WorldWideScience

Sample records for surface ocean waves

  1. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  2. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  3. On the interaction between ocean surface waves and seamounts

    Science.gov (United States)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  4. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    National Research Council Canada - National Science Library

    Sullivan, Peter P; McWilliams, James C; Melville, W. K

    2008-01-01

    ... planetary boundary layers (PBL). Efforts were focused on the effects of surface gravity waves on the near-surface dynamics, surface fluxes, and coupling between the atmospheric and oceanic PBLs...

  5. Impact of Surface Waves on SWOT’s Projected Ocean Accuracy

    OpenAIRE

    Peral, Eva; Rodríguez, Ernesto; Esteban-Fernández, Daniel

    2015-01-01

    The Surface Water and Ocean Topography (SWOT) mission being considered by NASA has, as one of its main objectives, to measure ocean topography with centimeter scale accuracy over kilometer scale spatial resolution. This paper investigates the impact of ocean waves on SWOT’s projected performance. Several effects will be examined: volumetric decorrelation, aliasing of ocean waves, backscattering modulation, and the so-called surfboard sampling.

  6. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  7. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  8. Soliton turbulence in shallow water ocean surface waves.

    Science.gov (United States)

    Costa, Andrea; Osborne, Alfred R; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E

    2014-09-05

    We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

  9. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  10. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    Science.gov (United States)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  11. Ocean Surface Waves and Turbulence: Air-Sea Fluxes and Climate Variability

    Science.gov (United States)

    Melville, W. Kendall

    2009-11-01

    Apart from heating of the atmosphere, two of the most important consequences of current climate variability are changes in sea level, and acidification of the oceans. Over decadal time scales, changes in sea level are caused by changes in heat content and salinity of the ocean, and by changes in mass resulting from exchanges between the ocean, glaciers and other land-based reservoirs. The oceans have absorbed about one third of the anthropogenic CO2 due to fossil fuel burning. This reduces the green house effect in the atmosphere, but the CO2 reacts in the surface waters of the ocean to lower pH. Conservative projections of sea level rise over the next century are O(0.1 - 1) m, while ocean acidification is already having an impact on marine ecosystems. Both these processes depend on air-sea fluxes: heat flux for sea level rise, and gas flux for ocean acidification. These fluxes are among the most poorly constrained in current climate models, but both ultimately depend on fluid dynamics at the ocean surface and in the adjacent boundary layers. Traditional boundary layer models of the marine boundary layer and the marine atmospheric boundary layer were based on classical theories of boundary layers over rigid surfaces, but there is increasing evidence that these models must now include surface wave effects. In this talk the motivating climate data and modeling will be briefly reviewed, and then recent work on surface wave dynamics, air-sea fluxes and the adjacent boundary layers will be presented. The roles of surface wave breaking, Langmuir circulations, wave-turbulence interactions and gravity-capillary waves will be discussed.

  12. Wave-Breaking Turbulence in the Ocean Surface Layer

    Science.gov (United States)

    2016-06-01

    under moderate wind speeds (Thomson et al. 2013). Assuming equilib- rium, and using a wind input formulation from Plant (1982), the TKE input is 1858...and wave direction at every frequency f of the wave energy spectrum E, and the factor of 0.04 in Plant (1982) is omitted because the adjustment of (ra...increasingly energetic wave breaking simply creates larger bubble clouds that achieve this limit. The highest dissipation rates calcu- lated here do

  13. Wavenumber Spectrum of Intermediate-Scale Ocean Surface Waves

    National Research Council Canada - National Science Library

    Hwang, Paul A

    2005-01-01

    ... (wavelengths between 0.02 and 6 m) under various sea-state conditions. The main result of the analysis is that the dependence of the dimensionless wave spectrum on the dimensionless wind friction velocity follows a power-law function...

  14. Wavenumber Spectrum of Intermediate-Scale Ocean Surface Waves

    National Research Council Canada - National Science Library

    Hwang, Paul A

    2005-01-01

    ... (wavelengths between 0.02 and 6 meters) under various sea-state conditions. The main result of the analysis is that the dependence of the dimensionless wave spectrum on the dimensionless wind-friction velocity follows a power-law function...

  15. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    Science.gov (United States)

    2008-06-06

    than about 5 m s −1 (Makin, Kudryavtsev & Mastenbroek 1995; Banner & Peirson 1998). Ocean boundary layers with vortex force and stochastic breaking...amplitude. Proc. Roy. Soc. Lond. A 342, 157–174. Makin, V. K., Kudryavtsev , V. N. & Mastenbroek, C. 1995 Drag of the sea surface. Boundary- Layer Met. 73...to study some of the impacts of fast-moving waves on marine surface layers (e.g., Gent and Taylor 1976; Gent 1977; Li 1995; Kudryavtsev and Makin 2004

  16. Statistical multi-model climate projections of surface ocean waves in Europe

    Science.gov (United States)

    Perez, Jorge; Menendez, Melisa; Camus, Paula; Mendez, Fernando J.; Losada, Inigo J.

    2015-12-01

    In recent years, the impact of climate change on sea surface waves has received increasingly more attention by the climate community. Indeed, ocean waves reaching the coast play an important role in several processes concerning coastal communities, such as inundation and erosion. However, regional downscaling at the high spatial resolution necessary for coastal studies has received less attention. Here, we present a novel framework for regional wave climate projections and its application in the European region. Changes in the wave dynamics under different scenarios in the Northeast Atlantic Ocean and the Mediterranean are analyzed. The multi-model projection methodology is based on a statistical downscaling approach. The statistical relation between the predictor (atmospheric conditions) and the predictand (multivariate wave climate) is based on a weather type (WT) classification. This atmospheric classification is developed by applying the k-means clustering technique over historical offshore sea level pressure (SLP) fields. Each WT is linked to sea wave conditions from a wave hindcast. This link is developed by associating atmospheric conditions from reanalysis with multivariate local waves. This predictor-predictand relationship is applied to the daily SLP fields from global climate models (GCMs) in order to project future changes in regional wave conditions. The GCMs used in the multi-model projection are selected according to skill criteria. The application of this framework uses CMIP5-based wave climate projections in Europe. The low computational requirements of the statistical approach allow a large number of GCMs and climate change scenarios to be studied. Consistent with previous works on global wave climate projections, the estimated changes from the regional wave climate projections show a general decrease in wave heights and periods in the Atlantic Europe for the late twenty-first century. The regional projections, however, allow a more detailed

  17. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    With the aim of retrieving, validating and mapping ocean surface winds and waves in the north Indian Ocean, GEOSAT altimeter data for the period November 1986 to October 1987 and available sea truth data for the above period were processed in SAC...

  18. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    Science.gov (United States)

    2017-05-09

    dates of the ER wave events are shown in Table 1 of Rydbeck and Jensen [2017], of which the first 14 events are included in this study. Intraseasonal...that is downwelling on its leading edge as indicated by the SSH maxima in the eastern IO. These are commonly referred to as Yoshida-Wyrtki jets and...resolution [Joseph et al., 2012]. Near the leading edge of the westward jet, between lags 5 and 10 days at 60°E, HYCOM MLT and NOAA SST anomalies are a local

  19. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    Science.gov (United States)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  20. Variation with age of anisotropy under oceans, from great circle surface waves

    International Nuclear Information System (INIS)

    Journet, B.; Jobert, N.

    1982-01-01

    Global great circle measurements of regionalized mantle Love wave phase velocities are interpreted in terms of regional models. The same study had been made by J. J. Leveque (1980) for Rayleigh waves, and the resulting models for the two oceanic regions of different ages are used as a basis for comparison: the observed Love wave dispersion cannot be explained with these models if isotropic. The models obtained by inversion of Love wave data are compared with the models mentioned; the discrepancy appearing in the 250 km depth range between the velocities β/sub H/ and β/sub V/ of respectively SH and SV waves is indicative of polarization anisotropy. Moreover, we put forward a significant variation from young to old oceans: the difference between β/sub H/, and β/sub V/ is of the order of 1% for the former, compared to 3% for the latter. This variation can bring information about the behaviour of upper mantle materials in connection with the motion of oceanic plates

  1. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers

    Science.gov (United States)

    Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall

    The wind-driven stably stratified mid-latitude oceanic surface turbulent boundary layer is computationally simulated in the presence of a specified surface gravity-wave field. The gravity waves have broad wavenumber and frequency spectra typical of measured conditions in near-equilibrium with the mean wind speed. The simulation model is based on (i) an asymptotic theory for the conservative dynamical effects of waves on the wave-averaged boundary-layer currents and (ii) a boundary-layer forcing by a stochastic representation of the impulses and energy fluxes in a field of breaking waves. The wave influences are shown to be profound on both the mean current profile and turbulent statistics compared to a simulation without these wave influences and forced by an equivalent mean surface stress. As expected from previous studies with partial combinations of these wave influences, Langmuir circulations due to the wave-averaged vortex force make vertical eddy fluxes of momentum and material concentration much more efficient and non-local (i.e. with negative eddy viscosity near the surface), and they combine with the breakers to increase the turbulent energy and dissipation rate. They also combine in an unexpected positive feedback in which breaker-generated vorticity seeds the creation of a new Langmuir circulation and instigates a deep strong intermittent downwelling jet that penetrates through the boundary layer and increases the material entrainment rate at the base of the layer. These wave effects on the boundary layer are greater for smaller wave ages and higher mean wind speeds.

  2. Ocean Wave Simulation Based on Wind Field.

    Science.gov (United States)

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  3. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  4. Ocean Wave Simulation Based on Wind Field

    Science.gov (United States)

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  5. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  6. Directional spectrum of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Gouveia, A.D.; Nagarajan, R.

    This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...

  7. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  8. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  9. Internal Ocean Waves

    Science.gov (United States)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90

  10. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.

  11. Mantle Serpentinization near the Central Mariana Trench Constrained by Ocean Bottom Surface Wave Observations

    Science.gov (United States)

    Cai, C.; Wiens, D. A.; Lizarralde, D.; Eimer, M. O.; Shen, W.

    2017-12-01

    We investigate the crustal and uppermost mantle seismic structure across the Mariana trench by jointly inverting Rayleigh wave phase and group velocities from ambient noise and longer period phase velocities from Helmholtz tomography of teleseismic waveforms. We use data from a temporary deployment in 2012-2013, consisting of 7 island-based stations and 20 broadband ocean bottom seismographs, as well as data from the USGS Northern Mariana Islands Seismograph Network. To avoid any potential bias from the starting model, we use a Bayesian Monte-Carlo algorithm to invert for the azimuthally-averaged SV-wave velocity at each node. This method also allows us to apply prior constraints on crustal thickness and other parameters in a systematic way, and to derive formal estimates of velocity uncertainty. The results show the development of a low velocity zone within the incoming plate beginning about 80 km seaward of the trench axis, consistent with the onset of bending faults from bathymetry and earthquake locations. The maximum depth of the velocity anomaly increases towards the trench, and extends to about 30 km below the seafloor. The low velocities persist after the plate is subducted, as a 20-30 km thick low velocity layer with a somewhat smaller velocity reduction is imaged along the top of the slab beneath the forearc. An extremely low velocity zone is observed beneath the serpentine seamounts in the outer forearc, consistent with 40% serpentinization in the forearc mantle wedge. Azimuthal anisotropy results show trench parallel fast axis within the incoming plate at uppermost mantle depth (2%-4% anisotropy). All these observations suggest the velocity reduction in the incoming plate prior to subduction results from both serpentinized normal faults and water-filled cracks. Water is expelled from the cracks early in subduction, causing a modest increase in the velocity of the subducting mantle, and moves upward and causes serpentinization of the outer forearc

  12. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  13. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    are known as intermediate or transitional water waves and if the depth of the water column is less than 1/20 of wavelength, they are called shallow water waves. In the case of both these waves, the particle motion is elliptical. Particle motions are shown in Figure 1. The velocity of waves is generally referred to as wave.

  14. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  15. Probabilistic aspects of ocean waves

    NARCIS (Netherlands)

    Battjes, J.A.

    1977-01-01

    Background material for a special lecture on probabilistic aspects of ocean waves for a seminar in Trondheim. It describes long term statistics and short term statistics. Statistical distributions of waves, directional spectra and frequency spectra. Sea state parameters, response peaks, encounter

  16. Simulation Tool for GNSS Ocean Surface Reflections

    OpenAIRE

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have...

  17. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    2001-01-01

    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  18. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean

    Science.gov (United States)

    Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric

    2016-04-01

    Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.

  19. Investigation on the Doppler shifts induced by 1-D ocean surface wave displacements by the first order small slope approximation theory: comparison of hydrodynamic models

    International Nuclear Information System (INIS)

    Yun-Hua, Wang; Yan-Min, Zhang; Li-Xin, Guo

    2010-01-01

    Based on the first order small slope approximation theory (SSA-I) for oceanic surface electromagnetic scattering, this paper predicts the Doppler shifts induced by wave displacements. Theoretical results from three distinct hydrodynamic models are compared: a linear model, the nonlinear Barrick model, and the nonlinear Creamer model. Meanwhile, the predicted Doppler shifts are also compared with the results associated to the resonant Bragg waves and the so-called long waves in the framework of the two-scale model. The dependences of the predicted Doppler shifts on the incident angle, the radar frequency, and the wind speed are discussed. At large incident angles, the predicted Doppler shifts for the linear and nonlinear Barrick models are found to be insensitive to the wind speed and this phenomenon is not coincident with the experimental data. The conclusions obtained in this paper are promising for better understanding the properties of time dependent radar echoes from oceanic surfaces. (classical areas of phenomenology)

  20. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    “Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.

  1. Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights

    Science.gov (United States)

    Wang, Xiaolan L.; Feng, Yang; Swail, Val R.

    2015-05-01

    This study uses the analysis of variance approaches to quantify the climate change signal and uncertainty in multimodel ensembles of statistical simulations of significant wave height (Hs), which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of sea level pressure. Here the signal of climate change refers to the temporal variations caused by the prescribed forcing. "Significant" means "significantly different from zero at 5% level." In a four-model ensemble of Hs simulations, the common signal—the signal that is simulated in all the four models—is found to strengthen over time. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant in 16.6% and 82.2% of the area by year 2005 and 2099, respectively. The global average of the variance proportion of the common signal increases from 0.75% in year 2005 to 12.0% by year 2099. The signal is strongest in the eastern tropical Pacific (ETP), featuring significant increases in both the annual mean and maximum of Hs in this region. The climate model uncertainty (i.e., intermodel variability) is significant nearly globally; its magnitude is comparable to or greater than that of the common signal in most areas, except in the ETP where the signal is much larger. In a 20-model ensemble of Hs simulations for the period 2006-2099, the model uncertainty is found to be significant globally; it is about 10 times as large as the variability between the RCP4.5 and RCP8.5 scenarios. The copyright line for this article was changed on 10 JUNE 2015 after original online publication.

  2. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  3. The Interaction of Ocean Waves and Wind

    Science.gov (United States)

    Janssen, Peter

    2004-10-01

    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  4. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  5. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    Science.gov (United States)

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  6. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2014-09-30

    Arctic sea ice has experienced since at least the beginning of the satellite era are believed to be caused by ice - albedo temperature feedback...dimensional (2D) ocean surface wave interactions with sea ice in a contemporary 3D Arctic ice /ocean model. To accomplish this primary goal, the objectives...of how ocean waves and sea ice interact, for use in operational models of the Arctic Basin and the adjacent seas ; – improve the forecasting

  7. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2015-09-30

    The first investigates how the brine volume gradient between the surface and underside of the sea ice affects its rigidity and flexural strength and... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of...2014 AUT Mathematical Sciences Symposium, Auckland , December 2014. Mosig, J. E. M. Rheological models of flexural-gravity waves in an ice covered ocean

  8. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  9. Exploring the influence of surface waves in the carbon dioxide transfer velocity between the ocean and atmosphere in the coastal region

    Science.gov (United States)

    Ocampo-Torres, Francisco Javier; Francisco Herrera, Carlos; Gutiérrez-Loza, Lucía; Osuna, Pedro

    2016-04-01

    Field measurements have been carried out in order to better understand the possible influence of ocean surface waves in the transfer of carbon dioxide between the ocean and atmosphere in the coastal zone. The CO2 fluxes are being analysed and results are shown in a contribution by Gutiérrez-Loza et al., in this session. Here we try to highlight the findings regarding the transfer velocity (kCO2) once we have incorporated direct measurements of carbon dioxide concentration in the water side. In this study direct measurements of CO2 fluxes were obtained with an eddy covariance tower located in the shoreline equipped with an infrared open-path gas analyzer (LI-7500, LI-COR) and a sonic anemometer (R3-100 Professional Anemometer, Gill Instruments), both at about 13 m above the mean sea level, and sampling at 20 Hz. For some period of time simultaneous information of waves was recorded with a sampling rate of 2 Hz using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) at 10 m depth and 350 m away from the tower. Besides, recently the concentration of CO2 in water has also been recorded making use of a SAMI-CO2 instrument. A subtle effect of the wave field is detected in the estimated kCO2. Looking into details of the surface currents being detected very near the air-sea interface through an ADPC, a certain association can be found with the gas transfer velocity. Furthermore, some of the possible effects of breaking wave induced turbulence in the coastal zone is to be addressed. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from CB-2011-01-168173 CONACYT project is greatly acknowledged.

  10. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  11. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  12. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  13. Viscoelastic Surface Waves

    Science.gov (United States)

    Borcherdt, R. D.

    2007-12-01

    General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.

  14. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  15. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing

    2017-10-24

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  16. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special...... conditions, have been analyzed in different geometries and settings. Nevertheless, they are still awaiting experimental demonstration. The most important advances in this topic are briefly discussed in this review, pointing out aspects that have not been clearly covered by the literature. Finally......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  17. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  18. Rogue waves in the ocean - review and progress

    Science.gov (United States)

    Pelinovsky, Efim; Kharif, Christian; Slunyaev, Alexey

    2010-05-01

    Rogue waves in the ocean and physical mechanisms of their appearance are discussed. Theyse waves are among waves naturally observed by people on the sea surface that represent inseparable feature of the Ocean. Rogue waves appear from nowhere, cause danger and disappear at once. They may occur at the surface of a relatively calm sea, reach not very high amplitudes, but be fatal for ships and crew due to their unexpectedness and abnormal features. The billows appear suddenly exceeding the surrounding waves twice and more, and obtained many names: abnormal, exceptional, extreme, giant, huge, sudden, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves; cape rollers, holes in the sea, walls of water, three sisters… Freak monsters, though living for seconds, were able to arouse superstitious fear of the crew, cause damage, death of heedless sailors or the whole ship. All these epithets are full of human fear and feebleness. The serious studies of the phenomenon started about 20-30 years ago and have been intensified during the recent decade. The research is being conducted in different fields: in physics (search of physical mechanisms and adequate models of wave enhancement and statistics), in geoscience (determining the regions and weather conditions when rogue waves are most probable), and in ocean and coastal engineering (estimations of the wave loads on fixed and drifting floating structures). Thus, scientists and engineers specializing in different subject areas are involved in the solution of the problem. The state-of-art of the rogue wave study is summarized in our book [Kharif, Ch., Pelinovsky, E., and Slunyaev, A. Rogue Waves in the Ocean. Springer, 2009] and presented in given review. Firstly, we start with a brief introduction to the problem of freak waves aiming at formulating what is understood as rogue or freak waves, what consequences their existence imply in our life, why people are so worried about them. Then we discuss existing

  19. Book review: Rogue waves in the ocean

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    Rogue Waves in the Ocean (2009) is a follow-on text to Extreme Ocean Waves (2008) edited by Pelinovsky and Kharif, both published by Springer. Unlike the earlier text, which is a compilation of papers on a variety of extreme waves that was the subject of a scientific conference in 2007, Rogues Waves in the Ocean is written, rather than edited, by Kharif, Pelinovsky, and Slunyaev and is focused on rogue waves in particular. The book consists of six chapters covering 216 pages. As the subject matter of each chapter is distinct, references appear at the end of each chapter rather than at the end of the book. The preface shows how each of the chapters relates to the larger study of rogue waves. The result is a book with a nice mix of eyewitness observations, physical theory, and statistics.

  20. Sunglitter Imagery Of The Ocean Surface Phenomena

    Science.gov (United States)

    Myasoedov, Alexander; Kudryavtsev, Vladimir; Chapron, Bertrand; Johannessen, Johnny

    2010-04-01

    An algorithm for retrieval of spatial variations of the mean square slope (MSS) of the sea surface from sunglint imagery is proposed. The retrieval algorithm is free on a prior suggestion on PDF model. The transfer function, relating the brightness contrast to the MSS contrasts, is found from observed sunglint brightness, where “real” PDF of the sea slopes has built-in. Developed approach was applied for analysis of the sunglint signature of the mesoscale ocean dynamics and internal waves. We found that the ocean currents (eddies, meanders, frontal lines) and internal waves are well visible on the sea surface as the MSS anomalies. Results of this study is further adopted by Kudryavtsev et al. (2010) for development of advanced approach for synergetic use of SAR and optical imagery in studies of meso-scale ocean dynamics.

  1. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas

    Science.gov (United States)

    Rixen, M.; Ferreira-Coelho, E.; Signell, R.

    2008-01-01

    Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).

  2. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  3. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves.......We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...

  4. Ocean wave parameters estimation using backpropagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Raju, D.H.

    is trained the ocean wave parameters can be estimated for unknown measured spectra, whereas significant wave height and spectral peak period are required to first generate the Scott spectra and then estimate other ocean wave parameters....

  5. Surface wave climatology and its variability in the North Indian Ocean based on ERA-Interim reanalysis

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; Sanilkumar, V.; Shanas, P.R.; Johnson, G.

    -Range Weather Forecasts (ECMWF) global atmospheric reanalysis product (ERA-Interim) for the period 1979–2012 are analyzed. Annual average significant wave height (SWH) of the NIO ranges from 1.5 to 2.5 m and the seasonal average is highest (3–3.5 m) during...

  6. Monstrous ocean waves during typhoon Krosa

    Directory of Open Access Journals (Sweden)

    P. C. Liu

    2008-06-01

    Full Text Available This paper presents a set of ocean wave time series data recorded from a discus buoy deployed near northeast Taiwan in western Pacific that was operating during the passage of Typhoon Krosa on 6 October 2007. The maximum trough-to-crest wave height was measured to be 32.3 m, which could be the largest Hmax ever recorded.

  7. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    is found to have similar spatial patterns as the Advanced Synthetic Aperture Radar (ASAR) radar backscatter; both show features of the bathymetry. Analysis of the wind field from the non-coupled and WBLM coupled experiments show that the wind-wave coupling is important in strong wind conditions, varying......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...

  8. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  9. The physical structure of the oceanic surface-layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, K.N.

    1981-01-01

    A study is presented of the structure of the near-surface layer of the ocean under various hydrometeorological conditions. Such a study allows the isolation of border measures for a four characteristic regime for the top ocean layer: 1) intensive wind-wave mixing; 2) Langmuir circulation; 3) intense solar heating during still and calm weather (with and without internal wave modulations); 4) a pressing-out of surface sediment. It is demonstrated that the spatial temperature change in the ocean surface, the thermal structure, and the heat attainment in the top layer have various characteristics during different regimes and this must be considered during the measuring of the ocean surface temperature with the contact method as well as during the comparison of contact and satallite data on the ocean surface temperature. The necessity for more research in this area is underscored.

  10. The Global Signature of Ocean Wave Spectra

    Science.gov (United States)

    Portilla-Yandún, Jesús

    2018-01-01

    A global atlas of ocean wave spectra is developed and presented. The development is based on a new technique for deriving wave spectral statistics, which is applied to the extensive ERA-Interim database from European Centre of Medium-Range Weather Forecasts. Spectral statistics is based on the idea of long-term wave systems, which are unique and distinct at every geographical point. The identification of those wave systems allows their separation from the overall spectrum using the partition technique. Their further characterization is made using standard integrated parameters, which turn out much more meaningful when applied to the individual components than to the total spectrum. The parameters developed include the density distribution of spectral partitions, which is the main descriptor; the identified wave systems; the individual distribution of the characteristic frequencies, directions, wave height, wave age, seasonal variability of wind and waves; return periods derived from extreme value analysis; and crossing-sea probabilities. This information is made available in web format for public use at http://www.modemat.epn.edu.ec/#/nereo. It is found that wave spectral statistics offers the possibility to synthesize data while providing a direct and comprehensive view of the local and regional wave conditions.

  11. Surface wave generation due to glacier calving

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2013-02-01

    Full Text Available Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks falling into water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.

  12. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich...... platform for applications of surface photonics. Most of these surface waves are directional and as such their propagation can be effectively controlled by changing wavelength or material parameters tuning....

  13. Neural networks for estimation of ocean wave parameters

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Raju, D.H.

    as measured ocean wave spectra off Mormugao, west coast of India. The correlations of neural network and Scott spectra are also compared. Once the network is trained, the ocean wave parameters can be estimated for unknown measured spectra, whereas significant...

  14. Simulating Freak Waves in the Ocean with CFD Modeling

    Science.gov (United States)

    Manolidis, M.; Orzech, M.; Simeonov, J.

    2017-12-01

    Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.

  15. Variational stereo imaging of oceanic waves with statistical constraints.

    Science.gov (United States)

    Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise

    2013-11-01

    An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

  16. Ocean Wave Energy Harvesting Devices

    Science.gov (United States)

    2008-01-01

    Conmiow W re Tif d. b §n P edo W ScUAe BM BMW- Nbat# PwVdnO 250- 300 P 2 ryin 1.7-4sec 573 15.1 2D 5 264o 851 0.05BO/o X-Od 1GCD AM 1 tr 2-4smc 198 11.87 4...o Teledyne Benthos is developing a low power surface "Gateway" communications buoy for use in underwater acoustic to satellite and/or RF

  17. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  18. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  19. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  20. Colombian ocean waves and coasts modeled by special functions

    Science.gov (United States)

    Duque Tisnés, Simón

    2013-06-01

    Modeling the ocean bottom and surface of both Atlantic and Pacific Oceans near the Colombian coast is a subject of increasing attention due to the possibility of finding oil deposits that haven't been discovered, and as a way of monitoring the ocean limits of Colombia with other countries not only covering the possibility of naval intrusion but as a chance to detect submarine devices that are used by illegal groups for different unwished purposes. In the development of this topic it would be necessary to use Standard Hydrodynamic Equations to model the mathematical shape of ocean waves that will take differential equations forms. Those differential equations will be solved using computer algebra software and methods. The mentioned solutions will involve the use of Special Functions such as Bessel Functions, Whittaker, Heun, and so on. Using the Special Functions mentioned above, the obtained results will be simulated by numerical methods obtaining the typical patterns around the Colombian coasts (both surface and bottom). Using this simulation as a non-perturbed state, any change in the patter could be taken as an external perturbation caused by a strange body or device in an specific area or region modeled, building this simulation as an ocean radar or an unusual object finder. It's worth mentioning that the use of stronger or more rigorous methods and more advanced Special Functions would generate better theoretical results, building a more accurate simulation model that would lead to a finest detection.

  1. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  2. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  3. Ocean Current and Wave Effects on Wind Stress Drag Coefficient Over the Global Ocean

    National Research Council Canada - National Science Library

    Kara, A. B; Metzger, E. J; Bourassa, Mark A

    2007-01-01

    ...%), but the notable impact of the latter is only evident in the tropical Pacific Ocean; (2) the presence of waves generally makes winds weaker and C0 lower almost everywhere over the global ocean; (3...

  4. Long Term Autonomous Ocean Remote Sensing Utilizing the Wave Glider

    Science.gov (United States)

    Griffith, J.

    2012-12-01

    Rising costs of ship time and increasing budgetary restrictions make installation and maintenance of fixed ocean buoys a logistical and financial challenge. The cost associated with launch, recovery, and maintenance has resulted in a limited number of deployed buoys, restricting data on oceanic conditions. To address these challenges, Liquid Robotics (LRI) has developed the Wave Glider, an autonomous, mobile remote sensing solution. This system utilizes wave energy for propulsion allowing for long duration deployments of up to one year while providing real-time data on meteorological and oceanographic conditions. In November 2011, LRI deployed four Wave Gliders on a mission to cross the Pacific Ocean (the PacX) from San Francisco to Australia (two vehicles) or Japan (two vehicles) while transmitting data on weather conditions, wave profiles, sea surface temperatures, and biological conditions in real-time. This report evaluates the vehicle's ability to operate as an ocean going data platform by comparing data from the onboard weather sensors with two moored buoys, NDBC 46092 (Monterey Bay) and NDBC 51000 (200 nmi NE of Maui). The report also analyzes data transmitted from all four vehicles as they passed directly through a tropical storm 580 nmi NE of Hawaii. Upon arriving at one of the aforementioned buoys, the gliders continuously circled for a period of two days at a distance of three to eight nautical miles to build a comparative dataset. Data from both platforms were streamed in near real time enabling mid-mission evaluation of the performance of sensors. Overall, results varied from a <0.5% difference in barometric pressure between buoy NDBC 46092 and the gliders to high disagreement in wind speed and direction. While comparisons to moored buoy data can provide valuable insight into the relative accuracy of each platform, differences in agreement on variables such as wind speed and direction were attributed to micro-spatial variability in oceanic conditions

  5. Toward An Internal Gravity Wave Spectrum In Global Ocean Models

    Science.gov (United States)

    2015-05-14

    Toward an internal gravity wave spectrum in global ocean models Malte Müller1,2, Brian K. Arbic3, James G. Richman4, Jay F. Shriver4, Eric L. Kunze5...fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines...able to simulate the internal gravity wave spectrum and the extent to which nonlinear internal wave-wave interactions contribute to the simulated

  6. An update to the Surface Ocean CO

    NARCIS (Netherlands)

    Bakker, D.C.E.; de Baar, H.J.W.; van heuven, S.

    2014-01-01

    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version

  7. Interactions of Ocean Fronts with Waves and Turbulence

    Science.gov (United States)

    Fox-Kemper, Baylor; Suzuki, Nobuhiro

    2015-11-01

    High resolution simulations and observations of the ocean surface boundary layer have revealed 100m to 10km frontal and filamentary structures in temperature and other properties worldwide. The formation and evolution of these features, through frontogenesis, instability, and frontolysis is an important and often poorly-simulated part of the climate system, yet fronts and filaments strongly affect surface layer dynamics and the transport of energy, momentum, and gasses through this layer. These features also dominate the transport of oil spills and pollutants over a wide range of scales. Analysis of a multi-scale, non-hydrostatic, large eddy simulation spanning 20km fronts to 5m turbulence will be presented. The theory of the interactions of the fronts with turbulence and surface waves will be illustrated, and the consequences of these interactions on frontal strength and tracer transport will be quantified. Supported by NSF 1258907 and BP/The Gulf of Mexico Research Initiative (CARTHE).

  8. CMIP5-based global wave climate projections including the entire Arctic Ocean

    Science.gov (United States)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  9. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  10. Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods

    DEFF Research Database (Denmark)

    Reikard, Gordon; Pinson, Pierre; Bidlot, Jean

    2011-01-01

    (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...

  11. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    coded maps, showing the distribution of mean monthly values of wind and wave parameters over 2.5 degrees square grids. Altimeter derived wind and wave parameters are compared with (1) winds and waves obtained through ships of opportunity and documented...

  12. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  13. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    Science.gov (United States)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  14. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    Science.gov (United States)

    McIntosh, Peter C.; Hendon, Harry H.

    2017-06-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  15. Reduced order ARMA spectral estimation of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Witz, J.A; Lyons, G.J.

    Research 14 (1992) 303-312 Reduced order ARMA spectral estimation of ocean waves S. Mandal,* J.A. Witz & G.J. Lyons Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK (Received 15 September 1991...," accepted 12 March 1992 ) Several system identification techniques are available for determining parametric models of dynamic systems based on the input and output of stochastic processes such as ocean waves. Here we establish a reduced order...

  16. Databases of surface wave dispersion

    Directory of Open Access Journals (Sweden)

    L. Boschi

    2005-06-01

    Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earth’s lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earth’s crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.

  17. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    Science.gov (United States)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  18. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  19. Mechanisms for SAR imaging of ocean surface phenomena: Theory and experiment

    Science.gov (United States)

    Vesecky, J. F.

    1983-01-01

    Understanding the SAR response to surface wave is a central issue in the analysis of SAR ocean images. The imaging mechanism for gravity waves and the practical question of just which characteristics of the ocean wave field can be measured remotely using SAR were examined. Assessments of wave imaging theory are based primarily on comparisons of the directional wave height variance spectrum psi (K) measured by in situ buoys with estimates from SAR images. Other criteria are also recommended, e.g., the effects of focus adjustments. It is assumed that fluctuations in SAR image intensity are proportional to fluctuations in ocean surface height. If this were true, the Fourier power spectrum of a SAR image and corresponding surface measurements of psi would coincide. Differences between SAR estimates based on this hypothesis and buoy measurements of psi are then used to begin the assessment of rival wave imaging theories.

  20. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    not accurately represent the measured values. The parametric or differential equation based on wind wave relationship and a differential equation of wave energy are solved numerically in wave forecasting. This is generally employed to give an estimate over... to the biological neurons, works on the input and output passing through a hidden layer. The ANN used here is a data- oriented modeling technique to find relations between input and output patterns by self learning and without any fixed mathematical form assumed...

  1. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  2. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  3. Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    Science.gov (United States)

    Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.

    1984-01-01

    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.

  4. Ocean swell within the kinetic equation for water waves

    Directory of Open Access Journals (Sweden)

    S. I. Badulin

    2017-06-01

    Full Text Available Results of extensive simulations of swell evolution within the duration-limited setup for the kinetic Hasselmann equation for long durations of up to 2  ×  106 s are presented. Basic solutions of the theory of weak turbulence, the so-called Kolmogorov–Zakharov solutions, are shown to be relevant to the results of the simulations. Features of self-similarity of wave spectra are detailed and their impact on methods of ocean swell monitoring is discussed. Essential drop in wave energy (wave height due to wave–wave interactions is found at the initial stages of swell evolution (on the order of 1000 km for typical parameters of the ocean swell. At longer times, wave–wave interactions are responsible for a universal angular distribution of wave spectra in a wide range of initial conditions. Weak power-law attenuation of swell within the Hasselmann equation is not consistent with results of ocean swell tracking from satellite altimetry and SAR (synthetic aperture radar data. At the same time, the relatively fast weakening of wave–wave interactions makes the swell evolution sensitive to other effects. In particular, as shown, coupling with locally generated wind waves can force the swell to grow in relatively light winds.

  5. Photonics surface waves on metamaterials interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-01-01

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to the...

  6. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  7. Developing Malaysian Ocean Wave Database Using Satellite

    National Research Council Canada - National Science Library

    Yaakob, Omar; Zainudin, Norazimar; Samian, Yahya; Malik, Adi M; Palaraman, Robiahtul A

    2004-01-01

    Correct wave data is a very important input to predict the performances of the marine vehicles and structures at preliminary design stages particularly regarding safety effectiveness and comfort of passengers and crews...

  8. In Brief: Waves tracked across Indian Ocean

    Science.gov (United States)

    Zielinski, Sarah

    2007-05-01

    Waves that were 11 meters high when they struck Réunion Island on 12 May have been detected with the European Space Agency satellite Envisat. The waves originated from very intense storm winds south of Cape Town, South Africa, on 8 May and traveled northeast for nearly 4000 kilometers before hitting the island's southern port of Saint Pierre, leaving two fishermen missing and flooding homes and businesses. Bertrand Chapron of the French Research Institute for Exploitation of the Sea, one of the scientists who used the Envisat Synthetic Aperture Radar data to track the waves, said that in the future the same technology might be used to better predict the arrival time and intensity of these types of waves.

  9. Rossby Waves in the Arctic Ocean

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Schmith, Torben

    The Arctic Ocean has a characteristic stable stratification with fresh and cold water occupying the upper few hundred meters and the warm and more saline Atlantic waters underneath. These water masses are separated by the cold halocline. The stability of the cold halocline regulates the upward...... directed turbulent heat flux from the Atlantic water to the Arctic water. This heat flux is a part of the arctic energy budget and is important for large scale sea ice formation and melting. Due to the strong vertical stratification combined with its almost circular boundary, the Arctic Ocean supports...

  10. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  11. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media...

  12. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  13. Equatorial Oceanic Waves and the Evolution of 2007 Positive Indian Ocean Dipole

    Directory of Open Access Journals (Sweden)

    Iskhaq Iskandar

    2014-01-01

    Full Text Available The role of equatorial oceanic waves on the evolution of the 2007 positive Indian Ocean Dipole (pIOD event was evaluated using available observations and output from a quasi-analytical linear wave model. It was found that the 2007 pIOD event was a weak and short-lived event: developed in the mid-summer (July, matured in the early-fall (September, and terminated in the mid-fall (October. The evolution of the 2007 pIOD event was linked to the equatorial wave dynamics. The event development was associated with the generation of upwelling equatorial Kelvin waves (westward current anomalies generated by easterly wind anomalies. The event termination was associated with the occurrence of eastward zonal current anomalies resulting from a complex interplay between the wind-forced down welling Kelvin waves and the eastern-boundary-reflected Rossby waves. Results from a quasi-analytical linear wave model show that during the event development and maturation, the wind-forced Kelvin waves played a dominant role in generating zonal current anomalies along the equatorial Indian Ocean, while the eastern-boundary-reflected Rossby waves tended to weaken the wind-forced Kelvin wave signals. During the event termination our model shows that the initiation of anomalous eastward current resulted from the reflected Rossby waves at the eastern boundary. The wind-forced Kelvin waves associated with the seasonal reversal of the monsoon further strengthened the eastward zonal currents generated by the boundary-generated Rossby waves in late-October/early-November. This highlights the importance of the eastern-boundary-reflected Rossby waves on the IOD event termination.

  14. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  15. Swimming using surface acoustic waves.

    Directory of Open Access Journals (Sweden)

    Yannyk Bourquin

    Full Text Available Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.

  16. Ocean Wave Characteristics in Indonesian Waters for Sea Transportation Safety and Planning

    Directory of Open Access Journals (Sweden)

    Roni Kurniawan

    2016-02-01

    Full Text Available This study was aimed to learn about ocean wave characteristics and to identify times and areas with vulnerability to high waves in Indonesian waters. Significant wave height of Windwaves-05 model output was used to obtain such information, with surface level wind data for 11 years period (2000 to 2010 from NCEP-NOAA as the input. The model output data was then validated using multimission satellite altimeter data obtained from Aviso. Further, the data were used to identify areas of high waves based on the high wave’s classification by WMO. From all of the processing results, the wave characteristics in Indonesian waters were identified, especially on ALKI (Indonesian Archipelagic Sea Lanes. Along with it, which lanes that have high potential for dangerous waves and when it occurred were identified as well. The study concluded that throughout the years, Windwaves-05 model had a magnificent performance in providing of ocean wave characteristics information in Indonesian waters. The information of height wave vulnerability needed to make a decision on the safest lanes and the best time before crossing on ALKI when the wave and its vulnerability is likely low. Throughout the years, ALKI II is the safest lanes among others since it has been identified of having lower vulnerability than others. The knowledge of the wave characteristics for a specific location is very important to design, plan and vessels operability including types of ships and shipping lanes before their activities in the sea.

  17. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  18. Variations in return value estimate of ocean surface waves - a study based on measured buoy data and ERA-Interim reanalysis data

    Science.gov (United States)

    Muhammed Naseef, T.; Sanil Kumar, V.

    2017-10-01

    An assessment of extreme wave characteristics during the design of marine facilities not only helps to ensure their safety but also assess the economic aspects. In this study, return levels of significant wave height (Hs) for different periods are estimated using the generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) based on the Waverider buoy data spanning 8 years and the ERA-Interim reanalysis data spanning 38 years. The analysis is carried out for wind-sea, swell and total Hs separately for buoy data. Seasonality of the prevailing wave climate is also considered in the analysis to provide return levels for short-term activities in the location. The study shows that the initial distribution method (IDM) underestimates return levels compared to GPD. The maximum return levels estimated by the GPD corresponding to 100 years are 5.10 m for the monsoon season (JJAS), 2.66 m for the pre-monsoon season (FMAM) and 4.28 m for the post-monsoon season (ONDJ). The intercomparison of return levels by block maxima (annual, seasonal and monthly maxima) and the r-largest method for GEV theory shows that the maximum return level for 100 years is 7.20 m in the r-largest series followed by monthly maxima (6.02 m) and annual maxima (AM) (5.66 m) series. The analysis is also carried out to understand the sensitivity of the number of observations for the GEV annual maxima estimates. It indicates that the variations in the standard deviation of the series caused by changes in the number of observations are positively correlated with the return level estimates. The 100-year return level results of Hs using the GEV method are comparable for short-term (2008 to 2016) buoy data (4.18 m) and long-term (1979 to 2016) ERA-Interim shallow data (4.39 m). The 6 h interval data tend to miss high values of Hs, and hence there is a significant difference in the 100-year return level Hs obtained using 6 h interval data compared to data at 0.5 h interval. The

  19. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Weimin Huang

    2017-12-01

    Full Text Available Ocean wind and wave parameters can be measured by in-situ sensors such as anemometers and buoys. Since the 1980s, X-band marine radar has evolved as one of the remote sensing instruments for such purposes since its sea surface images contain considerable wind and wave information. The maturity and accuracy of X-band marine radar wind and wave measurements have already enabled relevant commercial products to be used in real-world applications. The goal of this paper is to provide a comprehensive review of the state of the art algorithms for ocean wind and wave information extraction from X-band marine radar data. Wind measurements are mainly based on the dependence of radar image intensities on wind direction and speed. Wave parameters can be obtained from radar-derived wave spectra or radar image textures for non-coherent radar and from surface radial velocity for coherent radar. In this review, the principles of the methodologies are described, the performances are compared, and the pros and cons are discussed. Specifically, recent developments for wind and wave measurements are highlighted. These include the mitigation of rain effects on wind measurements and wave height estimation without external calibrations. Finally, remaining challenges and future trends are discussed.

  20. WAVE DISPERSION STUDY IN THE INDIAN OCEAN TSUNAMI OF DECEMBER 26, 2004

    Directory of Open Access Journals (Sweden)

    Juan Horrillo

    2006-01-01

    Full Text Available A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive, the nonlinear Boussinesq and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation.

  1. Validation Test Report for the Coupled Ocean/Atmosphere MesoscalePrediction System (COAMPS) Version 5.0: Ocean/Wave Component Validation

    Science.gov (United States)

    2012-12-31

    following mechanisms: 1) Stokes drift current ( SDC ) in which a particle floating at the free surface experiences a net drift velocity in the...forcing fields are passed from SWAN to NCOM. SDC causes ocean current speeds to increase, but enhanced vertical mixing in the surface mixed layer...increased shear) will decrease currents. The SDC also tends to increase bottom stress. Ocean model water levels can modify the water depth used in wave

  2. Do wave heights and water levels increase ocean lifeguard rescues?

    Science.gov (United States)

    Koon, William; Rowhani-Rahbar, Ali; Quan, Linda

    2017-12-05

    To investigate the association of wave height and tidal water level changes with the frequency of ocean lifeguard rescues. All ocean lifeguard rescues recorded by Newport Beach Lifeguards in 2015 and 2016 were linked by time and location to weather and ocean variables contained in other historical databases. We performed separate multivariable analyses using mixed effects negative binomial regression to evaluate the total effects of wave height, mean water level (primarily set by tidal elevation), and rising vs. falling water level, on the frequency of ocean rescue in the study location, controlling for confounding variables. Newport Beach Lifeguards made 8046 rescues during the study period. In all areas of the beach, rescue frequency increased as waves got larger (IRR: 3.25; 95%CI: 2.91-3.79) but then decreased in large surf (IRR: 0.52; 95%CI: 0.37-0.73). In two sections of beach, lifeguards made more rescues during lower water levels, but in the third section of beach, made more rescues during higher water levels. Rescue frequency increased in two sections of beach with rising water levels, but did not in the other section. Wave height, water level, and water level direction were associated with rescue frequency, but the environmental factors included in the analysis did not fully account for most variation in rescue frequency. Other factors need to be evaluated to identify major determinants of rescue frequency. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Simulation study of acoustic wave propagation in ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohite-Patil, T.B.; Saran, A.K.; Sawant, S.R.; Chile, R.H.; Mohite-Patil, T.T.

    Many reports are available on the sound attenuation and speed in the deep ocean, as a function of different ingredients of sea. The absorption and speed of sound waves are related to the change in sound speed, depth, salinity, temperature, PH...

  4. Yanai waves in the western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, A; Shankar, D.; McCreary, J.P.; Vinayachandran, P.N.

    Observations and models have shown the presence of intraseasonal fluctuations in 20-30-day and 10-20-day bands in the equatorial Indian Ocean west of 60 degrees E (WEIO). Their spatial and temporal structures characterize them as Yanai waves, which...

  5. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review

    OpenAIRE

    Weimin Huang; Xinlong Liu; Eric W. Gill

    2017-01-01

    Ocean wind and wave parameters can be measured by in-situ sensors such as anemometers and buoys. Since the 1980s, X-band marine radar has evolved as one of the remote sensing instruments for such purposes since its sea surface images contain considerable wind and wave information. The maturity and accuracy of X-band marine radar wind and wave measurements have already enabled relevant commercial products to be used in real-world applications. The goal of this paper is to provide a comprehensi...

  6. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    elements in metal waveguides increase the number of their natural modes and give rise to new effects accompanying wave propagation, e.g. excitation of SPW in these waveguides. Such large area surface wave plasma sources have been reported using a microwave launcher of large aperture formed on a waveguide, ...

  7. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    Abstract. A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between ...

  8. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    Directory of Open Access Journals (Sweden)

    Junjie Wang

    2015-08-01

    Full Text Available Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD with a wavelet threshold denoising model (i.e., CEEMD-Wavelet. This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.

  9. Modeling ocean wave propagation under sea ice covers

    Science.gov (United States)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  10. Forced Internal Waves in the Arctic Ocean.

    Science.gov (United States)

    1980-05-01

    Conseil Perm. Intern. p. l’Expl. de la Mer, Pub. de Circonstance, No. 43, 47 pp. Estoque , M. A. and C. M. Bhumralker, 1969. Flow over a localized heat...surface stress. Two different integral expressions are de - rived for the response and they give identical results. Using estimates of surface stress based...regulate the rotation rate of the drum and this, along with the large drum diameter, assured a constant lowering speed. The automatic control of the

  11. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents

    Science.gov (United States)

    Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan

    2014-01-01

    Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719

  12. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  13. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  14. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  15. Shallow water sound propagation with surface waves.

    Science.gov (United States)

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  16. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  17. Response of ocean bottom dwellers exposed to underwater shock waves

    Science.gov (United States)

    Hosseini, S. H. R.; Kaiho, Kunio; Takayama, Kazuyoshi

    2016-01-01

    The paper reports results of experiments to estimate the mortality of ocean bottom dwellers, ostracoda, against underwater shock wave exposures. This study is motivated to verify the possible survival of ocean bottom dwellers, foraminifera, from the devastating underwater shock waves induced mass extinction of marine creatures which took place at giant asteroid impact events. Ocean bottom dwellers under study were ostracoda, the replacement of foraminifera, we readily sampled from ocean bottoms. An analogue experiment was performed on a laboratory scale to estimate the domain and boundary of over-pressures at which marine creatures' mortality occurs. Ostracods were exposed to underwater shock waves generated by the explosion of 100mg PETN pellets in a chamber at shock over-pressures ranging up to 44MPa. Pressure histories were measured simultaneously on 113 samples. We found that bottom dwellers were distinctively killed against overpressures of 12MPa and this value is much higher than the usual shock over-pressure threshold value for marine-creatures having lungs and balloons.

  18. Unified Approach of Unmanned Surface Vehicle Navigation in Presence of Waves

    Directory of Open Access Journals (Sweden)

    Oren Gal

    2011-01-01

    Full Text Available Most of the present work for unmanned surface vehicle (USV navigation does not take into account environmental disturbances such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves' formulation with the probabilistic velocity obstacle (PVO method for autonomous navigation. A simple navigation algorithm is presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and obstacles avoidance is introduced.

  19. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  20. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  1. Indian Ocean dipole modulated wave climate of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.; Glejin, J.; Amrutha, M.M.

    are available on the website of the Japanese Agency of Marine–Earth Science and Technology (www.jamstec.go.jp). The tropical IO displays strong inter-annual climate vari- ability associated with the El Niño–Southern Oscillation (ENSO) and the IOD (Murtugudde et... in this study and the details of the numerical mod- Ocean Sci., 12, 369–378, 2016 www.ocean-sci.net/12/369/2016/ T. R. Anoop et al.: IOD modulated waves in Arabian Sea 371 els are described in Sect. 2. Section 3 describes results and discussion, and the main...

  2. Modeling Non-linear Ocean Wave Amplification in Coastal Settings

    Science.gov (United States)

    Harrington, J. P.; Cox, R.; Brennan, J.; Clancy, C.; Herterich, J.; Dias, F.

    2016-12-01

    Coastal boulder deposits occur in many locations worldwide, along high-energy coastlines. They contain clasts with masses >100 t in some cases, deposited many m above high water and many tens of m inland, often at the top of steep cliffs. The clasts are moved by storm waves, despite being at elevations and inshore distances that should be unreachable by recorded sea states. The question is, therefore, how are storm waves amplified to the extent needed to transport megagravel inshore? As climate changes, with the risk of increased storminess, it is important to understand this issue, as it is central to understanding inland transmission of fluid forces during storm events. Numerical modeling is a powerful technique for exploring this complex problem. We used a conformal mapping solution to Euler's equations to explore runup of 2D wave trains against a vertical barrier (simulating a coastal cliff). Previous research showed that modeled wave trains passing over flat bathymetry experience vertical runup up to 6 times the initial wave amplitude for both short- (3 times water depth) and long- (125 times depth) wavelength waves. We increased the model complexity by including a bathymetric step, causing an abrupt depth decrease before the cliff. We found that the uneven bathymetry further amplified both short- and long-wavelength waves. Short-wavelength simulations were hampered by our code's limitations in solving Euler's equations for steep waves, and crashed before reaching maximum runups: ongoing work focuses on solving the computational problems. These problems did not affect the long-wavelength simulations, however, which returned maximum runup values up to 10 times initial amplitude. The key message is that bathymetric effects can drive large wave-height amplifications. This suggests that enhanced runup for long-wavelength waves caused by variable bathymetry could be a key factor in cases where ocean waves overtop steep cliffs and transport boulders well above high

  3. The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia

    Science.gov (United States)

    Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha

    2017-11-01

    The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.

  4. T-wave observations on ocean-bottom seismometers offshore eastern Taiwan: effects of ocean sound speed perturbations and seafloor topography

    Science.gov (United States)

    Lin, C.; Chuang, Y. L.; Liu, R.; Huang, C.; Chen, C.; Kuo, B.

    2013-12-01

    T waves excited by earthquakes propagate along the SOFAR channel with low transmission loss, and therefore can be recorded on land-based seismic stations and hydrophones located thousands of kilometers away from earthquake epicenters. Early T-wave observations are mostly based on recordings by land-based stations due to the mechanics of the energy conversion of acoustic waves into seismic phases. Recently, T-wave signals have also been detected by ocean-bottom seismometers (OBS) at deep ocean basin offshore eastern Taiwan, raising the question of how deep ocean environment affects the generation and propagation of T waves. In this study, we examined the seismic waveform data recorded at 31 OBSs deployed in Okinawa Trough and Huatung Basin from 2006 to 2012. During this time period, there are 440 regional earthquakes with magnitude larger than 5 in the Western Pacific Ocean. A total of 68 T-wave events are identified using the criteria that significant energy in the dominant frequency of ~2-10 Hz and time duration longer than 100 seconds. Most of these events were generated by shallow-depth (less than 50 km) earthquakes, with only one exception by deep source of 225 km. Among these 68 events, 19 events were recorded on 3 OBSs located at 4500-m depth of Huatung Basin, where the depth of minimum sound speed is around 1100 m. To understand how acoustic energy scatters from the SOFAR channel into the ocean bottom, we apply the acoustic parabolic equation (PE) theory to simulate acoustic propagation in the presence of ocean sound speed perturbations. The simulations indicate that sound speed perturbations indeed affect the acoustic propagation pattern, part of which may then reach deep ocean regions. We further take into account possible effects of seafloor topography on generating scattered and surface waves along the ocean-crust interface.

  5. Frequency tunable surface magneto elastic waves

    NARCIS (Netherlands)

    Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.

    2015-01-01

    We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.

  6. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  7. Surface Acoustic Waves in ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Tarasenko A., Nataliya; Jastrabík, Lubomír; Tarasenko, Alexander

    2004-01-01

    Roč. 298, - (2004), s. 325-333 ISSN 0015-0193 R&D Projects: GA AV ČR IBS1010203 Keywords : Rayleigh waves * ferroelectric films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  8. Photonics surface waves on metamaterials interfaces.

    Science.gov (United States)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  9. Numerical Simulation of Floating Bodies in Extreme Free Surface Waves

    Science.gov (United States)

    Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling

    2010-05-01

    and efficient. Firstly, extreme design wave conditions are generated in an empty NWT and compared with physical experiments as a precursor to calculations to investigate the survivability of the Bobber device operating in a challenging wave climate. Secondly, we consider a bench-mark test case involving in a first order regular wave maker acting on a fixed cylinder and Pelamis. Finally, a floating Bobber has been simulated under extreme wave conditions. These results will be reported at the meeting. Causon D.M., Ingram D.M., Mingham C.G., Yang G. Pearson R.V. (2000). Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water resources, 23: 545-562. Causon D.M., Ingram D.M., Mingham C.G. (2000). A Cartesian cut cell method for shallow water flows with moving boundaries. Advances in Water resources, 24: 899-911. Dalzell J.F. 1999 A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. Ning D.Z., Zang J., Liu S.X. Eatock Taylor R. Teng B. & Taylor P.H. 2009 Free surface and wave kinematics for nonlinear focused wave groups. J. Ocean Engineering. Accepted. Hu Z.Z., Causon D.M., Mingham C.M. and Qian L.(2009). Numerical wave tank study of a wave energy converter in heave. Proceedlings 19th ISOPE conference, Osaka, Japan Qian L., Causon D.M. & Mingham C.G., Ingram D.M. 2006 A free-surface capturing method for two fluid flows with moving bodies. Proc. Roy. Soc. London, Vol. A 462 21-42.

  10. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1 the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2 the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.Key words. Oceanography: general (climate and interannual variability; equatorial oceanography. Oceanography: physical (eastern boundary currents.

  11. Propagation of an ionizing surface electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Boev, A.G.; Prokopov, A.V.

    1976-11-01

    The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.

  12. Artificial upwelling using the energy of surface waves

    Science.gov (United States)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  13. Surface-Wave Relocation of Remote Continental Earthquakes

    Science.gov (United States)

    Kintner, J. A.; Ammon, C. J.; Cleveland, M.

    2017-12-01

    Accurate hypocenter locations are essential for seismic event analysis. Single-event location estimation methods provide relatively imprecise results in remote regions with few nearby seismic stations. Previous work has demonstrated that improved relative epicentroid precision in oceanic environments is obtainable using surface-wave cross correlation measurements. We use intermediate-period regional and teleseismic Rayleigh and Love waves to estimate relative epicentroid locations of moderately-sized seismic events in regions around Iran. Variations in faulting geometry, depth, and intermediate-period dispersion make surface-wave based event relocation challenging across this broad continental region. We compare and integrate surface-wave based relative locations with InSAR centroid location estimates. However, mapping an earthquake sequence mainshock to an InSAR fault deformation model centroid is not always a simple process, since the InSAR observations are sensitive to post-seismic deformation. We explore these ideas using earthquake sequences in western Iran. We also apply surface-wave relocation to smaller magnitude earthquakes (3.5 wave dispersion. Frequency-domain inter-event phase observations are used to understand the time-domain cross-correlation information, and to choose the appropriate band for applications using shorter periods. Over short inter-event distances, the changing group velocity does not strongly degrade the relative locations. For small-magnitude seismic events in continental regions, surface-wave relocation does not appear simple enough to allow broad routine application, but using this method to analyze individual earthquake sequences can provide valuable insight into earthquake and faulting processes.

  14. Wave climatology of the Indian Ocean derived from altimetry and wave model

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.

    GEOSAT altimeter data for the period 1986-1989 have been utilised to derive wave climatology for the Indian Ocean region bounded by 20 degrees S to 25 degrees N and 40 degrees E to 110 degrees E. The results are presented in the form of mean monthly...

  15. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  16. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  17. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    Science.gov (United States)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  18. Velocity profiles and surface roughness under breaking waves

    Science.gov (United States)

    Craig, Peter D.

    1996-01-01

    Recent measurements under wave-breaking conditions in the ocean, lakes, and tanks reveal a layer immediately below the surface in which dissipation decays as depth to the power -2 to -4 and downwind velocities are approximately linear with depth. This behavior is consistent with predictions of a conventional, one-dimensional, level 2.5 turbulence closure model, in which the influence of breaking waves is parameterized as a surface source of turbulent kinetic energy. The model provides an analytic solution which describes the near-surface power law behavior and the deeper transition to the "law of the wall." The mixing length imposed in the model increases linearly away from a minimum value, the roughness length, at the surface. The surface roughness emerges as an important scaling factor in the wave-enhanced layer but is the major unknown in the formulation. Measurements in the wave-affected layer are still rare, but one exceptional set, both in terms of its accuracy and proximity to the surface, is that collected by Cheung and Street [1988] in the Stanford wind tunnel. Their velocity profiles first confirm the accuracy of the model, and, second, allow estimation, via a best fit procedure, of roughness lengths at five different wind speeds. Conclusions are tentative but indicate that the roughness length increases with wind speed and appears to take a value of approximately one sixth the dominant surface wavelength. A more traditional wall-layer model, which ignores the flux of turbulent kinetic energy, will also accurately reproduce the measured velocity profiles. In this case, enhanced surface turbulence is forced on the model by the assumption of a large surface roughness, three times that required by the full model. However, the wall-layer model cannot predict the enhanced dissipation near the surface.

  19. Demultiplexing Surface Waves With Silicon Nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Bogdanov, A.; Komissarenko, F.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin gold film with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation within extremely narrow spectral hand (! 50 nm), which is driven...

  20. Modelling and simulation of surface water waves

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Westhuis, J.H.

    2002-01-01

    The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large

  1. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    Directory of Open Access Journals (Sweden)

    G. Jordà

    2007-07-01

    Full Text Available The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions project. A one way sequential coupling approach is adopted to link the wave model (WAM to the circulation model (SYMPHONIE. The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bottom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean, a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  2. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  3. Listening to sounds from an exploding meteor and oceanic waves

    Science.gov (United States)

    Evers, L. G.; Haak, H. W.

    Low frequency sound (infrasound) measurements have been selected within the Comprehensive Nuclear-Test-Ban Treaty (CTBT) as a technique to detect and identify possible nuclear explosions. The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) operates since 1999 an experimental infrasound array of 16 micro-barometers. Here we show the rare detection and identification of an exploding meteor above Northern Germany on November 8th, 1999 with data from the Deelen Infrasound Array (DIA). At the same time, sound was radiated from the Atlantic Ocean, South of Iceland, due to the atmospheric coupling of standing ocean waves, called microbaroms. Occurring with only 0.04 Hz difference in dominant frequency, DIA proved to be able to discriminate between the physically different sources of infrasound through its unique lay-out and instruments. The explosive power of the meteor being 1.5 kT TNT is in the range of nuclear explosions and therefore relevant to the CTBT.

  4. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    Science.gov (United States)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  5. Tutorial review of seismic surface waves' phenomenology

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.

    2018-03-01

    In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.

  6. Surface Wave Dynamics in Delaware Bay and Its Adjacent Coastal Shelf

    Science.gov (United States)

    Kukulka, Tobias; Jenkins, Robert L.; Kirby, James T.; Shi, Fengyan; Scarborough, Robert W.

    2017-11-01

    This study presents a broad overview of surface gravity wave dynamics in Delaware Bay and the adjacent continental shelf by employing the wave model Simulating Waves Nearshore one-way coupled to the ocean model Regional Ocean Modeling System for a period from 2006 to 2012. The distributions of simulated wave statistics agree well with observations obtained from three wave buoys located on the shelf, in the bay near the open ocean, and about 35 km up the bay. A partitioning analysis to separate the two-dimensional wave height spectrum into wind-forced and swell parts reveals that waves on the shelf are predominantly remotely generated swell. Bathymetric refraction shelters the bay from energetic open ocean waves, which is supported by an idealized ray tracing analysis. Waves near the bay entrance are also refracted by oblique tidal currents, whose refraction characteristics critically depend on the detailed spatial distributions of the currents. Opposing tidal currents, flowing against the wave propagation direction, focus wave energy outside the bay entrance and in the deeper bay channels, where currents are relatively strong. A spectral partitioning analysis for waves in the bay indicates that less energetic wave fields are likely not directly forced by the wind. More energetic waves, on the other hand, are dominantly driven by winds and the wave response in the bay depends on the fetch-setting wind direction. Our results for wind-driven waves in the bay are consistent with previous fetch-limited observations, but we find a systematic bias between wind and wave directions due to bathymetric refraction.

  7. Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...

  8. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves –. Rayleigh, Love and Stoneley types. The wave velocity equations are found to.

  9. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  10. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    (Johnson et al. 2007). The OSCAR product is, however, a global product. Thus there is a pressing need to validate this product in the other basins of the world ocean, e.g., in the Indian Ocean. The present study is motivated by this need. In the present study, monthly climatology of OSCAR ocean surface currents in the TIO ...

  11. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny

    2016-01-01

    to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  12. Linking source region and ocean wave parameters with the observed primary microseismic noise

    Science.gov (United States)

    Juretzek, C.; Hadziioannou, C.

    2017-12-01

    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  13. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  14. Surface Acoustic Wave Transducer Study.

    Science.gov (United States)

    1978-05-01

    ment. — ISO Lir — ~.1 L ~~~~~~~~ ~ ~~~ L~~~I&jr ~~ —- — — —--- - - - - t - s’ rlr ~~T I O , 4 ) F ~ H I ’ ~~,! ~WI.ft ?).s. ~~~~MEPORT DOCUMENTAT I...multiplying the norma l stress components thus ensuring that the normal stress is zero at x 2 = 0. For the present , an open-circuit elec trical...boundary condition is assumed so that the norma l D-uield is zero at the surface. This is taken .5 into account in a similar manner with a step-function

  15. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  16. Internal gravity wave contributions to global sea surface variability

    Science.gov (United States)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  17. Modeling and Inversion of Scattered Surface waves

    NARCIS (Netherlands)

    Riyanti, C.D.

    2005-01-01

    In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate

  18. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  19. Multimode Surface Wave Tomography Of Asia And Surroundings

    Science.gov (United States)

    Lebedev, S.; van der Hilst, R. D.

    We construct a large-scale, high-resolution, 3-D model of the upper mantle beneath Asia, Australia, and surrounding oceans. Automated Multimode Inversion of surface waves (Lebedev and Nolet, 2000) is used to extract the waveform phase information from the regional S and fundamental-mode wavetrains and relate it to structural per- turbations in the Earth. Efficient selection of the wavetrains uncontaminated by scat- tered waves ensures high accuracy of the measurements. Full automation allows us to constrain the tomographic model using a large waveform data set of about twenty thousand vertical-component seismograms and to achieve lateral resolution of 400- 700 km, varying with the local ray-path coverage. The tectonically diverse region of study encompasses units ranging from stable Archean cratons and the oldest ocean floor on Earth to currently opening backarc basins. The western half of the Pacific ``Ring of Fire" dominates the cross-sections down to 150 km depth. At greater depths, a pattern of prominent high-velocity anoma- lies is created by the deep roots of Precambrian continental units (Yangtze, India, Siberia, and Kazakhstan), oceanic lithosphere subducted in the Western Pacific, and the Indian lithosphere descending beneath Tibet. High-velocity continental roots are present beneath some Precambrian units but absent beneath others, depending on their tectonic history. Laterally, the roots can reach beyond the present extent of the overly- ing Archean-Proterozoic crust by as much as a few hundred kilometers.

  20. Retrieval and assimilation of velocities at the ocean surface

    OpenAIRE

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-01-01

    Ocean currents play a key role in Earth’s climate, they are of major importance for navigation and human activities at sea, and impact almost all processes that take place in the ocean. Nevertheless, their observation and forecasting are still difficult. First, direct measurements of ocean currents are difficult to obtain synoptically at global scale. Consequently, it has been necessary to use Sea Surface Height and Sea Surface Temperature measurements and refer to dynamical frameworks to der...

  1. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M

    2017-05-01

    Full Text Available optical imagery from the RapidEye satellite can be used to extract ocean wave characteristics such as wave direction, wavelength, wave period and wave velocity. If successful, the advantage of the proposed remote sensing-based approach would...

  2. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  3. Massachusetts Bay - Internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...

  4. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    Science.gov (United States)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m

  5. Surface and body waves from surface and underground explosions

    International Nuclear Information System (INIS)

    Kusubov, A.S.

    1976-06-01

    The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions

  6. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    Science.gov (United States)

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  7. Blackfolds, plane waves and minimal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-29

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  8. Scattering of inertial waves by an ocean front - Comments

    OpenAIRE

    Klein, Patrice; Treguier, Anne-marie

    1995-01-01

    The Southern Hemisphere Subtropical Front (STF) is a narrow zone of transition between upper-level subtropical waters to the north and subantarctic waters to the south. It is found near 40 degrees S across the South Atlantic and South Indian Oceans and is associated with an eastward geostrophic current band, The current band in each basin is found at or just north of the surface front except near the eastern boundaries where most of the subtropical waters turn north into the eastern limbs of ...

  9. Parameterization of rain induced surface roughness and its validation study using a third generation wave model

    Science.gov (United States)

    Rajesh Kumar, R.; Prasad Kumar, B.; Bala Subrahamanyam, D.

    2009-09-01

    The effect of raindrops striking water surface and their role in modifying the prevailing sea-surface roughness is investigated. The work presents a new theoretical formulation developed to study rain-induced stress on sea-surface based on dimensional analysis. Rain parameters include drop size, rain intensity and rain duration. The influences of these rain parameters on young and mature waves were studied separately under varying wind speeds, rain intensity and rain duration. Contrary to popular belief that rain only attenuates surface waves, this study also points out rain duration under certain condition can contribute to wave growth at high wind speeds. Strong winds in conjunction with high rain intensity enhance the horizontal stress component on the sea-surface, leading to wave growth. Previous studies based on laboratory experiments and dimensional analysis do not account for rain duration when attempting to parameterize sea-surface roughness. This study signifies the importance of rain duration as an important parameter modifying sea-surface roughness. Qualitative as well quantitative support for the developed formulation is established through critical validation with reports of several researchers and satellite measurements for an extreme cyclonic event in the Indian Ocean. Based on skill assessment, it is suggested that the present formulation is superior to prior studies. Numerical experiments and validation performed by incorporating in state-of-art WAM wave model show the importance of treating rain-induced surface roughness as an essential pre-requisite for ocean wave modeling studies.

  10. Parametric analysis of change in wave number of surface waves

    Directory of Open Access Journals (Sweden)

    Tadić Ljiljana

    2015-01-01

    Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.

  11. Megaquakes, prograde surface waves and urban evolution

    Science.gov (United States)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  12. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  13. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  14. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds. B N Goswami1 and E N Rajagopal2. 1Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. 2National Centre for Medium Range Weather Forecasting, Department of ...

  15. Multimode Surface Wave Tomography of Asia and Western Pacific.

    Science.gov (United States)

    Lebedev, S.; van der Hilst, R. D.

    2001-12-01

    We invert a few tens of thousand long-period seismograms and select about twenty thousand to constrain a large-scale, high-resolution, 3-D model of the upper mantle beneath Asia, Australia, and Western Pacific. Automated Multimode Inversion of surface waves (Lebedev and Nolet, 2000) is used to extract the waveform phase information from the regional S and fundamental mode wavetrains and relate it to structural perturbations in the Earth. Efficient selection of the wavetrains uncontaminated by scattered waves ensures high accuracy of our measurements. Full automation allows us to constrain the tomographic model using a very large waveform data set and to achieve lateral resolution of 300-700 km, varying with the local ray-path coverage. The tectonically diverse region of study encompasses units ranging from stable Archean cratons and the oldest ocean floor on Earth to currently opening backarc basins. The western half of the Pacific ``Ring of Fire'' dominates the cross-sections down to 150 km depth. At greater depths, a pattern of prominent high-velocity anomalies is created by the deep roots of Precambrian continental units, oceanic lithosphere subducted in the Western Pacific, and the Indian lithosphere descending beneath Tibet.

  16. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW

    Indian Academy of Sciences (India)

    Wave prediction and hindcast studies are important in ocean engineering, coastal infrastructure development and management. In view of sparse and infrequent in-situ observations, model derived hindcast wave data can be used for the assessment of wave climate in offshore and coastal areas. In the present study, MIKE ...

  17. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW ...

    Indian Academy of Sciences (India)

    Wave prediction and hindcast studies are important in ocean engineering, coastal infrastructure devel- opment and management. In view of sparse and infrequent in-situ observations, model derived hindcast wave data can be used for the assessment of wave climate in offshore and coastal areas. In the present study, MIKE ...

  18. Surface wave propagation over sinusoidally varying topography: Theory and observation

    Science.gov (United States)

    Davies, A. G.; Heathershaw, A. D.

    Linear perturbation theory is used to show that the reflection coefficient of a patch of sinusoidal ripples on an otherwise flat bed is oscillatory in the quotient of the length of the patch and the surface wave length, and strongly dependent upon the quotient of the surface and bed wave numbers. Resonant interaction between the surface waves and the ripples if the surface wavenumber is half the ripple wavenumber is demonstrated. Few ripples, of relatively small steepness, are required to produce a substantial reflected wave. In resonant cases, the partially standing wave on the up-wave side of the ripple patch gives way, in an almost linear manner over the the ripple patch itself, to a progressive (transmitted) wave on the down-wave side. Wave tank data agree well with predictions, and suggest coupling between wave reflection and ripple growth on an erodible bed.

  19. Surface temperature pattern of the Indian Ocean before summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.; Rao, D.P.

    The surface meteorological data collected during 1963 and 1964 indicate that the northward migration of the ITCZ is associated with a shift of the warm waters to the northern Indian Ocean. The warmer waters, found in the equatorial regions during...

  20. Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data

    Science.gov (United States)

    Fu, Lee-Lueng

    2007-01-01

    The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.

  1. The timescales of global surface-ocean connectivity.

    Science.gov (United States)

    Jönsson, Bror F; Watson, James R

    2016-04-19

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  2. Damping of short gravity-capillary waves due to oil derivatives film on the water surface

    Science.gov (United States)

    Sergievskaya, Irina; Ermakov, Stanislav; Lazareva, Tatyana

    2016-10-01

    In this paper new results of laboratory studies of damping of gravity-capillary waves on the water surface covered by kerosene are presented and compared with our previous analysis of characteristics of crude oil and diesel fuel films. Investigations of kerosene films were carried out in a wide range values of film thicknesses (from some hundreds millimetres to a few millimetres) and in a wide range of surface wave frequencies (from 10 to 27 Hz). The selected frequency range corresponds to the operating wavelengths of microwave, X- to Ka-band radars typically used for the ocean remote sensing. The studied range of film thickness covers typical thicknesses of routine spills in the ocean. It is obtained that characteristics of waves, measured in the presence of oil derivatives films differ from those for crude oil films, in particular, because the volume viscosity of oil derivatives and crude oil is strongly different. To retrieve parameters of kerosene films from the experimental data the surface wave damping was analyzed theoretically in the frame of a model of two-layer fluid. The films are assumed to be soluble, so the elasticity on the upper and lower boundaries is considered as a function of wave frequency. Physical parameters of oil derivative films were estimated when tuning the film parameters to fit theory and experiment. Comparison between wave damping due to crude oil, kerosene and diesel fuel films have shown some capabilities of distinguishing of oil films from remote sensing of short surface waves.

  3. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  4. Lidar equation for ocean surface and subsurface.

    Science.gov (United States)

    Josset, Damien; Zhai, Peng-Wang; Hu, Yongxiang; Pelon, Jacques; Lucker, Patricia L

    2010-09-27

    The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented.

  5. Resonant surface acoustic wave chemical detector

    Science.gov (United States)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  6. Second-Order Random Ocean Waves: Prediction of Temporal and Spatial Variation from Fixed and Moving References

    National Research Council Canada - National Science Library

    Sweetman, Bert

    1999-01-01

    WAVEMAKER is a FORTRAN program used to simulate random nonGaussian ocean wave histories, to identify the underlying first- and second- order components of user specified waves, or to predict wave time...

  7. Activity of convective tropical gravity-waves above the south west indian ocean

    Science.gov (United States)

    Evan, S.; Chane-Ming, F.; Keckhut, P.

    Tropical gravity waves play an important role in the dynamics of the middle atmosphere Such small-scale waves can transport energy and momentum vertically as well as horizontally from the troposphere to the middle and upper atmosphere affecting the global circulation Recent studies have focused on the characterization of gravity-waves from local and global observation to improve numerical modelling in terms of parameterisation and comparison for more realistic outputs Many studies have used high-resolution radiosoundings but first climatologies concern continental regions such as Australia and the US Allen and Vincent 1995 Wang and Geller 2003 In the tropics and over ocean and especially in the South-West Indian Ocean measurements are scarce and little is known about the activity of the gravity-waves except using satellite data for large-scale gravity waves above the lower stratosphere In this study a climatology and spatial distribution of the gravity-wave activity for the South West Indian Ocean is produced The dataset includes measurements of daily soundings in the South-West Indian Ocean located between 4oS-30oS and 30oE-56oE Waves parameters energy spatial and temporal scales of waves direction of horizontal wave propagation are analyzed from January 1998 to November 2005 in the troposphere and lower stratosphere A daily activity and wave sources tropical cyclones QBO convection are also investigated

  8. Surface acoustic wave actuated cell sorting (SAWACS).

    Science.gov (United States)

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  9. Study of Planar Surface Wave Excited Plasma

    Science.gov (United States)

    Tian, Caizhong

    2008-10-01

    The need for plasma processing has increased as miniaturization in semiconductor manufacturing goes ahead. In these processes, a large-diameter plasma source is required with respect to 300mm wafer size. A Radial Line Slot Antenna (RLSA) driven surface-wave-sustained plasma is a potential best candidate to various applications with respect to damage free process. Many researches focus on the control of plasma density and electron temperature in RLSA technique. However, the plasma stability and uniformity control are less implemented in the practice. In recent years, we study sheath formation and plasma behavior at the interface, where the surface wave propagate, by using electromagnetic particle-in-cell simulation techniques. The simulations include the effects of ionization, and allow us to study the buildup of plasma density associated with ionization in the presence of the large fields of the RF-enhanced sheath. Our results show both the mechanism of plasma generation and heating at the plasma dielectric interface and the strong effect on geometric design of dielectric. Various scenarios are of interest, and help us to design an optimal RLSA driven plasma source, where the plasma stability and uniformity are firmly sustained under the various process conditions. Plasma diagnosis is carried out to reveal the more essential difference in plasma behavior between our RLSA and a custom inductively coupled plasma (ICP) source.

  10. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  11. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with ...

  12. Surface waves in a cylindrical borehole through partially-saturated ...

    Indian Academy of Sciences (India)

    M D Sharma

    published online 14 February 2018. Propagation of surface waves is discussed in a cylindrical borehole through a liquid-saturated porous solid of infinite extent. ...... 1992). In the dictionary of exploration geophysics, pseudo-Rayleigh waves are identified as the ground roll, which is a particular type of surface wave that.

  13. The integration of remote sensing data into global weather prediction, wave forecasting, and ocean circulation computer based systems

    Science.gov (United States)

    Pierson, W. J., Jr.

    1970-01-01

    Data from infrared imaging systems and satellite infrared spectrometer (SIRS) for determining sea surface temperature and the atmospheric structure in cloudless areas over the oceans are discussed. Although some interpretations differ, it is clear that simultaneous measurements of radar sea return and passive microwave temperature will provide estimates of the wind speed, and perhaps wind direction, over the oceans, especially in cloudless areas, for a wide range of wind speeds. The problem of integrating the data that would be obtained by a spacecraft, especially one with a combination radar-radiometer, into global analysis procedures for meteorological, wave, and oceanographic predictions is described.

  14. Novel Methods for Optically Measuring Whitecaps Under Natural Wave Breaking Conditions in the Southern Ocean

    Science.gov (United States)

    Randolph, K. L.; Dierssen, H. M.; Cifuentes-Lorenzen, A.; Balch, W. M.; Monahan, E. C.; Zappa, C. J.; Drapeau, D.; Bowler, B.

    2016-02-01

    Breaking waves on the ocean surface mark areas of significant importance to air-sea flux estimates of gas, aerosols, and heat. Traditional methods of measuring whitecap coverage using digital photography can miss features that are small in size or do not show high enough contrast to the background. The geometry of the images collected captures the near surface, bright manifestations of the whitecap feature and miss a portion of the bubble plume that is responsible for the production of sea salt aerosols and the transfer of lower solubility gases. Here, a novel method for accurately measuring both the fractional coverage of whitecaps and the intensity and decay rate of whitecap events using above water radiometry is presented. The methodology was developed using data collected during the austral summer in the Atlantic sector of the Southern Ocean under a large range of wind (speeds of 1 to 15 m s-1) and wave (significant wave heights 2 to 8 m) conditions as part of the Southern Ocean Gas Exchange experiment. Whitecap metrics were retrieved by employing a magnitude threshold based on the interquartile range of the radiance or reflectance signal for a single channel (411 nm) after a baseline removal, determined using a moving minimum/maximum filter. Breaking intensity and decay rate metrics were produced from the integration of, and the exponential fit to, radiance or reflectance over the lifetime of the whitecap. When compared to fractional whitecap coverage measurements obtained from high resolution digital images, radiometric estimates were consistently higher because they capture more of the decaying bubble plume area that is difficult to detect with photography. Radiometrically-retrieved whitecap measurements are presented in the context of concurrently measured meteorological (e.g., wind speed) and oceanographic (e.g., wave) data. The optimal fit of the radiometrically estimated whitecap coverage to the instantaneous wind speed, determined using ordinary least

  15. Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces

    Science.gov (United States)

    Tcvetkova, S. N.; Kwon, D.-H.; Díaz-Rubio, A.; Tretyakov, S. A.

    2018-03-01

    In this paper theoretical and numerical studies of perfect/nearly perfect conversion of a plane wave into a surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous lossless boundary which would fully transform an incident plane wave into a surface wave propagating along the boundary is considered. An approximate field solution which produces a slowly growing surface wave and satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of great importance for the future development of such devices as perfect leaky-wave antennas and can potentially lead to many novel applications.

  16. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  17. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time ...

  18. Propagation and Directional Scattering of Ocean Waves in the Marginal Ice Zone and Neighboring Seas

    Science.gov (United States)

    2015-09-30

    geometry ocean topography, described in the previous section. vi. Real storm tests: Implementation WW3, with wave- ice interactions code implemented...in the Arctic, or where there is high-quality ice -ocean data, for tests with real storms and high waves. Perform in conjunction with other available...5 REFERENCES 1. Kohout, A. L., M. J. Williams, S. Dean, and M. H. Meylan. Storm -induced sea ice breakup and the implications for ice extent

  19. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    Science.gov (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  20. Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons.

    Science.gov (United States)

    Sun, Zhijun; Zuo, Xiaoliu; Guan, Tengpeng; Chen, Wei

    2014-02-24

    Manipulation of light in subwavelength scale can be realized with metallic nanostructures for TM-polarization components due to excitation of surface plasmons. TE-polarization components of light are usually excluded in subwavelength metal structures for mesoscopic optical interactions. Here we show that, by introducing very thin high index dielectric layers on structured metal surfaces, pseudo surface polarization currents can be induced near metal surfaces, which bring to excitation of artificial TE-mode surface waves at the composite meta-surfaces. This provides us a way to manipulate TE-polarized light in subwavelength scale. Typical properties of the artificial surface waves are further demonstrate for their excitation, propagation, optical transmission, and enhancement and resonances of the localized fields, mimicking those of surface plasmon waves.

  1. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  2. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    Science.gov (United States)

    2013-09-30

    PUBLICATIONS 1. Xu, Z. and D. K. P. Yue (2013a), Mixture model for probability of inherent shortwave radiation intensity in strong scattering mediums...reflections for various solar incidence conditions, particularly the shadowing effect for large zenith solar incidence case. With the numerical tool, we...We provided direct and empirical derivations of parameters needed for the model using priori information of ocean wave spectra, solar incidence and

  3. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification

    OpenAIRE

    Sun, S; Eisenman, I; Stewart, AL

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  4. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  5. THz detectors using surface Josephson plasma waves in layered superconductors

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco

    2006-01-01

    We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves

  6. Quasilinear ridge structures in water surface waves

    Science.gov (United States)

    Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.

    1992-02-01

    Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].

  7. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved wit...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal.......On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...

  8. About New Maps of Surface Currents of the World Ocean

    Science.gov (United States)

    Nikitin, O. P.; Kasyanov, S. Yu.

    2018-01-01

    Using the example of the surface currents map constructed for the Northern Atlantic on the basis of data of modern observations by means of drifting buoys, it is shown that the previously published maps of ocean surface currents, based on ship drift data, have become outdated and require an update. The influence of the bottom relief on the directions of surface layer currents is shown.

  9. A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?

    Science.gov (United States)

    Monerie, Paul-Arthur; Robson, Jon; Dong, Buwen; Dunstone, Nick

    2017-10-01

    We assess the ability of the DePreSys3 prediction system to predict the summer (JJAS) surface-air temperature over North East Asia. DePreSys3 is based on a high resolution ocean-atmosphere coupled climate prediction system ( 60 km in the atmosphere and 25 km in the ocean), which is full-field initialized from 1960 to 2014 (26 start-dates). We find skill in predicting surface-air temperature, relative to a long-term trend, for 1 and 2-5 year lead-times over North East Asia, the North Atlantic Ocean and Eastern Europe. DePreSys3 also reproduces the interdecadal evolution of surface-air temperature over the North Atlantic subpolar gyre and North East Asia for both lead times, along with the strong warming that occurred in the mid-1990s over both areas. Composite analysis reveals that the skill at capturing interdecadal changes in North East Asia is associated with the propagation of an atmospheric Rossby wave, which follows the subtropical jet and modulates surface-air temperature from Europe to Eastern Asia. We hypothesise that this `circumglobal teleconnection' pattern is excited over the Atlantic Ocean and is related to Atlantic multi-decadal variability and the associated changes in precipitation over the Sahel and the subtropical Atlantic Ocean. This mechanism is robust for the 2-5 year lead-time. For the 1 year lead-time the Pacific Ocean also plays an important role in leading to skill in predicting SAT over Northeast Asia. Increased temperatures and precipitation over the western Pacific Ocean was found to be associated with a Pacific-Japan like-pattern, which can affect East Asia's climate.

  10. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  11. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    Science.gov (United States)

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Magnetic Signatures of Fine-scale Processes in the Ocean Surface Layer

    Science.gov (United States)

    Soloviev, A.; Dean, C.; Avera, W. E.

    2015-12-01

    Fine-scale processes in the upper ocean turbulent boundary layer may have a measurable electromagnetic signature. In order to study magnetic signatures of these fine-scale processes, we have applied a magnetohydrodynamic (MHD) model combining a 3D computational fluid dynamics model and electromagnetic block, based on ANSYS Fluent software. In addition, the hydrodynamic component of the MHD model is coupled with a radar imaging algorithm, which potentially provides a link to synthetic aperture radar (SAR) satellite imagery. Capabilities of this model have been demonstrated using a simulation and observation of an internal wave soliton in the Straits of Florida, observed with in situ instrumentation (ADCP mooring) and COSMO Sky Med (SAR) satellite image. We have applied this model to study magnetic signatures of surface waves, freshwater lenses, spatially coherent organized motions in the near-surface layer of the ocean (Langmuir circulation and ramp-like structures), and bio-turbulence induced by diel vertical migrations of zooplankton in some areas of the ocean. Investigation of electromagnetic signatures in upper ocean processes offers a valuable new prospect in air-sea interaction.

  13. Wavelength of ocean waves and surf beat at duck from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Menon, H.B.; Sarma, Y.V.B.; Jog, P.D.; Almeida, A.M.

    Wavelength of ocean waves and surf beat (infra gravity waves) has for the first time been computed as a function of frequency from different combinations of non-collinear 3-gauge arrays. Data at the 15-gauge polygonal array at 8 m depth at Duck...

  14. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    . This impedance concept gives an accurate lower boundary condition in the determination of the electromagnetic field, and makes itpossible to simulate reflections and the effects of transitions between different mediums. A semi-isotropic Philipsspectrum is used to represent the air-sea interaction.Simulated GPS...... on the solution of the parabolic equation. The parabolic equation in our simulator is solvedusing the split-step sine transformation. The Earth’s surface is modeled with the use of an impedance model. The value of the Earth impedance is given as a function of the range along the surface of the Earth...

  15. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    Science.gov (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  16. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    Science.gov (United States)

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  17. The internal gravity wave spectrum in two high-resolution global ocean models

    Science.gov (United States)

    Arbic, B. K.; Ansong, J. K.; Buijsman, M. C.; Kunze, E. L.; Menemenlis, D.; Müller, M.; Richman, J. G.; Savage, A.; Shriver, J. F.; Wallcraft, A. J.; Zamudio, L.

    2016-02-01

    We examine the internal gravity wave (IGW) spectrum in two sets of high-resolution global ocean simulations that are forced concurrently by atmospheric fields and the astronomical tidal potential. We analyze global 1/12th and 1/25th degree HYCOM simulations, and global 1/12th, 1/24th, and 1/48th degree simulations of the MITgcm. We are motivated by the central role that IGWs play in ocean mixing, by operational considerations of the US Navy, which runs HYCOM as an ocean forecast model, and by the impact of the IGW continuum on the sea surface height (SSH) measurements that will be taken by the planned NASA/CNES SWOT wide-swath altimeter mission. We (1) compute the IGW horizontal wavenumber-frequency spectrum of kinetic energy, and interpret the results with linear dispersion relations computed from the IGW Sturm-Liouville problem, (2) compute and similarly interpret nonlinear spectral kinetic energy transfers in the IGW band, (3) compute and similarly interpret IGW contributions to SSH variance, (4) perform comparisons of modeled IGW kinetic energy frequency spectra with moored current meter observations, and (5) perform comparisons of modeled IGW kinetic energy vertical wavenumber-frequency spectra with moored observations. This presentation builds upon our work in Muller et al. (2015, GRL), who performed tasks (1), (2), and (4) in 1/12th and 1/25th degree HYCOM simulations, for one region of the North Pacific. New for this presentation are tasks (3) and (5), the inclusion of MITgcm solutions, and the analysis of additional ocean regions.

  18. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  19. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  20. View-Dependent Tessellation and Simulation of Ocean Surfaces

    Directory of Open Access Journals (Sweden)

    Anna Puig-Centelles

    2014-01-01

    Full Text Available Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not solved. We propose a new technique for simulating the ocean surface on GPU. This technique is capable of offering view-dependent approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted approximation when refining or coarsening the mesh.

  1. Transformation of second sound into surface waves in superfluid helium

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.

    1995-01-01

    The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs

  2. Nonlinear interaction of the surface waves at a plasma boundary

    International Nuclear Information System (INIS)

    Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1976-01-01

    Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)

  3. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  4. Experimental verification of directional liquid surface wave emission at band edge frequencies

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhang, Pei; Zhang, Yongqiang; Nie, Xiaofei

    2013-01-01

    Directional liquid surface wave emission at band edge frequencies is an interesting physical phenomenon and has already been studied in theoretical research. There has been no experimental validation of it to date, however. This paper has as its subject the experimental investigation of the emission effect when a point source is placed inside a finite square array of rigid cylinders standing vertically in liquid. Both the wave patterns and spatial intensities are obtained by experiment and compared with simulated results calculated by using the finite element method. We can see from this comparison that the two results correspond closely both at lower and upper band edge frequency. Obvious directional wave emission along a desired direction is observed in the source structures, confirming previous theoretical predictions. In the future, this method could serve as a directional liquid wave source in applications used in hydraulic and ocean engineering for the concentration of wave energy

  5. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  6. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    Science.gov (United States)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  7. Electrical design for ocean wave and tidal energy systems

    CERN Document Server

    Alcorn, Raymond

    2013-01-01

    Provides an electrical engineering perspective on offshore power stations and their integration to the grid. With contributions from a panel of leading international experts, this book is essential reading for those working in ocean energy development and renewable energy.

  8. Opportunities and pitfalls in surface-wave interpretation

    KAUST Repository

    Schuster, Gerard T.

    2017-01-21

    Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.

  9. Reduction in Surface Ocean Carbon Storage across the Middle Miocene

    Science.gov (United States)

    Babila, T. L.; Sosdian, S. M.; Foster, G. L.; Lear, C. H.

    2017-12-01

    During the Middle Miocene, Earth underwent a profound climate shift from the warmth of the Miocene Climatic Optimum (MCO; 14-17 Ma) to the stable icehouse of today during the Middle Miocene Climate transition (MMCT). Elevated atmospheric carbon dioxide concentrations (pCO2) revealed by boron isotope records (δ11B) link massive volcanic outputs of Columbia River Flood Basalts to the general warmth of MCO. Superimposed on the long-term cooling trend (MMCT) is a gradual pCO2 decline and numerous positive carbon isotope (δ13C) excursions that indicate dynamic variations in the global carbon cycle. Enhanced organic carbon burial via marine productivity, increased silicate weathering and volcanic emission cessation are each invoked to explain the drawdown of pCO2. To better constrain the oceanic role in carbon sequestration over the Middle Miocene detailed records of carbonate chemistry are needed. We present high resolution Boron/Calcium (B/Ca) and δ13C records in planktonic foraminifer T.trilobus spanning 12-17 Ma at ODP 761 (tropical eastern Indian Ocean) to document changes in surface ocean carbonate chemistry. An overall 30% increase in B/Ca ratios is expressed as two stepwise phases occurring at 14.7 and 13 Ma. Cyclic B/Ca variations are coherent with complimentary δ13C records suggesting a tight coupling between ocean carbonate chemistry parameters. Lower resolution B/Ca data at DSDP 588 (Pacific) and ODP 926 (Atlantic) corroborate the trends observed at ODP 761. We employ a paired approach that combines B/Ca (this study) to δ11B (Foster et al., 2012) and an ad hoc calibration to estimate changes in surface ocean dissolved inorganic carbon (DIC). We estimate a substantial decrease in surface ocean DIC spanning the Middle Miocene that culminates with modern day like values. This gradual decline in surface ocean DIC is coeval with existing deep-ocean records which together suggests a whole ocean reduction in carbon storage. We speculate that enhanced weathering

  10. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    Science.gov (United States)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  11. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  12. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT

    Directory of Open Access Journals (Sweden)

    B. Pfeil

    2013-04-01

    Full Text Available A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2 parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC. Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC, were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007. Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

  13. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    combined fashion, have contributed to the superior performance of the present algorithm for generat- ing ocean surface current. Validation and error analysis of the OSCAR pro- ..... EC (figure 4) through the appearance of strong semiannual periodicity. The SEC peaks in July, the peak being smoother in OSCAR climatology.

  14. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall ...

  15. HF Surface Wave Radar Operation in Adverse Conditions

    National Research Council Canada - National Science Library

    Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard

    2005-01-01

    ...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...

  16. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    saturated incompressible porous media. Many studies have discussed the surface wave propagation in elastic media and a com- prehensive review is available in the standard texts, e.g., Ewing et al (1957) and Achenbach. (1976). The surface ...

  17. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  18. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    Pencheva, M; Benova, E; Zhelyazkov, I

    2007-01-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  19. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  20. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  1. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  2. The M-2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Scherneck, H.G.

    2003-01-01

    Crustal deformations caused by surface load due to ocean tides are strongly dependent on the surface load closest to the observing site. In order to correctly model this ocean loading effect near irregular coastal areas, a high-resolution coastline is required. A test is carried out using two GPS...

  3. Multi-component joint analysis of surface waves

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.

    2015-01-01

    Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015

  4. Correlated Increase of High Ocean Waves and Winds in the Ice-Free Waters of the Arctic Ocean.

    Science.gov (United States)

    Waseda, Takuji; Webb, Adrean; Sato, Kazutoshi; Inoue, Jun; Kohout, Alison; Penrose, Bill; Penrose, Scott

    2018-03-14

    The long-term trend of extreme ocean waves in the emerging ice-free waters of the summer Arctic is studied using ERA-Interim wave reanalysis, with validation by two drifting wave buoys deployed in summer 2016. The 38-year-long reanalysis dataset reveals an increase in the expected largest significant wave height from 2.3 m to 3.1 m in the ice-free water from the Laptev to the Beaufort Seas during October. The trend is highly correlated with the expected increase in highest wind speed from 12.0 m/s to 14.2 m/s over the ice-free ocean, and less so with the extent of the ice-free water. Since the storms in this area did not strengthen throughout the analysis period, the increase in the expected largest significant wave height follows from the enhanced probability of storms in ice-free waters, which is pertinent to the estimation of extreme sea conditions along the Northern Sea Route.

  5. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  6. Detection of Rossby Waves in Multi-Parameters in Multi-Mission Satellite Observations and HYCOM Simulations in the Indian Ocean

    Science.gov (United States)

    2009-01-01

    waves propagat- ing in every ocean basin , with amplitudes between 0.1 and 1.5 K. They noted that it seems most likely that the SST signature is...simulations of sea surface salinity (SSS) to dem - onstrate that Rossby waves can be seen as a signal in salinity as well. We anticipate the high-density...and includes monthly river runoff from 986 global rivers. There is a weak relaxation to monthly mean SSS from the Polar science center Hydrographic

  7. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  8. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  9. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  10. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  11. Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface

    NARCIS (Netherlands)

    Palasantzas, George

    1994-01-01

    The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree

  12. New Hydrokinetic Turbine for Free Surface Gravitational Wave Transformation

    Science.gov (United States)

    Berins, J.

    2017-12-01

    The present article deals with an alternative form of energy - the conversion of marine/ocean wave energy using an axial self-regulating blade (SB) hydrokinetic turbine (ASRBHK turbine). The article analyses the operation of the ASRBHK turbine and draws the resulting conclusions about the mechanism, in which the power transfer element is a self-regulating blade.

  13. New Hydrokinetic Turbine for Free Surface Gravitational Wave Transformation

    Directory of Open Access Journals (Sweden)

    Berins J.

    2017-12-01

    Full Text Available The present article deals with an alternative form of energy – the conversion of marine/ocean wave energy using an axial self-regulating blade (SB hydrokinetic turbine (ASRBHK turbine. The article analyses the operation of the ASRBHK turbine and draws the resulting conclusions about the mechanism, in which the power transfer element is a self-regulating blade.

  14. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    Science.gov (United States)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  15. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  16. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  17. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  18. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  19. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2016-08-01

    Full Text Available In this paper, a semi-empirical algorithm for significant wave height (Hs and mean wave period (Tmw retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE of Hs with a 18.6% of scatter index (SI and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

  20. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Andreas et al (1995), and figure 1 of Monahan and Spillane (1984). et al (1995) made detailed measurements in a large wave basin of the increases in brightness tempera- ture associated with measured increases in stage A whitecap coverage. It follows that the fraction of the sea surface covered by stage A whitecaps can ...

  1. On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps

    Science.gov (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, M. D.

    2017-08-01

    Surfactants are ubiquitous in the global oceans: they help form the materially-distinct sea surface microlayer (SML) across which global ocean-atmosphere exchanges take place, and they reside on the surfaces of bubbles and whitecap foam cells prolonging their lifetime thus altering ocean albedo. Despite their importance, the occurrence, spatial distribution, and composition of surfactants within the upper ocean and the SML remains under-characterized during conditions of vigorous wave breaking when in-situ sampling methods are difficult to implement. Additionally, no quantitative framework exists to evaluate the importance of surfactant activity on ocean whitecap foam coverage estimates. Here we use individual laboratory breaking waves generated in filtered seawater and seawater with added soluble surfactant to identify the imprint of surfactant activity in whitecap foam evolution. The data show a distinct surfactant imprint in the decay phase of foam evolution. The area-time-integral of foam evolution is used to develop a time-varying stabilization function, ϕ>(t>) and a stabilization factor, Θ, which can be used to identify and quantify the extent of this surfactant imprint for individual breaking waves. The approach is then applied to wind-driven oceanic whitecaps, and the laboratory and ocean Θ distributions overlap. It is proposed that whitecap foam evolution may be used to determine the occurrence and extent of oceanic surfactant activity to complement traditional in-situ techniques and extend measurement capabilities to more severe sea states occurring at wind speeds in excess of about 10 m/s. The analysis procedure also provides a framework to assess surfactant-driven variability within and between whitecap coverage data sets.Plain Language SummaryThe foam patches made by breaking waves, also known as "whitecaps", are an important source of marine sea spray, which impacts weather and climate through the formation of cloud drops and ice. Sea spray

  2. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    Energy Technology Data Exchange (ETDEWEB)

    Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d' Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

    2013-01-01

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  3. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    International Nuclear Information System (INIS)

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  4. Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave

    Directory of Open Access Journals (Sweden)

    Florent Jangal

    2016-01-01

    Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.

  5. Two new ways of mapping sea ice thickness using ocean waves

    Science.gov (United States)

    Wadhams, P.

    2010-12-01

    TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given

  6. Surface wave modelling and simulation for wave tanks and coastal areas

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Bunnik, T.; Andonowati, A.

    2011-01-01

    For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required

  7. Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls

    Science.gov (United States)

    Dong, Shaohua; Zhang, Yu; Guo, Huijie; Duan, Jingwen; Guan, Fuxin; He, Qiong; Zhao, Haibin; Zhou, Lei; Sun, Shulin

    2018-01-01

    Controlling the wave fronts of surface waves (including surface-plamon polaritons and their equivalent counterparts) at will is highly important in photonics research, but the available mechanisms suffer from the issues of low efficiency, bulky size, and/or limited functionalities. Inspired by recent studies of metasurfaces that can freely control the wave fronts of propagating waves, we propose to use metawalls placed on a plasmonic surface to efficiently reshape the wave fronts of incident surface waves (SWs). Here, the metawall is constructed by specifically designed meta-atoms that can reflect SWs with desired phases and nearly unit amplitudes. As a proof of concept, we design and fabricate a metawall in the microwave regime (around 12 GHz) that can anomalously reflect the SWs following the generalized Snell's law with high efficiency (approximately 70%). Our results, in excellent agreement with full-wave simulations, provide an alternative yet efficient way to control the wave fronts of SWs in different frequency domains. We finally employ full-wave simulations to demonstrate a surface-plasmon-polariton focusing effect at telecom wavelength based on our scheme.

  8. Theoretical Studies of the Oceanic Internal Wave System.

    Science.gov (United States)

    1982-08-31

    Kraichnan, which 7s easily implemented in the diagrammatic laguage . We should note that one problem with this *pproach is that it is not currently known...and Hendershott, M. C. (1977) Stochastic closure for nonlinear Roasby waves. J. Fluid Mach. 82, 747-765. Holloway, G. (1978) Order and disorder in

  9. Application of Monochromatic Ocean Wave Forecasts to Prediction of Wave-Induced Currents

    Science.gov (United States)

    Poole, L. R.

    1975-01-01

    Stoke's wave-induced currents are compared, for variety of wind conditions resulting in partially developed seas and for two water depths, with currents induced by average and significant monochromatic waves related to Bretschneider spectrum.

  10. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  11. Surface Ocean CO2 Atlas (SOCAT gridded data products

    Directory of Open Access Journals (Sweden)

    C. L. Sabine

    2013-04-01

    Full Text Available As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2 data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT. The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007. The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2 product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles, but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions.

  12. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    OpenAIRE

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  13. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  14. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  15. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  16. Effect of irregularity on torsional surface waves in an initially ...

    Indian Academy of Sciences (India)

    Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half- ... Torsional wave; anisotropy; initial stress; irregularity; non-homogeneity ... Department of Applied Mathematics, Indian School of Mines, Dhanbad 826 004, India.

  17. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- reinforced anisotropic elastic media has been studied. The authors express the plane strain displacement components in terms of two scalar potentials to decouple the plane motion into P and SV waves. In the present ...

  18. Acoustic Wave Scattering from a Random Ocean Bottom

    Science.gov (United States)

    1991-06-01

    there are researchers who model the rough ocean bottom as fractals [33,34,35,36,37]. One major advantage of this approach is that if the rough boundary...is indeed fractal , the self-similar property of the fractal will enable us to just measure the statistics of the roughness at one scale and predict...Acoustical Oceanography, John Wiley and Sons, New York (1977). [2] J. P. Kennett, Marine Geology , Prentice-Hall (1982). [3] C. Eckart, "The scattering of

  19. Introduction to PDEs and waves for the atmosphere and ocean

    CERN Document Server

    Majda, Andrew

    2003-01-01

    The goals of these lecture notes, based on courses presented by the author at the Courant Institute of Mathematical Sciences, are to introduce mathematicians to the fascinating and important area of atmosphere/ocean science (AOS) and, conversely, to develop a mathematical viewpoint on basic topics in AOS of interest to the disciplinary AOS community, ranging from graduate students to researchers. The lecture notes emphasize the serendipitous connections between applied mathematics and geophysical flows in the style of modern applied mathematics, where rigorous mathematical analysis as well as

  20. On the use of the Norwegian Geotechnical Institute's prototype seabed-coupled shear wave vibrator for shallow soil characterization - I. Acquisition and processing of multimodal surface waves

    Science.gov (United States)

    Vanneste, Maarten; Madshus, Christian; Socco, Valentina L.; Maraschini, Margherita; Sparrevik, Per M.; Westerdahl, Harald; Duffaut, Kenneth; Skomedal, Eiliv; Bjørnarâ, Tore I.

    2011-04-01

    Pure shear wave data are only very rarely acquired for offshore site investigations and exploration. Here, we present details of a novel, seabed-coupled, shear wave vibrator and field data recorded by a densely populated, multicomponent ocean-bottom cable, to improve shallow soil characterization. The prototype shear wave vibrator uses vibroseis technology adopted for marine environments through its instalment on top of a suction anchor, assuring seabed coupling in combination with self-weight penetration. The prototype is depth rated to 1500 m water depth, and can be rotated while installed in the seabed. The philosophy is to acquire fully complementary seismic data to conventional P- and P-to-S-converted waves, in particular for 2-D profiling, VSP (vertical seismic profiling) or monitoring purposes, thereby exploiting advantages of shear waves over compressional waves for determining, for example, anisotropy, small-strain shear modulus and excess pore pressures/effective stress. The source was primarily designed for reservoir depths. However, significant energy is emitted as surface waves, which provide detailed geotechnical information through mapping of shear wave velocities in potentially high resolution of the upper soil units. To fully utilize pure shear wave content, a proper analysis of surface waves is paramount, due to the proximity of surface wave propagation speed with shear wave velocities. The experiment was carried out in the northern North Sea in 364 m water depth. Cable dragging was necessary to obtain close receiver spacing (2.5 m effective spacing), with total line length of 600 m. Frequency-waveform transforms reveal both Scholte and Love waves. Up to six surface wave modes are identified, that is, fundamental mode and several higher surface wave modes. The occurrence of these two different dispersive surface wave types with well-resolved higher modes allows for a unique analysis and inversion scheme for high-resolution mapping of physical

  1. Finite element simulations of surface effect on Rayleigh waves

    Science.gov (United States)

    He, Jin; Zhao, Jinling

    2018-03-01

    Rayleigh waves influenced by surface effect are investigated by using finite element methods, in which eigenfrequency analysis are performed on a model composed of a half-space covered by the surface effect dominated domain. For a given wavelength, the frequency of the Rayleigh wave is obtained as the eigenfrequency of the model satisfying Floquet periodic boundary conditions. The thickness of the surface effect can be set to be infinitely small or a finite value in the finite element methods. The curvature-dependent out-of-plane force induced by surface tension as described by the generalized Young-Laplace equation is realized through geometric nonlinear analysis. The finite element simulations show that the assumptions of small curvature and infinitely small thickness of the surface effect widely used in theoretical approaches become invalid when Rayleigh waves are highly influenced by the surface effect. This work gives a more accurate insight into the surface effect on Rayleigh waves and provides a potential method for measuring the thickness of the surface effect from the dispersion curves of surface effect influenced Rayleigh wave velocities.

  2. Revenue Optimization for the Ocean Grazer Wave Energy Converter through Storage Utilization

    NARCIS (Netherlands)

    Dijkstra, H.T.; Barradas Berglind, J.J.; Meijer, H.; van Rooij, Marijn; Prins, W.A.; Vakis, A. I.; Jayawardhana, B.

    2016-01-01

    Increased penetration of renewable energy generation motivates a change of paradigm in the way power systems are structured and operated, as advocated by the smart grid concept. Accordingly, in this paper we investigate the lossless storage capabilities of the Ocean Grazer wave energy converter

  3. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  4. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  5. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris

    Science.gov (United States)

    Brunner, K.; Kukulka, T.; Proskurowski, G.; Law, K. L.

    2015-11-01

    This paper is the second of a two-part series that investigates passive buoyant tracers in the ocean surface boundary layer (OSBL). The first part examines the influence of equilibrium wind-waves on vertical tracer distributions, based on large eddy simulations (LESs) of the wave-averaged Navier-Stokes equation. Motivated by observations of buoyant microplastic marine debris (MPMD), this study applies the LES model and the parametric one-dimensional column model from part one to examine the vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture shear-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BWs). Model results are only consistent with observations of MPMD profiles and the relationship between surface concentrations and wind speed if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to 11 years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of 3-13.

  6. Surface Wave Focusing and Acoustic Communications in the Surf Zone

    National Research Council Canada - National Science Library

    Preisig, James

    2004-01-01

    The forward scattering of acoustic signals off of shoaling surface gravity waves in the surf zone results in a time-varying channel impulse response that is characterized by intense, rapidly fluctuating arrivals...

  7. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  8. CAMEX-3 JPL SURFACE ACOUSTIC WAVE (SAW) HYGROMETER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This CAMEX-3 Jet Propulsion Laboratory (JPL) Surface Acoustic Wave (SAW) Hygrometer dataset consists of dewpoint timeline measurements acquired during each DC-8...

  9. An Anisotropic Ocean Surface Emissivity Model Based on WindSat Polarimetric Brightness Observations

    Science.gov (United States)

    Smith, D. F.; Gasiewski, A. J.; Sandeep, S.; Weber, B. L.

    2012-12-01

    The goal of this research has been to develop a standardized fast full-Stokes ocean surface emissivity model with Jacobian for a wind-driven ocean surface applicable at arbitrary microwave frequencies, polarizations, and incidence angles. The model is based on the Ohio State University (OSU) two-scale code for surface emission developed by Johnson (2006, IEEE TGRS, 44, 560) but modified as follows: (1) the Meissner-Wentz dielectric permittivity (2012, IEEE TGRS, 50, 3004) replaces the original permittivity, (2) the Elfouhaily sea surface spectrum (1997, JGR, 102, C7,15781) replaces the Durden-Vesecky spectrum (1985, IEEE TGRS, OE-10, 445), but the Durden-Vesecky angular spreading function is retained, (3) the high-frequency portion of the Elfouhaily spectrum is multiplied by the Pierson-Moskowitz shape spectrum to correct an error in the original paper, (4) the generalized Phillips-Kitaigorodskii equilibrium range parameter for short waves is modeled as a continuous function of the friction velocity at the water surface to eliminate a discontinuous jump in the original paper. A total of five physical tuning parameters were identified, including the spectral strength and the hydrodynamic modulation factor. The short wave part of the spectrum is also allowed to have an arbitrary ratio relative to the long wave part. The foam fraction is multiplied by a variable correction factor, and also modulated to allow an anisotropic foam fraction with more foam on the leeward side of a wave. The model is being tuned against multi-year sequences of WindSat and Special Sensor Microwave/Imager (SSMI) data as analyzed by Meissner and Wentz (2012, IEEE TGRS, 50, 3004) for up to four Stokes brightnesses and in all angular harmonics up to two in twenty five wind bins from 0.5-25.5 m/s and of 1 m/s width. As a result there are 40 brightnesses per wind bin, for a total of 1000 brightnesses used to constrain the modified model. A chi-squared tuning criterion based on error standard

  10. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  11. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  12. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  13. Lage-area planar RF plasma productions by surface waves

    International Nuclear Information System (INIS)

    Nonaka, S.

    1994-01-01

    Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs

  14. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  15. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oscillon dynamics and rogue wave generation in Faraday surface ripples.

    Science.gov (United States)

    Xia, H; Maimbourg, T; Punzmann, H; Shats, M

    2012-09-14

    We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility.

  17. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer

    1998-01-01

    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  18. The Surface Wave Scattering-Microwave Scanner (SWS-MS)

    Science.gov (United States)

    Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe

    2016-01-01

    The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.

  19. Rayleigh waves, surface disorder, and phonon localization in nanostructures

    Science.gov (United States)

    Maurer, L. N.; Mei, S.; Knezevic, I.

    2016-07-01

    We introduce a technique to calculate thermal conductivity in disordered nanostructures: a finite-difference time-domain solution of the elastic-wave equation combined with the Green-Kubo formula. The technique captures phonon wave behavior and scales well to nanostructures that are too large or too surface disordered to simulate with many other techniques. We investigate the role of Rayleigh waves and surface disorder on thermal transport by studying graphenelike nanoribbons with free edges (allowing Rayleigh waves) and fixed edges (prohibiting Rayleigh waves). We find that free edges result in a significantly lower thermal conductivity than fixed ones. Free edges both introduce Rayleigh waves and cause all low-frequency modes (bulk and surface) to become more localized. Increasing surface disorder on free edges draws energy away from the center of the ribbon and toward the disordered edges, where it gets trapped in localized surface modes. These effects are not seen in ribbons with fixed boundary conditions and illustrate the importance of phonon-surface modes in nanostructures.

  20. Lithospheric Structure across the Alaskan Cordillera from Surface Waves and Receiver Functions

    Science.gov (United States)

    Ward, K. M.; Lin, F. C.

    2017-12-01

    The long awaited Transportable Array (TA) deployment in Alaska and western Canada is nearing its final deployment stage. With only one more deployment season, most of the TA station locations have been occupied and begun providing data. These TA stations combined with upgraded existing locations have provided enough high-quality data to begin investigating the crustal and upper mantle structure across the entire Alaskan Cordillera. From a tectonic standpoint, many interesting questions remain unanswered. For example, how does the transition from oceanic-oceanic subduction to continental-oceanic normal subduction to continental-oceanic "flat-slab" subduction to strike-slip conservative plate motion affect the deformation/uplift of the overriding plate and mantle geodynamic characteristics? How does the long and completed terrene accretion process partition stress/strain in the crust? On more local scales, are there any significant mid-crustal magmatic systems as observed in other sections of the American Cordillera, and if so, what is there role in uplift and crustal deformation? Our approach to investigating these questions is though surface wave imaging from ambient noise and earthquake generated sources along with Rayleigh wave ellipticity paired with Ps receiver functions. Our preliminary tomography results agree with previous studies but expand the spatial coverage showing additional detail. Our ellipticity results show a heterogeneous but spatially consistent anisotropic shallow crust. Although the complete TA data set has not yet been collected, we have jointly inverted surface waves with receiver functions for a 3-D shear-wave velocity model across the entire Alaskan Cordillera. Key features of our velocity model include a high-velocity feature in the upper mantle associated with the subducting Pacific plate that extends north of the seismicity used to contour the geometry of the slab and mid-crustal low-velocity zones associated with the active volcanics in

  1. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  2. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    Science.gov (United States)

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  3. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  4. Nucleation of reaction-diffusion waves on curved surfaces

    International Nuclear Information System (INIS)

    Kneer, Frederike; Schöll, Eckehard; Dahlem, Markus A

    2014-01-01

    We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature Γ, as on the outside of a torus surface (positive Γ), when the wave segment symmetrically extends into the inside (negative Γ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size. (paper)

  5. Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995-2013); evidence of ocean acidification

    Science.gov (United States)

    Kitidis, Vassilis; Brown, Ian; Hardman-Mountford, Nicholas; Lefèvre, Nathalie

    2017-11-01

    Here we present more than 21,000 observations of carbon dioxide fugacity in air and seawater (fCO2) along the Atlantic Meridional Transect (AMT) programme for the period 1995-2013. Our dataset consists of 11 southbound and 2 northbound cruises in boreal autumn and spring respectively. Our paper is primarily focused on change in the surface-ocean carbonate system during southbound cruises. We used observed fCO2 and total alkalinity (TA), derived from salinity and temperature, to estimate dissolved inorganic carbon (DIC) and pH (total scale). Using this approach, estimated pH was consistent with spectrophotometric measurements carried out on 3 of our cruises. The AMT cruises transect a range of biogeographic provinces where surface Chlorophyll-α spans two orders of magnitude (mesotrophic high latitudes to oligotrophic subtropical gyres). We found that surface Chlorophyll-α was negatively correlated with fCO2, but that the deep chlorophyll maximum was not a controlling variable for fCO2. Our data show clear evidence of ocean acidification across 100° of latitude in the Atlantic Ocean. Over the period 1995-2013 we estimated annual rates of change in: (a) sea surface temperature of 0.01 ± 0.05 °C, (b) seawater fCO2 of 1.44 ± 0.84 μatm, (c) DIC of 0.87 ± 1.02 μmol per kg and (d) pH of -0.0013 ± 0.0009 units. Monte Carlo simulations propagating the respective analytical uncertainties showed that the latter were < 5% of the observed trends. Seawater fCO2 increased at the same rate as atmospheric CO2.

  6. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  7. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  8. Scattering of surface waves modelled by the integral equation method

    Science.gov (United States)

    Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng

    2008-09-01

    The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.

  9. Sea surface temperature and salinity from the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present as submitted to NOAA/NCEI. The data includes information about sea...

  10. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  11. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity

    Science.gov (United States)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2014-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in

  12. Lessons learnt from the Indian Ocean Tsunami 2004: the role of surface and subsurface topography in deep water tsunami propagation

    Science.gov (United States)

    Pattiaratchi, C. B.

    2014-12-01

    The Indian Ocean experienced its most devastating natural disaster through the action of a Tsunami, resulting from of an earthquake off the coast of Sumatra on 26th of December 2004. This resulted in widespread damage both to property and human lives with over 250,000 deaths in the region and many millions homeless. Our understanding of tsunami generation and propagation has increased significantly over the past decade. In this presentation, results obtained from detailed analysis of sea level data from Western Australia and Sri Lanka together with numerical modelling are presented to highlight the effects of topography both at the surface and subsurface. The major effects are due to wave reflection and refraction. Examples of wave reflection include: impacts on Malaysia/Thailand, Sri Lanka and Western Australia due to wave reflection from Sri Lanka, Maldives and Mascarene Ridge, respectively. In the case of Sri Lanka, the maximum wave height recorded along the west coast during the 2004 tsunami was due to the reflected wave from Maldives impacting 3 hours after the arrival of the initial waves. Similarly, along the West coast of Australia highest waves occurred 15 hours after the arrival of the first wave. Here, based on travel times, we postulate that the waves were reflected from the Mascarene Ridge and/or the island of Madagascar (Figure 1b). The conclusions based on observations were verified using numerical model simulations using the MOST and ComMIT models. Numerical modelling using the MOST model indicated the role of offshore susurface topography on tsunami propagation through wave wave refraction. Examples of wave refraction included the effects of deep water seamounts (Venin Meinesz) and plateaus (Wallaby, Cuvier and Exmouth) on tsunami propagation along the West Australian coast. The tsunami waves are first scattered by the Venin Meinesz seamounts and were then refracted by the Wallaby and Cuvier plateaus resulting in waves being deflected onto the

  13. Measurement of Near-Surface Salinity, Temperature and Directional Wave Spectra using a Novel Wave-Following, Lagrangian Surface Contact Buoy

    Science.gov (United States)

    Boyle, J. P.

    2016-02-01

    Results from a surface contact drifter buoy which measures near-surface conductivity ( 10 cm depth), sea state characteristics and near-surface water temperature ( 2 cm depth) are described. This light (autonomous, with low power requirements and solar panel battery recharging. Onboard sensors include an inductive toroidal conductivity probe for salinity measurement, a nine-degrees-of-freedom motion package for derivation of directional wave spectra and a thermocouple for water temperature measurement. Data retrieval for expendable, ocean-going operation uses an onboard Argos transmitter. Scientific results as well as data processing algorithms are presented from laboratory and field experiments which support qualification of buoy platform measurements. These include sensor calibration experiments, longer-term dock-side biofouling experiments during 2013-2014 and a series of short-duration ocean deployments in the Gulf Stream in 2014. In addition, a treatment method will be described which appears to minimize the effects of biofouling on the inductive conductivity probe when in coastal surface waters. Due to its low cost and ease of deployment, scores, perhaps hundreds of these novel instruments could be deployed from ships or aircraft during process studies or to provide surface validation for satellite-based measurements, particularly in high precipitation regions.

  14. Experimental Investigations on Microshock Waves and Contact Surfaces

    Science.gov (United States)

    Kai, Yun; Garen, Walter; Teubner, Ulrich

    2018-02-01

    The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.

  15. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  16. Modeling oil spills transportation in seas based on unstructured grid, finite-volume, wave-ocean model

    Science.gov (United States)

    Wang, Jinhua; Shen, Yongming

    A three-dimensional integrated model is developed for simulating transport and fate of oil spills in seas. The model contains two main modules, flow and transport-fate modules. The flow module uses an unstructured finite-volume wave-ocean coupling model. Using unstructured meshes provides great flexibility for modeling the flow in complex geometries of tidal creeks, barriers and islands, with refined grid resolution in regions of interest and not elsewhere. In the transport-fate module the oil dispersion is solved using a particle-tracking method. Horizontal diffusion is simulated using random walk techniques in a Monte Carlo framework, whereas the vertical diffusion process is solved on the basis of the Langeven equation. The model simulates the most significant processes that affect the motion of oil particles, such as advection, surface spreading, evaporation, dissolution, emulsification and turbulent diffusion as well as the interaction of the oil particles with the shoreline, sedimentation and the temporal variations of oil viscosity, density and surface-tension. Detailed comparisons of simulations with analytical solutions and numerical simulations made with the popular structured finite difference model ROMS (the Regional Ocean Modeling System) for two idealized cases: wind-induced long-surface gravity waves in a circular lake and freshwater discharge onto the continental shelf with curved coastlines, are presented. With a better fit to the curvature of the coastline using unstructured nonoverlapping triangle grid cells, the developed model system provides improved numerical accuracy in simulating the oil spill trajectory. Also keep in mind that attention must be paid to choose the horizontal and vertical resolution in simulating the oil trajectory in the coastal ocean.

  17. On the hysteresis of the sea surface and its applicability to wave height predictions

    Science.gov (United States)

    Parsons, C. L.

    1977-01-01

    Because of the low dissipation rate of wave energy on the ocean's surface, the wave height at some location and time must be dependent upon wind fields in existence there at previous times and upon swell propagated there from other regions. To study these relationships, significant wave height (SWH) measurements from the Geos-3 radar altimeter are used in conjunction with anemometer windspeed measurements from weather ships, L, C, and R. During the passage of large cyclonic disturbances near the fixed locations of these vessels in the North Atlantic in February 1976, distinct hysteresis profiles that characterize the sea's memory during generation and dissipation conditions are observed. Examples are given that demonstrate the influences of cyclone intensity, movement, velocity, and shape on the configuration of these profiles.

  18. Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris

    Science.gov (United States)

    Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.

    2016-02-01

    Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.

  19. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  20. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  1. Surface waves in the partially ionized solar plasma slab

    Science.gov (United States)

    Pandey, B. P.

    2013-12-01

    The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which cause the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid are similar to the ideal MHD, except now the propagation properties depend on the fractional ionization of the medium. In the presence of the Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. For example, short wavelength surface modes cannot propagate in the medium if the scale over which Hall operates is comparable to the size of the plasma slab. With the increasing ionization, the surface modes of shorter wavelength are permitted in the system. When both the Hall and Pedersen diffusion are present in the medium, the waves undergo damping. In the case of Pedersen dominating Hall, the damping of the long wavelength fluctuations is dependent on the ratio of the plasma densities inside and outside the slab and on the square of the Pedersen diffusivity. For typical solar parameters, waves may damp over few minutes.

  2. Near Surface Characterization Of Concrete Structures Using Rayleigh Waves

    Science.gov (United States)

    Al Wardany, R.; Ballivy, G.; Saleh, K.; Rhazi, J.; Gallias, J.

    2004-05-01

    The deterioration of the near surface concrete minimises the structural behaviour, capacity, and working lifespan for civil engineering structures and dams. Repair strategy and maintenance require careful examination and determination of the degraded depth. In this aim, dispersive properties of Rayleigh waves are used to detect concrete stratification and cracks. Current work focuses on an experimental study and application of multichannel Rayleigh wave methods on high concrete volumes. The method considers a wavefield in the frequency-wavenumber domain to separate existing Rayleigh modes and determine the appropriate shear wave velocity profile. The classical phase unwrapping analysis technique is also used to localise near surface cracks and defects. This new way in concrete nondestructive testing lead to a best evaluation of near surface stiffness and properties from the surface of concrete structures.

  3. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  4. Experiments on Seismic Metamaterials: Molding Surface Waves

    Science.gov (United States)

    Brûlé, S.; Javelaud, E. H.; Enoch, S.; Guenneau, S.

    2014-04-01

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  5. Sea surface salinity variability in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Heffner, D.M.

    . Thompson et al. (2006) reported the Indian Ocean circulation and SSS variability during IODZM events, using different OGCM (Ocean General Circulation Model) simulations and assimilated data sets of SODA (Simple Ocean Data Assimilation) and ECCO...

  6. Physical Retracking of Cryosat-2 Low Resolution Mode data for ocean surface height and gravity field estimation in open ocean

    Science.gov (United States)

    Jain, Maulik; Baltazar Andersen, Ole; Dall, Jorgen; Stenseng, Lars

    2014-05-01

    Cryosat-2 Low Resolution Mode (LRM) altimetric data is processed to determine precise ocean surface heights and gravity fields in open ocean. These ocean surface heights are corrected using various geophysical corrections available. The along track variation of the ocean surface height anomaly is used to determine the gravity field. The quality of this gravity field estimation is dependent on the precision in the ocean surface height anomaly. Thus a three/two parameter based physical model based on an error function is used, and the Cryosat-2 LRM waveforms are fit to this model. The fitting routines which employ the Levenberg Marquadt technique generate estimated values of retracked epochs which are used to compute the ocean surface heights. A two step processing system made up of sequential 3 parameter (amplitude, rise time, retracked epoch) and 2 parameter (amplitude, retracked epoch) fitting models are used to determine precise ocean surface heights. The quality of the processing system is judged by evaluating the standard deviation of the ocean surface height anomaly obtained after all corrections and the mean sea surface/geoid are removed. The lower the value of the standard deviation of the ocean surface height anomaly, the better the quality of processing is. Hence, different processing schemes are considered and evaluated in order to conclude towards the best retracking procedure which would eventually result in high accuracy gravity field estimations. Also, the quality on the precision is judged by analyzing the standard deviation in the gravity field anomaly. The gravity field anomaly is obtained by subtracting the retracked gravity field with the marine gravity field available. A lower value of the standard deviation in the gravity field anomaly indicates a more precise retracking algorithm. Using the two retracker performance evaluation strategies, namely the ocean surface height anomaly and the gravity field anomaly, it was concluded that the three

  7. Error estimates for CCMP ocean surface wind data sets

    Science.gov (United States)

    Atlas, R. M.; Hoffman, R. N.; Ardizzone, J.; Leidner, S.; Jusem, J.; Smith, D. K.; Gombos, D.

    2011-12-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind data sets are now available at the Physical Oceanography Distributed Active Archive Center from July 1987 through December 2010. These data support wide-ranging air-sea research and applications. The main Level 3.0 data set has global ocean coverage (within 78S-78N) with 25-kilometer resolution every 6 hours. An enhanced variational analysis method (VAM) quality controls and optimally combines multiple input data sources to create the Level 3.0 data set. Data included are all available RSS DISCOVER wind observations, in situ buoys and ships, and ECMWF analyses. The VAM is set up to use the ECMWF analyses to fill in areas of no data and to provide an initial estimate of wind direction. As described in an article in the Feb. 2011 BAMS, when compared to conventional analyses and reanalyses, the CCMP winds are significantly different in some synoptic cases, result in different storm statistics, and provide enhanced high-spatial resolution time averages of ocean surface wind. We plan enhancements to produce estimated uncertainties for the CCMP data. We will apply the method of Desroziers et al. for the diagnosis of error statistics in observation space to the VAM O-B, O-A, and B-A increments. To isolate particular error statistics we will stratify the results by which individual instruments were used to create the increments. Then we will use cross-validation studies to estimate other error statistics. For example, comparisons in regions of overlap for VAM analyses based on SSMI and QuikSCAT separately and together will enable estimating the VAM directional error when using SSMI alone. Level 3.0 error estimates will enable construction of error estimates for the time averaged data sets.

  8. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  10. Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system

    Science.gov (United States)

    Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.

    2016-12-01

    The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters

  11. The impulsive effects of momentum transfer on the dynamics of a novel ocean wave energy converter

    Science.gov (United States)

    Diamond, Christopher A.; O'Reilly, Oliver M.; Savaş, Ömer

    2013-10-01

    In a recent paper by Orazov et al. [On the dynamics of a novel ocean wave energy converter. Journal of Sound and Vibration329 (24) (2010) 5058-5069], a wave energy converter (WEC) was proposed. The converter features a mass modulation scheme and a simple model was used to examine its efficacy. The simple model did not adequately account for the momentum transfer which takes place during the mass modulation. The purpose of the present paper is to account for this transfer and to show that the WEC equipped with a novel and more general mass modulation scheme has the potential to improve its energy harvesting capabilities.

  12. The M-2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Scherneck, H.G.

    2003-01-01

    Crustal deformations caused by surface load due to ocean tides are strongly dependent on the surface load closest to the observing site. In order to correctly model this ocean loading effect near irregular coastal areas, a high-resolution coastline is required. A test is carried out using two GPS...... sites located in Alaska, where the ocean tide loading effect is large and consequently observed easily by relative positioning with GPS. The selected sites are Fair (Fairbanks) and Chi3 (located on an island that separates Prince William Sound from the Gulf of Alaska). Processing hourly baseline...... solutions between Fair and Chi3 during a period of 49 days yields a significant ocean tide loading effect. The data is processed using different strategies for the tropospheric delay correction. However, the best results are obtained when we use 1-h ZTD (Zenith Tropospheric Delay) parameters for hourly...

  13. Surface Ocean CO2 Atlas Database Version 5 (SOCATv5) (NCEI Accession 0163180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Ocean CO2 Atlas (SOCAT, www.socat.info) is a synthesis activity by the international marine carbon research community and has more than 100 contributors...

  14. Ocean Surface Topography Mission (OSTM) /Jason-3: Auxiliary Files, 2015- (NODC Accession 0122597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  15. Ocean Surface Topography Mission (OSTM) /Jason-3: Orbital Information, 2015- (NODC Accession 0122598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  16. Ocean Surface Topography Mission (OSTM) /Jason-3: Ancillary Files, 2015- (NCEI Accession 0122596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  17. Ocean Surface Topography Mission (OSTM) /Jason-3: Telemetry, 2015- (NODC Accession 0122599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  18. An European historical reconstruction of sea surface dynamics (waves and storm surge) for coastal impact studies

    Science.gov (United States)

    Menendez, Melisa; Perez, Jorge; Cid, Alba; Castanedo, Sonia; Losada, Inigo; Medina, Raul; Mendez, Fernando

    2015-04-01

    Despite their outstanding relevance in coastal processes, a study of the sea surface dynamics due to atmospheric wind and pressure variations are rather limited in comparison with the mean sea level rise. Data of waves and surges along the European region are scarce and in-homogeneous, not only in terms of spatial coverage but also in terms of temporal coverage. This study presents two databases focused on a historical reconstruction of: (i) the wind-generated waves (GOW) and (ii) the meteorological sea level component (GOS). The GOW and GOS datasets cover the whole European coast (North Atlantic, North Sea, Baltic Sea, Mediterranean Sea and Black Sea) at high-spatial resolution from 1979 to present. The meteorological sea level component (storm surge) has been generated by the Regional Ocean Model System (ROMS). To take into account non-linear interactions between tides and surges, both dynamics were simulated jointly. Final results of meteorological component of sea level were obtained by subtracting the astronomical tide from the simulated sea surface. The model was set-up for Europe using an orthogonal grid, with a horizontal resolution ranging between 3.5 to 11 km. A spatial domain of approximately 5 km was used for the Black Sea. Local coastal waves can be the integrated result of the ocean surface over a large region of influence. GOW-Europe is designed from a multigrid approach based on the overlapping of two-way nested domains. The coarser spatial resolution along the European coast of GOW is 15 km. The generation and propagation of the sea surface waves of GOW-Europe are simulated with the model WAVEWATCH III v4.18. Effects of non-linear wave-wave interactions, whitecapping and depth-induced refraction are considered in the propagation model. In order to validate GOW and GOS over Europe with available observations, an exhaustive comparison with in-situ and remote measurements was developed. In-situ buoys and tide-gauges are used to compare hourly time

  19. LATERAL FLOODING ASSOCIATED TO WAVE FLOOD GENERATION ON RIVER SURFACE

    Directory of Open Access Journals (Sweden)

    C. Ramírez-Núñez

    2016-06-01

    Full Text Available This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico defining the successive areas where lateral flooding occurs on its downstream movement.

  20. Lateral Flooding Associated to Wave Flood Generation on River Surface

    Science.gov (United States)

    Ramírez-Núñez, C.; Parrot, J.-F.

    2016-06-01

    This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.

  1. Surface waves in an heterogeneous anisotropic continental lithosphere

    Science.gov (United States)

    Maupin, V.

    2003-04-01

    At global as well as at regional scale, the lithosphere appears usually faster to Love waves than to Rayleigh waves. This Love-Rayleigh discrepancy can be modelled by introducing transverse isotropy in the mantle. In continental structures, the amount of transverse isotropy necessary to explain the discrepancy is however often quite large and not compatible with results of SKS-splitting analysis and azimuthal variation of surface wave velocities, at least in the simple framework of large scale uniform olivine orientation in the continental lithosphere. Models where the orientation of the olivine is incoherent at the scale of a few hundred km have been proposed to reconcile the different datasets, but the surface wave characteristics in such anisotropic heterogeneous models have not yet been analysed in detail. Using a mode-coupling scheme for calculating surface wave propagation in heterogeneous anisotropic structures, we analyse the characteristics of Rayleigh and Love waves in such laterally varying anisotropic models. We generate 3-D stochastic models of olivine orientation with different characteristics: preferred orientation dominantly horizontal, vertical or equally distributed in all directions, and use different correlation lengths in the horizontal and vertical directions to constrain the scale at which the anisotropy is coherent. We analyse the apparent Love-Rayleigh discrepancy and the phase velocity azimuthal variation these models generate and the mode-coupling and polarisation anomalies they produce.

  2. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Science.gov (United States)

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  3. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  4. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  5. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    Science.gov (United States)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  6. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean

    Science.gov (United States)

    Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.; hide

    2016-01-01

    Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.

  7. Millimeter-wave radar scattering from the water surface : a wind-wave tank study

    Science.gov (United States)

    Guerin, Charles-Antoine; Boisot, Olivier; Pioch, Sébastien; Caulliez, Guillemette; Lalaurie, Jean-Claude; Fatras, Christophe; Borderies, Pierre

    2014-05-01

    We report on a recent experiment conducted in the large wind-wave tank of Marseille-Luminy aimed at characterizing the small-scale statistics of ocean- and river-like surfaces as well as their radar return at millimeter waves (Ka-band). Simultaneous measurements of waves elevations and slopes from gravity to capillarity-gravity scale as well as the corresponding Ka-band Normalised Radar Cross Section (NRCS) have been performed for various wind speeds and scattering configurations. For each wind speed, the incidence angle of the radar beam has been varied between 0 and 15 degrees away from nadir and several azimuthal directions with respect to wind have been investigated by step of 45 degrees. Based on this data set we have developed an original technique to estimate the directional wave number spectrum of the water surface from decimeter to millimeter scales. We show that the inclusion of surface current is crucial in the correct derivation of the omnidirectional spectrum and that a non-trivial angular spreading function can be obtained from the measurements of the up-wind and down-wind slope spectra, providing some additional reasonable assumptions. The resulting spectrum is compared with the high-frequency part of the classical oceanic models such as Elfouhaily unified spectrum and Kudryavtsev et al. spectrum. Some consistency tests are proposed to validate the surface model, which is then incorporated in classical analytical scattering models. The main qualitative features of the observed NRCS are a minimum of sensibility to wind speed around 7-8 degrees incidence, non-monotonic variations with incidence at small wind speeds and a marked up/cross wind asymetry. We show that the Physical Optics approximation provides a very satisfactory estimation of the NRCS as compared the experimental values at all wind speeds and azimuths, contrarily to the Geometrical Optics model which is found inaccurate even at the larger wind speeds. The unconventional behavior of the

  8. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    Science.gov (United States)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  9. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    Science.gov (United States)

    Roberts, J. Brent; Clayson, C. A.

    2012-01-01

    Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.

  10. Application of SMAP Data for Ocean Surface Remote Sensing

    Science.gov (United States)

    Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as

  11. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  12. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    Directory of Open Access Journals (Sweden)

    David W. Greve

    2013-05-01

    Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  13. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  14. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  15. Ultrasonic attenuation of surface acoustic waves in superconducting zinc

    International Nuclear Information System (INIS)

    Bailey, W.E.; Marshall, B.J.

    1979-01-01

    The attenuation of 90-MHz elastic surface waves propagating in both 3,000 and 10,000 A films of zinc has been measured as a function of temperature from 3 to 0.38 K. The surface acoustic waves were generated and detected by using a surface-acoustic-wave device interdigital transducers plated onto a Y-Z cut lithium-niobate substrate. Utilizing the experimental results, in the BCS theory, energy gaps of 2Δ (0) equal to 4.17 +- 0.20 and 3.81 +- 0.20 in units of k/sub B/T/sub c/ were calculated for the 3,000 and 10,000 A films, respectively. The transition temperatures for the 3,000 and 10,000 A films were 1.5 +- 0.01 and 1.31 +- 0.01 K, respectively

  16. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  17. Engineered metabarrier as shield from seismic surface waves.

    Science.gov (United States)

    Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara

    2016-12-20

    Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.

  18. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition

    Science.gov (United States)

    2017-03-30

    standing any other provision of law, no person shall be subject to any penalty for failing to comply w~ a collection of information if it does not a...ABSTRACT c. THIS PAGE ABSTRACT u u u uu 18. NUMBER OF PAGES 21 19a. NAME OF RESPONSIBLE PERSON Erin E. Hackett 19b. TELEPHONE NUMBER (Include area...az1mut Radar fc A/ Resolution Radar PRF Rotation Polarization Footprint Rate System (GHz) (MHz) (m) (Hz) (m) (RPM) DREAM 9.30 500 w 0.30 615 800

  19. Long-term changes in cloud cover and short wave radiation over the Ocean

    Science.gov (United States)

    Aleksandrova, Marina; Gulev, Sergey; Sinitsyn, Alexey

    2017-04-01

    We analyze cloud cover characteristics along with the computed short wave radiative fluxes over the Ocean for the last several decades. Characteristics of cloud cover were derived from the Voluntary Observing Ship (VOS) reports available from the ICOADS (International Comprehensive Ocean-Atmosphere Data Set). Frequency distribution of fractional cloud cover was approximated by 3-paramter PDF, accurately capturing most of variants of cloud cover probability density distribution. Interannual to decadal changes in characteristics of cloud cover (linear trends and shorter term variations) are analyzed in terms of the distribution parameters. Next, the changes in the cloud cover characteristics over the world ocean were associated with variability of short-wave radiation fluxes derived from VOS reports for the last 6 decades using a new parameterization, which accounts not only for the cloud amount but also for the cloud types. The latter is critically important for the conditions close to overcast and may strongly affect short-wave radiation fluxes. Computations demonstrate generally slightly decreasing over the last decades shortwave radiation flux in mid latitudes and also an evident interdecadal variability in the tropics. These changes are discussed in the context of variability of cloud cover characteristics and in conjunction with changes in turbulent heat fluxes.

  20. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  1. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  2. Spectral decomposition of internal gravity wave sea surface height in global models

    Science.gov (United States)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  3. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  4. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  5. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  6. Boussinesq modeling of surface waves due to underwater landslides

    Directory of Open Access Journals (Sweden)

    D. Dutykh

    2013-05-01

    Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.

  7. Analysis of Surface Wave Attenuation in Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Safwan Hadi

    2003-11-01

    Full Text Available This paper presents an analytical study on surface wave attenuation in mangrove forest using analytical model developed by Massel et.al. (1999. The energy dissipation in the frequency domain is determined by treating the mangrove forest as a random media with certain characteristics using the geometry of mangrove trunks and their locations. Initial nonlinear governing equations are linearized using the concept of minimalization in the stochastic sense and interactions between mangrove trunks and roots have been introduced through the modification of the drag coefficients. To see the effectiveness of the mangrove forest in attenuating wave energy the analytical model was applied to two types of mangrove forest i.e. Rhizophora and Ceriops forests. The resulting rate of wave energy attenuation depends strongly on the density of the mangrove forest, and on diameter of mangrove roots and trunks. More effective wave energy attenuation is shown by Rhizophora.

  8. Optimized nonlinear inversion of surface-wave dispersion data

    International Nuclear Information System (INIS)

    Raykova, Reneta B.

    2014-01-01

    A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software

  9. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  10. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  11. Application of Satellite-Derived Ocean Surface Winds to the Detection of Weather Systems and the Prediction of Near-Ocean Surface Winds around Hawaii

    Directory of Open Access Journals (Sweden)

    Hsi-Chyi Yeh

    2010-01-01

    Full Text Available The Hawaiian Island chain is surrounded by the open ocean and is an ideal place to conduct the application of QuikSCAT satellite-derived ocean surface winds to the detection of weather systems. With the help of QuikSCAT winds, the associated circulation of the weather systems over the open ocean around Hawaii can be identified. In this study, the obvious cyclonic circulation associated with a Kona storm, the significant wind shift and wind confluence related to the surface cold front, and the anticyclonic circulation related to high-pressure systems for both a strong-wind event and a trade-wind condition are revealed over the open ocean through QuikSCAT winds. The propagation of a cold frontal boundary, defined by the wind shift and wind confluence, also can be clearly detected using the reanalyzed ocean-surface winds.

  12. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  13. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 3. Surface plasma waves over bismuth–vacuum interface. Ashim P Jain J Parashar. Brief Report Volume 61 Issue ... Author Affiliations. Ashim P Jain1 J Parashar1. Department of Applied Physics, Samrat Ashok Technological Institute, Vidisha 464 001, India ...

  14. Quantitative photography of intermittency in surface wave turbulence

    International Nuclear Information System (INIS)

    Wright, W.; Budakian, R.; Putterman, S.J.

    1997-01-01

    At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state

  15. Standing surface acoustic wave (SSAW) based multichannel cell sorting.

    Science.gov (United States)

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Li, Sixing; Guo, Xiang; Chan, Chung Yu; Chiang, I-Kao; Wang, Lin; McCoy, J Philip; Huang, Tony Jun

    2012-11-07

    We introduce a novel microfluidic device for cell sorting in continuous flow using tunable standing surface acoustic waves. This method allows individual cells to be precisely directed into five different outlet channels in a single step. It is versatile, simple, label-free, non-invasive, and highly controllable.

  16. Surface wave multipath signals in near-field microwave imaging.

    Science.gov (United States)

    Meaney, Paul M; Shubitidze, Fridon; Fanning, Margaret W; Kmiec, Maciej; Epstein, Neil R; Paulsen, Keith D

    2012-01-01

    Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.

  17. Surface Wave Multipath Signals in Near-Field Microwave Imaging

    Directory of Open Access Journals (Sweden)

    Paul M. Meaney

    2012-01-01

    Full Text Available Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.

  18. Note on the surface wave due to the prescribed elevation

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Note on the surface wave due to the prescribed elevation. Niranjan Das. Brief Reports Volume 62 Issue 1 January 2004 pp 135-142. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/pram/062/01/0135-0142 ...

  19. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    electron laser, a fast emerging device of high power coherent radiation. In §2 we derive the dispersion relation for surface plasma waves using a fluid theory. In §3 we study the SPW excitation by an electron beam. A discussion of results is given in §4. 2. SPW propagation. Consider a bismuth (Bi)–free space interface (x = 0) ...

  20. Dispersive surface waves along partially saturated porous media

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100?Hz–1?MHz). A modified Biot theory of poromechanics is implemented which takes into account the

  1. Field verification of ADCP surface gravity wave elevation spectra

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of

  2. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  3. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff= p / 2 ( L + ) lies in the far infrared region and can be accessed using free electron laser.

  4. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW ωcutoff = ωp/. Ô. 2(εL +ε) lies in the far infrared region and can be accessed using free electron laser.

  5. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  6. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  7. The causes of alkalinity variations in the global surface ocean

    OpenAIRE

    Fry, Claudia Helen

    2016-01-01

    Human activities have caused the atmospheric concentration of carbon dioxide (CO2) to increase by 120 ppmv from pre-industrial times to 2014. The ocean takes up approximately a quarter of the anthropogenic CO2, causing ocean acidification (OA). Therefore it is necessary to study the ocean carbonate system, including alkalinity, to quantify the flux of CO2 into the ocean and understand OA. Since the 1970s, carbonate system measurements have been undertaken which can be analyzed to quantify the...

  8. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    Science.gov (United States)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north

  9. Ocean-Wave Coupled Modeling in COAMPS-TC: A Study of Hurricane Ivan (2004)

    Science.gov (United States)

    2013-08-15

    input of the Stokes Drift Current ( SDC ) calculated from the SWAN wave spectra to NCOM, is examined. The models indicate that the SDC was on the order...of 10 -25% of the near-surface Eulerian current during Ivan. Recent studies of the importance of the SDC and the resulting Langmuir turbulence on...model coupling, which included the input of the Stokes Drift Current ( SDC ) calculated from the SWAN wave spectra to NCOM, is examined. The models indi

  10. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...

  11. Source effects on surface waves from Nevada Test Site explosions

    International Nuclear Information System (INIS)

    Patton, H.J.; Vergino, E.S.

    1981-11-01

    Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release

  12. Revisiting tropical instability wave variability in the Atlantic ocean using SODA reanalysis

    Science.gov (United States)

    de Decco, Hatsue Takanaca; Torres Junior, Audalio Rebelo; Pezzi, Luciano Ponzi; Landau, Luiz

    2018-03-01

    The spatial and temporal variability of energy exchange in Tropical Instability Waves (TIWs) in the Atlantic Ocean were investigated. A spectral analysis was used to filter the 5-day mean results from Simple Ocean Data Assimilation (SODA) reanalysis spanning from 1958 to 2008. TIWs were filtered over periods of 15 to 60 days and between wavelengths of 4 and 20 longitude degrees. The main approach of this study was the use of bidirectionally filtered TIW time series as the perturbation fields, and the difference in these time series from the SODA total results was considered to be the basic state for energetics analysis. The main result was that the annual cycle (period of 360 days) was the main source of variability of the waves, and the semi-annual cycle (period of 180 days) was a secondary variation, which indicated that TIWs occurred throughout the year but with intensity that varies seasonally. In SODA, barotropic instability acts as the mechanism that feeds and extracts energy to/from TIWs at equatorial Atlantic. Baroclinic instability is the main mechanism that extracts energy from TIWs to the equatorial circulation north of the Equator. All TIW patterns of variability were observed western of 10° W. The present study reveals new evidences regarding TIW variability and suggests that future investigations should include a detailed description of TIW dynamics as part of Atlantic Ocean equatorial circulation.

  13. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  14. Directional waves simulated for a severe cyclone and a typical monsoon season in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sudheesh, K.

    A second generation wave model has been used to simulate waves generated in the north Indian Ocean during (1) an exceptional severe cyclone which occurred in November 1977 and (2) a typical monsoon month of July 1987. The model has been formulated...

  15. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  16. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide

  17. Surface wave observations during CoOP experiments and their relation to air-sea gas transfer

    Science.gov (United States)

    Hara, Tetsu; Uz, B. Mete; Wei, Hua; Edson, James B.; Frew, Nelson M.; McGillis, Wade R.; McKenna, Sean P.; Bock, Erik J.; Haußecker, Horst; Schimpf, Uwe

    Gas exchange between the ocean and the atmosphere is strongly influenced by physical processes in the near-surface waters. Surface waves are particularly important for gas fluxes because they enable faster transfer of gases across the diffusive sublayer by causing more frequent renewal of the skin layer. During the CoOP air-sea gas exchange experiments (1995; 1997), we obtained one of the most comprehensive data sets of physical processes at the air-sea interface in both near-shore and off-shore waters. During these experiments simultaneous measurements of short wind waves, surface films, wind stress, and transfer velocity were made from a towed or self-propelled catamaran with a wide range of wind stress and with varying surface film conditions. The results show that the wave spectra at higher wavenumbers are significantly reduced by surfactant at wind friction velocities below 0.2 m s-1. The surfactant effect may be quantified using the surface enrichment (difference between the CDOM fluorescence in microlayers and that in bulk water) with reasonable accuracy. During rain events the wave spectra are raised at higher wavenumbers (above 200 rad m-1) but are not affected at 100 rad m-1. The surfactant effect is also reduced during rain. The air-sea gas transfer velocity is roughly proportional to the wave spectra at higher wavenumbers but appears to be less sensitive to spectra of longer waves.

  18. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  19. Superresolution near-field imaging with surface waves

    Science.gov (United States)

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard

    2018-02-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  20. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei

    2017-10-21

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green’s functions for migration, and only costs O(N4) algebraic operations for poststack migration compared to O(N6) operations for natural prestack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  1. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  2. Nonlinear Waves and Solitons on Contours and Closed Surfaces

    CERN Document Server

    Ludu, Andrei

    2007-01-01

    The present volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered. Emphasis on the relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. Nonlinear Waves and Solitons on Contours and Closed Surfaces provides graduate students and researchers in mathematics, physics and engineering with a ready tut...

  3. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  4. Verification of model wave heights with long-term moored buoy data: Application to wave field over the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.

    have been successful in predicting the sea state reasonably accurately on global as well as regional scales. It may be noted that besides the time required for the calculations, the issue of model accuracy is the most important, since... important source terms governing the dynamics of the surface gravity wave evolution (for e.g., Hasselmann et al., 1973; Phillips, 1977, 1985; Komen et al., 1994; Janssen, 2004, Violante- Carvalho et al., 2004). The physics of these source functions...

  5. Phase mixing and surface wave decay in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Cally, P.S.; Sedlacek, Z.

    1992-02-01

    The decay rate is calculated of an Alfven or plasma surface wave propagating along an inhomogeneous layer of plasma. The inhomogeneous profile is thin and odd, but otherwise arbitrary. The wave's decay rate is determined using two fundamentally different methods, the integral-differential equation approach of Sedlacek and the Fourier expansion technique of Cally, and found by both to depend only on the slope of the Alfven or plasma frequency profile at the r esonant point , and not on other details of its shape. The result is verified numerically. This problem represents a good example with which to compare and contrast the two methods. (author) 3 figs., 7 refs

  6. Surface wave phase velocities between Bulgaria and the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Gaždová, Renata; Kolínský, Petr; Popova, I.; Dimitrova, L.

    2011-01-01

    Roč. 18, č. 2 (2011), s. 16-23 ISSN 1803-1447. [OVA´11 – New Knowledge and Measurements in Seismology, Engineering Geophysics and Geotechnics. Ostrava, 12.04.2011-14.04.2011] R&D Projects: GA ČR GA205/09/1244 Institutional research plan: CEZ:AV0Z30460519 Keywords : surface waves * phase velocity * shear wave velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure http://www.caag.cz/egrse/2011-2/03%20gazdova_ova.pdf

  7. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    Science.gov (United States)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  8. Surface waves guided by metamaterials with rotational disorder

    Science.gov (United States)

    Gric, T.; Hess, O.

    2018-02-01

    The analytical analysis of the metamaterial boundary with the rotational disorder reveals both bound and leaky surface plasmon (SP) modes. The dispersion relations of SPs propagating on a surface of these metamaterials are presented along with the propagation lengths. The rigorous modeling and analysis of surface waves at the boundary of two metamaterials possessing rotational disorder are presented. Dispersion properties of two different metamaterial boundaries have been investigated. The results show that the boundary of the metamaterials having different dielectrics employed allows for the presence of the particular modes crossing the light line with the significant portion at lower frequencies lying above the free space light line.

  9. Surface impedance of travelling--Wave antenna in magnetized plasma

    International Nuclear Information System (INIS)

    Denisenko, I.B.; Ostrikov, K.N.

    1993-01-01

    Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results

  10. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  11. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  12. Temperature profile data from STD/CTD casts from the MOANA WAVE from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 22 February to 1975-05-27 (NODC Accession 7800703)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MOANA WAVE in the Pacific Ocean from February 22, 1975 to May 27, 1975. Data were...

  13. The Sentinel-3 Surface Topography Mission (S-3 STM): Level 2 SAR Ocean Retracker

    Science.gov (United States)

    Dinardo, S.; Lucas, B.; Benveniste, J.

    2015-12-01

    The SRAL Radar Altimeter, on board of the ESA Mission Sentinel-3 (S-3), has the capacity to operate either in the Pulse-Limited Mode (also known as LRM) or in the novel Synthetic Aperture Radar (SAR) mode. Thanks to the initial results from SAR Altimetry obtained exploiting CryoSat-2 data, lately the interest by the scientific community in this new technology has significantly increased and consequently the definition of accurate processing methodologies (along with validation strategies) has now assumed a capital importance. In this paper, we present the algorithm proposed to retrieve from S-3 STM SAR return waveforms the standard ocean geophysical parameters (ocean topography, wave height and sigma nought) and the validation results that have been so far achieved exploiting the CryoSat-2 data as well as the simulated data. The inversion method (retracking) to extract from the return waveform the geophysical information is a curve best-fitting scheme based on the bounded Levenberg-Marquardt Least-Squares Estimation Method (LEVMAR-LSE). The S-3 STM SAR Ocean retracking algorithm adopts, as return waveform’s model, the “SAMOSA” model [Ray et al, 2014], named after the R&D project SAMOSA (led by Satoc and funded by ESA), in which it has been initially developed. The SAMOSA model is a physically-based model that offers a complete description of a SAR Altimeter return waveform from ocean surface, expressed in the form of maps of reflected power in Delay-Doppler space (also known as stack) or expressed as multilooked echoes. SAMOSA is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. In spite of its truly comprehensive character, the SAMOSA model comes with a compact analytical formulation expressed in term of Modified Bessel functions. The specifications of the retracking algorithm have been gathered in a technical document (DPM

  14. Waves on the surface of the Orion molecular cloud.

    Science.gov (United States)

    Berné, Olivier; Marcelino, Núria; Cernicharo, José

    2010-08-19

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  15. Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer

    Science.gov (United States)

    2016-09-14

    the potential impact of these fluxes on the barrier layer and Aquarius and Soil Moisture and Ocean Salinity (SMOS) satellite image formations. By...contributing to the salinity field detected in the Aquarius and Soil Moisture and Ocean Salinity (SMOS) sat- ellite footprints. The barrier layer (Lukas...operational algorithms for sea surface salinity satellites. Oceanic advection and mixing funda- mentally affect the sea surface salinity sig - nal

  16. New pure shear elastic surface waves in magneto-electro-elastic half-space

    OpenAIRE

    Melkumyan, Arman

    2006-01-01

    Pure shear surface waves guided by the free surface of a magneto-electro-elastic material are investigated. Three surface waves are obtained for various magneto-electrical conditions on the free surface of the magneto-electro-elastic half-space. The velocities of propagation and the existence conditions for each of these waves are obtained in explicit exact form.

  17. Atmospheric convectively coupled Kelvin waves over Indian Ocean: initiation, propagation and interactions with the Maritime Continent

    Science.gov (United States)

    Baranowski, Dariusz; Flatau, Maria; Flatau, Piotr

    2017-04-01

    Atmospheric convectively coupled Kelvin waves (CCKWs) propagate eastward in the equatorial belt and represent one of key modes of the intraseasonal variability in the topical atmosphere. CCKWs with other waves are building blocks of the Madden-Julian Oscillations (MJO), but their activity is not limited to the MJO itself. In this study, we utilize Lagrangian analysis, which allows tracking individual CCKW events. Such an approach enables identification of initiation and decay of convective events as well as analysis of environmental conditions throughout the lifetime of a CCKW. Analysis of 15-year-long global record of CCKW activity, derived from TRMM satellite data, shows that Indian Ocean basin is characterized by globally largest activity of CCKWs and that about 40% of events active in that region are sequential waves, which propagate in close proximity to each other. Analysis of environmental conditions identifies air-sea interaction, primarily development of the diurnal warm layers, to be an important contributor to the initiation of CCKW events over Indian Ocean basin. CCKWs events, which initiation over the same area within a few days of each other are proceeded by abnormally high diurnal SST due to warm layer development. Propagation of a CCKW across the Indian Ocean is characterized by coherent variability in air-sea fluxes: increase of wind speed and latent heat flux, and suppression of diurnal warm layer development, decrease in SST and lower tropospheric temperature and humidity. This typical variability last for about 5 days, after which time most of variables relax to their climatological levels. However, SST and lower tropospheric humidity rectify into longer, intraseasonal time scale. Magnitude of this variability increases monotonically across the Indian Ocean as CCKWs propagate eastward and achieves maximum west of the coast of Sumatra. The Maritime Continent (MC), which bounds Indian Ocean from the east, is a net sink of CCKW activity, which

  18. Latitudinal and seasonal variability of gravity-wave energy in the South-West Indian Ocean

    OpenAIRE

    F. Chane-Ming; D. Faduilhe; J. Leveau

    2008-01-01

    Vertical temperature profiles obtained by radiosonde and Raman lidar measurements are used to investigate a climatology of total energy density of gravity waves (GW) in the Upper Troposphere (UT) and the Lower Stratosphere (LS) from 1992 to 2004 above Mahé (4° S, 55° E), Tromelin (15° S, 54° E) and La Réunion (21° S, 55° E) located in the tropical South-West Indian Ocean. The commonly used spectral index value (p≈5/3) of the i...

  19. Brief communication "What do we know about freaque waves in the ocean and lakes and how do we know it?"

    Directory of Open Access Journals (Sweden)

    P. C. Liu

    2010-10-01

    Full Text Available We made an objective examination of our present state of knowledge on freaque waves in the ocean and lakes from three separate perspectives:

    - testimonial – from eyewitness account of actual encounters;

    - empirical – from available in-situ wave measurements;

    - conjectural – from academic theoretical formulations;

    and led to a subjective answer to the posted title question of this paper: we do not know very much about freaque waves in the ocean and lakes! There are really no interconnections among the three perspectives we examined. Put them together however, persuades us to think that freaque waves are really an integral part of the ocean and lakes, they happen not infrequently but we still basically do not know when, where, how, what, and why they will happen. We do not even have as yet a viable definition on the phenomenon. So in order to expect tangible progress in our knowledge to the understanding of freaque waves in the ocean and lakes, we propose to strengthen a key ingredient by further invigorate the empirical aspect of the perspective, specifically making more in-situ spatial wave measurement for freaque wave studies, which is practically non-existence at the present.

  20. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    Digital Repository Service at National Institute of Oceanography (India)

    Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.E.; Pfeil, B.; Olsen, A; Metzl, N.; Kozyr, A; Fassbender, A; Manke, A; Malczyk, J.; Akl, J.; Alin, S.R.; Bellerby, R.G.J.; Borges, A; Boutin, J.; Brown, P.J.; Cai, W.-J.; Chavez, F.P.; Chen, A.; Cosca, C.; Feely, R.A.; Gonzalez-Davila, M.; Goyet, C.; Hardman-Mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C.W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R.M.; Kortzinger, A.; Landschutzer, P.; Lauvset, S.K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A.M.; Padin, X.A.; Park, G.-H.; Paterson, K.; Perez, F.F.; Pierrot, D.; Poisson, A.; Rios, A.F.; Salisbury, J.; Santana-Casiano, J.M.; Sarma, V.V.S.S.; et al.

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2...

  1. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    Science.gov (United States)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  2. Cluster observations of surface waves on the dawn flank magnetopause

    Directory of Open Access Journals (Sweden)

    C. J. Owen

    2004-03-01

    Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 RE and move at an average speed of ~65km s-1 in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

  3. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  4. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  5. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  6. An accurate procedure for estimating the phase speed of ocean waves from observations by satellite borne altimeters

    Science.gov (United States)

    De-Leon, Yair; Paldor, Nathan

    2017-08-01

    Observations of sea surface height (SSH) fields using satellite borne altimeters were conducted starting in the 1990s in various parts of the world ocean. Currently, a long period of 20 years of calibrated and accurate altimeter observations of Sea Surface Height Anomalies (SSHA) is publically available and ready to be examined for determining the rate of westward propagation of these anomalies, which are interpreted as a surface manifestation of linear Rossby waves that propagate westward in the ocean thermocline or as nonlinear eddies. The basis for estimating the speed of westward propagation of SSHA is time-longitude (Hovmöller) diagrams of the SSHA field at fixed latitude. In such a diagram the westward propagation is evident from a left-upward tilt of constant SSHA values (i.e. contours) and the angle between this tilt and the ordinate is directly proportional to the speed of westward propagation. In this work we use synthetically generated noisy data to examine the accuracy of three different methods that have been separately used in previous studies for estimating this slope (angle) of the time-longitude diagram: The first is the application of Radon transform, used in image processing for detecting structures on an image. The second method is the application of 2D Fast Fourier Transform that yields a frequency-wavenumber diagram of the amplitudes so the frequency and wavenumber where the maximum amplitude occurs determine the phase speed i.e. the slope. The third method constitutes an adaptation of Radon transform to a propagating wave in which structures of minimal variance in the image are identified. The three methods do not always yield the same phase speed value and our analysis of the synthetic data shows that an estimate of the phase speed at any given latitude should be considered valid only when at least two of the methods yield the same value. The relevance of the suggested procedure to observed signals is verified by applying it to observed

  7. Surface Ocean Circulation and Dynamics in the Philippine Archipelago Region

    Science.gov (United States)

    Han, W.; Moore, A. M.; Levin, J.; Zhang, B.; Arango, H. G.; Curchitser, E.; di Lorenzo, E.; Gordon, A. L.; Lin, J.

    2008-12-01

    The dynamics of the seasonal surface circulation in the Philippine Archipelago (117E-128E, 0N-14N) are investigated using a high-resolution Regional Ocean Modeling System (ROMS) for the period of 2004 - March 2008. Three experiments are performed to estimate the relative importance of local, remote and tidal forcing. On annual mean, circulation in the Sulu Sea is dominated by the inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the Sulu basin. A strong jet forms in the northeast Sulu Sea when currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the western Pacific (WP) Water from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry part of the WP water from the San Bernardino Strait into the Sulu Sea via the Tablas Strait. The surface circulations exhibit strong seasonal variations or reversals from winter to summer. The variations of volume transports above 40m at the Mindoro Strait, Balabac Strait and Sibutu Passage of the Sulu Sea and at the Verde Island Passage are dominated by remote forcing, although local forcing can be large sometimes. At the Tablas and Dipolog Straits, variations of transports result from both remote and local forcing. The cyclonic (anticyclonic) gyres during winter (summer) in the Sulu Sea and seasonally reversing currents in the Archipelago result mainly from local forcing. Nonlinear rectification of tides acts to reduce the mean transports at the Surigao, San Bernardino and Dipolog Straits, and it also affects the Sulu Sea circulation perhaps by tidal mixing and shifting the locations of jets and eddies.

  8. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    Science.gov (United States)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  9. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    OpenAIRE

    Yuanyuan Li; Wenke Lu; Changchun Zhu; Qinghong Liu; Haoxin Zhang; Chenchao Tang

    2014-01-01

    Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW) based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established ...

  10. Improved Modeling and Prediction of Surface Wave Amplitudes

    Science.gov (United States)

    2017-05-31

    data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented... advantages of the membrane surface wave technique are that 1) it is orders of magnitude faster than 3-dimensional finite-difference; and 2) it...0.5 km depth. Although the CMT sources should more accurately reproduce the observed signals from each event, they have two disadvantages : 1) in the

  11. Conoscopic interferometry of surface-acoustic-wave substrate crystals.

    Science.gov (United States)

    Ayräs, P H; Friberg, A T; Kaivola, M A; Salomaa, M M

    1999-09-01

    Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.

  12. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    Surface wave propagation in a fluid-saturated incompressible porous medium157 where ˙xi˙xi˙xi and ¨xi¨xi¨xi(i = F,S) denote the velocities and accelerations of solid and fluid phases respectively and p is the effective pore pressure of the incompressible pore fluid. ρS and ρF are the densities of the solid and fluid phases ...

  13. Monolithic GaAs surface acoustic wave chemical microsensor array

    Energy Technology Data Exchange (ETDEWEB)

    HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-03-09

    A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

  14. Surface acoustic wave probe implant for predicting epileptic seizures

    Science.gov (United States)

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  15. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  16. Multi-channel Analysis of Passive Surface Waves (MAPS)

    Science.gov (United States)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  17. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  18. WAVE DIRECTION and Other Data from FIXED PLATFORMS and Other Platforms From North Atlantic Ocean from 19690701 to 19730930 (NODC Accession 8100447)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The entry contains Wave direction and other data collected from fixed platforms and other platforms from North Atlantic Ocean between July 1, 1969 and September 30,...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ODEN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-12-14 to 2006-12-26 (NODC Accession 0108159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108159 includes Surface underway data collected from ODEN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  20. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    satellite and in situ measurements. A case study using the TRMM Microwave Imager (TMI) and. Indian Ocean buoy wind speed data resulted in an improvement of about 10%. 1. Introduction. The need for studying temporal variability of oceanic winds has been pointed out by many authors (for example, Ezraty R S 1989).

  1. Correlation characteristics of signals reflected by the wavy surface of ocean in mirror direction

    Science.gov (United States)

    Zhitkovskiy, Y. Y.; Nosov, A. V.; Savelyev, V. V.

    1985-06-01

    An experimental study was carried out to determine the correlation characteristics of pseudonoise signals reflected from a wave-covered surface in the mirror direction. The major measured quantity was the reciprocal correlation coefficient between the transmitted signal and the reflected signal. The transmitter was lowered from a ship on a 150 m cable. The receiver and preamplifier were lowered to the same depth from a buoy which was allowed to drift from the ship to a distance of 100-500 m, the changing distance changing the angle of the beam reflected from the surface of the ocean back down to the hydrophone. The radiator transmitted a pulsed signal with a pseudonoise carrier. The results were interpreted within the framework of ordinary correlation theory by processing several recordings, calculating the sign and ordinary correlation coefficients to determine the variation in sign correlation coefficient as a function of the ordinary correlation coefficient. Graphs of the average variation are presented. It was found that the medium did not distort the signal as it propagated through the water mass (within the limits of experimental accuracy). The correlation coefficient between the transmitted and reflected signals is thus determined entirely by the characteristics of reradiation of the sound by the wavecovered surface.

  2. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    Science.gov (United States)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  3. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  4. Simulated Interannual Modulation of Intraseasonal Kelvin Waves in the Equatorial Indian Ocean

    Directory of Open Access Journals (Sweden)

    Iskhaq Iskandar

    2016-12-01

    Full Text Available Outputs from a high-resolution ocean general circulation model (OGCM for the period of 1990-2003 indicate an interannual modulation of intraseasonal Kelvin waves along the equatorial Indian Ocean. During normal conditions without IOD event, the first mode explains about 30-40% of the total variance in the western (60-65ºE and central (75-80ºE basin, while the second mode contributes up to 45% to the total variance in the central basin around the longitude of 82ºE. In contrast, during the 1997/98 IOD event, the fourth mode caused about 40% of the total variance in the central and eastern basin. During the 1994 IOD event, the contribution from the fourth baroclinic mode in the eastern basin caused 45% of the total variance. In the central basin, the second and the fourth baroclinic mode caused almost the same variance (~40%. The variations in the characteristics of the intraseasonal Kelvin waves are related to variations in the vertical stratification. During the IOD event, the pycnocline in the eastern basin was raised by about 50 m and the stratification at the upper level is strengthened, while it is weakened at lower levels. These changes lead to an increase in the contribution of higher-order baroclinic modes.

  5. Surface acoustic wave micromotor with arbitrary axis rotational capability

    Science.gov (United States)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  6. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  7. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    Science.gov (United States)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (wind speed are necessary to produce sea salt aerosol emissions in the right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  8. Surface Wave Simulation and Processing with MatSeis

    Energy Technology Data Exchange (ETDEWEB)

    THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.

    2000-08-07

    In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a

  9. A computational analysis of sonic booms penetrating a realistic ocean surface.

    Science.gov (United States)

    Rochat, J L; Sparrow, V W

    2001-03-01

    The last decade has seen a revival of sonic boom research, a direct result of the projected market for a new breed of supersonic passenger aircraft, its design, and its operation. One area of the research involves sonic boom penetration into the ocean, one concern being the possible disturbance of marine mammals from the noise generated by proposed high-speed civil transport (HSCT) flyovers. Although theory is available to predict underwater sound levels due to a sonic boom hitting a homogeneous ocean with a flat surface, theory for a realistic ocean, one with a wavy surface and bubbles near the surface, is missing and will be presented in this paper. First, reviews are given of a computational method to calculate the underwater pressure field and the effects of a simple wavy ocean surface on the impinging sonic boom. Second, effects are described for the implementation of three additional conditions: a sonic boom/ocean "wavelength" comparison, complex ocean surfaces, and bubbles near the ocean surface. Overall, results from the model suggest that the realistic ocean features affect the penetrating proposed HSCT sonic booms by modifying the underwater sound-pressure levels only about 1 decibel or less.

  10. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    Science.gov (United States)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  11. Long wave dispersion relations for surface waves in a magnetically structured atmosphere

    International Nuclear Information System (INIS)

    Rae, I.C.; Roberts, B.

    1983-01-01

    A means of obtaining approximate dispersion relations for long wavelength magnetoacoustic surface waves propagating in a magnetically structured atmosphere is presented. A general dispersion relation applying to a wide range of magnetic profiles is obtained, and illustrated for the special cases of a single interface and a magnetic slab. In the slab geometry, for example, the dispersion relation contains both the even (sausage) and odd (kink) modes in one formalism

  12. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    International Nuclear Information System (INIS)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)

  13. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

    2016-03-14

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  14. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. I. FE analysis of surface wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    A numerical study is carried out of the surface acoustic wave generation by a bulk acoustic wave in a half-infinite anisotropic half-space without piezoeffect. The efficient conversion of bulk waves into surface waves occurs due to a grating area created on the surface of the substrate. Our simulations are fully based on the finite element method. Given the incident bulk wave, we directly determine the amplitude of the surface wave and investigate its dependence on various parameters specifying the situation under consideration, such as the frequency and the polarization of the bulk wave, the length of the grating, the geometrical size of grooves or strips forming the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Self-focusing of electromagnetic surface waves on a nonlinear impedance surface

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhangjie, E-mail: zhangjie-luo-cn@126.com [College of Electronics and Information Engineering, Sichuan University, Chengdu 610064 (China); Applied Electromagnetics Group, Electrical and Computer Engineering Department, University of California, San Diego, California 92093 (United States); Chen, Xing [College of Electronics and Information Engineering, Sichuan University, Chengdu 610064 (China); Long, Jiang; Quarfoth, Ryan; Sievenpiper, Daniel, E-mail: dsievenpiper@eng.ucsd.edu [Applied Electromagnetics Group, Electrical and Computer Engineering Department, University of California, San Diego, California 92093 (United States)

    2015-05-25

    The self-focusing effect of optical beams has been a popular topic of study for quite a while, but such a nonlinear phenomenon at microwave frequencies has never been realized, partially due to the underdevelopment of nonlinear material. In this research, self-focused electromagnetic (EM) surface waves are demonstrated on a circuit-based, power-dependent impedance surface. The formation of a self-focused beam is investigated using a series of discrete-time simulations, and the result is further validated in measurement. It is experimentally observed that, in contrast to the normal scattering of low-power surface waves, high-power waves propagate through the surface while maintaining narrow beam width, and even converge extremely tightly to create a hot spot with higher power. The result is essentially a nonlinear effect of the surface that compensates for the natural tendency of surface waves to diffract. This intriguing experiment can be extended to various potential EM applications such as power-dependent beam steering antennas and nonlinear microwave propagation or dissipation.

  16. A cold and fresh ocean surface in the Nordic Seas during MIS 11: Significance for the future ocean

    NARCIS (Netherlands)

    Kandiano, E.S.; Van der Meer, M.T.J.; Bauch, H.A.; Helmke, J.; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-presentsea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTsin the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve

  17. A cold and fresh ocean surface in the Nordic Seas during MIS 11 : Significance for the future ocean

    NARCIS (Netherlands)

    Kandiano, Evgenia S.; van der Meer, M.T.J.; Bauch, H.A.; Helmke, Jan; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve

  18. Particle separation by phase modulated surface acoustic waves.

    Science.gov (United States)

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  19. The Mean Curvature of the Influence Surface of Wave Equation With Sources on a Moving Surface

    Science.gov (United States)

    Farassat, F.; Farris, Mark

    1999-01-01

    The mean curvature of the influence surface of the space-time point (x, t) appears in linear supersonic propeller noise theory and in the Kirchhoff formula for a supersonic surface. Both these problems are governed by the linear wave equation with sources on a moving surface. The influence surface is also called the Sigma - surface in the aeroacoustic literature. This surface is the locus, in a frame fixed to the quiescent medium, of all the points of a radiating surface f(x, t) = 0 whose acoustic signals arrive simultaneously to an observer at position x and at the time t. Mathematically, the Sigma- surface is produced by the intersection of the characteristic conoid of the space-time point (x, t) and the moving surface. In this paper, we derive the expression for the local mean curvature of the Sigma - space of the space-time point for a moving rigid or deformable surface f(x, t) = 0. This expression is a complicated function of the geometric and kinematic parameters of the surface f(x, t) = 0. Using the results of this paper, the solution of the governing wave equation of high speed propeller noise radiation as well as the Kirchhoff formula for a supersonic surface can be written as very compact analytic expression.

  20. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  1. Marine isoprene production and consumption in the mixed layer of the surface ocean - a field study over two oceanic regions

    Science.gov (United States)

    Booge, Dennis; Schlundt, Cathleen; Bracher, Astrid; Endres, Sonja; Zäncker, Birthe; Marandino, Christa A.

    2018-02-01

    Parameterizations of surface ocean isoprene concentrations are numerous, despite the lack of source/sink process understanding. Here we present isoprene and related field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean to investigate the production and consumption rates in two contrasting regions, namely oligotrophic open ocean and the coastal upwelling region. Our data show that the ability of different phytoplankton functional types (PFTs) to produce isoprene seems to be mainly influenced by light, ocean temperature, and salinity. Our field measurements also demonstrate that nutrient availability seems to have a direct influence on the isoprene production. With the help of pigment data, we calculate in-field isoprene production rates for different PFTs under varying biogeochemical and physical conditions. Using these new calculated production rates, we demonstrate that an additional significant and variable loss, besides a known chemical loss and a loss due to air-sea gas exchange, is needed to explain the measured isoprene concentration. We hypothesize that this loss, with a lifetime for isoprene between 10 and 100 days depending on the ocean region, is potentially due to degradation or consumption by bacteria.

  2. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    Science.gov (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  3. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

    International Nuclear Information System (INIS)

    Köhler, Peter; Abrams, Jesse F; Völker, Christoph; Hauck, Judith; Wolf-Gladrow, Dieter A

    2013-01-01

    Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO 2 and oppose surface ocean acidification, but would also impact on marine biology. If dissolved in the surface ocean, olivine sequesters 0.28 g carbon per g of olivine dissolved, similar to land-based enhanced weathering. Silicic acid input, a byproduct of the olivine dissolution, alters marine biology because silicate is in certain areas the limiting nutrient for diatoms. As a consequence, our model predicts a shift in phytoplankton species composition towards diatoms, altering the biological carbon pumps. Enhanced olivine dissolution, both on land and in the ocean, therefore needs to be considered as ocean fertilization. From dissolution kinetics we calculate that only olivine particles with a grain size of the order of 1 μm sink slowly enough to enable a nearly complete dissolution. The energy consumption for grinding to this small size might reduce the carbon sequestration efficiency by ∼30%. (letter)

  4. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    DEFF Research Database (Denmark)

    He, Peng; Hou, Xiaolin; Aldahan, Ala

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the is...... 129I in ocean environments and impact on climate at the ocean boundary layer.......Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations...... of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters...

  5. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...... that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock...... parameter (0.018) also give very good results for the wind friction velocities at the RASEX site....

  6. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  7. Natural radionuclides tracing in marine surface waters along the northern coast of Oman Sea by combining the radioactivity analysis, oceanic currents and the SWAN model results

    International Nuclear Information System (INIS)

    Zare, Mohammad Reza; Mostajaboddavati, Mojtaba; Kamali, Mahdi; Tari, Marziyeh; Mosayebi, Sanaz; Mortazavi, Mohammad Seddigh

    2015-01-01

    Highlights: • This study estimates radioactive pollution diffusion in coastline of the Oman Sea. • 36 high volume surface water samples were analyzed using a portable HPGe detector. • Oceanic currents in the northern coast of Oman Sea were investigated. • The spectral wave model SWAN was used for wave parameters simulation. • Currents and preferable wave directions were coupled with higher radioactivity. - Abstract: This study aims to establish a managed sampling plan for rapid estimate of natural radio-nuclides diffusion in the northern coast of the Oman Sea. First, the natural radioactivity analysis in 36 high volume surface water samples was carried out using a portable high-resolution gamma-ray spectrometry. Second, the oceanic currents in the northern coast were investigated. Then, the third generation spectral SWAN model was utilized to simulate wave parameters. Direction of natural radioactivity propagation was coupled with the preferable wave vectors and oceanic currents direction that face to any marine pollution, these last two factors will contribute to increase or decrease of pollution in each grid. The results were indicated that the natural radioactivity concentration between the grids 8600 and 8604 is gathered in the grid 8600 and between the grids 8605 and 8608 is propagated toward middle part of Oman Sea

  8. Behavior of a wave-driven buoyant surface jet on a coral reef

    Science.gov (United States)

    Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.

    2017-01-01

    A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.

  9. High intensity surface plasma waves, theory and PIC simulations

    Science.gov (United States)

    Raynaud, M.; Héron, A.; Adam, J.-C.

    2018-01-01

    With the development of intense (>1019 W cm‑2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm‑2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.

  10. Extraction of Stoneley and acoustic Rayleigh waves from ambient noise on ocean bottom observations

    Science.gov (United States)

    Tonegawa, T.; Fukao, Y.; Takahashi, T.; Obana, K.; Kodaira, S.; Kaneda, Y.

    2013-12-01

    the separation distance of ~5 km, the peak emerged in the CCFs clearly shows a travel time variation as a function of water depth. The group velocity of the signal gradually changes from 1.2 km/s to 0.7 km/s at water depths from 2000 to 4000 m. In addition to the wave, a relatively weak signal can be seen, which shows a group velocity of 1.4-1.5 km/s with no depth dependency. This would correspond to the ocean acoustic wave. For the case of the analysis for seismometer, similar patterns could be seen in the CCFs, but the signal with a velocity of 1.4-1.5 km/s emerged clearly compared to those using records of hydrophone. We investigated by using a numerical simulation with finite difference technique and normal mode approach in order to confirm what the signals are. As a result, the signal with a group velocities of 1.2 km/s at shallower water depths can be explained by acoustic Rayleigh wave, which has the energy within not only the ocean but also sediment, whereas the other signal with a group velocity of 0.7 km/s at deeper water depths corresponds to the Stoneley wave whose energy is concentrated on the seafloor. The generation of the acoustic Rayleigh wave would be caused by water depth, wavelength, and thickness and velocity of sediment layer.

  11. Surface-wave-sustained plasma torch for water treatment

    Science.gov (United States)

    Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.

    2018-02-01

    In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.

  12. Slow upper mantle beneath Southern Norway from surface waves

    Science.gov (United States)

    Weidle, C.; Maupin, V.

    2009-04-01

    A recent regional surface wave tomography for Northern Europe revealed unprecedented images of the upper mantle beneath the (Tertiary) North Atlantic and the bordering Fennoscandian craton of Archean-Proterozoic age. With respect to the circum-Atlantic regions of uplift, no common mantle pattern supporting the uplift of these regions is observed. The western boundary of the thick cratonic lithosphere follows the trend of the continental margin offshore northern Norway (i.e. the northern Scandes are underlain by thick lithosphere) whereas further south the boundary of the craton is located further east beneath southwestern Sweden. SV shear wave velocities beneath southern Norway are 10% slower than ak135 (at 70-115 km depth) and these low-velocities are clearly connected to the North Atlantic low-velocity regime through a ~ 400 km wide "channel". The low-velocity anomaly beneath Southern Norway coincides in geometry roughly with the dome-like high topography of the southern Scandes and may thus have a non-negligible contribution to the isostatic balance of the region. The amplitude and depth-distribution of this anomaly are due to be further constrained by new data that were acquired during the MAGNUS experiment in 2006-2008. The temporary seismic network, consisting of 40 broadband seismometers covers to a large extent the location of the anomaly as imaged by the regional tomography. This enables us to get unique control on the tomographic model at improved lateral and vertical resolution. Preliminary analysis of surface wave phase velocities yields an average 1-D shear wave velocity profile for southern Norway as a first step to constrain the presence and depth extent of this low-velocity anomaly.

  13. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    Science.gov (United States)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.

  14. Standing surface waves in dusty microwave slot-excited plasma

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Yu, M.Y.; Sugai, H.

    2000-01-01

    Full text: The effect of charged dust particles on microwave slot-excited plasma has been studied. The dusts absorb significant proportion of the plasma electrons, which leads to a substantial modification of the electromagnetic field structure. The overall charge balance and the eigenfrequencies of the standing TM electromagnetic surface modes are modified by the presence of dust. It has been found that the originally excited surface waves can be shifted out of resonance. For certain proportions of dusts, mode conversion appears to be possible. Microwave gas discharges sustained by surface waves (SW) are promising for many industrial applications as sources of large-volume and large-area low-temperature plasmas. Here, we study the surface-wave sustained microwave plasma reactor contaminated by fine dust particles that usually appear as a substrate-etching product or as a result of polymerization in the gaseous phase. The structure that models the slot-excited planar plasma source is considered. A vertical circular cylinder is short-circuited at its top by a metal plate. A dielectric layer isolates the cylinder top from the plasma, and the chamber bottom is open. We have shown that uncontrolled release of the dusts in the discharge chamber can adversely affect the discharge performance and under certain conditions cause a discharge disruption. This can best be understood by noting that macroparticles absorb a significant proportion of plasma electrons and hence modify the ionization-recombination balance. Moreover, stable operation of the microwave surface-wave sustained discharge depends on the resonant conditions for the operating mode, and it is thus crucial to understand how dusts affect the eigenfrequencies of the SWs. We have demonstrated that introduction of additional amounts of contaminant results in a significant shift of the electron plasma density from its resonant value for the initially excited resonant mode. The system can thus be moved out of

  15. Surface-Wave Tomography of Yucca Flat, Nevada

    Science.gov (United States)

    Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.

    2016-12-01

    In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. The OSMOSIS Model of the Wind-Driven Ocean Surface Boundary Layer.

    Science.gov (United States)

    Grant, A. L.; Belcher, S. E.; Pearson, B.; Polton, J.

    2016-02-01

    In the wind-driven ocean surface boundary layer (OSBL) the vertical velocity variance is observed to be larger than in shear driven turbulence. The observed variances are consistent with the results from large-eddy simulations (LES) which parametrize the interaction between the Stokes drift of the surface waves and vorticity. The resulting flow is known as Langmuir turbulence and the close connection between winds and waves suggests that Langmuir turbulence is common in the OSBL. This poster describes a model of the OSBL, developed as part of the OSMOSIS project, in which mixing is by Langmuir turbulence. The transports of momentum, heat and salinity are represented by a first-order closure scheme with flux-gradient relationships that include non-gradient contributions. In this the model is similar to the KPP scheme which uses flux-gradient relationships with non-gradient contributions to represent scalar transports. The flux-gradient relationships are derived from an analysis of the turbulent flux budgets of momentum and scalars (heat) obtained from LES. The non-gradient terms represent the contributions to the turbulent flux by the terms in the turbulent flux budget that represent the effects of the Stokes shear, buoyancy and turbulent transport. The eddy viscosity, diffusivities and non-gradient components are represented by similarity profiles. The depth of the boundary layer is determined by a prognostic equation, which represents the time variation of the boundary layer depth in both unstable and stable conditions. It is based on the equation for the depth integrated potential energy combined with a parametrization of the turbulent kinetic energy budget. The use of the prognostic equation allows the effects of Langmuir turbulence on boundary layer depth to be explicitly represented in the model. Comparison with the results from LES of the diurnal cycle of the OSBL are presented as a test for the model.

  17. Robust Imaging Methodology for Challenging Environments: Wave Equation Dispersion Inversion of Surface Waves

    KAUST Repository

    Li, Jing

    2017-12-22

    A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.

  18. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  19. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness

  20. Surface wave propagation effects on buried segmented pipelines

    Directory of Open Access Journals (Sweden)

    Peixin Shi

    2015-08-01

    Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.