station the changes of the transport patters can partly explain even observed trend of SOC. Comparison of the regime at the different locations using TROICA data shows that in the most of Russian cities ozone destruction is observed. The generation of the surface ozone is only possible in the cases of combination of

  7. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    Science.gov (United States)

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  8. Accounting for the Complex Surface Structure in Ellipsometric Studies of the Effects of Magnetron Sputtering Modes on the Growth and Optical Properties of In2O3 Films

    Science.gov (United States)

    Tikhii, A. A.; Nikolaenko, Yu. M.; Gritskih, V. A.; Svyrydova, K. A.; Murga, V. V.; Zhikhareva, Yu. I.; Zhikharev, I. V.

    2018-03-01

    The efficiency of invoking additional information on optical transmission in solving the inverse problem of ellipsometry by a minimization method is demonstrated in practice for In2O3 fi doped and nondoped with Sn on Al2O3 (012) substrates. This approach allows the thickness and refractive index of thin films with rough surfaces to be uniquely determined. Solutions of the inverse problem in the framework of one-, two-, and multilayer models are compared. The last provides the best description of the experimental data and the correct parameters of the samples. The dependences of the investigated properties of films produced with different magnetron sputtering modes are found using the above methods and models and do not contradict general concepts about the film formation by this material.

  9. Transport (electrical and thermal) properties and surface morphology of Y1-xCaxFeO3 (where x = 0.03 and 0.05) ceramics

    Science.gov (United States)

    Suthar, Lokesh; Bhadala, Falguni; Roy, M.; Jha, V. K.

    2018-05-01

    The electrical transport behaviour of polycrystalline Calcium doped Yttrium orthoferrite (Y1-xCaxFeO3, where x = 0.03 and 0.05) have been synthesized by high temperature Solid state reaction route. The I-V characteristics have been measured which revels that Y1-xCaxFeO3 (where x = 0.03 and 0.05), behaves like semiconductor and its conductivity increases with increase in doping concentration. The thermal analysis experiment shows no phase change with the minor weight loss which reflects the high temperature thermal stability of the materials. The surface morphology was analyzed using the AFM. The results are discussed in detail.

  10. Effects of oxygen annealing on the physical properties and surface microstructures of La0.8Ba0.2MnO3 films

    International Nuclear Information System (INIS)

    Murugavel, P; Lee, J H; Lee, K-B; Park, J H; Chung, J-S; Yoon, J-G; Noh, T W

    2002-01-01

    We have investigated the effects of oxygen annealing on the transport properties and surface microstructures of epitaxial La 0.8 Ba 0.2 MnO 3 (LBMO) films deposited on SrTiO 3 substrate at different oxygen pressures using the pulsed laser deposition technique. The thickness dependence of the transport properties was strongly affected by the oxygen pressure during the deposition and the oxygen annealing temperature. Oxygen stoichiometry, in addition to the substrate-induced strain, was found to be a very important factor in controlling the physical properties of low-doped LBMO. Oxygen annealing seemed to induce strain and the strain accommodated in the films was relaxed by forming a secondary phase in an ordered rod-like shape or in particulate form

  11. Magnetic and electrical transport properties of LaBaCo2O(5.5+δ) thin films on vicinal (001) SrTiO3 surfaces.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Collins, Gregory; Wang, Haibin; Bao, Shanyong; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Lin, Yuan; Whangbo, Myung-Hwan

    2013-01-23

    Highly epitaxial LaBaCo(2)O(5.5+δ) thin films were grown on the vicinal (001) SrTiO(3) substrates with miscut angles of 0.5°, 3.0°, and 5.0° to systemically study strain effect on its physical properties. The electronic transport properties and magnetic behaviors of these films are strongly dependent on the miscut angles. With increasing the miscut angle, the transport property of the film changes from semiconducting to semimetallic, which results most probably from the locally strained domains induced by the surface step terraces. In addition, a very large magnetoresistance (34% at 60 K) was achieved for the 0.5°-miscut film, which is ~30% larger than that for the film grown on the regular (001) SrTiO(3) substrates.

  12. Room-Temperature Atomic Layer Deposition of Al2 O3 : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells.

    Science.gov (United States)

    Kot, Malgorzata; Das, Chittaranjan; Wang, Zhiping; Henkel, Karsten; Rouissi, Zied; Wojciechowski, Konrad; Snaith, Henry J; Schmeisser, Dieter

    2016-12-20

    In this work, solar cells with a freshly made CH 3 NH 3 PbI 3 perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al 2 O 3 deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al 2 O 3 -covered perovskite films showed enhanced ambient air stability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Artificial O3 formation during fireworks

    Science.gov (United States)

    Fiedrich, M.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J.

    2017-09-01

    In several previous studies emission of ozone (O3) during fireworks has been reported, which was attributed to either photolysis of molecular oxygen (O2) or nitrogen dioxide (NO2) by short/near UV radiation emitted during the high-temperature combustion of fireworks. In contrast, in the present study no O3 formation was observed using a selective O3-LOPAP instrument during the combustion of pyrotechnical material in the laboratory, while a standard O3 monitor using UV absorption showed extremely high O3 signals. The artificial O3 response of the standard O3 monitor was caused by known interferences associated with high levels of co-emitted VOCs and could also be confirmed in field measurements during New Year's Eve in the city of Wuppertal, Germany. The present results help to explain unreasonably high ozone levels documented during ambient fireworks, which are in contradiction to the fast titration of O3 by nitrogen monoxide (NO) in the night-time atmosphere.

  14. A DFT study of ethanol adsorption and decomposition on α-Al2O3(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Chiang, Hsin-Ni; Nachimuthu, Santhanamoorthi; Cheng, Ya-Chin; Damayanti, Nur Pradani; Jiang, Jyh-Chiang

    2016-01-01

    Graphical abstract: - Highlights: • Ethanol decomposition has been studied over α-Al 2 O 3 (0 0 0 1) surface. • EDD and DOS results confirm the stable adsorption of ethanol on the surface. • DFT calculations favor ethylene formation via C β −H bond scission. • The formation of acetaldehyde has higher energy barrier. - Abstract: Ethanol adsorption and decomposition on the clean α-Al 2 O 3 (0 0 0 1) surface have been systematically investigated by density functional theory calculations. The nature of the surface-ethanol bonding has studied through the density of states (DOS) and the electron density difference (EDD) contour plots. The DOS patterns confirm that the lone pair electrons of EtOH are involved in the formation of a surface Al−O dative bond and the EDD plots provide evidences for the bond weakening/forming, which are consistent with the DOS analysis. Our ethanol decomposition results indicate that ethanol dehydration to ethylene (CH 3 CH 2 OH (a) → C 2 H 4(g) + OH (a) + H (a) ), is the main reaction pathway with the energy barrier of 1.46 eV. Although the cleavage of the hydroxyl group of ethanol has lower energy barrier, the further decomposition of ethoxy owns much higher energy barrier.

  15. Surface Properties and Photocatalytic Activity of KTaO3, CdS, MoS2 Semiconductors and Their Binary and Ternary Semiconductor Composites

    Directory of Open Access Journals (Sweden)

    Beata Bajorowicz

    2014-09-01

    Full Text Available Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, scanning electron microscopy (SEM, Brunauer–Emmett–Teller (BET specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  16. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Meigen Zhang

    2012-01-01

    The regional air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Community Multi-scale Air Quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008.Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind,temperature and ozone,but NOx concentration is overestimated.Although ozone concentration decreased during Olympics,high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 μg/m3 at Aoyuncun site,respectively.The analysis of sensitive test,with and without emission controls,shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning.The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate.Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August,horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer.On 24 July,as the wind velocity was smaller,the impact of transport on the rural place was not obvious.

  17. Comparison of measured and modeled surface ozone concentrations at two different sites in Europe during the solar eclipse on August 11, 1999

    International Nuclear Information System (INIS)

    Zanis, P.; Zerefos, C.S.; Melas, D.

    2001-01-01

    The effects of the solar eclipse on 11 August 1999 on surface ozone at two sites, Thessaloniki, Greece (urban site) and Hohenpeissenberg, Germany (elevated rural site) are investigated in this study and compared with model results. The eclipse offered a unique opportunity to test our understanding of tropospheric ozone chemistry and to investigate with a simple photochemical box model the response of surface ozone to changes of solar radiation during a photolytical perturbation such as the solar eclipse. The surface ozone measurements following the eclipse display a decrease of around 10-15 ppbv at the urban station of Eptapyrgio at Thessaloniki while at Hoheneissenberg, the actual ozone data do not show any clear effect of eclipse on surface ozone. For Thessaloniki, the model results suggest that solely photochemistry can account for a significant amount of the observed surface ozone decrease during the eclipse but transport effects mask part of the photochemical effect of eclipse on surface ozone. For Hohenpeissenberg, the box model predicted an ozone decrease, but to the eclipse, of about 2ppbv in relative agreement with the magnitude of the observed ozone decrease from the 2h moving average while at the same time it inhibits the foreseen diurnal ozone increase. However, this modeled ozone decrease during the eclipse is small compared to the diurnal ozone variability due to transport effects, and hence, transport really masks such relative small changes. The different magnitude of the surface ozone decrease between the two sites indicates mainly the role of the NO x levels. Measured and modeled NO and NO 2 concentrations at Hohenpeissenbergy during the eclipse are also compared and indicate that the partitioning of NO and NO 2 in NO x is influenced clearly from the eclipse. This is not observed at Thessaloniki due to local NO x sources. (Author)

  18. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  19. First-principles study of the (001) surface of cubic Ba0.5Sr0.5TiO3

    International Nuclear Information System (INIS)

    Wang, Yuan Xu

    2008-01-01

    We have theoretically investigated basic properties of the (001) surface of cubic Ba 0.5 Sr 0.5 TiO 3 (BST) by the plane-wave pseudopotential method within the local-density approximation. For the BaSrO 2 -terminated surface, the surface-layer Sr atoms move inward and the surface-layer Ba atoms move outward. Moreover, the displacement of the surface-layer Sr atoms is much larger than the surface-layer Ba atoms. The rumpling of the BaSrO 2 -terminated surface is much larger than that of the Ti 2 O 4 -terminated one. The surface state appears in the band structure of the Ti 2 O 4 -terminated surface of BST. Based on the results of the calculated grand thermodynamic potential, only the BaSrO 2 -terminated surface can exist in the (001) surface of cubic BST. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe

    Science.gov (United States)

    Demuzere, Matthias; Kassomenos, P.; Philipp, A.

    2011-08-01

    In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights

  1. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows

    Science.gov (United States)

    Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.

    2015-11-01

    Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July-August). In spring (March-April) and winter (December-February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.

  2. Surface ozone and carbon monoxide levels observed at Oki, Japan: regional air pollution trends in East Asia.

    Science.gov (United States)

    Sikder, Helena Akhter; Suthawaree, Jeeranut; Kato, Shungo; Kajii, Yoshizumi

    2011-03-01

    Simultaneous ground-based measurements of ozone and carbon monoxide were performed at Oki, Japan, from January 2001 to September 2002 in order to investigate the O(3) and CO characteristics and their distributions. The observations revealed that O(3) and CO concentrations were maximum in springtime and minimum in the summer. The monthly averaged concentrations of O(3) and CO were 60 and 234 ppb in spring and 23 and 106 ppb in summer, respectively. Based on direction, 5-day isentropic backward trajectory analysis was carried out to determine the transport path of air masses, preceding their arrival at Oki. Comparison between classified results from present work and results from the year 1994-1996 was carried out. The O(3) and CO concentration results of classified air masses in our analysis show similar concentration trends to previous findings; highest in the WNW/W, lowest in N/NE and medium levels in NW. Moreover, O(3) levels are higher and CO levels are lower in the present study in all categories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  4. Electronic transitions and band offsets in C60:SubPc and C60:MgPc on MoO3 studied by modulated surface photovoltage spectroscopy

    International Nuclear Information System (INIS)

    Fengler, S.; Dittrich, Th.; Rusu, M.

    2015-01-01

    Electronic transitions at interfaces between MoO 3 layers and organic layers of C 60 , SubPc, MgPc, and nano-composite layers of SubPc:C 60 and MgPc:C 60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO 3 /organic layer interfaces with a separation of holes towards MoO 3 . The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (E HL ) of C 60 , SubPc, and MgPc and the effective E HL of SubPc:C 60 and MgPc:C 60 were measured. The offsets between the LUMO (ΔE L ) or HOMO (ΔE H ) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C 60 , respectively, and to −0.33 or 0.67 eV for MgPc:C 60 , respectively. Exponential tails below E HL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states

  5. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  6. Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

    Directory of Open Access Journals (Sweden)

    A. Mostafapour

    2012-10-01

    Full Text Available Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to implement powder mixture into the aluminum alloy matrix. Microstructural properties were investigated by means of optical microscopy and scanning electron microscopy (SEM. It was found that reinforcement particle mixture was distributed uniformly in nugget zone. Wear resistance of composite was measured by dry sliding wear test. As a result, hybrid composite revealed significant reduction in wear rate in comparison with Al/AL2O3 composite produced by friction stir processing. Worn surface of the wear test samples were examined by SEM in order to determine wear mechanism.

  7. Understanding and improving global crop response to ozone pollution

    Science.gov (United States)

    Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...

  8. Surface polarization, rumpling, and domain ordering of strained ultrathin BaTiO_3(001) films with in-plane and out-of-plane polarization

    International Nuclear Information System (INIS)

    Dionot, Jelle; Mathieu, Claire; Barrett, Nick; Geneste, Gregory

    2014-01-01

    BaTiO_3 ultrathin films (thickness ≅1.6 nm) with in- and out-of-plane polarization are studied by first-principles calculations. Out-of-plane polarization is simulated using the method proposed by Shimada et al. [Phys. Rev. B 81, 144116 (2010)], which consists in building a supercell containing small domains with alternating up and down polarization. This allows one to investigate the properties of defect free BaTiO_3 ultrathin films with polarization perpendicular to the surface, as a function of in-plane lattice constant, i.e., epitaxial strain. The configurations with polarization perpendicular to the surface (c phase) are found stable under compressive strain, while under tensile strain, the polarization tends to lie in-plane (aa phase), along [110]. In the c phase, the most stable domain width is predicted to be 1 to 2 lattice constants, and the magnitude of the surface rumpling varies according to the direction of the polarization (upwards versus downwards), though its sign is unchanged, the oxygen anions pointing in all cases outwards. Finally, all the surfaces studied are found to be insulating. Analysis of the atom-projected electronic density of states gives insight into the surface contributions to the electronic structure. An important reduction of the Kohn-Sham band gap is predicted at TiO_2 terminations in the c phase (≅1 eV with respect to the aa phase). The Madelung potential at the surface plays the dominant role in modifications of the surface electronic structure. (authors)

  9. Influence of water, dihydrogen and dioxygen on the stability of the Cr2O3 surface: A first-principles investigation

    Science.gov (United States)

    Souvi, Sidi M. O.; Badawi, Michael; Virot, François; Cristol, Sylvain; Cantrel, Laurent; Paul, Jean-François

    2017-12-01

    In this theoretical work, the stability of α-Cr2O3 surfaces in various oxidizing and reducing environments has been investigated. The electronic structure calculations, the magnetic properties of the bulk and surfaces have been explored within the DFT+U framework. Investigating a large number of possible terminations we show that the oxidation promotes the formation of a chromyl surface in agreement with the existing literature. We show that the hydrogenation of bare chromia surface is not thermodynamically favored, however, adding hydrogen to the chromyl surface leads to a very stable hydroxide termination. Regarding water adsorption, we discuss the differences between the experiment results published in (M. A. Henderson, S. A. Chambers, Surf. Sci. 449 (2000) 135) leading to a fully hydrated surface and those published in (V. Maurice, S. Cadot, P. Marcus, Surf. Sci. 471 (2001) 43) leading to a fully hydroxylated surface. Finally we present a new hydrated surface (fully hydroxylated surface) noted [-Cr2-(OH)3], which is consistent with experimental observations.

  10. Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer

    NARCIS (Netherlands)

    Black, L.E.; Cavalli, A.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.; Kessels, W.M.M.

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following

  11. Trends in total column ozone over Australia and New Zealand and its influence on clear-sky surface erythemal irradiance

    International Nuclear Information System (INIS)

    Bodeker, G. E.

    1995-01-01

    Australia and New Zealand are two of the countries closest to the Antarctic ozone depletion and may therefore be 'at risk' as a result of the associated increases in surface ultraviolet (UV) radiation. To investigate the possible impact of mid-latitude ozone decreases on surface erythemal irradiances, monthly mean total ozone has been calculated from daily total ozone mapping spectrometer data for 5 Australian cities (Canberra, Hobart, Melbourne, Perth and Sydney) and 3 New Zealand cities (Auckland, Christchurch and Wellington) from 1979 to 1992. These values have then been used as inputs to a single layer model to calculate noon clear-sky global UV irradiances and associated erythemal irradiances. In addition, the monthly mean ozone data have been modelled statistically for each location to reveal a long-term linear trend, an annual variation, a Quasi-Biennial Oscillation (QBO), a solar cycle component and a semi-annual (6 month) signal. Coefficients from these statistical models have been used to estimate monthly mean ozone and noon clear-sky erythemal irradiances to the year 2000 for each city. It is assumed that the rate of increase of stratospheric chlorine over the remainder of the century will remain constant. Given that there is some evidence that the rate of increase is decreasing, the results present here should be regarded as an upper limit. 33 refs., 7 tabs., 4 figs

  12. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  13. Understanding Long-Term Variations in Surface Ozone in United States (U.S. National Parks

    Directory of Open Access Journals (Sweden)

    Deborah McGlynn

    2018-03-01

    Full Text Available Long-term surface ozone observations at 25 National Park Service sites across the United States were analyzed for processes on varying time scales using a time scale decomposition technique, the Ensemble Empirical Mode Decomposition (EEMD. Time scales of interest include the seasonal cycle, large-scale climate oscillations, and long-term (>10 years trends. Emission reductions were found to have a greater impact on sites that are nearest major urban areas. Multidecadal trends in surface ozone were increasing at a rate of 0.07 to 0.37 ppbv year−1 before 2004 and decreasing at a rate of −0.08 to −0.60 ppbv year−1 after 2004 for sites in the East, Southern California, and Northwestern Washington. Sites in the Intermountain West did not experience a reversal of trends from positive to negative until the mid- to late 2000s. The magnitude of the annual amplitude (=annual maximum–minimum decreased at eight sites, two in the West, two in the Intermountain West, and four in the East, by 5–20 ppbv and significantly increased at three sites; one in Alaska, one in the West, and one in the Intermountain West, by 3–4 ppbv. Stronger decreases in the annual amplitude occurred at a greater proportion of sites in the East (4/6 sites than in the West/Intermountain West (4/19 sites. The date of annual maximums and/or minimums has changed at 12 sites, occurring 10–60 days earlier in the year. There appeared to be a link between the timing of the annual maximum and the decrease in the annual amplitude, which was hypothesized to be related to a decrease in ozone titration resulting from NOx emission reductions. Furthermore, it was found that a phase shift of the Pacific Decadal Oscillation (PDO, from positive to negative, in 1998–1999 resulted in increased occurrences of La Niña-like conditions. This shift had the effect of directing more polluted air masses from East Asia to higher latitudes over the North American continent. The change in the

  14. Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis

    International Nuclear Information System (INIS)

    Ma, Lei; Sun, Tao; Cai, Hua; Zhou, Zhi-Quan; Sun, Jian; Lu, Ming

    2015-01-01

    Surface plasmon (SP)-enhanced ultraviolet and visible photocatalytic activities of SrTiO 3 (STO) are observed after incorporating Ag nanoparticles (Ag-NPs) on STO surfaces. A two-step excitation model is proposed to explain the SP-enhanced photocatalysis. The point of the model is that an electron at the valence band of STO is first excited onto the Fermi level of Ag-NP by the SP field generated on the Ag-NP, and then injected into the conduction band of STO from the SP band, leaving a hole at the valence band of STO. A full redox catalytic reaction at the surface of STO is then available. For Ag-NP incorporated STO, up-converted and inter-band photoluminescence emissions of STO are observed, and nonlinear evolutions of photocatalytic activity with illumination light powers are found. Furthermore, near infrared photocatalysis is detected. These results support the proposed model

  15. Effect of Al_2O_3 nanolubrication with Sodium Dodecylbenzene Sulfonate (SDBS) on surface roughness and tool wear under MQL during turning of Ti-6AL-4T

    International Nuclear Information System (INIS)

    Ali, M A M; Khalil, A N M; Azmi, A I

    2016-01-01

    The application of coolant reduces the friction and heat generation, which affect the surface finish and tool life, during machining. Recently, nanolubricant opens a new ways of coolant strategy in machining operation. It is well known that suspended nanoparticles without surfactant in base oil tend to agglomerate after a period of time. This paper presents the effects of AEO_3 nanolubricant with surfactant, Sodium Dodecylbenzene Sulfonate (SDBS) on surface roughness and tool wear during turning of titanium alloy, Ti-6AL-4T. The comparison of different coolant strategies, dry cutting, flooding, minimum quantity lubricant (MQL), nanolubricant with and without surfactant are also presented. The results showed that Al_2O_3 nanolubricant with surfactant, Sodium Dodecylbenzene Sulfonate (SDBS) under MQL exhibits low surface roughness and tool wear rate compared to others. This proved that the addition of surfactant not only improved nanolubricant stability but also machining performance. (paper)

  16. Surface characterization of colossal magnetoresistive manganites La1-xSr xMnO3 using photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Mannella, N.; Rosenhahn, A.; Nambu, A.; Sell, B.C.; Mun, B.S.; Yang, S.-H.; Marchesini, S.; Watanabe, M.; Ibrahim, K.; Ritchey, S.B.; Tomioka, Y.; Fadley, C.S.

    2006-01-01

    We have studied the temperature and time dependence of Surface chemical composition and atomic structure of in situ fractured colossal magnetoresistive perovskites La 1-x Sr x MnO (x = 0.3, 0.4) using core-level photoelectron spectroscopy and diffraction, simultaneous with observing marked changes in both core and valence electronic structure on going above the Curie temperature [N. Mannella et al., Phys. Rev. Lett. 92 (2004) 166401]. Stoichiometric analyses via core-level intensity ratios show that the near-surface composition is very nearly the same as that of the nominal (bulk) stoichiometry and further show that, during duration of our experiments, the degree of surface stoichiometry alteration or contamination has been minimal. The effects of photoelectron diffraction on such analyses are also explored. We comment on the degree to which near-surface composition or atomic-structure alterations might influence spectroscopic investigations of these manganites, or other strongly correlated materials

  17. Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films

    International Nuclear Information System (INIS)

    Hiraiwa, Atsushi; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-01-01

    The Al 2 O 3 film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H 2 O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D 2 O instead of H 2 O in the ALD and found that the Al 2 O 3 film formed at a conventional temperature (100 °C) incorporates 50 times more CH 3 groups than the high-temperature film. This CH 3 is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H 2 O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H 2 O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D 2 O-oxidant ALD but found that the mass density and dielectric constant of D 2 O-grown Al 2 O 3 films are smaller than those of H 2 O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al 2 O 3 films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD

  18. Ozone depletion in the interstitial air of the seasonal snowpack in northern Japan

    Directory of Open Access Journals (Sweden)

    Momoko Nakayama

    2015-02-01

    Full Text Available To examine the behaviour of ozone (O3 in the seasonal snowpack, measurements were taken of O3 and CO2 in the interstitial air on Rishiri Island, which is located in northern Japan, during the 2010/11 winter season. Exhibiting variation on timescales ranging from several minutes to several days, the atmospheric O3 in the surface air generally increased from December (38 ppb to April (52 ppb. The ozone mixing ratio sharply decreased below the snow surface. Whereas the CO2 data in the interstitial air indicated that a rapid exchange between the snow and the atmosphere occurred intermittently, the O3 mixing ratio remained low and constant (<5 ppb in the snowpack interior. The vertical profile of the O3 mixing ratio indicates that the e-folding lifetime of the O3 loss reaction was 5.0±2.3 minutes during the day and 10.0±6.3 minutes at night, suggesting photochemical O3 depletion occurred during the daytime. Kinetic experiments using ambient (maritime air and snow indicate that the photochemical O3 loss is proportional to the solar radiation and that the O3 loss rate decreases as dawn approaches during the night. The result of the kinetic experiments using artificial O3 in the pure air and snow suggests the important role of gaseous species in the ambient air towards O3 depletion.

  19. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  20. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  1. Ozone Oxidation of Self-Assembled Monolayers on SiOx-Coated Zinc Selenide Surfaces

    Science.gov (United States)

    McIntire, T. M.; Ryder, O. S.; Finlayson-Pitts, B. J.

    2008-12-01

    Airborne particles are important for visibility, human health, climate, and atmospheric reactions. Atmospheric particles contain a significant fraction of organics and such compounds present on airborne particles are susceptible to oxidation by atmospheric oxidants, such as OH, ozone, halogen atoms, and nitrogen trioxide. Oxidized organics associated with airborne particles are thought to be polar, hygroscopic species with enhanced cloud-nucleating properties. Oxide layers on silicon, or SiO2-coated substrates, act as models of environmentally relevant surfaces such as dust particles upon which organics adsorb. We have shown previously that ozone oxidation of unsaturated self-assembled monolayers (SAMs) on silicon attenuated total reflectance (ATR) crystals leads to the formation of carbonyl groups and micron-sized, hydrophobic organic aggregates surrounded by carbon depleted substrate that do not have increased water uptake as previously assumed. Reported here are further ATR-FTIR studies of the oxidation of alkene SAMs on ZnSe and SiO2-coated ZnSe. These substrates have the advantage that they transmit below 1500 cm-1, allowing detection of additional product species. These experiments show that the loss of C=C and formation of carbonyl groups is also accompanied by formation of a peak at 1110 cm-1, attributed to the secondary ozonide. Details concerning the products and mechanism of ozonolysis of alkene SAMs on surfaces based on these new data are presented and the implications for the oxidation of alkenes on airborne dust particles are discussed.

  2. Near-surface ozone content at the Molodezhnaia and Mirnyi Antarctic stations, according to measurements made during spring 1987 to autumn 1988

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Elokhov, A.S. (Rossiiskaia Akademiia Nauk, Institut Fiziki Atmosfery, Moscow (Russian Federation))

    1992-01-01

    Results are presented of near-surface ozone measurements at the Molodezhnaia and Mirnyi Antarctic stations, conducted from the spring of 1987 to the autumn of 1988, as well as of measurements by an aircraft flying along the Mirnyi-Vostok-Mirnyi path (one flight). Mechanisms of diurnal, day-to-day, and annual ozone variability are examined. It is found that, during synoptically active periods, the near-surface ozone correlates positively with the temperature above the atmosphere-land boundary layer, while during the synoptically quiet period the ozone concentrations correlate with the direction of the surface katabatic wind. 29 refs.

  3. Plasma treatment for influence of cold in different phases of formation of calcium phosphate on the surface of nanocomposite Al_2O_3/ZrO_2

    International Nuclear Information System (INIS)

    Santos, K.H.; Ferreira, J.A.; Osiro, D.; Nascimento, L.I.S.; Pallone, E.M.J.A.; Alves Junior, C.

    2016-01-01

    Among the different techniques used in surface treatment of biomaterials, the plasma has been noted for its ability to promote changes in surface roughness of the treated material. The objective of this study was to evaluate the influence of treatment by plasma in the formation of calcium phosphate nanocomposite on the surface of Al2O3/ZrO2 (5% by vol.). For this, samples were formed, calcined, sintered, surface treated and coated biomimeticamente plasma for 14 days. The surface characterization was performed by confocal microscopy and spectroscopy, Fourier transform infrared (FTIR). After coating, the samples were characterized by FTIR and X-ray diffraction X-ray (XRD). It was observed that the treatments improved surface roughness. Furthermore, regardless of the surface treatment were observed only three phases of calcium phosphates: HA α -TCP and -β-TCP. It is worth noting that depending on the composition, there are variations in the amount of phosphates, as well as the percentages of the different phases. (author)

  4. Negative surface streamers propagating on TiO2 and γ-Al2O3-supported Ag catalysts: ICCD imaging and modeling study

    Science.gov (United States)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Kang, Woo Seok; Hur, Min; Song, Young-Hoon

    2018-06-01

    Surface streamers propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) were studied in negative polarity using intensified charge coupled device (ICCD) imaging and numerical simulation. Detailed time-resolved ICCD images of cathode-directed streamers (CDSs) emanating from a ground electrode are first presented in this report. Instead of primary streamers in positive polarity, only a glow-like discharge appeared in the early stage at the cathode under negative polarity. After this discharge disappeared, a counter-propagating CDS initiated from the ground electrode (anode). Numerical simulation indicated that strong electric fields at the pellet-anode and the formation of positive ion rich local spots were the main reason for the CDS formation near the ground electrode. The maximum velocity was 750 km s‑1 for Ag-supported γ-Al2O3 and 550 km s‑1 for Ag-supported TiO2, respectively. In contrast to the CDS in the gas-phase with a positive polarity, the CDS in a catalyst packed-bed under negative polarity showed more branching and a larger number of streamers in the presence of oxygen than in pure N2.

  5. Surface spin glass and exchange bias effect in Sm0.5Ca0.5MnO3 manganites nano particles

    Directory of Open Access Journals (Sweden)

    S. K. Giri

    2011-09-01

    Full Text Available In this letter, we report that the charge/orbital order state of bulk antiferromagnetic Sm0.5Ca0.5MnO3 is suppressed and confirms the appearance of weak ferromagnetism below 65 K followed by a low temperature spin glass like transition at 41 K in its nano metric counterpart. Exchange anisotropy effect has been observed in the nano manganites and can be tuned by the strength of the cooling magnetic field (Hcool. The values of exchange fields (HE, coercivity (HC, remanence asymmetry (ME and magnetic coercivity (MC are found to strongly depend on cooling magnetic field and temperature. HE increases with increasing Hcool but for larger Hcool, HE tends to decrease due to the growth of ferromagnetic cluster size. Magnetic training effect has also been observed and it has been analyzed thoroughly using spin relaxation model. A proposed phenomenological core-shell type model is attributed to an exchange coupling between the spin-glass like shell (surrounding and antiferromagnetic core of Sm0.5Ca0.5MnO3 nano manganites mainly on the basis of uncompensated surface spins. Results suggest that the intrinsic phase inhomogeneity due to the surface effects of the nanostructured manganites may cause exchange anisotropy, which is of special interests for potential application in multifunctional spintronic devices.

  6. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate

    Directory of Open Access Journals (Sweden)

    Shitang He

    2011-11-01

    Full Text Available A new micro gyroscope based on the surface acoustic wave (SAW gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed.

  7. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  8. Direct observation of the near-surface layer in Pb(Mg1/3Nb2/3)O3 using neutron diffraction

    International Nuclear Information System (INIS)

    Conlon, K.H.; Whan, T.; Fox, J.H.; Luo, H.; Viehland, D.; Li, J.F.; Stock, C.; Shirane, G.

    2004-01-01

    Spatially resolved neutron diffraction as a function of crystal depth in Pb(Mg 1/3 Nb 2/3 )O 3 reveals the presence of a distinct near-surface region where a strong distortion in the lattice exists. A dramatic change in both the lattice constant and the Bragg peak intensity as a function of crystal depth is observed to occur in this region over a length scale ∼100 μm. This confirms a previous assertion, based on a comparison between high-energy x rays and neutrons, that such a near surface region exists in the relaxors. Consequences to both single crystal and powder diffraction measurements and previous bulk neutron diffraction measurements on large single crystals are discussed

  9. Modelled surface ozone over southern africa during the cross border air pollution impact assessment project

    CSIR Research Space (South Africa)

    Zunckel, M

    2006-07-01

    Full Text Available , T.S., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R., Mc Henry, J., 2001. Evaluating the performance of regional-scale photochemical modelling systems: Part II-ozone predictions. Atmospheric Environment 35, 4175e4188. Jenkins, M.J., Clemitshaw, K.... These conditions are favourable to the formation of ozone and suggest that ozone concentrations over southern Africa may be relatively high. Ozone is an important constituent in tropospheric chemistry (Jenkins and Clemitshaw, 2000). It is also associated...

  10. Understanding the influence of surface chemical states on the dielectric tunability of sputtered Ba0.5Sr0.5TiO3 thin films

    Science.gov (United States)

    Venkata Saravanan, K.; Raju, K. C. James

    2014-03-01

    The surface chemical states of RF-magnetron sputtered Ba0.5Sr0.5TiO3 (BST5) thin films deposited at different oxygen mixing percentage (OMP) was examined by x-ray photoelectron spectroscopy. The O1s XPS spectra indicate the existence of three kinds of oxygen species (dissociated oxygen ion O2 -, adsorbed oxide ion O- and lattice oxide ion O2-) on the films’ surface, which strongly depends on OMP. The presence of oxygen species other than lattice oxygen ion makes the films’ surface highly reactivity to atmospheric gases, resulting in the formation of undesired surface layers. The XPS results confirm the formation of surface nitrates for the films deposited under oxygen deficient atmosphere (OMP ≦̸ 25%), whereas the films deposited in oxygen rich atmosphere (OMP ≧̸ 75%) show the presence of metal-hydroxide. The influence of a surface dead layer on the tunable dielectric properties of BST5 films have been studied in detail and are reported. Furthermore, our observations indicate that an optimum ratio of Ar:O2 is essential for achieving desired material and dielectric properties in BST5 thin films. The films deposited at 50% OMP have the highest dielectric tunability of ~65% (@280 kV cm-1), with good ɛ r-E curve symmetry of 98% and low tan δ of 0.018. The figure of merit for these films is about 35, which is promising for frequency agile device applications.

  11. Effects of surface chemistry on coagulation of submicron iron oxide particles (α-Fe_2O_3) in water

    OpenAIRE

    Liang, Liyuan

    1988-01-01

    Particles in the colloidal size range, i.e. smaller than 10^(-6) meter, are of interest in environmental science and many other fields of science and engineering. Since aqueous oxide particles have high specific surface areas they adsorb ions and molecules from water, and may remain stable in the aqueous phase with respect to coagulation. Submicron particles collide as a result of their thermal energy, and the effective collision rate is slowed by electric repulsion forces. A key to understan...

  12. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  13. Polyvinylpyrrolidone/ Poly aniline Composite Based 36 degree YX LiTaO3 Surface Acoustic Wave H2 Gas Sensor

    International Nuclear Information System (INIS)

    Amir Sidek; Rashidah Arsat; Xiuli, He; Kalantar-zadeh, K.; Wlodarski, W.

    2013-01-01

    Poly-vinyl-pyrrolidone (PVP)/ poly aniline based surface acoustic wave (SAW) sensors were fabricated and characterized and their performances towards hydrogen gas were investigated. The PVP/ poly aniline fibers composite were prepared by electro spinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nano structure material was observed. From the dynamic response, frequency shifts of 6.243 kHz (1% H 2 ) and 8.051 kHz (1% H 2 ) were recorded for the sensors deposited with PVP/ ES and PVP/ EB, respectively. (author)

  14. O3 Nanoparticles

    KAUST Repository

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  15. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating

    International Nuclear Information System (INIS)

    Chi Fangting; Sichuan Univ., Chengdu; Li Bo; Liu Yiyang; Chen Sufen; Jiang Bo

    2009-01-01

    The deposition capability of nickel on the surface of poly-α-methylstyrene microspheres was improved by combined treatment of ozone aeration and UV irradiation in aqueous ammonia. Surface properties of the treated film were investigated by X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FT-TR) measurements. The samples were characterized by SEM. The results indicate that after ultraviolet joint ozone treatment, the surfaces of microspheres were oxidized, and the amine and amide groups are introduced on their surface. The images of SEM show the adhesion between microspheres and nickel-phosphorus films was improved after surface modification. This was attributed to amide which could chemisorb palladium ions to catalyze electroless nickel plating on the pretreated surface of microspheres. (authors)

  16. Total column density variations of ozone (O3 O3 O3) in presence of ...

    Indian Academy of Sciences (India)

    −3). In case of O4, an absorbance of. O2–O2 by Greenblatt et al (1990) is calculated as absorbance A is given by: A = σ[O2]2 l,. (2) where l is the optical path length (cm), [O2] is the concentration of oxygen (molecules cm. −3), σ is the absorption cross section with the unit of cm5 molecule. −2. The absorption cross sections of.

  17. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-04-01

    We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested

  18. Application of Fe(II)/peroxymonosulfate for improving ultrafiltration membrane performance in surface water treatment: Comparison with coagulation and ozonation.

    Science.gov (United States)

    Cheng, Xiaoxiang; Liang, Heng; Ding, An; Zhu, Xuewu; Tang, Xiaobin; Gan, Zhendong; Xing, Jiajian; Wu, Daoji; Li, Guibai

    2017-11-01

    Coagulation and ozonation have been widely used as pretreatments for ultrafiltration (UF) membrane in drinking water treatment. While beneficial, coagulation or ozonation alone is unable to both efficiently control membrane fouling and product water quality in many cases. Thus, in this study an emerging alternative of ferrous iron/peroxymonosulfate (Fe(II)/PMS), which can act as both an oxidant and a coagulant was employed prior to UF for treatment of natural surface water, and compared with conventional coagulation and ozonation. The results showed that the Fe(II)/PMS-UF system exhibited the best performance for dissolved organic carbon removal, likely due to the dual functions of coagulation and oxidation in the single process. The fluorescent and UV-absorbing organic components were more susceptible to ozonation than Fe(II)/PMS treatment. Fe(II)/PMS and ozonation pretreatments significantly increased the removal efficiency of atrazine, p-chloronitrobenzene and sulfamethazine by 12-76% and 50-94%, respectively, whereas coagulation exerted a minor influence. The Fe(II)/PMS pretreatment also showed the best performance for the reduction of both reversible and irreversible membrane fouling, and the performance was hardly affected by membrane pore size and surface hydrophobicity. In addition, the characterization of hydraulic irreversible organic foulants confirmed its effectiveness. These results demonstrate the potential advantages of applying Fe(II)/PMS as a pretreatment for UF to simultaneously control membrane fouling and improve the permeate quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  20. Temperature stable LiNbO3 surface acoustic wave device with diode sputtered amorphous TeO2 over-layer

    International Nuclear Information System (INIS)

    Dewan, Namrata; Tomar, Monika; Gupta, Vinay; Sreenivas, K.

    2005-01-01

    Amorphous TeO 2 thin film, sputtered in the O 2 +Ar(25%+75%) gas environment using a metallic tellurium target, has been identified as an attractive negative temperature coefficient of delay (TCD) material that can yield a temperature stable device when combined with a surface acoustic wave (SAW) device based on positive TCD material such as LiNbO 3 . The influence of amorphous TeO 2 over-layer on the SAW propagation characteristics (velocity and temperature coefficient of delay) of the SAW filters (36 and 70 MHz) based on 128 deg. rotated Y-cut X-propagating lithium niobate (128 deg. Y-X LiNbO 3 ) single crystal has been studied. It is found that 0.042 λ thick TeO 2 over-layer on a prefabricated SAW device operating at 36 MHz centre frequency, reduces the TCD of the device from 76 ppm deg. C -1 to almost zero (∼1.4 ppm deg. C -1 ) without deteriorating its efficiency and could be considered as a suitable alternative for temperature stable devices in comparison to conventional SiO 2 over-layer

  1. Interface chemistry and surface morphology evolution study for InAs/Al2O3 stacks upon in situ ultrahigh vacuum annealing

    Science.gov (United States)

    Wang, Xinglu; Qin, Xiaoye; Wang, Wen; Liu, Yue; Shi, Xiaoran; Sun, Yong; Liu, Chen; Zhao, Jiali; Zhang, Guanhua; Liu, Hui; Cho, Kyeongjae; Wu, Rui; Wang, Jiaou; Zhang, Sen; Wallace, Robert M.; Dong, Hong

    2018-06-01

    A systematic study of the interfacial chemistry for the HCl pretreated and native oxide InAs(100) samples upon atomic layer deposition (ALD) of Al2O3, and the post deposition annealing (PDA) process has been carried out, using in situ synchrotron radiation photoelectron spectroscopy. The "clean up" effect for the native oxide sample is detected, but it is not observed for the HCl pretreated sample. The out-diffusion and desorption of both In and As oxides have been characterized during the ALD process and the following PDA process. The surface morphology evolution during the PDA process is studied by in situ photo-emission electron microscopy. The bubbles emerged after PDA at 360 °C and grew up at 370 °C. After PDA at 400 °C and at higher temperatures, pits are seen in some areas, and the tear up of the Al2O3 film is seen in other areas with the formation of indium droplets. This study gives insight in the mechanism of elemental diffusion/desorption, which may associate the reliability of III-V semiconductor based devices.

  2. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    International Nuclear Information System (INIS)

    Percy, Kevin E.; Manninen, Sirkku; Haeberle, Karl-Heinz; Heerdt, C.; Werner, H.; Henderson, Gary W.; Matyssek, Rainer

    2009-01-01

    We examined the effect of ozone (O 3 ) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O 3 ranged from 64.5 to 74.2 μl O 3 l -1 h AOT40, and 117.1 to 123.2 nl O 3 l -1 4th highest daily maximum 8-h average O 3 concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O 3 . Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O 3 treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O 3 . Exposure to 2x O 3 increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O 3 on wax biosynthesis. These results demonstrate O 3 -induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  3. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface

    International Nuclear Information System (INIS)

    Wu Di; Liu Xiangdong; Lu Kai; Zhang Yaping; Wang Huan

    2009-01-01

    Ceramic coatings were fabricated on AZ91D Mg-alloy substrate by microarc oxidation in Na 2 SiO 3 -NaOH-Na 2 EDTA electrolytes with and without C 3 H 8 O 3 addition. The effects of different concentrations of C 3 H 8 O 3 contained in the electrolyte on coatings thickness were investigated. The surface morphologies, RMS roughness, phase compositions and corrosion resistance property of the ceramic coatings were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrochemical corrosion test respectively. It is found that the addition of C 3 H 8 O 3 into silicate electrolyte leads to increase of the unit-area adsorptive capacity of the negative ions at anode-electrolyte interface and thus improves the compactness and corrosion resistance of the MAO coating. The coating thickness decreases gradually with the increase of concentrations of C 3 H 8 O 3 in the electrolyte. The oxide coating formed in base electrolyte containing 4 mL/L C 3 H 8 O 3 exhibits the best surface appearance, the lowest surface RMS roughness (174 nm) and highest corrosion resistance. In addition, both ceramic coatings treated in base electrolyte with and without C 3 H 8 O 3 are mainly composed of periclase MgO and forsterite Mg 2 SiO 4 phase, but no diffraction peak of Mg phase is found in the patterns.

  5. Optimizing removal of cod from water by catalytic ozonation of cephalexin using response surface methodology

    International Nuclear Information System (INIS)

    Akhtar, J.; Amin, N.S.; Zahoor, M.K.

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the effect of circulation rates, ozone supply, cephalexin (CEX) concentration, and granular activated carbon (GAC) dose on removal of COD from solution. According to statistical analysis, all of the input variables exerted significant influence on COD removal, however, the effect of interaction variables was not found to be significant on comparative basis. Further, the developed quadratic regression model based on obtained results emphasized the significance of individual terms and little of interaction terms. The values of r/sup 2/ (0.959), adjusted r/sup 2/ (0.902) obtained by analysis of variance (ANOVA) indicates the significance of quadratic model in predicting desired response. The maximum of 70% of COD was removed in these experiments and optimized value according to main effect of variables was 60%. (author)

  6. Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures

    International Nuclear Information System (INIS)

    Zhang, Rui; Huang, Po-Chin; Lin, Ju-Chin; Takenaka, Mitsuru; Takagi, Shinichi

    2013-01-01

    The ultrathin GeO x /Ge interfaces formed on Ge (100) and (111) surfaces by applying plasma post oxidation to thin Al 2 O 3 /Ge structures are characterized in detail using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. It is found that the XPS signals assigned to Ge 1+ and the 2+ states in the GeO x layers by post plasma oxidation have oscillating behaviors on Ge (100) surfaces in a period of ∼0.3 nm with an increase in the GeO x thickness. Additionally, the oscillations of the signals assigned to Ge 1+ and 2+ states show opposite phase to each other. The similar oscillation behaviors are also confirmed on Ge (111) surfaces for Ge 1+ and 3+ states in a period of ∼0.5 nm. These phenomena can be strongly regarded as an evidence of the atomic layer-by-layer oxidation of GeO x /Ge interfaces on Ge (100) and (111) surfaces.

  7. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.

    Science.gov (United States)

    Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L

    2018-01-01

    We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

  8. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  9. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  10. Growth and domain structure of YBa2Cu3Ox films on neodymium gallate substrates with deviation of surface normal from [110] NdGaO3

    International Nuclear Information System (INIS)

    Bdikin, I.K.; Mozhaev, P.B.; Ovsyannikov, G.A.; Komissinskij, F.V.; Kotelyanskij, I.M.; Raksha, E.I.

    2001-01-01

    One investigated into growth, crystalline structure and electrophysical properties of YBa 2 Cu 3 O x (YBCO) epitaxial films grown on NdGaO 3 (NGO) substrates with substrate surface normal deviation from [110] by 5-26.6 deg angle around [001] with CeO 2 epitaxial sublayer or without it. Orientation of YBCO epitaxial films grown at these substrates is shown to be governed by occurrence of symmetrically equipment directions in substrates and in CeO 2 layer, as well as, by film precipitation rate. At precipitation high rate YBCO films on CeO 2 sublayer grow in [001] orientation independently of orientation of substrate and sublayer. One determined that at increase of substrate plane deviation angle from (110) NGO twinning of one or of both twin complexes in YBCO might be suppressed [ru

  11. Effect of surface Fe2O3 clusters on the photocatalytic activity of TiO2 for phenol degradation in water

    International Nuclear Information System (INIS)

    Sun, Qiong; Leng, Wenhua; Li, Zhen; Xu, Yiming

    2012-01-01

    Graphical abstract: Surface modified TiO 2 with iron oxide clusters through adsorption and decomposition of a large Fe(III) complex shows an enhanced activity for phenol degradation in water under UV light. But it was only observed with the clusters in a small size and at very low coverage on anatase. Highlights: ► Iron oxide clusters are made by decomposition of a large Fe(III) complex on TiO 2 . ► The modified anatase shows an enhanced activity for phenol photodegradation. ► The composite catalyst is very stable during four repeated experiments. - Abstract: Surface modification of TiO 2 with Fe 2 O 3 clusters was made through chemisorption of ferric phthalocyaninetetracarboxylate onto TiO 2 , followed by sintering in air to remove organic moiety. Solid characterization with electron paramagnetic resonance spectroscopy and other techniques showed that ferric oxides were highly dispersed on TiO 2 as a noncrystallized cluster, while TiO 2 phases remained unchanged. For phenol degradation in aerated aqueous suspension, only the sample containing less than 0.3 at.% Fe was more active than bare TiO 2 under UV light, whereas no activity was found under visible light. As anatase thermally transferred into rutile, the Fe-containing catalyst became less active than bare TiO 2 , mainly ascribed to the increased size of Fe 2 O 3 clusters. In the presence of H 2 O 2 , all Fe-containing catalysts were more active than bare TiO 2 . Moreover, similar trend in activity among different catalysts was also observed with the formation of hydroxyl radicals, and with the generation of photocurrent measured under N 2 with Fe/TiO 2 electrode. Present work clearly shows that only Fe 2 O 3 clusters in a small size and at low coverage on TiO 2 are beneficial to the photocatalytic reaction, while excess iron oxide is detrimental. Possible mechanism is discussed in the text.

  12. In situ ozone data for comparison with laser absorption remote sensor: 1980 pepe/neros program

    International Nuclear Information System (INIS)

    Mcdougal, D.S.; Lee, R.B. III; Bendura, R.J.

    1982-05-01

    Several sets of in situ ozone (O 3 ) measurements were made by a NASA aircraft in support of the laser absorption spectrometer (LAS) remote sensor. These measurements were designed to provide comparative O 3 data for the LAS sensor. The LAS, which was flown on a second aircraft, remotely measured the vertical burden of O 3 from the aircraft to the surface. In situ results of the air quality (O 3 and B sub scat) and meteorological (temperature and dewpoint) parameters for three correlative missions are presented. The aircraft flight plans, in situ concentration profiles and vertical burdens, and measurement errors are summarized

  13. Interaction between local and regional pollution during Escompte 2001: impact on surface ozone concentrations (IOP2a and 2b)

    Science.gov (United States)

    Cousin, F.; Tulet, P.; Rosset, R.

    2005-03-01

    Escompte, a European programme which took place in the Marseille region in June-July 2001, has been designed as an exhaustive database to be used for the development and validation of air pollution models. The air quality Mesoscale NonHydrostatic Chemistry model (Meso-NH-C) is used to simulate 2 days of an Intensive Observation Period (IOP) documented during the Escompte campaign, June 23 and 24, 2001. We first study the synoptic and local meteorological situation on June 23 and 24, using surface and aircraft measurements. Then, we focus on the pollution episode of June 24. This study emphasizes the deep impact of synoptic and local dynamics on observed ozone concentrations. It is shown that ozone levels are due both to regional and local factors, with highlights of the importance of ozone layering. More generally this confirms, even in an otherwise predominant local sea-breeze regime, the need to consider larger scale regional pollutant transport.

  14. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic); Clupek, Martin [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic); Babicky, Vaclav [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic); Janda, Vaclav [Department of Water Technology and Environmental Engineering, Institute of Chemical Technology, Technicka 5, 160 28 Prague 6 (Czech Republic); Sunka, Pavel [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic)

    2005-02-07

    Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min{sup -1}), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O{sub 2} mixtures with the maximum efficiency (energy yield) of 23 g kW h{sup -1} for 40% argon content.

  15. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel

    2005-01-01

    Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min -1 ), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O 2 mixtures with the maximum efficiency (energy yield) of 23 g kW h -1 for 40% argon content

  16. Understanding the influence of surface chemical states on the dielectric tunability of sputtered Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Venkata Saravanan, K; James Raju, K C

    2014-01-01

    The surface chemical states of RF-magnetron sputtered Ba 0.5 Sr 0.5 TiO 3 (BST5) thin films deposited at different oxygen mixing percentage (OMP) was examined by x-ray photoelectron spectroscopy. The O1s XPS spectra indicate the existence of three kinds of oxygen species (dissociated oxygen ion O 2 − , adsorbed oxide ion O − and lattice oxide ion O 2− ) on the films’ surface, which strongly depends on OMP. The presence of oxygen species other than lattice oxygen ion makes the films’ surface highly reactivity to atmospheric gases, resulting in the formation of undesired surface layers. The XPS results confirm the formation of surface nitrates for the films deposited under oxygen deficient atmosphere (OMP not ≦ 25%), whereas the films deposited in oxygen rich atmosphere (OMP not ≧ 75%) show the presence of metal-hydroxide. The influence of a surface dead layer on the tunable dielectric properties of BST5 films have been studied in detail and are reported. Furthermore, our observations indicate that an optimum ratio of Ar:O 2 is essential for achieving desired material and dielectric properties in BST5 thin films. The films deposited at 50% OMP have the highest dielectric tunability of ∼65% (@280 kV cm −1 ), with good ϵ r -E curve symmetry of 98% and low tan δ of 0.018. The figure of merit for these films is about 35, which is promising for frequency agile device applications. (papers)

  17. W-1% La2O3 Submitted to a Single Laser Pulse: Effect of Particles on Heat Transfer and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Pasquale Gaudio

    2018-05-01

    Full Text Available W-1% La2O3 has been irradiated by a single laser pulse (λ = 1064 nm, pulse duration τ ≈ 15 ns, pulse energy Ep ≈ 4 J, spot size Φ = 200 μm, surface power density I = 8.5 × 1011 W·cm−2 to simulate the effects of transient thermal loads of high energy occurring in a tokamak under operative conditions. The samples have been then examined by scanning electron microscope (SEM observations to investigate erosion effects and surface morphological features. A surface depression forms in the spot central area surrounded by a ridge due to the movement of molten metal. Owing to the burst of gas bubbles, hemispherical cavities of about 10 μm and deposited droplets are observed in the ridge while the zones surrounding the ridge thermal stresses arising from fast heating and successive cooling produce an extended network of micro-cracks that often follow grain boundaries. The results are discussed and compared to those obtained in a previous work on pure bulk W.

  18. Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III

    Directory of Open Access Journals (Sweden)

    T. Reusch

    2013-07-01

    Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.

  19. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    Science.gov (United States)

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  20. Effects of content and surface hydrophobic modification of BaTiO3 on the cooling properties of ASA (acrylonitrile-styrene-acrylate copolymer)

    Science.gov (United States)

    Xiang, Bo; Zhang, Jun

    2018-01-01

    For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.

  1. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    Science.gov (United States)

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  2. An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada

    Science.gov (United States)

    Yates, E. L.; Johnson, M. S.; Iraci, L. T.; Ryoo, J.-M.; Pierce, R. B.; Cullis, P. D.; Gore, W.; Ives, M. A.; Johnson, B. J.; Leblanc, T.; Marrero, J. E.; Sterling, C. W.; Tanaka, T.

    2017-09-01

    Increasing free tropospheric ozone (O3), combined with the high elevation and often deep boundary layers at western U.S. surface stations, poses challenges in attaining the more stringent 70 ppb O3 National Ambient Air Quality Standard. As such, use of observational data to identify sources and mechanisms that contribute to surface O3 is increasingly important. This work analyzes surface and vertical O3 observations over California and Nevada from 1995 to 2015. Over this period, the number of high O3 events (95th percentile) at the U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) sites has decreased during summer, as a result of decreasing U.S. emissions. In contrast, an increase in springtime 5th percentile O3 indicates a general increase of baseline O3. During 2012 there was a peak in exceedances and in the average spring-summer O3 mixing ratios at CASTNET sites. Goddard Earth Observing System-Chem results show that the surface O3 attributable to transport from the upper troposphere and stratosphere was increased in 2013 compared to 2012, highlighting the importance of measurements aloft. Vertical O3 measurements from aircraft, ozonesondes, and lidar show distinct seasonal trends, with a high percentage of elevated O3 laminae (O3 > 70 ppb, 3-8 km) during spring and summer. Analysis of the timing of high O3 surface events and correlation between surface and vertical O3 data is used to discuss varying sources of wes