WorldWideScience

Sample records for surface observation system

  1. Surface Meteorological Observation System (SMOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ritsche, MT

    2008-03-01

    The Surface Meteorological Observation System (SMOS) mostly uses conventional in situ sensors to obtain 1-minute, 30-minute, and 1440-minute (daily) averages of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and precipitation at the Central Facility and many of the extended facilities of the Southern Great Plains (SGP) climate research site. The SMOSs are not calibrated as systems. The sensors and the data logger (which includes the analog-to-digital converter, or A/D) are calibrated separately. All systems are installed using components that have a current calibration. SMOSs have not been installed at extended facilities located within about 10 km of existing surface meteorological stations, such as those of the Oklahoma Mesonet. The Surface Meteorological Observation Systems are used to create climatology for each particular location, and to verify the output of numerical weather forecast and other model output. They are also used to “ground-truth” other remote sensing equipment.

  2. Global Mercury Observation System (GMOS) surface observation data.

    Data.gov (United States)

    U.S. Environmental Protection Agency — GMOS global surface elemental mercury (Hg0) observations from 2013 & 2014. This dataset is associated with the following publication: Sprovieri, F., N. Pirrone,...

  3. Aerosol Observing System Surface Meteorology (AOSMET) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kyrouac, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observing System (AOS) surface meteorology instrument is an ancillary sensor that provides temperature, relative humidity, pressure, wind speed and direction, and precipitation data relevant to the AOS. It consists of a Vaisala WXT520 Weather Transmitter mounted on top of the AOS aerosol inlet, at a height of approximately 10 meters.

  4. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  5. Mexico - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mexican Surface Daily Observations taken at 94 observatories located throughout Mexico, beginning in 1872 and going up through 1981. The data resided on paper...

  6. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  7. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  8. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  9. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    Science.gov (United States)

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.

    2017-12-01

    Fixed monitoring sites, such as those in the US National Weather Service Automated Surface Observing System (ASOS) and the Oklahoma Mesonet provide valuable, high temporal resolution information about the atmosphere to forecasters and the general public. The Oklahoma Mesonet is comprised of a network of 120 surface sites providing a wide array of atmospheric measurements up to a height of 10 m with an update time of five minutes. The deployment of small unmanned aircraft to collect in-situ vertical measurements of the atmospheric state in conjunction with surface conditions has potential to significantly expand weather observation capabilities. This concept can enhance the safety of individuals and support commerce through improved observations and short-term forecasts of the weather and other environmental variables in the lower atmosphere. We report on a concept of adding the capability of collecting vertical atmospheric measurements (profiles) through the use of unmanned aerial systems (UAS) at remote Oklahoma sites deemed suitable for this application. While there are a number of other technologies currently available that can provide measurements of one or a few variables, the proposed UAS concept will be expandable and modular to accommodate several different sensor packages and provide accurate in-situ measurements in virtually all weather conditions. Such a system would facilitate off-site maintenance and calibration and would provide the ability to add new sensors as they are developed or as new requirements are identified. The small UAS must be capable of accommodating the weight of all sensor packages and have lighting, communication, and aircraft avoidance systems necessary to meet existing or future FAA regulations. The system must be able to operate unattended, which necessitates the inclusion of risk mitigation measures such as a detect and avoid radar and the ability to transmit and receive transponder signals. Moreover, the system should be able to

  10. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  11. Application of Environmental Scanning Electron Microscope-Nanomanipulation System on Spheroplast Yeast Cells Surface Observation.

    Science.gov (United States)

    Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2017-01-01

    The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.

  12. Surface Weather Observing Manuals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Manuals and instructions for taking weather observations. Includes the annual Weather Bureau 'Instructions for Preparing Meteorological Forms...' and early airways...

  13. Surface Observation Climatic Summaries

    Science.gov (United States)

    1991-12-01

    FROK SOURLY OBSERVATIONS smsTICO N•IMER: 747880 S13MTIOR NAME: MACDILL AFB/ TAIPA FL PERIOD OF RECORD: AUG 80 - JUL 90 LST TO UPTC: + 5 MOMI*: SEP...AFB/ TAIPA FL PERIOD OF RECORD: AUG 80 - JUL 90 LST To UTC: + 5 MONTH: NOV HOURS: 15-17 °... o........° ..... ............ ........ .. o...OCCURRENCE OF CEILING VERSUS VISIBILITY UsAFrTAC, ASHEVILLE NC FROM BOURLY OBSERVATIONS STATION NUMBER: 747880 STATION mk4: MAcDILL AFB/ TAiPA FL PERIOD OF

  14. GODAE, SFCOBS - Surface Temperature Observations, 1998-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  15. A system suitable for observing surface plasmon in a semi-infinite semiconductor superlattice

    International Nuclear Information System (INIS)

    Zhu Yun; Cai Shengshan; Zhou Shixun.

    1987-08-01

    A model of semi-infinite semiconductor superlattice topped with a metal-insulator(M-I-SL) is suggested. A modified Giuliani-Quinn surface plasmon is found. It is interesting to note that the frequency and critical wavelength can be arbitrarily chosen by varying thickness of the insulator. In particular, a new type of surface plasmon with null critical wave vector exists only below the bulk plasmon continuum, and the frequency is directly related to the ratio of thickness of the insulator d to the superlattice spacing a. (author). 9 refs, 3 figs

  16. Surface Ocean Dispersion Observations from the Ship-Tethered Aerostat Remote Sensing System

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier; Ozgokmen, Tamay; Novelli, Guillaume

    2018-01-01

    of experiments in the northern Gulf of Mexico in January- February 2016. STARSS was equipped with a GPS and inertial navigation system (INS) that was used to directly georectify the aerial images. A relative rectification technique was developed that translates and rotates the drift cards to minimize the total...

  17. Heat Transfer and Observation of Droplet-Surface Interactions During Air-Mist Cooling at CSP Secondary System Temperatures

    Science.gov (United States)

    Huerta L., Mario E.; Mejía G., M. Esther; Castillejos E., A. Humberto

    2016-04-01

    Air-mists are key elements in the secondary cooling of modern thin steel slab continuous casters. The selection of water, W, and air, A, flow rates, and pressures in pneumatic nozzles open up a wide spectrum of cooling possibilities by their influence on droplet diameter, d, droplet velocity, v, and water impact flux, w. Nonetheless, due to the harsh environment resulting from the high temperatures and dense mists involved, there is very little information about the correlation between heat flux extracted, - q, and mist characteristics, and none about the dynamics of drop-wall interactions. For obtaining both kinds of information, this work combines a steady-state heat flux measuring method with a visualization technique based on a high-speed camera and a laser illumination system. For wall temperatures, T w, between ~723 K and ~1453 K (~450 °C and ~1180 °C), which correspond to film boiling regime, it was confirmed that - q increases with increase in v, w, and T w and with decrease in d. It should be noticed, however, that the increase in w generally decreases the spray cooling effectiveness because striking drops do not evaporate efficiently due to the interference by liquid remains from previous drops. Visualization of the events happening close to the surface also reveals that the contact time of the liquid with the surface is very brief and that rebounding, splashing, sliding, and levitation of drops lead to ineffective contact with the surface. At the center of the mist footprint, where drops impinge nearly normal to the surface those with enough momentum establish intimate contact with it before forming a vapor layer that pushes away the remaining liquid. Also, some drops are observed sliding upon the surface or levitating close to it; these are drops with low momentum which are influenced by the deflecting air stream. At footprint positions where oblique impingement occurs, frequently drops are spotted sliding or levitating and liquid films flowing in

  18. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    Science.gov (United States)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  19. Understanding Regolith Physical Properties of Atmosphereless Solar System Bodies Based on Remote Sensing Photopolarimetric Observations: Evidence for Europa's Porous Surface

    Science.gov (United States)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Psarev, V.; Vandervoort, K.; Kroner, D. O.; Nebedum, A.; Vides, C.; Quinones, J.

    2017-12-01

    We studied the polarization and reflective properties of a suite of planetary regolith analogues with physical characteristics that might be expected to be found on a high albedo atmosphereless solar system body (ASSB). The angular scattering properties of thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) were measured in the laboratory with a goniometric photopolarimeter (GPP) of unique design. Our results provide insight in support of efforts to understand the unusual reflectance and negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space > 95%, and grain sizes of the order effects of anthropogenic greenhouse gas emissions such as carbon dioxide(Teller et al., 1997). This work partially supported by the Cassini Saturn Orbiter Progrem Harris et al., 1989 . Icarus 81, 365-374. Mishchenko et al., 2006 Applied Optics, 45, 4459-4463. Rosenbush et al, 1997, Astrophys. J. 487, 402-414. Teller et al., 1997. UCRL-JC-128715.

  20. Longline Observer Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LODS, the Hawaii Longline Observer Data System, is a complete suite of tools designed to collect, process, and manage quality fisheries data and information. Guided...

  1. Assimilating the Cosmic-Ray Soil Moisture Observing System Measurements for Land Surface Hydrologic Model Parameter Estimation Using the Ensemble Kalman Filter

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Li, L.

    2015-12-01

    Parameter estimation is generally required for land surface models (LSMs) and hydrologic models to reproduce observed water and energy fluxes in different watersheds. Using soil moisture observations for parameter estimation in addition to discharge and land surface temperature observations can improve the prediction of land surface and subsurface processes. Due to their representativity, point measurements cannot capture the watershed-scale soil moisture conditions and may lead to notable bias in watershed soil moisture predictions if used for model calibration. The intermediate-scale cosmic-ray soil moisture observing system (COSMOS) provides average soil water content measurement over a footprint of 0.34 m2 and depths up to 50 cm, and may provide better calibration data for low-order watersheds. In this study, we will test using COSMOS observations for Flux-PIHM parameter and state estimation via the ensemble Kalman filter (EnKF). Flux-PIHM is a physically-based land surface hydrologic model that couples the Penn State Integrated Hydrologic Model (PIHM) with the Noah land surface model. Synthetic data experiments will be performed at the Shale Hills watershed (area: 0.08 km2, smaller than COSMOS footprint) and the Garner Run watershed (1.34 km2, larger than COSMOS footprint) in the Shale Hills Susquehanna Critical Zone Observatory in central Pennsylvania. COSMOS observations will be assimilated into Flux-PIHM using the EnKF, in addition to discharge and land surface temperature (LST) observations. The accuracy of EnKF estimated parameters and water and energy flux predictions will be evaluated. In addition, the results will be compared with assimilating point soil moisture measurement (in addition to discharge and LST), to assess the effects of using different scales of soil moisture observations for parameter estimation. The results at Shale Hills and Garner Run will be compared to test whether performance of COSMOS data assimilation is affected by the size of

  2. Observing farming systems

    DEFF Research Database (Denmark)

    Noe, Egon; Alrøe, Hugo Fjelsted

    2012-01-01

    of analysis from individual farmers to communication and social relations. This is where Luhmann’s social systems theory can offer new insights. Firstly, it can help observe and understand the operational closure and system logic of a farming system and how this closure is produced and reproduced. Secondly......, it provides a theory of functional differentiation and structural couplings that opens up for a new approach to look at sustainability by way of decoupling, recoupling and new forms of coupling.......In Denmark, agriculture is becoming increasingly specialised, and more and more actors are becoming involved in farm decision making. These trends are more or less pronounced in other European countries as well. We therefore find that to understand modern farming systems, we have to shift the focus...

  3. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  4. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless...

  5. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...... surfaces. A gap was observed between the polymer surface and the luminous region of the plasma column, indicating the existence of a gas boundary layer. The thickness of the gas boundary layer is smaller at higher gas flow-rates or with ultrasonic irradiation to the AC gliding arc and the polymer surface......An alternating current (AC) gliding arc can be conveniently operated at atmospheric pressure and efficiently elongated into the ambient air by an air flow and thus is useful for surface modification. A high speed camera was used to capture dynamics of the AC gliding arc in the presence of polymer...

  6. Surface Observations from Punta Arenas, Chile

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Observations from Punta Arenas, in extreme southern Chile. WMO station ID 85934. Period of record 1896-1954. The original forms were scanned at the Museo...

  7. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  8. Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations

    NARCIS (Netherlands)

    Hooghiemstra, P.B.; Krol, M.C.; Meirink, J.F.; Bergamaschi, P.; van der Werf, G.R.; Novelli, P.C.; Aben, I.; Rockmann, T.

    2011-01-01

    We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large

  9. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  10. Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations

    Science.gov (United States)

    Lundgren, Paul; Nikkhoo, Mehdi; Samsonov, Sergey V.; Milillo, Pietro; Gil-Cruz, Fernando; Lazo, Jonathan

    2017-07-01

    Copahue volcano straddling the edge of the Agrio-Caviahue caldera along the Chile-Argentina border in the southern Andes has been in unrest since inflation began in late 2011. We constrain Copahue's source models with satellite and airborne interferometric synthetic aperture radar (InSAR) deformation observations. InSAR time series from descending track RADARSAT-2 and COSMO-SkyMed data span the entire inflation period from 2011 to 2016, with their initially high rates of 12 and 15 cm/yr, respectively, slowing only slightly despite ongoing small eruptions through 2016. InSAR ascending and descending track time series for the 2013-2016 time period constrain a two-source compound dislocation model, with a rate of volume increase of 13 × 106 m3/yr. They consist of a shallow, near-vertical, elongated source centered at 2.5 km beneath the summit and a deeper, shallowly plunging source centered at 7 km depth connecting the shallow source to the deeper caldera. The deeper source is located directly beneath the volcano tectonic seismicity with the lower bounds of the seismicity parallel to the plunge of the deep source. InSAR time series also show normal fault offsets on the NE flank Copahue faults. Coulomb stress change calculations for right-lateral strike slip (RLSS), thrust, and normal receiver faults show positive values in the north caldera for both RLSS and normal faults, suggesting that northward trending seismicity and Copahue fault motion within the caldera are caused by the modeled sources. Together, the InSAR-constrained source model and the seismicity suggest a deep conduit or transfer zone where magma moves from the central caldera to Copahue's upper edifice.

  11. OBSCAN Observer Scanning System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program deployed on commercial fishing vessels. After the data...

  12. Open Surface Solar Irradiance Observations - A Challenge

    Science.gov (United States)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  13. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  14. Developing a Carbon Observing System

    Science.gov (United States)

    Moore, B., III

    2015-12-01

    There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community

  15. VLBI Observing System for VSOP

    Science.gov (United States)

    Ulvestad, J. S.; Murphy, D. W.

    1996-01-01

    The very long baseline interferometry (VLBI) Space Observatory Program (VSOP) satellite is scheduled for launch in September 1996. This paper describes the VLBI observing system for VSOP and its differences from ground radio telescope VLBI systems.

  16. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  17. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  18. Sensitivity of surface meteorological analyses to observation networks

    Science.gov (United States)

    Tyndall, Daniel Paul

    A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.

  19. Solar System Observations with JWST

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  20. Surface Weather Observation 1001 Forms (Keyed)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to fill in the observation gap prior to the time when commercial aviation began in the U.S., The NCDC Climate Data Modernization Program (CDMP) retrieved...

  1. Correction to "Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model"

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Kau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kokdama, Yuji

    2012-01-01

    The website information describing the forcing meteorological data used for the land surface model (LSM) simulation, which were observed at an Automated Meteorological Station CAWS) at the Sapporo District Meteorological Observatory maintained by the Japan Meteorological Agency (JMA), was missing from the text. The 1-hourly data were obtained from the website of Kisyoutoukeijouhou (Information for available JMA-observed meteorological data in the past) on the website of JMA (in Japanese) (available at: http://www.jma.go.jpijmaimenulreport.html). The measurement height information of 59.5 m for the anemometer at the Sapporo Observatory was also obtained from the website of JMA (in Japanese) (available at: http://www.jma.go.jp/jma/menu/report.html). In addition, the converted 10-m wind speed, based on the AWS/JMA data, was further converted to a 2-m wind speed prior to its use with the land model as a usual treatment of off-line Catchment simulation. Please ignore the ice absorption data on the website mentioned in paragraph [15] which was not used for our calculations (but the data on the website was mostly the same as the estimated ice absorption coefficients by the following method because they partially used the same data by Warren [1984]). We calculated the ice absorption coefficients with the method mentioned in the same paragraph, for which some of the refractive index data by Warren [1984] were used and then interpolated between wavelengths, and also mentioned in paragraph [20] for the visible (VIS) and near-infrared (NIR) ranges. The optical data we used were interpolated between wavelengths as necessary.

  2. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  3. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    Science.gov (United States)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  4. Surface Airways Observations (SAO) Hourly Data 1928-1948 (CDMP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of hourly U.S. surface airways observations (SAO). These observations extend as far back as 1928, from the time when commercial aviation began...

  5. Earth Observing System (EOS) advanced altimetry

    Science.gov (United States)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  6. Adaptive Sliding Mode Observer for a Class of Systems

    OpenAIRE

    D.Elleuch; T.Damak

    2010-01-01

    In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown tha...

  7. Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO). Ocean Surface Topography (OST) Workshop, Ruedesheim an Rhein, Germany. [CEOS SEO Status Report

    Science.gov (United States)

    Killough, Brian D., Jr.

    2008-01-01

    The CEOS Systems Engineering Office will present a 2007 status report of the CEOS constellation process, present a new systems engineering framework, and analysis results from the GEO Societal Benefit Area (SBA) assessment and the OST constellation requirements assessment.

  8. Use of new satellite sea surface temperature observations in OSTIA

    Science.gov (United States)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon

    2017-04-01

    OSTIA is the Met Office's Operational SST (Sea Surface Temperature) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. The product is made freely available through CMEMS (Copernicus Marine Environment Monitoring Service). Additional satellite SST datasets have been assimilated into the OSTIA analysis operationally from 15 March 2016. These datasets are ACSPO VIIRS L3U from NOAA/NESDIS/STAR and AMSR2 L2P from REMSS (Remote Sensing Systems). This has led to a sizable improvement in the RMS error of the OSTIA analysis compared to independent Argo observations. Test runs assimilating ACSPO VIIRS and REMSS AMSR2 observations separately have indicated that the total improvement is due to the action of both datasets together rather than one or the other. In addition, ACSPO VIIRS replaced MetOp-A AVHRR as the reference satellite dataset used in OSTIA on 6 November 2016. The reference satellite data, in addition to in situ observations, are used for bias correction of the other satellite data types used in the analysis. The change to using VIIRS as a reference has led to notable improvements in regional biases for OSTIA compared to Argo, drifters and other satellite SST datasets, particularly in the high latitudes. Methods will be described and validation results shown in this presentation.

  9. Observation of optimal gecko's adhesion on nanorough surfaces.

    Science.gov (United States)

    Pugno, Nicola M; Lepore, Emiliano

    2008-12-01

    In this letter we report experimental observations on the times of adhesion of living Tokay geckos (Gekko geckos) on polymethylmethacrylate (PMMA) inverted surfaces. Two different geckos (male and female) and three surfaces with different root mean square (RMS) roughness (RMS=42, 618 and 931 nm) have been considered, for a total of 72 observations. The measured data are proved to be statistically significant, following the Weibull Statistics with coefficients of correlation between 0.781 and 0.955. The unexpected result is the observation of a maximal gecko adhesion on the surface with intermediate roughness of RMS=618 nm, that we note has waviness comparable to the seta size.

  10. OBPRELIM Observer Preliminary Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program and Industry Funded Scallop Program deployed on...

  11. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  12. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  13. Surface Airways Observations (SAO) Hourly Data (1965-1981) (CDMP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists primarily of U.S. surface airways observations (SAO) data beginning in 1965 and extending through 1981. Note that a few stations have already...

  14. Observations of the atmospheric surface layer parameters over a ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1999-08-11

    Aug 11, 1999 ... This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters dur- ing the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at. Ahmedabad (23◦21 N, 72◦36 E), the western part of India, which was close to the totality path. This rare event ...

  15. Some observations on boiling heat transfer with surface oscillation

    International Nuclear Information System (INIS)

    Miyashita, H.

    1992-01-01

    The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)

  16. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong

    2010-01-01

    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  17. Bridging Surface and Subsurface Observations of the Pulsating Behavior of Lusi: a New-born Sedimentary Hosted Hydrothermal System in East Java.

    Science.gov (United States)

    Mazzini, A.; Husein, A.; Karyono, K.; Lupi, M.; Obermann, A.; Hadi, S.

    2015-12-01

    geysering activity at the surface. This implies that the signal is not originated in the immediate subsurface. We argue that such signal is generated by the geysering activity and it is caused by the discrete collapse of gas pockets rising through a super-heated fluid column filled with hot mud. [ML1]Comprises??

  18. Observation of melt surface depressions during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    Depths of depressed surface of liquid gadolinium, cerium and copper during electron beam evaporation were measured by triangulation method using a CCD camera. The depression depths estimated from the balance of the vapor pressure and the hydrostatic pressure at the evaporation surface agreed with the measured values. The periodic fluctuation of atomic beam was observed when the depression of 3∼4 mm in depth was formed at the evaporation spot. (author)

  19. Observation of a prewetting transition during surface melting of caprolactam

    Science.gov (United States)

    Chandavarkar, Sumant; Geertman, Rob M.; de Jeu, Wim H.

    1992-10-01

    The surface-induced melting of the closed-packed (100) face of the anisotropic molecular crystal caprolactam has been studied using x-ray reflectivity. A thin-to-thick film prewetting transition is observed at about 13 K below the bulk melting point. Only above this transition does the thickness of the quasiliquid layer increase continuously with temperature. We speculate that initially the surface melting proceeds via layering transitions.

  20. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  1. Surface mapping of magnetic hot stars. Theories versus observations

    Science.gov (United States)

    Kochukhov, O.

    2018-01-01

    This review summarises results of recent magnetic and chemical abundance surface mapping studies of early-type stars. We discuss main trends uncovered by observational investigations and consider reliability of spectropolarimetric inversion techniques used to infer these results. A critical assessment of theoretical attempts to interpret empirical magnetic and chemical maps in the framework of, respectively, the fossil field and atomic diffusion theories is also presented. This confrontation of theory and observations demonstrates that 3D MHD models of fossil field relaxation are successful in matching the observed range of surface magnetic field geometries. At the same time, even the most recent time-dependent atomic diffusion calculations fail to reproduce diverse horizontal abundance distributions found in real magnetic hot stars.

  2. Observations. Surface and Atmospheric Climate Change. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; Soden, B.; Zhai, P.

    2007-09-15

    understanding of extremes. The global means of temperature and precipitation are most readily linked to global mean radiative forcing and are important because they clearly indicate if unusual change is occurring. However, the local or regional response can be complex and perhaps even counter-intuitive, such as changes in planetary waves in the atmosphere induced by global warming that result in regional cooling. As an indication of the complexity associated with temporal and spatial scales measures of the magnitude of natural variability of surface temperature in which climate signals are embedded are provided. The measures used are indicators of the range: the mean range of the diurnal and annual cycles, and the estimated 5th to 95th percentiles range of anomalies. These are based on the standard deviation and assumed normal distribution, which is a reasonable approximation in many places for temperature, with the exception of continental interiors in the cold season, which have strongly negatively skewed temperature distributions owing to cold extremes. For the global mean, the variance is somewhat affected by the observed trend, which inflates this estimate of the range slightly. The comparison highlights the large diurnal cycle and daily variability. Daily variability is, however, greatly reduced by either spatial or temporal averaging that effectively averages over synoptic weather systems. Nevertheless, even continental-scale averages contain much greater variability than the global mean in association with planetary-scale waves and events such as El Nino.

  3. Estimates of surface methane emissions over Europe using observed surface concentrations and the FLEXPART trajectory model

    Science.gov (United States)

    Weaver, C. J.; Kiemle, C.; Kawa, S. R.; Aalto, T.; Necki, J.; Steinbacher, M.; Arduini, J.; Apadula, F.; Berkhout, H.; Hatakka, J.; O'Doherty, S.

    2013-12-01

    We use surface methane observations from nine European ground stations, and the FLEXPART Lagrangian transport model to obtain surface methane emissions for 2010. Our inversion shows the strongest emissions from the Netherlands and the coal mines in Upper Silesia Poland. This is qualitatively consistent with the EDGAR surface flux inventory. We also report significant surface fluxes from wetlands in southern Finland during July and August and reduced wetland fluxes later in the year. Our simulated methane surface concentration captures at least half of the daily variability in the observations, suggesting that the transport model is correctly simulating the regional transport pathways over Europe. We also use our trajectory model to determine whether future space-based remote sensing instruments (MERLIN) will be able to detect both natural and anthropogenic changes in the surface flux strengths.

  4. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  5. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from time series and surface observations using Moored Autonomous Dissolved Inorganic Carbon (MADIC) System, Sunburst SAMI2 pH sensor, and other instruments from Kewalo Buoy near the coast of Honolulu, Hawaii from 2013-10-31 to 2014-06-15 (NCEI Accession 0132048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To expand the number of tools available for autonomous carbonate system observations, we have developed a robust surface ocean dissolved inorganic carbon (DIC)...

  6. Collision and Break-off : Numerical models and surface observables

    Science.gov (United States)

    Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark

    2013-04-01

    The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary

  7. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  8. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  9. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  10. Venus Surface Composition Constrained by Observation and Experiment

    Science.gov (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  11. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  12. The TOAR database on observations of surface ozone (and more)

    Science.gov (United States)

    Schultz, M. G.; Schröder, S.; Cooper, O. R.; Galbally, I. E.; Petropavlovskikh, I. V.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y. F.; Naja, M. K.; Seguel, R. J.

    2017-12-01

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. This presentation will provide a summary of the TOAR surface observations database including recent additions of ozone precursor and meteorological data. We will demonstrate how the database can be accessed and the data can be used, and we will discuss its limitations and the potential for closing some of teh remaining data gaps.

  13. ENSO impact on surface radiative fluxes as observed from space

    Science.gov (United States)

    Pinker, R. T.; Grodsky, S. A.; Zhang, B.; Busalacchi, A.; Chen, W.

    2017-10-01

    We investigate the impact of El Niño-Southern Oscillation (ENSO) on surface radiative fluxes over the tropical Pacific using satellite observations and fluxes derived from selected atmospheric reanalyses. Agreement between the two in this region is important because reanalysis information is frequently used to assess surface energy budget sensitivity to ENSO. We found that during the traditional ENSO, the maximum variance of anomalous incoming solar radiation is located just west of the dateline and coincides with the area of the largest anomalous SST gradient. It can reach up to 60 W/m2 and lags behind the Niño3 index by about a month, suggesting a response to anomalous SST gradient. The magnitude of longwave anomaly is only half that large and varies in phase with the SST anomaly. Similar anomalies were derived from outputs: from the European Centre for Medium-Weather Forecasts Reanalysis Interim (ERA-I), from the Modern Era Retrospective Analysis version 2 (MERRA-2), from the NCEP/NCAR Reanalysis 1 (R1), and from the Japanese JRA55 reanalysis. Among the four reanalyses used, results from ERA-I are the closest to observations. We have also investigated the surface wind divergence/convergence and found that the main factor limiting eastward excursions of convection is the surface wind convergence. Due to the wind divergence pattern normally present over the eastern cold tongue, anomalous convection extends into the eastern equatorial Pacific only during the strongest warm events. Our analysis also considers the El Niño Modoki events, for which the radiation flux patterns are shifted westward following the SST pattern.

  14. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    Science.gov (United States)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  15. Synthetic observations of protostellar multiple systems

    Science.gov (United States)

    Lomax, O.; Whitworth, A. P.

    2018-04-01

    Observations of protostars are often compared with synthetic observations of models in order to infer the underlying physical properties of the protostars. The majority of these models have a single protostar, attended by a disc and an envelope. However, observational and numerical evidence suggests that a large fraction of protostars form as multiple systems. This means that fitting models of single protostars to observations may be inappropriate. We produce synthetic observations of protostellar multiple systems undergoing realistic, non-continuous accretion. These systems consist of multiple protostars with episodic luminosities, embedded self-consistently in discs and envelopes. We model the gas dynamics of these systems using smoothed particle hydrodynamics and we generate synthetic observations by post-processing the snapshots using the SPAMCART Monte Carlo radiative transfer code. We present simulation results of three model protostellar multiple systems. For each of these, we generate 4 × 104 synthetic spectra at different points in time and from different viewing angles. We propose a Bayesian method, using similar calculations to those presented here, but in greater numbers, to infer the physical properties of protostellar multiple systems from observations.

  16. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-04-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  17. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  18. Exploration technology surface systems: Surface Habitats And Construction (SHAC)

    Science.gov (United States)

    Hirschbein, Murray

    1991-01-01

    The objectives of exploration technology program - surface systems are: (1) to develop technology emplace and to build an outpost on the moon and Mars; and (2) to develop concepts for permanent habitats and enclosures on the Moon and Mars.

  19. Atlantic-THORpex Observing System Test

    Data.gov (United States)

    National Aeronautics and Space Administration — Atlantic - THORpex Observing System Test (ATOST) is part of an international research program to accelerate improvements in the accuracy of 1 to 14 day weather...

  20. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  1. Improvement of seismic observation systems in JOYO

    International Nuclear Information System (INIS)

    Sumino, Kozo; Suto, Masayoshi; Tanaka, Akihiro

    2013-01-01

    In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)

  2. Planetary surface characterization from dual-polarization radar observations

    Science.gov (United States)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  3. Power system observability with minimum phasor measurement ...

    African Journals Online (AJOL)

    user

    This paper presents optimal phasor measurement units (PMUs) placement algorithms for power system observability. The optimal placement problem (OPP) is formulated such that minimizing the number of PMU installations for full network observability. Three approaches, in this paper, are introduced aiming at reducing ...

  4. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  5. Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Naibao He

    2015-01-01

    Full Text Available A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces.

  6. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  7. Comparing optimized CO emission estimates using MOPITT or NOAA surface network observations

    NARCIS (Netherlands)

    Hooghiemstra, P.B.; Krol, M.C.; Bergamaschi, P.; Laat, de A.T.J.; Werf, van der G.R.; Novelli, P.C.; Deeter, M.N.; Aben, I.; Rockmann, T.

    2012-01-01

    This paper compares two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) or CO total columns from the

  8. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  9. Earth Observation Missions at OHB System

    Science.gov (United States)

    Tobehn, C.; Penné, B.; Kassebom, M.; Ziegler, B.; Mahal, S.; Greinacher, R.; Holsten, S.; Borowy, C.

    2008-08-01

    This paper covers the current OHB-System AG activities in the field of Earth Observation with small satellites ranging from science and research towards commercial and security missions. Very highresolution, multi-spectral, hyperspectral, as well as very high resolution SAR mission concepts are presented including the following projects: The SAR-Lupe constellation generates very high resolution SAR images for military reconnaissance purposes. It is developed by OHB-System and reaches full in-orbit deployment in 2008. EnMAP - featuring an innovative hyperspectral sensor systems for the detailed and global analysis of eco-system parameters. Very high resolution SAR and Optical Constellations of 1m resolution are currently investigated for emergency response and disaster management, which require a fast system response-time. Data Relay from GEO relaxes the typical EO bottle-neck in downloading data. Therefore it enables an increase of LEO observation time and reduces image ageing as well as system response time by direct EO satellite tasking. Ocean-Colour from GEO shall be a sustainable source for intra-daily observations of coastal zones for environment monitoring, fishery management and coastal water pollution. Next Generation very high resolution missions below 1m resolution are proposed for reconnaissance and dual-use applications for commercial customers. New services and products are under development for a range of applications, including hyperspectral data exploitation, data fusion with in-situ systems for maritime environment, security as well as for air quality services. The realisation of an end-user oriented infrastructure - including space and ground segment - for commercial Earth observation is a key element of OHB-System's Earth observation activities.

  10. Observation of hidden Fermi surface nesting in a two dimensional conductor

    International Nuclear Information System (INIS)

    Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.

    1996-01-01

    We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society

  11. Cluster observations of surface waves on the dawn flank magnetopause

    Directory of Open Access Journals (Sweden)

    C. J. Owen

    2004-03-01

    Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 RE and move at an average speed of ~65km s-1 in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

  12. The observed sensitivity of the global hydrological cycle to changes in surface temperature

    International Nuclear Information System (INIS)

    Arkin, Phillip A; Janowiak, John; Smith, Thomas M; Sapiano, Mathew R P

    2010-01-01

    Climate models project large changes in global surface temperature in coming decades that are expected to be accompanied by significant changes in the global hydrological cycle. Validation of model simulations is essential to support their use in decision making, but observing the elements of the hydrological cycle is challenging, and model-independent global data sets exist only for precipitation. We compute the sensitivity of the global hydrological cycle to changes in surface temperature using available global precipitation data sets and compare the results against the sensitivities derived from model simulations of 20th century climate. The implications of the results for the global climate observing system are discussed.

  13. Direct observation of a surface resonance state and surface band inversion control in black phosphorus

    Science.gov (United States)

    Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.

    2018-01-01

    We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.

  14. Adatom Fe(III on the hematite surface: Observation of a key reactive surface species

    Directory of Open Access Journals (Sweden)

    Rosso Kevin M

    2004-06-01

    Full Text Available The reactivity of a mineral surface is determined by the variety and population of different types of surface sites (e.g., step, kink, adatom, and defect sites. The concept of "adsorbed nutrient" has been built into crystal growth theories, and many other studies of mineral surface reactivity appeal to ill-defined "active sites." Despite their theoretical importance, there has been little direct experimental or analytical investigation of the structure and properties of such species. Here, we use ex-situ and in-situ scanning tunneling microcopy (STM combined with calculated images based on a resonant tunneling model to show that observed nonperiodic protrusions and depressions on the hematite (001 surface can be explained as Fe in an adsorbed or adatom state occupying sites different from those that result from simple termination of the bulk mineral. The number of such sites varies with sample preparation history, consistent with their removal from the surface in low pH solutions.

  15. Assimilation of Freeze-Thaw Observations into the NASA Catchment Land Surface Model

    Science.gov (United States)

    Farhadi, L.; Reichle, R. H.; De Lannoy, G. J.; Kimball, J. S.

    2013-12-01

    The land surface freeze/thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and net primary productivity at the land surface. To support the level 4 soil moisture and carbon products (value-added, i.e. using a combination of remote sensing data and modeling) for the planned NASA Soil Moisture Active Passive (SMAP) mission, an F/T assimilation algorithm is developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. A rule-based approach that incorporates model and observational errors is developed and used for assimilating the categorical F/T measurements into the land surface model (F/T analysis). An Observing System Simulation Experiment is conducted using synthetically generated measurements of the F/T state for a region in North America (90-110oW longitude, 45-55oN latitude). The synthetic 'truth' is generated using the NASA Catchment land surface model forced with surface meteorological fields from the Modern-Era Retrospective Reanalysis for Research and Applications (MERRA). To generate synthetic measurements, the true categorical F/T state is corrupted with a prescribed amount of F/T classification error. The assimilation experiment employs the same Catchment model except that forcing errors (relative to truth) are introduced via the application of meteorological forcing fields from the Global Land Data Assimilation System (GLDAS). The effect of the F/T analysis and classification error on land surface temperature and soil temperature predictions is examined in this research.

  16. TRICLOBS portable triband color lowlight observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.

    2009-01-01

    We present the design and first test results of the TRICLOBS (TRI-band Color Low-light OBServation) system The TRICLOBS is an all-day all-weather surveillance and navigation tool. Its sensor suite consists of two digital image intensifiers (Photonis ICU's) and an uncooled longwave infrared

  17. An Observing System for the Southern Ocean

    Science.gov (United States)

    Newman, L.; Schofield, O.; Wahlin, A.; Constable, A.; Swart, S.

    2016-02-01

    The Southern Ocean is fundamental to the operation of the Earth system, as it plays a central role in global climate and planetary-scale biogeochemical cycles. The Southern Ocean is changing rapidly, and the critical need to observe and understand the Southern Ocean is well established; however, the harsh conditions and remote location have led to it being the most under-sampled region of the world. Sustained observations are required to detect, interpret, and respond to the physical, chemical, and biological changes that are, and will continue to be measured. The Southern Ocean Observing System (SOOS) is an international initiative with the mission to integrate the global assets and efforts of the international community to enhance data collection, provide access to datasets, and guide the development of strategic-sustained-multidisciplinary science in the Southern Ocean. This presentation will provide an update on SOOS implementation activities, key products and tools, and data management efforts.

  18. Developing Information System on Lunar Crescent Observations

    Directory of Open Access Journals (Sweden)

    T. Hidayat

    2010-03-01

    Full Text Available We present a progress report on the development of information system of lunar crescent astronomical observations which will be largely accessible for public domain. This consists of calculations of the Moon’s ephemeris as well as systematic real-time lunar crescent observations. A well suited small telescope, equipped with a simple digital detector, is connected to a server to provide information on lunar crescent observations. The system has been used and worked well. The only constraint is poor weather condition. Network of small telescopes, installed at various locations in Indonesia, are currently planned to provide plethora of data. In the long term, this will be used to help to determine the astronomical visibility criteria of lunar crescent for Islamic calendar.

  19. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  20. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  1. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  2. GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).

    Science.gov (United States)

    Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.

    1985-01-01

    Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.

  3. Objectives and purposes of regional observation system

    Directory of Open Access Journals (Sweden)

    Andreas Dittmar Weise

    2011-06-01

    Full Text Available A regional observation system is a tool for municipal planning. With a base in Geographic Information System and through a database that system can identify problem areas in the municipalities and support the process of sustainable solutions. The database contains data about the infrastructure, the real situation of the land utilization plan, the use of the areas in the municipality and the buildings and their users. Together with several other programs it’s possible to interpret this data and make a good planning for the future of the city. Examples like the city Leipzig, Germany, demonstrate that these systems have application to the various departments within the municipalities, where there may be create new possibilities for use. One of the problems may be the cost of data collection, maintenance and updating of data.

  4. Uncontrollable dissipative systems: observability and embeddability

    Science.gov (United States)

    Karikalan, Selvaraj; Belur, Madhu N.; Athalye, Chirayu D.; Razak, Rihab Abdul

    2014-01-01

    The theory of dissipativity is well developed for controllable systems. A more appropriate definition of dissipativity in the context of uncontrollable systems is in terms of the existence of a storage function, namely a function such that, along every system trajectory, its rate of change at each time instant is at most the power supplied to the system at that time. However, even when the supplied power is expressible in terms of just the external variables, the dissipativity property for uncontrollable systems crucially hinges on whether or not the storage function depends on variables unobservable/hidden from the external variables: this paper investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. These three definitions are compared: we show that drawbacks of one definition are addressed by another. Dealing first with observable storage functions, under the conditions that no two uncontrollable poles add to zero and that dissipativity is strict as frequency tends to infinity, we prove that the dissipativities of a system and its controllable part are equivalent. We use the behavioural approach for formalising key notions: a system behaviour is the set of all system trajectories. We prove that storage functions have to be unobservable for 'lossless' uncontrollable systems. It is known, however, that unobservable storage functions result in certain 'fallacious' examples of lossless systems. We propose an intuitive definition of dissipativity: a system/behaviour is called dissipative if it can be embedded in a controllable dissipative superbehaviour. We prove embeddability results and use them to resolve the fallacy in the example termed 'lossless' due to unobservable storage functions. We next show that, quite unreasonably, the embeddability definition admits behaviours that are both strictly dissipative and strictly antidissipative. Drawbacks of the embeddability definition in the context of RLC circuits are

  5. Nested observer for linear hybrid dynamical systems

    International Nuclear Information System (INIS)

    Abdi, M.; Bensalah, H.; Cherki, B.

    2009-01-01

    The synthesis of observers for linear hybrid dynamical systems ''HDS,'' is significant from the point of view of the applications (control, diagnoses...); it is still, largely open. We proposed a new approach inspired from a new method of identification, where we could obtain better results with respect to discrimination between the discrete states in conflicts and time necessary to this latter. The results of the suggested technique proved to be satisfactory.

  6. Mesoscale climate hydrology: Earth Observation System - definition phase

    NARCIS (Netherlands)

    Menenti, M.; Bastiaanssen, W.G.M.

    1997-01-01

    The use of airborne and space observations to map surface heat fluxes and soil water content at heterogeneous land surfaces was studied. Algorithms to estimate evaporation fluxes with satellite observations were evaluated against measurements. Spatialcorrelation lengths were studied with estimated

  7. Mesoscale climate hydrology: Earth Observation System - definition phase

    NARCIS (Netherlands)

    Menenti, M.; Bastiaanssen, W.G.M.

    1995-01-01

    The use of airborne and space observations to map surface heat fluxes and soil water content at heterogeneous land surfaces was studied. Algorithms to estimate evaporation fluxes with satellite observations were evaluated against measurements. Spatialcorrelation lengths were studied with estimated

  8. Terra - the Earth Observing System flagship observatory

    Science.gov (United States)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  9. The Australian Integrated Marine Observing System

    Science.gov (United States)

    Proctor, R.; Meyers, G.; Roughan, M.; Operators, I.

    2008-12-01

    The Integrated Marine Observing System (IMOS) is a 92M project established with 50M from the National Collaborative Research Infrastructure Strategy (NCRIS) and co-investments from 10 operators including Universities and government agencies (see below). It is a nationally distributed set of equipment established and maintained at sea, oceanographic data and information services that collectively will contribute to meeting the needs of marine research in both open oceans and over the continental shelf around Australia. In particular, if sustained in the long term, it will permit identification and management of climate change in the marine environment, an area of research that is as yet almost a blank page, studies relevant to conservation of marine biodiversity and research on the role of the oceans in the climate system. While as an NCRIS project IMOS is intended to support research, the data streams are also useful for many societal, environmental and economic applications, such as management of offshore industries, safety at sea, management of marine ecosystems and fisheries and tourism. The infrastructure also contributes to Australia's commitments to international programs of ocean observing and international conventions, such as the 1982 Law of the Sea Convention that established the Australian Exclusive Economic Zone, the United Nations Framework Convention on Climate Change, the Global Ocean Observing System and the intergovernmental coordinating activity Global Earth Observation System of Systems. IMOS is made up of nine national facilities that collect data, using different components of infrastructure and instruments, and two facilities that manage and provide access to data and enhanced data products, one for in situ data and a second for remotely sensed satellite data. The observing facilities include three for the open (bluewater) ocean (Argo Australia, Enhanced Ships of Opportunity and Southern Ocean Time Series), three facilities for coastal

  10. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations

    Directory of Open Access Journals (Sweden)

    Xiaotong Zhang

    2016-03-01

    Full Text Available Solar radiation incident at the Earth’s surface (Rs is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses (NCEP–NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55 using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total and the Earth’s Radiant Energy System (CERES EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from −2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 were obtained over land, ocean, and the globe, respectively.

  11. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  12. Lunar dynamics and observational coordinate systems

    Science.gov (United States)

    Mulholland, J. D.

    1973-01-01

    The state of the art in lunar dynamics studies is summarized by a partial review of papers presented at a recent COSPAR meeting. The following general conclusions are made from the papers: (1) a comprehensive system of fundamental lunar craters is now feasible. Its coordinates can be determined by combining spacecraft, laser, and radar data. The quality of this system is well in par with those of systems based on earth-based observations. (2) Progress toward very high-precision ephemeris measurements has been very impressive, with fitting errors reduced to a few meters. Physical libration modeling techniques, a major obstacle to further improvement, are in the process of refinement. The lunar figure and planetary attraction were found to influence librations. (3) A combination of new techniques and revolutionized old techniques has a potential for achieving a still higher precision in lunar dynamics studies.

  13. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  14. Development of KIAPS Observation Processing Package for Data Assimilation System

    Science.gov (United States)

    Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin

    2015-04-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.

  15. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  16. Some observations on the greenhouse effect at the Earth's surface

    Science.gov (United States)

    Akitt, J. W.

    2018-01-01

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12 cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50 km altitude where the temperature is about correct, near 255 K. Doubling the CO2 concentration increases the surface temperature by about 0.9 °C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance.

  17. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  18. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  19. Surface wave propagation over sinusoidally varying topography: Theory and observation

    Science.gov (United States)

    Davies, A. G.; Heathershaw, A. D.

    Linear perturbation theory is used to show that the reflection coefficient of a patch of sinusoidal ripples on an otherwise flat bed is oscillatory in the quotient of the length of the patch and the surface wave length, and strongly dependent upon the quotient of the surface and bed wave numbers. Resonant interaction between the surface waves and the ripples if the surface wavenumber is half the ripple wavenumber is demonstrated. Few ripples, of relatively small steepness, are required to produce a substantial reflected wave. In resonant cases, the partially standing wave on the up-wave side of the ripple patch gives way, in an almost linear manner over the the ripple patch itself, to a progressive (transmitted) wave on the down-wave side. Wave tank data agree well with predictions, and suggest coupling between wave reflection and ripple growth on an erodible bed.

  20. An Observation-based Assessment of Instrument Requirements for a Future Precipitation Process Observing System

    Science.gov (United States)

    Nelson, E.; L'Ecuyer, T. S.; Wood, N.; Smalley, M.; Kulie, M.; Hahn, W.

    2017-12-01

    Global models exhibit substantial biases in the frequency, intensity, duration, and spatial scales of precipitation systems. Much of this uncertainty stems from an inadequate representation of the processes by which water is cycled between the surface and atmosphere and, in particular, those that govern the formation and maintenance of cloud systems and their propensity to form the precipitation. Progress toward improving precipitation process models requires observing systems capable of quantifying the coupling between the ice content, vertical mass fluxes, and precipitation yield of precipitating cloud systems. Spaceborne multi-frequency, Doppler radar offers a unique opportunity to address this need but the effectiveness of such a mission is heavily dependent on its ability to actually observe the processes of interest in the widest possible range of systems. Planning for a next generation precipitation process observing system should, therefore, start with a fundamental evaluation of the trade-offs between sensitivity, resolution, sampling, cost, and the overall potential scientific yield of the mission. Here we provide an initial assessment of the scientific and economic trade-space by evaluating hypothetical spaceborne multi-frequency radars using a combination of current real-world and model-derived synthetic observations. Specifically, we alter the field of view, vertical resolution, and sensitivity of a hypothetical Ka- and W-band radar system and propagate those changes through precipitation detection and intensity retrievals. The results suggest that sampling biases introduced by reducing sensitivity disproportionately affect the light rainfall and frozen precipitation regimes that are critical for warm cloud feedbacks and ice sheet mass balance, respectively. Coarser spatial resolution observations introduce regime-dependent biases in both precipitation occurrence and intensity that depend on cloud regime, with even the sign of the bias varying within a

  1. Observations of flow path interactions with surface structures during initial soil development stage using irrigation experiments

    Science.gov (United States)

    Bartl, Steffen; Biemelt, Detlef; Badorreck, Annika; Gerke, Horst H.

    2010-05-01

    Structures and processes are dynamically linked especially during initial stages of soil and ecosystem development. Here we assume that soil pore structures and micro topography determine the flow paths and water fluxes as well as further structure changes. Reports about flow path developments at the soil surface are still limited because of an insufficient knowledge of the changing micro topography at the surface. The objective of this presentation is to evaluate methods for parameterisation of surface micro topography for analysing interactions between infiltration and surface runoff. Complex irrigation experiments were carried out at an experimental site in the neighbourhood of the artificially created water catchment "Chicken Creek". The irrigation rates between 160 mm/h and 250 mm/h were held constant over a time period of 20 minutes. The incoming intensities were measured as well as the raindrop-velocity and -size distributions. The surface runoff was continuously registered, soil samples were taken, and soil water potential heads were monitored using tensiometers. Surface and subsurface flow paths were identified using different tracers. The soil surface structures were recorded using a high resolution digital camera before, during, and after irrigation. Micro topography was surveyed using close-range photogrammetry. With this experimental design both, flow paths on the surface and in the soil as well as structure and texture changes could be observed simultaneously. In 2D vertical cross-sections, the effect of initial sediment deposition structure on infiltration and runoff was observed. Image analysis of surface pictures allowed identifying structural and soil textural changes during the runoff process. Similar structural changes related to surface flow paths were found with the photogrammetric surface analysis. We found evidence for the importance of the initial structures on the flow paths as well as a significant influence of the system development

  2. Physical basis for river segmentation from water surface observables

    Science.gov (United States)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  3. JCMT active surface control system: implementation

    Science.gov (United States)

    Smith, Ian A.

    1998-05-01

    The James Clerk Maxwell Telescope on the summit of Mauna Kea in Hawaii is a 15 meter sub-millimeter telescope which operates in the 350 microns to 2 millimeter region. The primary antenna surface consists of 276 panels, each of which is positioned by 3 stepper motors. In order to achieve the highest possible surface accuracy we are embarking upon a project to actively control the position of the panels adjuster system is based on a 6809 micro connected to the control computer by a GPIB interface. This system is slow and inflexible and it would prove difficult to build an active surface control system with it. Part of the upgrade project is to replace the existing micro with a 68060 VME micro. The poster paper will describe how the temperature of the antenna is monitored with the new system, how a Finite Element Analyses package transforms temperature changes into a series of panel adjuster moves, and how these moves are then applied to the surface. The FEA package will run on a high end Sun workstation. A series of DRAMA tasks distributed between the workstation and the Baja 68060 VxWorks Active Surface Control System micro will control the temperature monitoring, FEA and panel adjustment activities. Users can interact with the system via a Tcl/TK based GUI.

  4. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  5. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  6. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  7. Spectroscopic observations of the Moon at the lunar surface

    Science.gov (United States)

    Wu, Yunzhao; Hapke, Bruce

    2018-02-01

    The Moon's reflectance spectrum records many of its important properties. However, prior to Chang'E-3 (CE-3), no spectra had previously been measured on the lunar surface. Here we show the in situ reflectance spectra of the Moon acquired on the lunar surface by the Visible-Near Infrared Spectrometer (VNIS) onboard the CE-3 rover. The VNIS detected thermal radiation from the lunar regolith, though with much shorter wavelength range than typical thermal radiometer. The measured temperatures are higher than expected from theoretical model, indicating low thermal inertia of the lunar soil and the effects of grain facet on soil temperature in submillimeter scale. The in situ spectra also reveal that 1) brightness changes visible from orbit are related to the reduction in maturity due to the removal of the fine and weathered particles by the lander's rocket exhaust, not the smoothing of the surface and 2) the spectra of the uppermost soil detected by remote sensing exhibit substantial differences with that immediately beneath, which has important implications for the remote compositional analysis. The reflectance spectra measured by VNIS not only reveal the thermal, compositional, and space-weathering properties of the Moon but also provide a means for the calibration of optical instruments that view the surface remotely.

  8. Observed linear trend in few surface weather elements over the ...

    Indian Academy of Sciences (India)

    total precipitation amount (TP). Linear regression analysis is used to construct the trend in variables listed in table 1 (Pant and. Rupa Kumar 1997; Bhutiyani et al. 2007, 2009,. Dimri and Das 2011). Linear regression equation of the following form is developed at each station for surface weather variables listed in table 1 to.

  9. High-resolution observations of combustion in heterogeneous surface fuels

    Science.gov (United States)

    E. Louise Loudermilk; Gary L. Achtemeier; Joseph J. O' Brien; J. Kevin Hiers; Benjamin S. Hornsby

    2014-01-01

    In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have implications for modelling fire...

  10. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  11. Conference on Earth Observation and Information Systems

    CERN Document Server

    Morley, Lawrence

    1977-01-01

    The NATO Science Committee and its subsidiary Programme Panels provide support for Advanced Research Institutes (ARI) in various fields. The idea is to bring together scientists of a chosen field with the hope that they will achieve a consensus on research direc­ tions for the future, and make recommendations for the benefit of a wider scientific community. Attendance is therefore limited to those whose experience and expertise make the conclusions significant and acceptable to the wider community. Participants are selected on the basis of substantial track records in research or in the synthesis of research results to serve mankind. The proposal for a one-week ARIon Earth Observation and In­ formation Systems was initiated by the NATO Special Programme Panel on Systems Science (SPPOSS). In approving the ARI, the senior NATO Science Committee identified the subject as one of universal impor­ tance, requiring a broad perspective on the development of opera­ tional systems based on successful experimental s...

  12. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  13. Nucleation at the Contact Line Observed on Nanotextured Surfaces

    Science.gov (United States)

    Kostinski, A. B.; Gurganus, C.; Charnawskas, J. C.; Shaw, R. A.

    2015-12-01

    Surface nucleation, and contact nucleation in particular, are important for many physical processes, including pharmaceutical drug synthesis, metallurgy, and heterogeneous ice nucleation. It has been conjectured that roughness plays a role in surface nucleation, the tendency for freezing to begin preferentially at the liquid-gas interface. Using high speed imaging, we sought evidence for freezing at the contact line on catalyst substrates with imposed characteristic length scales (texture). It is found that nano-scale texture causes a shift in the nucleation of ice in super-cooled water to the three-phase contact line, while micro-scale texture does not. The reduction in the Gibbs barrier for nucleation at the droplet triple line suggests that a line tension, inversely proportional to the surface feature length scale, may be the relevant physical mechanism. A survey of line tension values in literature supports this hypothesis. This work suggests that the physical morphology of a particle, and not just its chemical composition, is important for characterizing a nucleation catalyst.

  14. NASA's Earth Observing System Data and Information System - EOSDIS

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  15. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    Science.gov (United States)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  16. Reference Avionics Architecture for Lunar Surface Systems

    Science.gov (United States)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  17. Global Model Comparison with NOAA Observed Surface Ozone to Understand Transport in the Arctic

    Science.gov (United States)

    Petropavlovskikh, I. V.; McClure-Begley, A.; Tummon, F.; Tilmes, S.; Yudina, A.; Crepinsek, S.; Uttal, T.

    2016-12-01

    The Arctic region is rapidly gaining interest and support for scientific studies to help understand and characterize the processes, sources, and chemical composition of the Arctic environment. In order to understand the Arctic climate system and the changes that are occurring, it is imperative to know the behavior and impact of atmospheric constituents. As a secondary pollutant which impacts the oxidation capacity and radiative forcing of the atmosphere, ozone is an imperative species to characterize. Global atmospheric models help to confirm and understand the influence of long-distance transport on local ozone conditions. This analysis highlights the winter season when ozone conditions are not being driven by photochemical influence, and transport is the prevalent means of ozone variation. In order to ensure adequate representation of ozone conditions and source regions, model comparison verifies the ability of models to represent the behavior of ozone at the surface. Ozone mixing ratios observed from Barrow, Alaska and Summit, Greenland, are critical observations to provide fundamental knowledge of the behavior and trends of ground-level ozone in the Arctic. The observed surface ozone and wind data are compared against two different global climate-chemistry models to assess the ability for models to simulate surface ozone in the arctic region. The CCM SOCOL (Modeling tools for studies of Solar Climate Ozone Links) and Community Earth System Model (CESM1) CAM4-chem are compared to observational measurements. Comparisons between the model and observations are used as the first step in understanding of the long-range transport contribution to ozone variability in the boundary layer of the Arctic environment. An improvement in agreement between observations and chemistry-climate hind cast is found when the model is forced with reanalysis wind conditions.

  18. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center

    Science.gov (United States)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.

    2013-12-01

    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we

  19. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  20. Investigating stellar surface rotation using observations of starspots

    DEFF Research Database (Denmark)

    Korhonen, Heidi Helena

    2011-01-01

    Rapid rotation enhances the dynamo operating in stars, and thus also introduces significantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed...... information on the rotation of the star. At times even information on the spot rotation at different stellar latitudes can be obtained, similarly to the solar surface differential rotation measurements using magnetic features as tracers. Here, I will review investigations of stellar rotation based...

  1. Earth Observing Data System Data and Information System (EOSDIS) Overview

    Science.gov (United States)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  2. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    Science.gov (United States)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  3. Impact of additional surface observation network on short range ...

    Indian Academy of Sciences (India)

    has recently deployed a high-density network of. AWS over whole of India ... Weather with Observational Meso-Network and. Atmospheric Modeling .... of data assimilation in cyclic mode. In the cyclic data assimilation, model integrates forward in time and the information content propagates with the model flow. Advection of ...

  4. Surface Radiation Budget (SURFRAD) Network 1-Hour Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation measurements at SURFRAD stations cover the range of the electromagnetic spectrum that affects the earth/atmosphere system. Direct solar radiation is...

  5. Coupled atmosphere and land-surface assimilation of surface observations with a single column model and ensemble data assimilation

    Science.gov (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua P.; Snyder, Chris

    2014-05-01

    Numerical weather prediction and data assimilation models are composed of coupled atmosphere and land-surface (LS) components. If possible, the assimilation procedure should be coupled so that observed information in one module is used to correct fields in the coupled module. There have been some attempts in this direction using optimal interpolation, nudging and 2/3DVAR data assimilation techniques. Aside from satellite remote sensed observations, reference height in-situ observations of temperature and moisture have been used in these studies. Among other problems, difficulties in coupled atmosphere and LS assimilation arise as a result of the different time scales characteristic of each component and the unsteady correlation between these components under varying flow conditions. Ensemble data-assimilation techniques rely on flow dependent observations-model covariances. Provided that correlations and covariances between land and atmosphere can be adequately simulated and sampled, ensemble data assimilation should enable appropriate assimilation of observations simultaneously into the atmospheric and LS states. Our aim is to explore assimilation of reference height in-situ temperature and moisture observations into the coupled atmosphere-LS modules(simultaneously) in NCAR's WRF-ARW model using the NCAR's DART ensemble data-assimilation system. Observing system simulation experiments (OSSEs) are performed using the single column model (SCM) version of WRF. Numerical experiments during a warm season are centered on an atmospheric and soil column in the South Great Plains. Synthetic observations are derived from "truth" WRF-SCM runs for a given date,initialized and forced using North American Regional Reanalyses (NARR). WRF-SCM atmospheric and LS ensembles are created by mixing the atmospheric and soil NARR profile centered on a given date with that from another day (randomly chosen from the same season) with weights drawn from a logit-normal distribution. Three

  6. Earth Observation System Flight Dynamics System Covariance Realism

    Science.gov (United States)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  7. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    OpenAIRE

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-01-01

    Ocean currents play a key role in Earth's climate – they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dy...

  8. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data Sparse Regions

    Science.gov (United States)

    Kucera, Paul; Steinson, Martin

    2017-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions of the World, surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The project is focused on improving weather observations for environmental monitoring and early warning alert systems on a regional to global scale. Instrumentation that has been developed use innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The goal of the project is to make the weather station designs, software, and processing tools an open community resource. The weather stations can be built locally by agencies, through educational institutions, and residential communities as a citizen effort to augment existing networks to improve detection of natural hazards for disaster risk reduction. The presentation will provide an overview of the open source weather station technology and evaluation of sensor observations for the initial networks that have been deployed in Africa.

  9. Parameters Describing Earth Observing Remote Sensing Systems

    Science.gov (United States)

    Zanoni, Vicki; Ryan, Robert E.; Pagnutti, Mary; Davis, Bruce; Markham, Brian; Storey, Jim

    2003-01-01

    The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the

  10. Soesterberg, Netherlands. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    Science.gov (United States)

    1978-07-13

    r____ 7__ C NE o4 2.6 2±2 ;d___ ___ 6.1 6.7 ENE 301 6.6 . .~___ ___ . E lei i.7 2.1 *7_ 9,g_ (,.s __ CESE 7 _ 2.2 lei .e____ _ _ 4.2 r,. 8 SE 60 i_ .5... MEC OBSOLETE -4- N, ~ - f* f*i7 NNE- UATA PRUCESSING BRANCH ETAC/USAF SURFACE WINDS 3 AIR wEATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND I DIRECTION...73 73 74 8-T 30/ 29 4. 3.9’ 62 62 70 66 23/ 2714.3 46j ~ 46 5-7 -- T 26f 25 2.6 .9, __ 1, _ 27_7_2 4 6 24/ 23 1.6 lei 20~ -20 23 4 2 22/ 211 ___9 7 7

  11. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    Science.gov (United States)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  12. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  13. The Group on Earth Observations and the Global Earth Observation System of Systems

    Science.gov (United States)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  14. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  15. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  16. ARM Surface Meteorology Systems Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg).

  17. Regolith Advanced Surface Systems Operations Robot Excavator

    Science.gov (United States)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  18. Reconstruction of cloud-free time series satellite observations of land surface temperature

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.; Menenti, M.; Jia, L.; den Ouden, H.

    2012-01-01

    Time series satellite observations of land surface properties, like Land Surface Temperature (LST), often feature missing data or data with anomalous values due to cloud coverage, malfunction of sensor, atmospheric aerosols, defective cloud masking and retrieval algorithms. Preprocessing procedures

  19. Digital image processing for thermal observation system

    Science.gov (United States)

    Yu, Wee K.; Song, In Seob; Yoon, Eon S.; Lee, Y. S.; Moon, M. G.; Hong, Seok-Min; Kim, J. K.

    1995-05-01

    This paper describes the digital image processing techniques of a thermal observation system, which is a serial/parallel scan and standard TV display type using a SPRITE (Signal PRocessing In The Element) detector. The designed digital electronics has two major signal processing stages: a high speed digital scan converter and an autoregressive (AR) filter. The digital scan converter is designed with analog-to-digital converter (ADC) and dual port RAM that can carry out reading and writing simultaneously, thus enabling compact scan conversion. The scan converter reformats the five parallel analog signals generated from the detector elements into serial digital signals compatible with RS-170 video rate. For the improvement of signal-to- noise ratio and compensation for the gamma effect of the monitor, we have implemented a real time 1st order AR filter that adopts frame averaging method. With the look-up-table (LUT) ROM that contains the frame averaging factors and the gamma coefficients, this digital filter performs the noise reduction and the gamma correction at the same time. This digital image processor has been proven to provide excellent image quality and superior detection capability for distant targets at night time.

  20. Summary of Meteorological Observations, Surface (SMOS), Imperial Beach, California.

    Science.gov (United States)

    1983-10-01

    OBSERVATIONS) #!11’ IMPV’!AL B[ACH, CALIFORNIA 7Oct7-12 OCT STA~e " ATUM lM Tune MONTS ALL WEATHER 2CASS OSONS (L.0T..l~nM TAIIW IlmlceAU.IT.N~ MEAN...PSYCHROMETRIC SUMMARY Im f il ,it r, AI r ti. LektF L +NJ I A- 02 rc m ’A e L vrn seon" ItOW"il U aT I TmP6 WE V UM ATUM DIP01 (3) TOTAL TOTAL (F) 0 1

  1. Increasing Usability in Ocean Observing Systems

    Science.gov (United States)

    Chase, A. C.; Gomes, K.; O'Reilly, T.

    2005-12-01

    As observatory systems move to more advanced techniques for instrument configuration and data management, standardized frameworks are being developed to benefit from commodities of scale. ACE (A Configuror and Editor) is a tool that was developed for SIAM (Software Infrastructure and Application for MOOS), a framework for the seamless integration of self-describing plug-and-work instruments into the Monterey Ocean Observing System. As a comprehensive solution, the SIAM infrastructure requires a number of processes to be run to configure an instrument for use within its framework. As solutions move from the lab to the field, the steps needed to implement the solution must be made bulletproof so that they may be used in the field with confidence. Loosely defined command line interfaces don't always provide enough user feedback and business logic can be difficult to maintain over a series of scripts. ACE is a tool developed for guiding the user through a number of complicated steps, removing the reliance on command-line utilities and reducing the difficulty of completing the necessary steps, while also preventing operator error and enforcing system constraints. Utilizing the cross-platform nature of the Java programming language, ACE provides a complete solution for deploying an instrument within the SIAM infrastructure without depending on special software being installed on the users computer. Requirements such as the installation of a Unix emulator for users running Windows machines, and the installation of, and ability to use, a CVS client, have all been removed by providing the equivalent functionality from within ACE. In order to achieve a "one stop shop" for configuring instruments, ACE had to be written to handle a wide variety of functionality including: compiling java code, interacting with a CVS server and maintaining client-side CVS information, editing XML, interacting with a server side database, and negotiating serial port communications through Java

  2. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations

    Science.gov (United States)

    Kucera, Paul; Steinson, Martin

    2016-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions in Africa (and other global locations), surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The US National Weather Service (NWS) International Activities Office (IAO) in partnership with University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR) and funded by the United States Agency for International Development (USAID) Office of Foreign Disaster Assistance (OFDA) has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The goal is to provide observations for environmental monitoring, and early warning alert systems that can be deployed at weather services in developing countries. Instrumentation is being designed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The initial effort is focused on designing a surface network using GIS-based tools, deploying an initial network in Zambia, and providing training to Zambia Meteorological Department (ZMD) staff. The presentation will provide an overview of the project concepts, design of the low cost instrumentation, and initial experiences deploying a surface network deployment in Zambia.

  3. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  4. Scaling Observations of Surface Waves in the Beaufort Sea

    Science.gov (United States)

    2016-04-14

    open water distances were estimated using the daily 4 km National Ice Center’s (NIC) Multisensor Snow and Ice Mapping System (IMS) product, which uses...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval Research ONR 875 North Randolph Street ...drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time

  5. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance

    Directory of Open Access Journals (Sweden)

    C. Bassani

    2012-06-01

    Full Text Available Current aerosol retrievals based on visible and near infrared remote-sensing, are prone to loss of accuracy, where the assumptions of the applied algorithm are violated. This happens mostly over land and it is related to misrepresentation of specific aerosol conditions or surface properties. New satellite missions, based on high spectral resolution instruments, such as PRISMA (Hyperspectral Precursor of the Application Mission, represent a valuable opportunity to improve the accuracy of τa550 retrievable from a remote-sensing system developing new atmospheric measurement techniques. This paper aims to address the potential of these new observing systems in more accurate retrieving τa550, specifically over land in heterogeneous and/or homogeneous areas composed by dark and bright targets. The study shows how the variation of the hyperspectral observed radiance can be addressed to recognise a variation of Δτa550 = 0.02. The goal has been achieved by using simulated radiances by combining two aerosol models (urban and continental and two reflecting surfaces: dark (represented by water and bright (represented by sand for the PRISMA instrument, considering the environmental contribution of the observed radiance, i.e., the adjacency effect. Results showed that, in the continental regime, the expected instrument sensitivity would allow for retrieval accuracy of the aerosol optical thickness at 550 nm of 0.02 or better, with a dark surface surrounded by dark areas. The study also showed that for the urban regime, the surface plays a more significant role, with a bright surface surrounded by dark areas providing favourable conditions for the aerosol load retrievals, and dark surfaces representing less suitable situations for inversion independently of the surroundings. However, over all, the results obtained provide evidence that high resolution observations of Earth spectrum between

  6. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  7. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  8. Recent variations of cloudiness over Russia from surface daytime observations

    International Nuclear Information System (INIS)

    Chernokulsky, A V; Mokhov, I I; Bulygina, O N

    2011-01-01

    Changes of total and low cloud fraction and the occurrence of different cloud types over Russia were assessed. The analysis was based on visual observations from more than 1600 meteorological stations. Differences between the 2001-10 and 1991-2000 year ranges were evaluated. In general, cloud fraction has tended to increase during recent years. A major increase of total cloud fraction and a decrease of the number of days without clouds are revealed in spring and autumn mostly due to an increase of the occurrence of convective and non-precipitating stratiform clouds. In contrast, the occurrence of nimbostratus clouds has tended to decrease. In general, the ratio between the occurrence of cumulonimbus and nimbostratus clouds has increased for the period 2001-10 relative to 1991-2000. Over particular regions, a decrease of total cloud fraction and an increase of the number of days without clouds are noted.

  9. Land surface water cycles observed with satellite sensors

    Science.gov (United States)

    Nghiem, Son V.; Njoku, E. G.; Brakenridge, G. R.; Kim, Y.

    2005-01-01

    Acceleration of the global water cycle may lead to increased global precipitation, faster evaporation and a consequent exacerbation of hydrologic extreme. In the U.S. national assessment of the potential consequences of climate variability and change, two GCMs (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S. particularly during winter (Felzer and Heard, 1999). Increased precipitation potentially has important impacts on agricultural and water use in the southeast U.S. (Hatch et al., 1999) and in the central Great Plains (Nielsen, 1997). A hurricane model predicts a 40% precipitation increase for severe hurricanes affecting southeastern Florida, which provokes substantially greater flooding that could negate most of the benefits of present water-management practices in this basin (Gutowski et al., 1994). Thus, it is important to observe the hydroclimate on a continuous longterm basis to address the question of increased precipitation in the enhanced water cycle.

  10. A Regional CO2 Observing System Simulation Experiment Using ASCENDS Observations and WRF-STILT Footprints

    Science.gov (United States)

    Wang, J. S.; Kawa, S. R.; Eluszkiewicz, J.; Collatz, G. J.; Mountain, M.; Henderson, J.; Nehrkorn, T.; Aschbrenner, R.; Zaccheo, T.

    2012-12-01

    Knowledge of the spatiotemporal variations in emissions and uptake of CO2 is hampered by sparse measurements. The recent advent of satellite measurements of CO2 concentrations is increasing the density of measurements, and the future mission ASCENDS (Active Sensing of CO2 Emissions over Nights, Days and Seasons) will provide even greater coverage and precision. Lagrangian atmospheric transport models run backward in time can quantify surface influences ("footprints") of diverse measurement platforms and are particularly well suited for inverse estimation of regional surface CO2 fluxes at high resolution based on satellite observations. We utilize the STILT Lagrangian particle dispersion model, driven by WRF meteorological fields at 40-km resolution, in a Bayesian synthesis inversion approach to quantify the ability of ASCENDS column CO2 observations to constrain fluxes at high resolution. This study focuses on land-based biospheric fluxes, whose uncertainties are especially large, in a domain encompassing North America. We present results based on realistic input fields for 2007. Pseudo-observation random errors are estimated from backscatter and optical depth measured by the CALIPSO satellite. We estimate a priori flux uncertainties based on output from the CASA-GFED (v.3) biosphere model and make simple assumptions about spatial and temporal error correlations. WRF-STILT footprints are convolved with candidate vertical weighting functions for ASCENDS. We find that at a horizontal flux resolution of 1 degree x 1 degree, ASCENDS observations are potentially able to reduce average weekly flux uncertainties by 0-8% in July, and 0-0.5% in January (assuming an error of 0.5 ppm at the Railroad Valley reference site). Aggregated to coarser resolutions, e.g. 5 degrees x 5 degrees, the uncertainty reductions are larger and more similar to those estimated in previous satellite data observing system simulation experiments.

  11. Tangible display systems: bringing virtual surfaces into the real world

    Science.gov (United States)

    Ferwerda, James A.

    2012-03-01

    We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.

  12. Novel surface measurement system reading cost savings

    Energy Technology Data Exchange (ETDEWEB)

    Sword, M.

    1996-05-01

    A new state-of-the-art data acquisition system for the oil and natural gas industries is being marketed by OPSCO`92 Industries Ltd. The unit is portable, it measures surface data which is calibrated to bottom-hole conditions and designed to measure temperature and pressure information without the necessity of sending testing equipment downhole. The Surface Data System (SDS) uses silicon-crystal technology, is mounted in a suitcase size carrying case, and runs off a 12-volt battery enclosure which can be backed up by a small solar panel. The first generation system can handle 16 different channels of information input on a laptop computer. Pressure, pressure differential, temperature, frequency and pulse signals for flow meter measurements are handled by standard sensors. Areas of application include build-up and fall-off tests, pipeline evaluation, pre-frac tests, underbalanced drilling and gas well evaluation. 1 fig., 1 photo.

  13. Imaging of surface wave phase velocities from array phase observations

    Science.gov (United States)

    Weidle, Christian; Maupin, Valerie

    2010-05-01

    While temporary deployments some 10 years ago were largely based on short-period seismometers, the availability of broadband instruments in instrument pools increased strongly in recent years and as such modern temporary deployments for passive seismological recordings often consist to a large extent, if not exclusively, of broadband instruments. This opens for new analysis approaches as the broadband seismic wavefield is obtained at a relatively high spatial sampling relative to the wavelength. In an attempt to infer surface wave phase velocity anomalies beneath Southern Norway based on data from a temporary network of 41 broadband instruments, we present a new approach to overcome the limitations of two-station phase measurements (on the great circle with the source) and instead exploit the two-dimensional nature of the wavefield by taking into account phase measurements at all stations of the array from a single event. This is based on the assumption that the wavefield is at least piecewise linear within the study region. By triangulation of the network region and linear estimation of the phase gradient in each triangle we get without further a priori assumptions a coarse image of the phase velocity variations within our network. The image can be significantly refined for a single event recording by stacking multiple images based on arbitrary subsets of the available data. Phase velocity anomalies measured from single event recordings can be biased and blurred by non-plane arriving wavefield, reflections and diffractions of heterogeneities. Therefore, by averaging over velocity fields from different events with varying backazimuths, artefacts are reduced and the recovered image significantly improved. Another way to improve the recovered structures is to take into account the spatial variation of the amplitude field. However, while the phase between two neighboring stations may be (at least close to) linear, the amplitude may not, hence estimation of the second

  14. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    Science.gov (United States)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both

  15. Full 2D observation of water surface elevation from SWOT under different flow conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  16. System for removing contaminated surface layers

    International Nuclear Information System (INIS)

    Yoshikawa, Kozo.

    1987-04-01

    The object of the present invention is to offer a new type of useful decontamination system, with which the contaminated surface layers can be removed effectively by injection of such solid microparticles. Liquid carbon dioxide is passed from a liquid carbon dioxide tank via the carbon dioxide supply line into the system for injecting solid carbon dioxide particles. Part of the liquid carbon dioxide introduced into the system is converted to solid carbon dioxide particles by the temperature drop resulting from adiabatic expansion in the carbon dioxide expansion space of the injection system. The solid carbon dioxide particles reach the injection nozzle, which is connected through the expansion space. The carbon dioxide microparticles are further cooled and accelerated by nitrogen gas injected from the nitrogen gas nozzle at the tip of the nitrogen gas supply line, which is connected to a liquid nitrogen tank. The cooled and accelerated solid carbon dioxide microparticles are injected from the injection nozzle for the solid carbon dioxide and directed against the contaminated surface to be cleaned, and, as a result, the surface contamination is removed

  17. NOAA Observing System Integrated Analysis (NOSIA): development and support to the NOAA Satellite Observing System Architecture

    Science.gov (United States)

    Reining, R. C.; Cantrell, L. E., Jr.; Helms, D.; LaJoie, M.; Pratt, A. S.; Ries, V.; Taylor, J.; Yuen-Murphy, M. A.

    2016-12-01

    There is a deep relationship between NOSIA-II and the Federal Earth Observation Assessment (EOA) efforts (EOA 2012 and 2016) chartered under the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, co-chaired by the White House Office of Science and Technology Policy, NASA, NOAA, and USGS. NOSIA-1, which was conducted with a limited scope internal to NOAA in 2010, developed the methodology and toolset that was adopted for EOA 2012, and NOAA staffed the team that conducted the data collection, modeling, and analysis effort for EOA 2012. EOA 2012 was the first-ever integrated analysis of the relative impact of 379 observing systems and data sources contributing to the key objectives identified for 13 Societal Benefit Areas (SBA) including Weather, Climate, Disasters, Oceans and Coastal Resources, and Water Resources. This effort culminated in the first National Plan for Civil Earth Observations. NOAA conducted NOSIA-II starting in 2012 to extend the NOSIA methodology across all of NOAA's Mission Service Areas, covering a representative sample (over 1000) of NOAA's products and services. The detailed information from NOSIA-II is being integrated into EOA 2016 to underpin a broad array of Key Products, Services, and (science) Objectives (KPSO) identified by the inter-agency SBA teams. EOA 2016 is expected to provide substantially greater insight into the cross-agency impacts of observing systems contributing to a wide array of KPSOs, and by extension, to societal benefits flowing from these public-facing products. NOSIA-II is being adopted by NOAA as a corporate decision-analysis and support capability to inform leadership decisions on its integrated observing systems portfolio. Application examples include assessing the agency-wide impacts of planned decommissioning of ships and aircraft in NOAA's fleet, and the relative cost-effectiveness of alternative space-based architectures in the post-GOES-R and JPSS era

  18. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  19. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  20. Controllability-observability of expanded composite systems

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rodellar, J.; Rossell, J. M.

    332-334, - (2001), s. 381-400 ISSN 0024-3795 R&D Projects: GA AV ČR IAA2075802 Institutional research plan: AV0Z1075907 Keywords : interconnected dynamical systems * inclusion principle * large-scale systems Subject RIV: BC - Control Systems Theory Impact factor: 0.423, year: 2001

  1. Oceanographic and surface meteorological data collected from Oregon Pump Station by City of Oregon and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-06-20 to 2017-08-31 (NCEI Accession 0130547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130547 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  2. Oceanographic and surface meteorological data collected from MTU1 Buoy by Michigan Technological University and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123646 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  3. Long-term surface pCO2 trends from observations and models

    Directory of Open Access Journals (Sweden)

    Jerry F. Tjiputra

    2014-05-01

    Full Text Available We estimate regional long-term surface ocean pCO2 growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO2 growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO2 uptake, while ocean pCO2 growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO2 uptake. Aside from the western subpolar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to determine the trends in these regions. Encouragingly, good agreement between the simulated and observed pCO2 trends is found when the simulated fields are subsampled with the observational coverage. In agreement with observations, we see that the simulated pCO2 trends are primarily associated with the increase in surface dissolved inorganic carbon (DIC associated with atmospheric carbon uptake, and in part by warming of the sea surface. Under the RCP8.5 future scenario, DIC continues to be the dominant driver of pCO2 trends, with little change in the relative contribution of SST. However, the changes in the hydrological cycle play an increasingly important role. For the contemporary (1970–2011 period, the simulated regional pCO2 trends are lower than the atmospheric growth rate over 90% of the ocean. However, by year 2100 more than 40% of the surface ocean area has a higher oceanic pCO2 trend than the atmosphere, implying a reduction in the atmospheric CO2 uptake rate. The fastest pCO2 growth rates are projected for the subpolar North Atlantic, while the high-latitude Southern Ocean and eastern equatorial Pacific have the weakest growth rates, remaining below the atmospheric pCO2 growth rate. Our work

  4. Surface flow observations from a gauge-cam station on the Tiber river

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Petroselli, Andrea; Grimaldi, Salvatore

    2016-04-01

    Understanding the kinematic organization of natural water bodies is central to hydrology and environmental engineering practice. Reliable and continuous flow observations are essential to comprehend flood generation and propagation mechanisms, erosion dynamics, sediment transport, and drainage network evolution. In engineering practice, flood warning systems largely rely on real-time discharge measurements, and flow velocity monitoring is important for the design and management of hydraulic structures, such as reservoirs and hydropower plants. Traditionally, gauging stations have been equipped with water level meters, and stage-discharge relationships (rating curves) have been established through few direct discharge measurements. Only in rare instances, monitoring stations have integrated radar technology for local measurement of surface flow velocity. Establishing accurate rating curves depends on the availability of a comprehensive range of discharge values, including measurements recorded during extreme events. However, discharge values during high-flow events are often difficult or even impossible to obtain, thereby hampering the reliability of discharge predictions. Fully remote observations have been enabled in the past ten years through optics-based velocimetry techniques. Such methodologies enable the estimation of the surface flow velocity field over extended regions from the motion of naturally occurring debris or floaters dragged by the current. Resting on the potential demonstrated by such approaches, here, we present a novel permanent gauge-cam station for the observation of the flow velocity field in the Tiber river. This new station captures one-minute videos every 10 minutes over an area of up to 20.6 × 15.5m2. In a feasibility study, we demonstrate that experimental images analyzed via particle tracking velocimetry and particle image velocimetry can be used to obtain accurate surface flow velocity estimations in close agreement with radar records

  5. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    Science.gov (United States)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  6. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  7. AFSC/FMA/Observer Logistics System (OLS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alaska groundfish fisheries observers have been monitoring domestic groundfish fishing activities in the U.S. Exclusive Economic Zone (EEZ) off Alaska for over...

  8. Wettability of quartz surface as observed by NMR transverse relaxation time (T2)

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Katika, Konstantina; Fabricius, Ida Lykke

    the wettability property of quartz surface by using Nuclear Magnetic Resonance (NMR) method. The principle of this method is that protons in water relax faster when it comes close to solid surface. We observed that quart is highly water wet. A layer of water (bound water) forms on the quartz surface when...

  9. HI observations of low surface brightness galaxies : Probing low-density galaxies

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS; vanderHulst, JM

    1996-01-01

    We present Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) 21-cm HI observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low HI surface densities, about a factor of

  10. Surface potential effects in low-energy current image diffraction patterns observed on the Al(001) surface

    International Nuclear Information System (INIS)

    Fine structure observed in high-resolution low-energy electron diffraction (LEED) measurements near the energy threshold for emergence of new beams has been attributed to surface barrier effects. Recently, the surface barrier has been suggested as the source of the fine structure observed in current image diffraction (CID) patterns obtained by rastering the primary beam across an Al(001) crystal surface at a constant energy. This suggestion was based on kinematic arguments which correlated the emergence angle for a new electron beam with the observed structure in the CID pattern. In this work, the angular dependence of the elastic component of the total crystal reflectivity is calculated at constant energy. The calculations are based on full dynamical theories such as used in LEED but incorporating different surface barrier models to account for the saturating image potential. The results are compared with the experimental CID results

  11. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik

    2013-01-01

    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... affected by the use of product configu-ration systems e.g. increased sales, decrease in the number of SKU's, improved ability to introduce new products, and cost reductions....

  12. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  13. NCDC feed of Global Telecommunication System (GTS) marine observations in International Maritime Meteorological Archive (IMMA) Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained here are surface marine observations from many different sources via the NCDC Global Telecommunication System (GTS) Marine in International...

  14. Power system observability with minimum phasor measurement ...

    African Journals Online (AJOL)

    The OPP methodologies applied include the system observablility during normal operating conditions, as well as during single branch forced outages. In order to improve the speed of convergence, an initial PMU placement is provided by graph-theoretic procedure. The IEEE 14-bus, 118-bus standard test power systems ...

  15. IEOOS: the Spanish Institute of Oceanography Observing System

    Science.gov (United States)

    Tel, Elena; Balbin, Rosa; Cabanas, Jose-Manuel; Garcia, Maria-Jesus; Garcia-Martinez, M. Carmen; Gonzalez-Pola, Cesar; Lavin, Alicia; Lopez-Jurado, Jose-Luis; Rodriguez, Carmen; Ruiz-Villarreal, Manuel; Sánchez-Leal, Ricardo F.; Vargas-Yáñez, Manuel; Vélez-Belchí, Pedro

    2016-03-01

    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography. Some systems like the tide gauges network has been working for more than 70 years. The standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the Observing System includes six permanent moorings equipped with current meters, an open-sea ocean-meteorological buoy offshore Santander and a sea-surface temperature satellite image station. It also supports the Spanish contribution to the Argo international programme with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and vessel-mounted acoustic Doppler current profilers on the research vessel fleet. The system is completed with the contribution to the Northwest Iberian peninsula and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands such as navigation, resource management, risks management, recreation, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programmes of Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits a spatio-temporal description of some events, such as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  16. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik

    2013-01-01

    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... affected by the use of product configu-ration systems e.g. increased sales, decrease in the number of SKU's, improved ability to introduce new products, and cost reductions.......This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... systems in industry companies and partly to assess if the objectives suggested are appropriate for describing the impact of product configuration systems and identifying other possible objectives. The empirical study of the com-panies also gives an indication of more overall performance indicators being...

  17. The Global Emergency Observation and Warning System

    Science.gov (United States)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  18. Ultraviolet Characterization of Comet and Asteroid Surfaces as Observed by the Rosetta Alice Instrument (Invited)

    Science.gov (United States)

    Feaga, L. M.; Holt, C. E.; Steffl, A.; Stern, S. A.; Bertaux, J. L.; Parker, J. W.; A'Hearn, M. F.; Feldman, P.; Keeney, B. A.; Knight, M. M.; Noonan, J.; Vervack, R. J., Jr.; Weaver, H. A., Jr.

    2017-12-01

    In 2016, Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet-orbiting spacecraft Rosetta, completed a 2-year characterization of 67P/Churyumov-Gerasimenko (C-G), a bi-lobed Jupiter family comet with extreme seasons and diverse surface features. In addition to coma studies, Alice monitored the sunlit surface of C-G from 700-2050 Å to establish the FUV bidirectional reflectance properties and albedo of the surface, determine homogeneity, correlate spectral features with morphological regions, and infer the compositional makeup of the comet. The heliocentric distance coverage (3.7 AU from the Sun, through perihelion at 1.24 AU, and back out to 3.8 AU) over a period of 2 years and spatial resolution of the Alice data (e.g., 30 m by 150 m at the comet from a spacecraft distance of 30 km) resulted in the first resolved observations of a cometary nucleus in the FUV throughout much of its orbit. Upon arrival in 2014, initial characteristics and properties of the surface were derived for the northern hemisphere, revealing a dark, homogeneous, and blue-sloped surface in the FUV with an average geometric albedo of 5% at 1475 Å, consistent with a homogeneous layer of dust covering that hemisphere and similar to nucleus properties derived for this and other comets in the visible. Now, with a fully calibrated dataset, properties of the southern and northern hemispheres, before and after perihelion, have been quantified and preliminarily show minimal change in the comet's surface in the FUV through the apparition. Analyses are ongoing and we will highlight any detected variability. En-route to C-G, Alice made history during the flybys of asteroid (2867) Steins and (21) Lutetia obtaining the first global FUV reflectivity measurement and acquiring spatially resolved observations of an asteroid surface, respectively. The asteroid properties will be compared to those derived for C-G to demonstrate commonalities across small bodies

  19. Pacific Islands Region Observer Program System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This system integrates the longline debriefing steps and procedures for Hawaii and American Samoa into one tool to standardize and streamline the debriefing process....

  20. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    Science.gov (United States)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface

  1. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  2. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    of restorative cleaning (RC), nine recently built PP systems were tested for their infiltration capacity with and without restorative cleaning (RC) over an interval of 12–14.5 months. The results were related to each site’s unique history of sedimentation. RC significantly improved permeability, but when...... revisited after approximately one year, the permeability of cleaned surfaces was not significantly better for the RC spots than from their uncleaned neighbouring areas. Relating permeability to the contextual issues revealed that PP perimeter, adjacent bare soil and mismanagement strongly affected...... the sedimentation process. At two of the sites, sedimentation processes were so advanced that surface permeability was below the level of service (five-year design storm)....

  3. Assimilation of Gridded Terrestrial Water Storage Observations from GRACE into a Land Surface Model

    Science.gov (United States)

    Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew

    2016-01-01

    Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.

  4. Observations on seismic design of piping systems

    International Nuclear Information System (INIS)

    Habip, L.M.; Schrammel, D.

    1992-01-01

    Practical aspects of piping system design for seismic loads are considered. Main topics are structural effects of natural earth-quakes, full-scale dynamic tests - with emphasis on work performed at the HDR plant - and implications for the design and qualification of industrial systems and equipment. Experimental evidence and past experience indicate that design-by-rule or qualification-by-inspection can be used at this time to achieve dependable seismic performance, pending the development of piping failure criteria for cyclic overloads of short duration. (orig.)

  5. Probabilistic nowcast of PBL profiles with a single column model and ensemble filter assimilation of surface observations

    Science.gov (United States)

    Rostkier-Edelstein, D.; Hacker, J. P.

    2009-09-01

    A long-term goal of this work is to find an efficient system for probabilistic planetary boundary layer (PBL) nowcasting that can be deployed wherever surface observations are present. One approach showing promise is the use of a single column model (SCM) and ensemble filter (EF) data assimilation techniques. Earlier work showed that surface observations can be an important source of information with an SCM and an EF. Here we extend that work to quantify the deterministic and probabilistic skill of ensemble SCM predictions with added complexity. Although it is appealing to add additional physics and dynamics to the SCM model it is not immediately clear that additional complexity will improve the performance of a PBL nowcasting system based on a simple model. We address this question with regard to treatment of surface assimilation, radiation in the column, and also advection to account for realistic 3D dynamics (a timely WRF prediction). We adopt factor separation analysis to quantify the individual contribution of each model component to the deterministic and probabilistic skill of the system, as well as any beneficial or detrimental interactions between them. Deterministic skill of the system is evaluated through the mean absolute error, and probabilistic skill through the Brier Skill Score (BSS) and the area under the relative operating characteristic (ROC) curve (AUR). The BSS is further decomposed into both a reliability and resolution term to understand the trade-offs in different components of probabilistic skill. An alternative system based on climatological covariances and surface observations is used as a reference to assess the real utility of the flow-dependent covariances estimated with the ensemble system. In essence it is a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. WRF) is corrected with surface forecast errors and covariances computed from a distribution of available historical mesoscale forecasts. The adjusted profile

  6. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    Science.gov (United States)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  7. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    results of main belt comets, asteroids with ring system, lunar studies, planned exploration of planetary satellites that may harbour sub-surface oceans, there is increasing need to include polarimetric (linear, circular and differential) as an integral observing mode of instruments and facilities. For laboratory measurements, there is a need to identify simulants that mimic the polarimetric behaviour of solar system small bodies and measure their polarimetric behavior as function of various physical process they are subject to and have undergone radiation changes of their surfaces. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for groundbased facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  8. Homogenizing Surface and Satellite Observations of Cloud. Aspects of Bias in Surface Data.

    Science.gov (United States)

    1987-11-10

    configuration, as well as the experience, location and procedure adopted by the observer. Where the clouds exhibit vertical development the observer includes the...Australasia which was thus removed from the list of analysis areas. 2.4 Discuuios of Ressite Figures 3 to 6 illustrate diurnal plots of the frequency of...a small group of stations may be expected to exhibit more marked variability compaed to the mean result for a larger number of stations. Figure 7 to

  9. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  10. Uncertainty in Land Cover observations and its impact on near surface climate

    Science.gov (United States)

    Georgievski, Goran; Hagemann, Stefan

    2017-04-01

    Land Cover (LC) and its bio-geo-physical feedbacks are important for the understanding of climate and its vulnerability to changes on the surface of the Earth. Recently ESA has published a new LC map derived by combining remotely sensed surface reflectance and ground-truth observations. For each grid-box at 300m resolution, an estimate of confidence is provided. This LC data set can be used in climate modelling to derive land surface boundary parameters for the respective Land Surface Model (LSM). However, the ESA LC classes are not directly suitable for LSMs, therefore they need to be converted into the model specific surface presentations. Due to different design and processes implemented in various climate models they might differ in the treatment of artificial, water bodies, ice, bare or vegetated surfaces. Nevertheless, usually vegetation distribution in models is presented by means of plant functional types (PFT), which is a classification system used to simplify vegetation representation and group different vegetation types according to their biophysical characteristics. The method of LC conversion into PFT is also called "cross-walking" (CW) procedure. The CW procedure is another source of uncertainty, since it depends on model design and processes implemented and resolved by LSMs. These two sources of uncertainty, (i) due to surface reflectance conversion into LC classes, (ii) due to CW procedure, have been studied by Hartley et al (2016) to investigate their impact on LSM state variables (albedo, evapotranspiration (ET) and primary productivity) by using three standalone LSMs. The present study is a follow up to that work and aims at quantifying the impact of these two uncertainties on climate simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) using prescribed sea surface temperature and sea ice. The main focus is on the terrestrial water cycle, but the impacts on surface albedo, wind patterns, 2m temperatures

  11. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  12. Dedicated System for Observation of Polaris

    Science.gov (United States)

    Gavin, Andrew

    2018-01-01

    Polaris, the North Star, has been known to be a Cepheid variable star for over 150 years (Seidel, 1852). Special interest has been given to Polaris’ variations because of its changing period and periods of cessation (D. Turner et al, 2005). The continuous monitoring of Polaris’ brightness provides us with insights on the behaviors of Cepheid variable stars that are undergoing transformations. Since its inception in 2004, the Polaris project has been somewhat of a white whale for PARI and the numerous interns that have worked on the project. The primary goal of this project is the production of a continuous light curve of Polaris through an automated system. Along with providing a continuous light curve of Polaris, this system will be able to produce an archive of data on the seeing conditions of the PARI site.

  13. Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY

    Directory of Open Access Journals (Sweden)

    Giovanni Muscari

    2014-06-01

    Full Text Available Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC station at Thule Air Base (76.5°N, 68.8°W, on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY, in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3 which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the

  14. Variational assimilation of land surface temperature observations for enhanced river flow predictions

    Science.gov (United States)

    Ercolani, Giulia; Castelli, Fabio

    2016-04-01

    Data assimilation (DA) has the potential of improving hydrologic forecasts. However, many issues arise in case it is employed for spatially distributed hydrologic models that describes processes in various compartments: large dimensionality of the inverse problem, layers governed by different equations, non-linear and discontinuous model structure, complex topology of domains such as surface drainage and river network.On the other hand, integrated models offer the possibility of improving prediction of specific states by exploiting observations of quantities belonging to other compartments. In terms of forecasting river discharges, and hence for their enhancement, soil moisture is a key variable, since it determines the partitioning of rainfall into infiltration and surface runoff. However, soil moisture measurements are affected by issues that could prevent a successful DA and an actual improvement of discharge predictions.In-situ measurements suffer a dramatic spatial scarcity, while observations from satellite are barely accurate and provide spatial information only at a very coarse scale (around 40 km).Hydrologic models that explicitly represent land surface processes of coupled water and energy balance provide a valid alternative to direct DA of soil moisture.They gives the possibility of inferring soil moisture states through DA of remotely sensed Land Surface Temperature (LST), whose measurements are more accurate and with a higher spatial resolution in respect to those of soil moisture. In this work we present the assimilation of LST data in a hydrologic model (Mobidic) that is part of the operational forecasting chain for the Arno river, central Italy, with the aim of improving flood predictions. Mobidic is a raster based, continuous in time and distributed in space hydrologic model, with coupled mass and energy balance at the surface and coupled groundwater and surface hydrology. The variational approach is adopted for DA, since it requires less

  15. [Observation of osteoclasts on the root surface during human deciduous teeth resorption].

    Science.gov (United States)

    Bao, Xiang-jun; Liang, Xing; Chen, Ming; Wang, Hang; Xie, Zhi-gang; Yang, Xiao-yu

    2004-08-01

    To observe osteoclasts on the resorbing surface of human deciduous teeth. After fixing the collected deciduous teeth, we prepared the tooth slices without decalcification, treated them with HE and TRAP dyestuff, and observed the osteoclasts under light and scanning electron microscope. There were large quantity of various forms of overlapping and huge osteoclasts with many nuclei and silk-like protuberances on the resorbing surface of deciduous teeth. The multinucleated osteoclasts align on the surface of coarse dentin. On the resorbing surface of human deciduous teeth there are large amount of osteoclasts which can be used as a source of studying human osteoclast.

  16. Observing Natural Hazards: Tsunami, Hurricane, and El Niño Observations from the NDBC Ocean Observing System of Systems

    Science.gov (United States)

    O'Neil, K.; Bouchard, R.; Burnett, W. H.; Aldrich, C.

    2009-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center (NDBC) operates and maintains the NDBC Ocean Observing Systems of Systems (NOOSS), comprised of 3 networks that provide critical information before and during and after extreme hazards events, such as tsunamis, hurricanes, and El Niños. While each system has its own mission, they have in common the requirement to remain on station in remote areas of the ocean to provide reliable and accurate observations. After the 2004 Sumatran Tsunami, NOAA expanded its network of tsunameters from six in the Pacific Ocean to a vast network of 39 stations providing information to Tsunami Warning Centers to enable faster and more accurate tsunami warnings for coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico. The tsunameter measurements are used to detect the amplitude and period of the tsunamis, and the data can be assimilated into models for the prediction and impact of the tsunamis to coastal communities. The network has been used for the detection of tsunamis generated by earthquakes, including the 2006 and 2007 Kuril Islands, 2007 Peru, and Solomon Islands, and most recently for the 2009 Dusky Sound, New Zealand earthquake. In August 2009, the NOAA adjusted its 2009 Atlantic Hurricane Seasonal Outlooks from above normal to near or below normal activity, primarily due to a strengthening El Niño. A key component in the detection of that El Niño was the Tropical Atmosphere Ocean Array (TAO) operated by NDBC. TAO provides real-time data for improved detection, understanding, and prediction of El Niño and La Niña. The 55-buoy TAO array spans the central and eastern equatorial Pacific providing real-time and post-deployment recovery data to support climate analysis and forecasts. Although, in this case, the El Niño benefits the tropical Atlantic, the alternate manifestation, La Niña typically enhances hurricane activity in the Atlantic. The various phases of

  17. TRANSIT OBSERVATIONS OF THE WASP-10 SYSTEM

    International Nuclear Information System (INIS)

    Dittmann, J. A.; Close, L. M.; Scuderi, L. J.; Morris, M. D.

    2010-01-01

    We present here observations of the transit of WASP-10b on 2009 October 14 UT taken from the University of Arizona's 1.55 m Kuiper telescope on Mount Bigelow. Conditions were photometric and accuracies of 2.0 mmag rms were obtained throughout the transit. We have found that the ratio of the planet to host star radii is in agreement with the measurements of Christian et al. instead of the refinements of Johnson et al., suggesting that WASP-10b is indeed inflated beyond what is expected from theoretical modeling. We find no evidence for large (>20 s) transit timing variations in WASP-10b's orbit from the ephemeris of Christian et al. and Johnson et al.

  18. Surface Energy Balance System (SEBS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  19. Aerosol-Driven Surface Solar Dimming Over Asia: Insights from a Model-Observation Intercomparison

    Science.gov (United States)

    Persad, G.; Ming, Y.; Ramaswamy, V.

    2012-12-01

    Sun photometer and satellite data have indicated a reduction in surface solar radiation (SSR) over India and China during the second half of the 20th century that is at least partly due to anthropogenic aerosols. Recent integrated observational studies of aerosol properties also suggest that this SSR reduction may have a strong contribution from atmospheric absorption by carbonaceous aerosols over Asia. The reduction in SSR and associated redistribution of energy between the surface and atmosphere may have significant implications for regional hydrological systems like the summertime monsoon. Previous generations of general circulation models (GCMs), however, have been largely unsuccessful at recreating aerosol-driven trends in SSR, hindering theoretical investigation of causes and effects of these trends in regional climate. We analyze the behavior of SSR over Asia in the Geophysical Fluid Dynamics Laboratory's AM3 Atmospheric General Circulation Model—the updated aerosol treatment of which contains internal mixing of aerosols and interactive dry and wet deposition—in the context of new satellite and ground-based observational estimates of aerosol-driven SSR reduction. We find that AM3 is more successful than the previous generation of GCMs at recreating the observed SSR trend over South and East Asia and also suggests that as much as half of the clear-sky trend may be attributable to increases in atmospheric absorption in both regions. We will discuss the SSR and atmospheric absorption trends over China and India, as depicted in both observations and AM3, as well the particular aerosol processes responsible for the model's recreation of the trends and their implications for regional climate.

  20. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  1. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  2. Automated Weather Observing System (AWOS) Demonstration Program.

    Science.gov (United States)

    1984-09-01

    unfavorable voice ,. r td by pilots u sing the WeatherMeasure System as opposed to the *.-’ .f. : r. However, it should be noted that the...N- I-40 <Zl 99,N -500 wI CD CD (M v1 tD a CD CM Wl CDO Cat O C N 0 U 4) " l M N (.) A3N3flO38d 3AhI173l 54 Mp. A3N3nO38J 3AIiv1flwf3 3AI1V138 -5000...SBP EST 42 0.70 0.83 47 -40 2B7 286 90 * OFFICIAL CEILING VERSUS AWOS CEILING CMU( EST 6481 0.76 0.76 -69 -372 704 795 58 DBfl IBC 188 0.84 1 .00 -31

  3. Observing hydrological processes: recent advancements in surface flow monitoring through image analysis

    Science.gov (United States)

    Tauro, Flavia; Grimaldi, Salvatore

    2017-04-01

    Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface

  4. Impact of Assimilating Surface Velocity Observations on the Model Sea Surface Height Using the NCOM-4DVAR

    Science.gov (United States)

    2016-09-26

    surface velocity observations available in 15-min intervals for each drifter. The observations are given an error standard deviation value of 0.02m s21... Standard Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting... statistical analysis is done by not only examining the SSH forecast error across the entire do- main, but also by concentrating on the areamost densely covered

  5. Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

    Science.gov (United States)

    Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.

    2018-01-01

    The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.

  6. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  7. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  8. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in

  10. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Directory of Open Access Journals (Sweden)

    R. M. Parinussa

    2011-10-01

    Full Text Available For several years passive microwave observations have been used to retrieve soil moisture from the Earth's surface. Low frequency observations have the most sensitivity to soil moisture, therefore the current Soil Moisture and Ocean Salinity (SMOS and future Soil Moisture Active and Passive (SMAP satellite missions observe the Earth's surface in the L-band frequency. In the past, several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E and WindSat have been used to retrieve surface soil moisture using multi-channel observations obtained at higher microwave frequencies. While AMSR-E and WindSat lack an L-band channel, they are able to leverage multi-channel microwave observations to estimate additional land surface parameters. In particular, the availability of Ka-band observations allows AMSR-E and WindSat to obtain coincident surface temperature estimates required for the retrieval of surface soil moisture. In contrast, SMOS and SMAP carry only a single frequency radiometer and therefore lack an instrument suited to estimate the physical temperature of the Earth. Instead, soil moisture algorithms from these new generation satellites rely on ancillary sources of surface temperature (e.g. re-analysis or near real time data from weather prediction centres. A consequence of relying on such ancillary data is the need for temporal and spatial interpolation, which may introduce uncertainties. Here, two newly-developed, large-scale soil moisture evaluation techniques, the triple collocation (TC approach and the Rvalue data assimilation approach, are applied to quantify the global-scale impact of replacing Ka-band based surface temperature retrievals with Modern Era Retrospective-analysis for Research and Applications (MERRA surface temperature output on the accuracy of WindSat and AMSR-E based surface soil moisture retrievals. Results demonstrate that under sparsely vegetated conditions, the use of

  11. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    International Nuclear Information System (INIS)

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-01-01

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - μm sized domains were grown at the surface, which might not be reported for other glasses

  12. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    Science.gov (United States)

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  13. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2012-04-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer showed an agreement within the uncertainties of both instruments (6% for both. The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time. A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  14. Global Ensemble Generation Using Perturbed Observations in the Navy Coupled Ocean Data Assimilation System (NCODA)

    Science.gov (United States)

    Rowley, C. D.; Frolov, S.; Stokes, M.; Hogan, P. J.; Wei, M.; Bishop, C. H.

    2016-02-01

    A perturbed-observation analysis capability has been developed for the Navy Coupled Ocean Data Assimilation system (NCODA). The resulting analysis is used to represent analysis error in the initial conditions of a global ocean forecast ensemble using the Hybrid Coordinate Ocean Model (HYCOM). For cycling with HYCOM, the NCODA system performs a 3D variational analysis of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. Sea surface height is assimilated through synthetic temperature and salinity profiles generated using the Modular Ocean Data Assimilation System (MODAS) historical regression database with surface height and surface temperature as inputs. Perturbations to the surface observations use random samples from a normal distribution scaled by the observation error standard deviation, which combines estimates of instrument and representation error. Perturbations to the synthetic profiles are generated by supplying the perturbed surface inputs to the MODAS system, resulting in correlated profile changes with vertical correlations associated with historical uncertainty about thermocline depth and gradients. For in situ profile observations, representation error is much larger than instrument error, so a technique is implemented to create correlated perturbations associated with large, mesoscale errors. Initial results from a cycling regional analysis show the resulting analysis perturbations have scales and amplitudes consistent with short term forecast error covariances. Results using the perturbed observation analysis in regional and global cycling forecast systems will be presented.

  15. ARM Surface Meteorology Systems Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable: • Winds: 10 meters • Temperature and Relative Humidity: 2 meters • Barometric Pressure: 1 meter. Depending upon the geographical location, different models and types of sensors may be used to measure the core variables due to the conditions experienced at those locations. Most sites have additional sensors that measure other variables that are unique to that site or are well suited for the climate of the location but not at others.

  16. Surface Management System Departure Event Data Analysis

    Science.gov (United States)

    Monroe, Gilena A.

    2010-01-01

    This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.

  17. Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    International Nuclear Information System (INIS)

    Ivanov, V V; Cornelussen, R A; Heuvell, H B van Linden van den; Spreeuw, R J C

    2004-01-01

    We have observed a distance-dependent absorption linewidth of cold 87 Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behaviour of the atoms near the surface. We observed an increase of the absorption linewidth by up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED

  18. Power System for Venus Surface Exploration

    Science.gov (United States)

    Landis, Geoffrey A.; Mellott, Kenneth

    2002-01-01

    A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg

  19. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    Science.gov (United States)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  20. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes...... in glacier melt independently from model output. Here, we present a comprehensive database of Greenland glacier surface mass-balance observations from the ablation area of the ice sheet and local glaciers. The database spans the 123 a from 1892 to 2015, contains a total of similar to 3000 measurements from......-term time series of which there are only two exceeding 20 a. We use the data to analyse uncertainties in point measurements of surface mass balance, as well as to estimate surface mass-balance profiles for most regions of Greenland....

  1. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  2. Recent Observations in Surface Electromyography Recording of Triceps Brachii Muscle in Patients and Athletes

    Directory of Open Access Journals (Sweden)

    Md. Asraf Ali

    2014-01-01

    Full Text Available Objective: To observe and analyse the literature on the use of surface electromyography electrodes, including the shape, size, and metal composition of the electrodes used, the interelectrode distance, and the anatomical locations on the muscle at which the electrodes are placed, for the observation of the triceps brachii muscle activity in patients and athletes.

  3. Synchronization of chaotic systems based on PI observer design

    Energy Technology Data Exchange (ETDEWEB)

    Hua Changchun [Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China)]. E-mail: cch@ysu.edu.cn; Guan Xinping [Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China)]. E-mail: xpguan@ysu.edu.cn

    2005-01-24

    Synchronization problem of chaotic systems via observer method is investigated. In contrast to the results of the literatures, we consider the case that there exist noise disturbances in the output. Under this condition, it is not ideal to employ the classic observer to solve the synchronization problem. The proportional integral observer is proposed, which can render the error system stable with the noise in the output. Simulations on synchronizing Chua chaotic systems are done to verify the effectiveness of the main results.

  4. Observables and Entanglement in the Two-Body System

    OpenAIRE

    Harshman, N. L.

    2012-01-01

    Using the quantum two-body system as a familiar model, this talk will describe how entanglement can be used to select preferred observables for interrogating a physical system. The symmetries and dynamics of the quantum two-body system provide a backdrop for testing the relativity of entanglement with respect to observable-induced tensor product structures. We believe this exploration leads us to a general statement: the physically-meaningful observable subalgebras are the ones that minimize ...

  5. SEM observation and wettability of variously processed and fractured surface of dental zirconia

    Science.gov (United States)

    Tarumi, Naoyoshi; Uo, Motohiro; Yamaga, Eiji; Watari, Fumio

    2012-12-01

    Current dental zirconia has several problems in clinical application such as chipping, fracture and detachment. To reduce these problems the surface after various treatments was analyzed by SEM observation, contact angle measurement and surface roughness measurement, and compared. The surface after mirror polishing was smooth. Porcelain layering was smooth except large formed grooves by bubbles. After sandblast and tribochemical treatments, the surfaces showed several micron-sized caving with micron to submicron-level irregularities. Sandblast and tribochemical treatments with the lager roughness had the smaller water contact angle than silicone wheel polishing. Clinically fractured surface of zirconia showed a more complex structure than manually fractured surface, which may be due to the various mode of stress to be imposed repetitively to various direction.

  6. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    Science.gov (United States)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  7. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  8. Venus Surface Power and Cooling System Design

    Science.gov (United States)

    Landis, Geoffrey A.; Mellott, Kenneth D.

    2004-01-01

    A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power

  9. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  10. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    Science.gov (United States)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  11. The French Contribution to the Voluntary Observing Ships Network of Sea Surface Salinity

    Science.gov (United States)

    Delcroix, T. C.; Alory, G.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S. E.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G. P.; Roubaud, F.

    2016-02-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  12. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    International Nuclear Information System (INIS)

    Zhu Xinying; Zhang Xizhen; Zhang Hongbo; Kong Deqing; Qu Huipeng

    2012-01-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time. (research papers)

  13. A simple observer design of the generalized Lorenz chaotic systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2010-01-01

    In this Letter, the generalized Lorenz chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Lorenz chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is given to show the effectiveness of the obtained result.

  14. An exponential observer for the generalized Rossler chaotic system

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.

  15. Global structual optimizations of surface systems with a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Feng-Chuan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Aln algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

  16. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  17. Clouds and the Earth's Radiant Energy System (CERES) - An Earth Observing System experiment

    Science.gov (United States)

    Wielicki, Bruce A.; Barkstrom, Bruce R.

    1991-01-01

    An overview is presented of the CERES experiment that is designed not only to monitor changes in the earth's radiant energy system and cloud systems but to provide these data with enough accuracy and simultaneity to examine the critical climate/cloud feedback mechanisms which may play a major role in determining future changes in the climate system. CERES will estimate not only the flow of radiation at the top of the atmosphere, but also more complete cloud properties that will permit determination of radiative fluxes within the atmosphere and at the surface. The CERES radiation budget data is also planned for utilization in a wide range of other Earth Observing System interdisciplinary science investigations, including studies of land, biological, ocean and atmospheric processes.

  18. EKOSAT/DIAMANT - The Earth Observation Programme at OHB- System

    Science.gov (United States)

    Penne, B.; Tobehn, C.; Kassebom, M.; Luebberstedt

    important cost saving approach that surely offers higher viability of the system. The Intelligent Infrared Sensor System - FOCUS - aims at the reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface. The key to this task is the simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels. Furthermore there are ecology-oriented objectives mainly related to the sophisticated data fusion of spectrometric &imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of ecological consequences of HTEs, such as aerosol and gas emission. The FOCUS Multi Sensor consists of two sensor systems: The Fore Field Sensor (FFS) will perform the wide-angle hot spot detection and mapping. For the on-board detected and selected hot spots, the Main Sensor (MS) will be targeted with a tiltable mirror and deliver detailed spatial high resolution observation. The MS is composed of an imaging system and a Fourier Spectrometer. The SAR-Lupe satellite system - under development by OHB-System - will generate high resolution SAR- (Synthetic Aperture Radar) images for military reconnaissance purposes. SAR-Lupe relies on a constellation of small satellites in low earth orbit, 1 control and 1 user ground segment.

  19. Precision Subsampling System for Mars Surface Missions

    Science.gov (United States)

    Mahaffy, P. R.; Paulsen, G.; Mellerowicz, B.; ten Kate, I. L.; Conrad, P.; Corrigan, C. M.; Li, X.

    2012-01-01

    The ability to analyze heterogeneous rock samples at fine spatial scales would represent a powerful addition to our planetary in situ analytical toolbox. This is particularly true for Mars, where the signatures of past environments and, potentially, habitability are preserved in chemical and morphological variations across sedimentary layers and among mineral pr.ases in a given rock specimen. On Earth, microbial life often associates with surfaces at the interface of chemical nutrients, and ultimately retains sub-millimeter to millimeter-scale layer confinement in fossilization. On Mars, and possibly other bodies, trace chemical markers (elemental, organic/molecular, isotopic, chiral, etc.) and fine-scale morphological markers (e.g., micro-fossils) may he too subtle, degraded, or ambiguous to be detected, using miniaturized instrumentation, without some concentration or isolation. This is because (i) instrument sensitivity may not be high enough to detect trace markers in bulk averages; and (ii) instrument slectiviry may not be sufficient to distinguish such markers from interfering/counteracting signals from the bulk. Moreover from a fundamental chemostratigraphic perspective there would be a great benefit to assessing specific chemical and stable isotopic gradients, over millimeter-to-centimeter scales and beyond, with higher precision than currently possible in situ. We have developed a precision subsampling system (PSS) that addresses this need while remaining relatively flexible to a variety of instruments that may take advantage of the capability on future missions. The PSS is relevant to a number of possible lander/rover missions, especially Mars Sample Return. Our specific PSS prototype is undergoing testing under Mars ambient conditions, on a variety of natural analog rocks and rock drill cores, using a set of complementary flight-compatible measurement techniques. The system is available for testing with other contact instruments that may benefit from

  20. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  1. Lunar Surface Systems Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  2. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  3. Geometric Description of Fibre Bundle Surface for Birkhoff System

    International Nuclear Information System (INIS)

    Li-Mei, Cao; Hua-Fei, Sun; Zhen-Ning, Zhang

    2009-01-01

    A fibre bundle surface for the Birkhoff system is constructed. The metric and the Riemannian connection of the surface are defined and the representation of the Gaussian curvature of this surface is presented. Finally, three examples for the Birkhoff system are given to illustrate our results. (general)

  4. Dynamic Observers for Fault Diagnosis of Timed Systems

    OpenAIRE

    Cassez, Franck

    2010-01-01

    In this paper we extend the work on \\emph{dynamic ob\\-servers} for fault diagnosis to timed automata. We study sensor minimization problems with static observers and then address the problem of computing the most permissive dynamic observer for a system given by a timed automaton.

  5. Observation of a distinct surface molecular orientation in films of a high mobility conjugated polymer.

    Science.gov (United States)

    Schuettfort, Torben; Thomsen, Lars; McNeill, Christopher R

    2013-01-23

    The molecular orientation and microstructure of films of the high-mobility semiconducting polymer poly(N,N-bis-2-octyldodecylnaphthalene-1,4,5,8-bis-dicarboximide-2,6-diyl-alt-5,5-2,2-bithiophene) (P(NDI2OD-T2)) are probed using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. In particular a novel approach is used whereby the bulk molecular orientation and surface molecular orientation are simultaneously measured on the same sample using NEXAFS spectroscopy in an angle-resolved transmission experiment. Furthermore, the acquisition of bulk-sensitive NEXAFS data enables a direct comparison of the information provided by GIWAXS and NEXAFS. By comparison of the bulk-sensitive and surface-sensitive NEXAFS data, a distinctly different molecular orientation is observed at the surface of the film compared to the bulk. While a more "face-on" orientation of the conjugated backbone is observed in the bulk of the film, consistent with the lamella orientation observed by GIWAXS, a more "edge-on" orientation is observed at the surface of the film with surface-sensitive NEXAFS spectroscopy. This distinct edge-on surface orientation explains the high in-plane mobility that is achieved in top-gate P(NDI2OD-T2) field-effect transistors (FETs), while the bulk face-on texture explains the high out-of-plane mobilities that are observed in time-of-flight and diode measurements. These results also stress that GIWAXS lacks the surface sensitivity required to probe the microstructure of the accumulation layer that supports charge transport in organic FETs and hence may not necessarily be appropriate for correlating film microstructure and FET charge transport.

  6. Failure modes observed on worn surfaces of W-C-Co sputtered coatings

    International Nuclear Information System (INIS)

    Ramalho, A.; Cavaleiro, A.; Miranda, A.S.; Vieira, M.T.

    1993-01-01

    During scratch testing, the indenter gives rise to a distribution of stresses similar to that observed in tribocontacts. In this work, r.f.-sputtered W-C-Co coatings deposited from sintered WC + Co (6, 10 and 15 wt.% Co) at various substrate biases were scratched and tested tribologically and the morphology of the damaged surfaces was analysed. The cobalt content of the coatings is the main factor determining their tribological characteristics. The failure modes observed on the worn pin-on-disc tested surfaces are explained and compared with those obtained by scratch testing. In spite of it not being possible to establish quantitative results for the wear resistance of W-C-Co coatings from scratch testing, an estimation can be performed based on the observation of the failure modes in the scratch track. Thus scratch testing can be used to predict the tribological behaviour of coated surfaces. This possibility can reduce the number and cost of tribological tests. (orig.)

  7. Observation of surface superconductivity and paramagnetic Meissner effect in a spherical single crystal of Nb

    International Nuclear Information System (INIS)

    Das, Pradip; Tomy, C.V.; Takeya, H.; Ramakrishnan, S.; Grover, A.K.

    2008-01-01

    We report the observation of surface superconductivity as well as paramagnetic Meissner effect (PME), along with peak effect phenomena (PE) in ac and dc magnetization measurements in a high purity spherical single crystal of niobium. We study how the surface superconductivity and the PME evolve over the field (H) and the temperature (T) phase-space. We observe from our data that the magnitude of the PME progressively weakens as the temperature is decreased or magnetic field is increased. A vortex phase diagram is constructed by marking the onset positions of the PE (H p on ), the upper critical field (H c2 ) and the surface critical field (H c3 ). Unlike a previous report which shows the existence of a multi-critical point in the phase diagram of a Nb crystal, where H p , H c2 and H c3 lines meet, we do not observe a multi-critical point in our weak pinning crystal. (author)

  8. Water Surface Reconstruction in Airborne Laser Bathymetry from Redundant Bed Observations

    Science.gov (United States)

    Mandlburger, G.; Pfeifer, N.; Soergel, U.

    2017-09-01

    In airborne laser bathymetry knowledge of exact water level heights is a precondition for applying run-time and refraction correction of the raw laser beam travel path in the medium water. However, due to specular reflection especially at very smooth water surfaces often no echoes from the water surface itself are recorded (drop outs). In this paper, we first discuss the feasibility of reconstructing the water surface from redundant observations of the water bottom in theory. Furthermore, we provide a first practical approach for solving this problem, suitable for static and locally planar water surfaces. It minimizes the bottom surface deviations of point clouds from individual flight strips after refraction correction. Both theoretical estimations and practical results confirm the potential of the presented method to reconstruct water level heights in dm precision. Achieving good results requires enough morphological details in the scene and that the water bottom topography is captured from different directions.

  9. WATER SURFACE RECONSTRUCTION IN AIRBORNE LASER BATHYMETRY FROM REDUNDANT BED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available In airborne laser bathymetry knowledge of exact water level heights is a precondition for applying run-time and refraction correction of the raw laser beam travel path in the medium water. However, due to specular reflection especially at very smooth water surfaces often no echoes from the water surface itself are recorded (drop outs. In this paper, we first discuss the feasibility of reconstructing the water surface from redundant observations of the water bottom in theory. Furthermore, we provide a first practical approach for solving this problem, suitable for static and locally planar water surfaces. It minimizes the bottom surface deviations of point clouds from individual flight strips after refraction correction. Both theoretical estimations and practical results confirm the potential of the presented method to reconstruct water level heights in dm precision. Achieving good results requires enough morphological details in the scene and that the water bottom topography is captured from different directions.

  10. Integrated Arctic Observation System Development Under Horizon 2020

    Science.gov (United States)

    Sandven, S.

    2016-12-01

    The overall objective of INTAROS is to develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing observing systems and contribute with innovative solutions to fill some of the critical gaps in the in situ observing network. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fishing), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies.

  11. Robust observability for regular linear systems under nonlinear perturbation

    Directory of Open Access Journals (Sweden)

    Weisheng Jiang

    2015-08-01

    Full Text Available In this article, we consider the admissibility and exact observability of a class of semilinear systems obtained by nonlinear perturbation for regular linear systems. We obtain the well-posedness of the semilinear system and the admissibility of the observation operator for the nonlinear semigroup, the solution semigroup of the semilinear system. Further, we obtain the robustness of the exact observability with respect to nonlinear perturbations when the Lipschitz constant is small enough. Finally, we give two examples to illustrate the obtained results.

  12. Observation of surface-guided waves in holey hypersonic phononic crystal

    Science.gov (United States)

    Benchabane, Sarah; Gaiffe, Olivier; Ulliac, Gwenn; Salut, Roland; Achaoui, Younes; Laude, Vincent

    2011-04-01

    We observe experimentally the propagation of surface-guided waves in a hypersonic phononic crystal, both in the radiative and nonradiative regions of the spectrum. Combining electrical measurements in reflection and transmission as well as optical maps of the surface displacement, a band gap extending from 0.6 to 0.95 GHz is identified in a square lattice array of 1 μm radius air holes milled in lithium niobate. The optical measurements reveal the transmission of surface-guided waves above the band gap, well inside the sound cone.

  13. Detecting tangential dislocations on planar faults from traction free surface observations

    International Nuclear Information System (INIS)

    Ionescu, Ioan R; Volkov, Darko

    2009-01-01

    We propose in this paper robust reconstruction methods for tangential dislocations on planar faults. We assume that only surface observations are available, and that a traction free condition applies at that surface. This study is an extension to the full three dimensions of Ionescu and Volkov (2006 Inverse Problems 22 2103). We also explore in this present paper the possibility of detecting slow slip events (such as silent earthquakes, or earthquake nucleation phases) from GPS observations. Our study uses extensively an asymptotic estimate for the observed surface displacement. This estimate is first used to derive what we call the moments reconstruction method. Then it is also used for finding necessary conditions for a surface displacement field to have been caused by a slip on a fault. These conditions lead to the introduction of two parameters: the activation factor and the confidence index. They can be computed from the surface observations in a robust fashion. They indicate whether a measured displacement field is due to an active fault. We also infer a second, combined, reconstruction technique blending least square minimization and the moments method. We carefully assess how our reconstruction method is affected by the sensitivity of the observation apparatus and the stepsize for the grid of surface observation points. The maximum permissible stepsize for such a grid is computed for different values of fault depth and orientation. Finally we present numerical examples of reconstruction of faults. We demonstrate that our combined method is sharp, robust and computationally inexpensive. We also note that this method performs satisfactorily for shallow faults, despite the fact that our asymptotic formula deteriorates in that case

  14. Constraining the physical properties of compositionally distinctive surfaces on Mars from overlapping THEMIS observations

    Science.gov (United States)

    Ahern, A.; Rogers, D.

    2017-12-01

    Better constraints on the physical properties (e.g. grain size, rock abundance, cohesion, porosity and amount of induration) of Martian surface materials can lead to greater understanding of outcrop origin (e.g. via sedimentary, effusive volcanic, pyroclastic processes). Many outcrop surfaces on Mars likely contain near-surface (thermal conductivity of the outcrop materials just below. Fortunately, vertical heterogeneity within near-surface materials can result in unique, and possibly predictable, diurnal and seasonal temperature patterns. The KRC thermal model has been utilized in a number of previous studies to predict thermal inertia of surface materials on Mars. Here we use KRC to model surface temperatures from overlapping Mars Odyssey THEMIS surface temperature observations that span multiple seasons and local times, in order to constrain both the nature of vertical heterogeneity and the underlying outcrop thermal inertia for various spectrally distinctive outcrops on Mars. We utilize spectral observations from TES and CRISM to constrain the particle size of the uppermost surface. For this presentation, we will focus specifically on chloride-bearing units in Terra Sirenum and Meridiani Planum, as well as mafic and feldspathic bedrock locations with distinct spectral properties, yet uncertain origins, in Noachis Terra and Nili Fossae. We find that many of these surfaces exhibit variations in apparent thermal inertia with season and local time that are consistent with low thermal inertia materials overlying higher thermal inertia substrates. Work is ongoing to compare surface temperature measurements with modeled two-layer scenarios in order to constrain the top layer thickness and bottom layer thermal inertia. The information will be used to better interpret the origins of these distinctive outcrops.

  15. How to most effectively expand the global surface ozone observing network

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close

  16. How to most effectively expand the global surface ozone observing network

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2016-02-01

    Full Text Available Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere–biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean. Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12–17 % show significant gaps. Antarctica is surprisingly well observed (78 %. Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics are significantly under-observed. The current network is unlikely to see the impact of the El Niño–Southern Oscillation (ENSO but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new

  17. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  18. Comparison of ScaRaB, GOES 8, Aircraft, and Surface Observations of the Absorption of Solar Radiation by Clouds

    Science.gov (United States)

    Pope, Shelly K.; Valero, Francisco P. J.; Collins, William D.; Minnis, Patrick

    2002-01-01

    Data obtained by the Scanner for Radiation Budget (ScaRaB) instrument on the Meteor 3 satellite have been analyzed and compared to satellite (GOES 8), aircraft (Radiation Measurement System, RAMS), and surface (Baseline Solar Radiation Network (BSRN), Solar and Infrared Observations System (SIROS), and RAMS) measurements of irradiance obtained during the Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE). It is found that the ScaRaB data covering the period from March 1994 to February 1995 (the instrument's operational lifetime) indicate excess absorption of solar radiation by the cloudy atmosphere in agreement with previous aircraft, surface, and GOES 8 results. The full ScaRaB data set combined with BSRN and SIROS surface observations gives an average all-sky absorptance of 0.28. The GOES 8 data set combined with RAMS surface observations gives an average all-sky absorptance of 0.26. The aircraft data set (RAMS) gives a mean all-sky absorptance of 0.24 (for the column between 0.5 and 13 km).

  19. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  20. Oceanographic and surface meteorological data collected from station frp2 by Carolinas Coastal Ocean Observing and Prediction System (Caro-COOPS) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118736)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118736 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  1. Oceanographic and surface meteorological data collected from station sun2 by Carolinas Coastal Ocean Observing and Prediction System (Caro-COOPS) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118741 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  2. Characterization of Surface Heterogeneity among Asteroid Taxonomic Classes according to Sloan Digital Sky Survey Observations

    Science.gov (United States)

    Pinkham, Sunny; Ziffer, Julie; Nelson, Tyler

    2016-10-01

    This research characterizes the extent of surface heterogeneity among asteroid classes by the extent of Sloan Digital Sky Survey (SDSS) color variance within multiple observations of the same asteroid. The SDSS MOC4 database includes data from 220,101 observations of 104,449 unique objects. The amount of multiple observations of one target makes it ideal for statistically analyzing the surface inhomogeneity of asteroid surfaces. Information from the SDSS MOC4 database (below an error threshold determined from standard error propagation techniques and the interquartile range) is combined with information from the classification in Carvano et al. (2010) to analyze asteroid surface heterogeneity based on taxonomic class. Individual observations are grouped by asteroid, and asteroids are grouped by class. The standard deviation of each normalized SDSS color (i.e. u-r, g-r, r-i, r-z) for each asteroid with multiple observations is calculated. The mean of the standard deviations is then computed for a given class. Comparison of the size of the average standard deviation to the size of the error determines the extent of true variance within a normalized color in a class. The effect of phase angles on SDSS data, as discussed in Carvano et al. (2015), are considered. Additionally, implications for space weathering and evolutionary relationships between taxonomic classes are explored.

  3. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  4. Plasma surface interactions in Q-enhanced mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    Two approaches to enhancement of the Q (energy gain) factor of mirror systems are under study at Livermore. These include the Tandem Mirror and the Field Reversed Mirror. Both of these new ideas preserve features of conventional mirror systems as far as plasma-wall interactions are concerned. Specifically in both approaches field lines exit from the ends of the system and impinge on walls located at a distance from the confinement chamber. It is possible to predict some aspects of the plasma/surface interactions of TM and FRM systems from experience obtained in the Livermore 2XIIB experiment. In particular, as observed in 2XIIB, effective isolation of the plasma from thermal contact with the ends owing to the development of sheath-like regions is to be expected. Studies presently underway directed toward still further enhancing the decoupling of the plasma from the effects of plasma surface interactions at the walls will be discussed, with particular reference to the problem of minimizing the effects of refluxing secondary electrons produced by plasma impact on the end walls

  5. Evaluation of the Earth Systems Research Laboratory's global Observing System Simulation Experiment system

    Directory of Open Access Journals (Sweden)

    Nikki C. Privé

    2013-03-01

    Full Text Available An Observing System Simulation Experiment (OSSE system has been implemented at the National Oceanographic and Atmospheric Administration Earth Systems Research Laboratory in the US as part of an international Joint OSSE effort. The setup of the OSSE consists of a Nature Run from a 13-month free run of the European Center for Medium-Range Weather Forecasts operational model, synthetic observations developed at the National Centers for Environmental Prediction (NCEP and the National Aeronautics and Space Administration Global Modelling and Assimilation Office, and an operational version of the NCEP Gridpoint Statistical Interpolation data assimilation and Global Forecast System numerical weather prediction model. Synthetic observations included both conventional observations and the following radiance observations: AIRS, AMSU-A, AMSU-B, HIRS2, HIRS3, MSU, GOES radiance and OSBUV. Calibration was performed by modifying the error added to the conventional synthetic observations to achieve a match between data denial impacts on the analysis state in the OSSE system and in the real data system. Following calibration, the performance of the OSSE system was evaluated in terms of forecast skill scores and impact of observations on forecast fields.

  6. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations

    Science.gov (United States)

    Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu

    2017-06-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with

  7. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  8. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei REN

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models using different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  9. Observations of Near-Surface Heat-Flux and Temperature Profiles Through the Early Evening Transition over Contrasting Surfaces

    Science.gov (United States)

    Jensen, Derek D.; Nadeau, Daniel F.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    Near-surface turbulence data from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program are used to study countergradient heat fluxes through the early evening transition. Two sites, subjected to similar large-scale forcing, but with vastly different surface and sub-surface characteristics, are considered. The Playa site is situated at the interior of a large dry lakebed desert with high sub-surface soil moisture, shallow water table, and devoid of vegetation. The Sagebrush site is located in a desert steppe region with sparse vegetation and little soil moisture. Countergradient sensible heat fluxes are observed during the transition at both sites. The transition process is both site and height dependent. At the Sagebrush site, the countergradient flux at 5 m and below occurs when the sign change of the sensible heat flux precedes the local temperature gradient sign change. For 10 m and above, the countergradient flux occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. At the Playa site, the countergradient flux at all tower levels occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. The phenomenon is explained in terms of the mean temperature and heat-flux evolution. The temperature gradient sign reversal is a top-down process while the flux reversal occurs nearly simultaneously at all heights. The differing countergradient behaviour is primarily due to the different subsurface thermal characteristics at the two sites. The combined high volumetric heat capacity and high thermal conductivity at the Playa site lead to small vertical temperature gradients that affect the relative magnitude of terms in the heat-flux tendency equation. A critical ratio of the gradient production to buoyant production of sensible heat flux is suggested so as to predict the countergradient behaviour.

  10. Land surface skin temperature climatology: benefitting from the strengths of satellite observations

    International Nuclear Information System (INIS)

    Jin Menglin; Dickinson, Robert E

    2010-01-01

    Surface skin temperature observations (T skin ), as obtained by satellite remote sensing, provide useful climatological information of high spatial resolution and global coverage that enhances the traditional ground observations of surface air temperature (T air ) and so, reveal new information about land surface characteristics. This letter analyzes nine years of moderate-resolution imaging spectroradiometer (MODIS) skin temperature observations to present monthly skin temperature diurnal, seasonal, and inter-annual variations at a 0.05 deg. latitude/longitude grid over the global land surface and combines these measurements with other MODIS-based variables in an effort to understand the physical mechanisms responsible for T skin variations. In particular, skin temperature variations are found to be closely related to vegetation cover, clouds, and water vapor, but to differ from 2 m surface T air in terms of both physical meaning and magnitude. Therefore, the two temperatures (T skin and T air ) are complementary in their contribution of valuable information to the study of climate change.

  11. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  12. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    Science.gov (United States)

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge.

  13. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Zhongbo

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park

  14. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  15. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...

  16. Experimental observations of surface electrostatic wave on KT-5B tokamak

    International Nuclear Information System (INIS)

    Zhu Shiyao; Han Shensheng

    1991-01-01

    Shear Alfven waves have been successfully excited in KT-5B small tokamak by means of the one turn longitudinal loop antenna located in the shadow area. The measured antenna loadings show their rich structure, and the loadings are also found to be sensitive to the plasma current. Preliminary evidence of surface electrostatic wave was observed

  17. In-situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation

    DEFF Research Database (Denmark)

    Hofmann, S; Sharma, R; Du, G

    2007-01-01

    We present atomic-scale, video-rate environmental transmission electron microscopy and in situ time-resolved X-ray photoelectron spectroscopy of surface-bound catalytic chemical vapor deposition of single-walled carbon nanotubes and nanofibers. We observe that transition metal catalyst...

  18. Scavenging quantum information: Multiple observations of quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapcan, P. [Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Calsamiglia, J.; Munoz-Tapia, R. [Fisica Teorica: Informacio i Fenomens Quantics, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Bagan, E. [Fisica Teorica: Informacio i Fenomens Quantics, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021 (United States); Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Buzek, V. [Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanicka 68a, CZ-602 00 Brno (Czech Republic)

    2011-09-15

    Given an unknown state of a qudit that has already been measured optimally, can one still extract any information about the original unknown state? Clearly, after a maximally informative measurement, the state of the system collapses into a postmeasurement state from which the same observer cannot obtain further information about the original state of the system. However, the system still encodes a significant amount of information about the original preparation for a second observer who is unaware of the actions of the first one. We study how a series of independent observers can obtain, or can scavenge, information about the unknown state of a system (quantified by the fidelity) when they sequentially measure it. We give closed-form expressions for the estimation fidelity when one or several qudits are available to carry information about the single-qudit state, and we study the classical limit when an arbitrarily large number of observers can obtain (nearly) complete information on the system. In addition to the case where all observers perform most informative measurements, we study the scenario where a finite number of observers estimates the state with equal fidelity, regardless of their position in the measurement sequence and the scenario where all observers use identical measurement apparatuses (up to a mutually unknown orientation) chosen so that a particular observer's estimation fidelity is maximized.

  19. Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations

    Science.gov (United States)

    Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.

    2016-12-01

    Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.

  20. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools

    Science.gov (United States)

    Birk, R. J.; Frederick, M.

    2006-05-01

    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  1. TanDEM-X the Earth surface observation project from space level - basis and mission status

    Directory of Open Access Journals (Sweden)

    Jerzy Wiśniowski

    2015-03-01

    Full Text Available TanDEM-X is DLR (Deutsches Zentrum für Luft- und Raumfahrt the Earth surface observation project using high-resolution SAR interferometry. It opens a new era in space borne radar remote sensing. The system is based on two satellites: TerraSAR-X (TSX and TanDEM-X (TDX flying on the very close, strictly controlled orbits. This paper gives an overview of the radar technology and overview of the TanDEM-X mission concept which is based on several innovative technologies. The primary objective of the mission is to deliver a global digital elevation model (DEM with an unprecedented accuracy, which is equal to or surpass the HRTI-3 specifications (12 m posting, relative height accuracy ±2 m for slope < 20% and ±4 m for slope > 20% [8]. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications.[b]Keywords[/b]: remote sensing, Bistatic SAR, digital elevation model (DEM, Helix formation, SAR interferomery, HRTI-3, synchronization

  2. Designing the Climate Observing System of the Future

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Wielicki, Bruce A.; Ramaswamy, V.; Abbott, Mark; Ackerman, Thomas P.; Atlas, Robert; Brasseur, Guy; Bruhwiler, Lori; Busalacchi, Antonio J.; Butler, James H.; Clack, Christopher T. M.; Cooke, Roger; Cucurull, Lidia; Davis, Sean M.; English, Jason M.; Fahey, David W.; Fine, Steven S.; Lazo, Jeffrey K.; Liang, Shunlin; Loeb, Norman G.; Rignot, Eric; Soden, Brian; Stanitski, Diane; Stephens, Graeme; Tapley, Byron D.; Thompson, Anne M.; Trenberth, Kevin E.; Wuebbles, Donald

    2018-01-01

    Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs.

  3. Venus surface peeking through the atmosphere - gaining a global perspective on the surface composition through near infrared observations

    Science.gov (United States)

    Helbert, J.; Dyar, M. D.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Mueller, N. T.; Smrekar, S. E.

    2017-12-01

    Venus is the most Earth-like of the terrestrial planets, though very little is known about its surface composition. Thanks to recent advances in laboratory spectroscopy and spectral analysis techniques, this is about to change. Although the atmosphere prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, five transparent windows between 0.86 µm and 1.18 µm occur in the atmosphere's CO2 spectrum. New high temperature laboratory spectra from the Planetary Spectroscopy Laboratory at DLR show that spectra in these windows are highly diagnostic for surface mineralogy [1]. The Venus Emissivity Mapper (VEM) [2] builds on these recent advances. It is proposed for NASA's Venus Origins Explorer where a radar will provided the needed high-resolution altimetry and ESA's EnVision would provide stereo topography instead. VEM is the first flight instrument specially designed to focus solely on mapping Venus' surface using the windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of composition as well as redox state of the surface, enabling a comprehensive picture of surface-atmosphere interaction on Venus. VEM will return a complex data set containing surface, atmospheric, cloud, and scattering information. Total planned data volume for a typical mission scenario exceeds 1TB. Classical analysis techniques have been successfully used for VIRTIS on Venus Express [3-5] and could be employed with the VEM data. However, application of machine learning approaches to this rich dataset is vastly more efficient, as has already been confirmed with laboratory data. Binary classifiers [6] demonstrate that at current best estimate errors, basalt spectra are confidently discriminated from basaltic andesites, andesites, and rhyolite/granite. Applying the approach of self-organizing maps to the increasingly large set of laboratory measurements allows searching for additional mineralogical indicators

  4. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    Klis, M. van der.

    1983-01-01

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  5. Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model

    Directory of Open Access Journals (Sweden)

    Ally M. Toure

    2018-02-01

    Full Text Available The NASA Catchment land surface model (CLSM is the land model component used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA. Here, the CLSM versions of MERRA and MERRA-Land are evaluated using snow cover fraction (SCF observations from the Moderate Resolution Imaging Spectroradiometer (MODIS. Moreover, a computationally-efficient empirical scheme is designed to improve CLSM estimates of SCF, snow depth, and snow water equivalent (SWE through the assimilation of MODIS SCF observations. Results show that data assimilation (DA improved SCF estimates compared to the open-loop model without assimilation (OL, especially in areas with ephemeral snow cover and mountainous regions. A comparison of the SCF estimates from DA against snow cover estimates from the NOAA Interactive Multisensor Snow and Ice Mapping System showed an improvement in the probability of detection of up to 28% and a reduction in false alarms by up to 6% (relative to OL. A comparison of the model snow depth estimates against Canadian Meteorological Centre analyses showed that DA successfully improved the model seasonal bias from −0.017 m for OL to −0.007 m for DA, although there was no significant change in root-mean-square differences (RMSD (0.095 m for OL, 0.093 m for DA. The time-average of the spatial correlation coefficient also improved from 0.61 for OL to 0.63 for DA. A comparison against in situ SWE measurements also showed improvements from assimilation. The correlation increased from 0.44 for OL to 0.49 for DA, the bias improved from −0.111 m for OL to −0.100 m for DA, and the RMSD decreased from 0.186 m for OL to 0.180 m for DA.

  6. West Coast Observing System (WCOS) Temperature Data, 2004-2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  7. Control landscapes for observable preparation with open quantum systems

    International Nuclear Information System (INIS)

    Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin

    2008-01-01

    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape

  8. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    Science.gov (United States)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  9. The Cryospheres of Mars and Ceres - What thermal observations tell us about near surface ice.

    Science.gov (United States)

    Titus, T. N.; Li, J. Y.; Moullet, A.

    2017-12-01

    Mars and Ceres both have near surface water ice that forms a cryosphere at polar latitudes. Gamma ray and neutron observations have provided important constraints on the location and depths of the cryosphere for both planetary bodies, but these observations have very low spatial resolution [e.g. 1, 2]. Thermal observations, which are also sensitive to the presence of a near-surface cryosphere as demonstrated by several studies of Mars [e.g. 3, 4], provide additional constraints. Thermal observations can identify depth to the cryosphere (as long as it is within a few thermal skin depths) and water-ice stability. This presentation will compare both the similarities and the differences of these two planetary cryospheres, as well as the thermal observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) [5], the Atacama Large Millimeter/submillimeter Array (ALMA) [6], and publically available Dawn Visible Infrared spectrometer (VIR) [7]. The KRC thermal model [8] will use these observed surface temperatures to constrain depths to near surface ice (i.e. the cyropshere). References: [1] Feldman et al., 2002, Science, 297(5578), 75-78. [2] Prettyman et al., 2017, Science, 355(6320), 55-59. [3] Titus et al., 2003, Science, 299(5609), 1048-1051 [4] Mellon et al., 2008, JGR, 113(E12), CiteID E00A25. [5] Christensen et al., 1998, Science, 279(5357), 1692. [6] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [7] de Santis et al., 2011, Space Science Reviews, 163(1-4), 329-369. [8] Kieffer, 2013, JGR, 118, Issue 3, pp. 451-470.

  10. Preliminary SEM Observations on the Surface of Elastomeric Impression Materials after Immersion or Ozone Disinfection

    Science.gov (United States)

    Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos

    2016-01-01

    Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993

  11. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  12. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 μL) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC system

  13. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  14. Surface nucleation in complex rheological systems

    Science.gov (United States)

    Herfurth, J.; Ulrich, J.

    2017-07-01

    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  15. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  16. Observation of surface-plasmon-polariton transmission through a silver film sputtered on a photorefractive substrate

    International Nuclear Information System (INIS)

    Chen Jing; Li Yudong; Lu Wenqiang; Qi Jiwei; Cui Guoxin; Liu Hongbing; Xu Jingjun; Sun Qian

    2007-01-01

    The diffraction of holographic gratings in a photorefractive iron-doped lithium niobate (LiNbO 3 :Fe) crystal, on which surface a silver film was sputtered, was experimentally investigated. Besides the Bragg diffraction, an additional diffraction was observed. The experimental results present evidence of surface-plasmon-polariton (SPP) transmission through the silver film on the photorefractive substrate. The excitation of SPPs is speculated to be due to the corrugations of the silver film, which are caused by the photorefractive and the converse piezoelectric effect in the LiNbO3:Fe sample

  17. Disordered electrical potential observed on the surface of SiO2 by electric field microscopy

    International Nuclear Information System (INIS)

    GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P

    2010-01-01

    The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.

  18. Study of luminous phenomena observed on contaminated metallic surfaces submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The RF field emission from a sample subjected to high RF fields in a copper cavity has been investigated. The study is focused on the luminous emissions occurring on the RF surface simultaneously with the electron emission. The optical apparatus attached to the cavity permits to observe the evolution of the emitters and the direct effects of the surface conditioning. Also, the parameters of the emitted radiation (intensity, glowing duration, spectral distribution) may provide additional informations on the field emission phenomena. Some results concerning samples intentionally contaminated with particles (metallic or dielectric) are presented. (K.A.)

  19. The use of radar and visual observations to characterize the surface structure of the planet Mercury

    Science.gov (United States)

    Clark, P. E.; Kobrick, M.; Jurgens, R. F.

    1985-01-01

    An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.

  20. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  1. Massive Modularity of Space and Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will conduct a systems level investigation of a modular design and operations approach for future NASA exploration systems. Particular emphasis will be...

  2. Observation of contact area of bubbles with heating surface in pool boiling of water under microgravity

    International Nuclear Information System (INIS)

    Suzuki, K.; Kawamura, H.; Suzuki, M.; Takahashi, S.; Abe, Y.

    2003-01-01

    Burnout heat flux was measured in subcooled pool boiling of water under attached boiling bubbles on heating surface with bubble holding plate in ground experiment. A thin stainless flat plate was employed for heating surface. The experimental setup and the heating procedures were same as used in reduced gravity experiment performed by a parabolic flight of jet aircraft. Same burnout heat flux as in the reduced gravity was obtained by adjusting the clearance between the bubble holder and the heating surface. They were 100 ∝ 400 percent higher than the widely accepted existing theories. As extending heating time longer than the reduced gravity duration until burnout occurred, burnout heat flux decreased gradually and became a constant value calculated from the existing theories. In a result of observing contact area of boiling bubbles with transparent heating surface, the contact area was smaller in quick heating time than that in long time heating at same heat flux. The experimental results suggest in microgravity that liquid layer is remained between rapidly expanded bubbles and heating surface. In microgravity experiment by a drop shaft facility, contact area of bubbles with heating surface increased considerably at starting of microgravity. (orig.)

  3. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  4. Modelling evapotranspiration using the surface energy balance systems (sebs) and landsat tm data (rabat region, morocco)

    NARCIS (Netherlands)

    Kwast, J. van der; Jong, S.M. de

    2004-01-01

    Modelling and understanding the surface energy balance is important for assessing the re-distribution of moisture and heat in soil and atmosphere. The Surface Energy Balance System (SEBS) estimates turbulent heat fluxes using satellite earth observation data in the visible, near infrared, and

  5. The GO Cygni system: photoelectric observations and light curves analysis

    International Nuclear Information System (INIS)

    Rovithis, P.; Rovithis-Livaniou, H.; Niarchos, P.G.

    1990-01-01

    Photoelectric observations, in B and V, of the system GO Cygni obtained during 1985 at the Kryonerion Astronomical Station of the National Observatory of Greece are given. The corresponding light curves (typical β Lyrae) are analysed using Frequency Domain techniques. New photoelectric and absolute elements for the system are given, and its period was found to continue its increasing

  6. Maintenance Effectiveness and Target Observation System and its ERP Interface

    International Nuclear Information System (INIS)

    Soon, Han Seong; Kim, Gi Yong; Seo, Mi Ro; Jeong, Hun Jong; Choi, Kwang Hee; Hong, Sung Yull

    2005-01-01

    Maintenance effectiveness and target observation system (MENTOS) is a maintenance rule (MR) implementation software for plant personnel to collect, edit, store, and analyze all information required for the MR implementation. Potential users and the developers of MENTOS have decided that MENTOS is implemented in the ERP system of KHNP. This article describes MENTOS briefly and introduces the ERP interface of MENTOS

  7. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

    Science.gov (United States)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.

    1996-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  8. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  9. Observations on the near-surface behaviour of sardinella schools in ...

    African Journals Online (AJOL)

    The schooling dynamics and swimming behaviour of sardinella Sardinella maderensis and S. aurita schooling near the surface in Angolan waters were recorded visually, using a calibrated echo integration system and a 95kHz high resolution sonar on board RV Dr Fridtjof Nansen during three cruises; July 1996, May 1997 ...

  10. Accelerating assimilation development for new observing systems using EFSO

    Science.gov (United States)

    Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun

    2018-03-01

    To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.

  11. Team Formation in Partially Observable Multi-Agent Systems

    Science.gov (United States)

    Agogino, Adrian K.; Tumer, Kagan

    2004-01-01

    Sets of multi-agent teams often need to maximize a global utility rating the performance of the entire system where a team cannot fully observe other teams agents. Such limited observability hinders team-members trying to pursue their team utilities to take actions that also help maximize the global utility. In this article, we show how team utilities can be used in partially observable systems. Furthermore, we show how team sizes can be manipulated to provide the best compromise between having easy to learn team utilities and having them aligned with the global utility, The results show that optimally sized teams in a partially observable environments outperform one team in a fully observable environment, by up to 30%.

  12. "New Space Explosion" and Earth Observing System Capabilities

    Science.gov (United States)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.

    2017-12-01

    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  13. Construction of a patient observation system using KINECTTM

    International Nuclear Information System (INIS)

    Miyaura, Kazunori; Kumazaki, Yu; Kato, Shingo; Fukushima, Chika; Saitoh, Hidetoshi

    2014-01-01

    Improvement in the positional accuracy of irradiation is expected by capturing patient motion (intra-fractional error) during irradiation. The present study reports the construction of a patient observation system using Microsoft® KINECT TM . By tracking movement, we made it possible to add a depth component to the acquired position coordinates and to display three-axis (X, Y, and Z) movement. Moreover, the developed system can be displayed in a graph which is constructed from the coordinate position at each time interval. Using the developed system, an observer can easily visualize patient movement. When the body phantom was moved a known distance in the X, Y, and Z directions, good coincidence was shown with each axis. We built a patient observation system which captures a patient's motion using KINECT TM .

  14. Internal-time observable of classical relativistic systems

    International Nuclear Information System (INIS)

    Ben-Ya'acov, Uri

    2006-01-01

    The relativistic framework with its symmetries offers a natural definition for the internal time of classical (non-quantum) physical systems as a Lorentz-invariant observable. The internal-time observable, measuring the system's aging or internal evolution, is identified with the proper time of the system derived from its centre-of-mass (CM) coordinate. For its definition as an observable it is required that the system be symmetric not only under Lorentz-Poincare transformations but also under uniform scaling, with the associated existence of a dilatation function D, and yet that D be a varying-not conserved-quantity. Two alternative definitions are discussed, and it is found that in order to maintain simultaneity of the CM time with the events that define it, it is necessary to split the dilatation function into a CM part and an internal part

  15. Regolith Advanced Surface Systems Operations Robot (RASSOR)

    Science.gov (United States)

    Mueller, Robert P.; Smith, Jonathan D.; Cox, Rachel E.; Schuler, Jason M.; Ebert, Tom; Nick, Andrew J.

    2012-01-01

    Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.

  16. CATOS (Computer Aided Training/Observing System): Automating animal observation and training.

    Science.gov (United States)

    Oh, Jinook; Fitch, W Tecumseh

    2017-02-01

    In animal behavioral biology, an automated observing/training system may be useful for several reasons: (a) continuous observation of animals for documentation of specific, irregular events, (b) long-term intensive training of animals in preparation for behavioral experiments, (c) elimination of potential cues and biases induced by humans during training and testing. Here, we describe an open-source-based system named CATOS (Computer Aided Training/Observing System) developed for such situations. There are several notable features in this system. CATOS is flexible and low cost because it is based on free open-source software libraries, common hardware parts, and open-system electronics based on Arduino. Automated video condensation is applied, leading to significantly reduced video data storage compared to the total active hours of the system. A data-viewing utility program helps a user browse recorded data quickly and more efficiently. With these features, CATOS has the potential to be applied to many different animal species in various environments such as laboratories, zoos, or even private homes. Also, an animal's free access to the device without constraint, and a gamified learning process, enhance the animal's welfare and enriches their environment. As a proof of concept, the system was built and tested with two different species. Initially, the system was tested for approximately 10 months with a domesticated cat. The cat was successfully and fully automatically trained to discriminate three different spoken words. Then, in order to test the system's adaptability to other species and hardware components, we used it to train a laboratory rat for 3 weeks.

  17. Limiter surface observation by infrared techniques, AES, and SEM in the JFT-2 tokamak

    International Nuclear Information System (INIS)

    Gomay, Y.; Fujisawa, N.; Maeno, M.

    1979-01-01

    The surface characteristics of molybdenum rail-type limiters in the JFT-2 tokamak have been studied by means of infrared techniques, AES, and SEM. The maximum temperature of the limiter surface during the discharge was 550 0 C which is low enough to neglect the evaporation. The limiter surface was found to be eroded uniformly by exposure to the plasma, probably by ion sputtering. Microarcing with arc spots of 0.5-20 μm diameters was observed on the limiter exposed only to stable discharges. Since the arc current of microarcing is estimated to be 1-40 A, the return current can be supplied with electron flow to the nearby area of arc spots. Microarcing as well as ion sputtering may play important roles in limiter material injection into the plasma. (orig.)

  18. Impacts of land cover transitions on surface temperature in China based on satellite observations

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  19. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    Science.gov (United States)

    Chapman, Christopher; Charantonis, Anastase

    2017-04-01

    A new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. No assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field, are made. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high-resolution velocity fields at a depth of 1000m. Validation reveals promising results, with a speed root mean squared error of approximately 2.8cm/s, more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees. The shortcomings of this method will be discussed, as well as recent work to extend the method to produce a fully 3D reconstruction of the interior temperature and velocity fields.

  20. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    Science.gov (United States)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  1. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    Science.gov (United States)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  2. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  3. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    systems. It consists of four different contributions. First, it presents a review of the idea and the theory behind the geometric approach for FDI. Starting from the original solution for linear systems up to the latest results for input-affine systems the theory and solutions are described....... Then the geometric approach is applied to a nonlinear ship propulsion system benchmark. The calculations and application results are presented in detail to give an illustrative example. The obtained subsystems are considered for the design of nonlinear observers in order to obtain FDI. Additionally, an adaptive...... for the observers designed for the ship propulsion system. Furthermore, it stresses the importance of the time-variant character of the linearization along a trajectory. It leads to a different stability analysis than for linearization at one operation point. Finally, the preliminary concept of (actuator) fault...

  4. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  5. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    Science.gov (United States)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  6. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2008-03-01

    Full Text Available A simulation study to understand the influence of topography on the surfaceemissivity observed by a satellite microwave radiometer is carried out. We analyze theeffects due to changes in observation angle, including the rotation of the polarization plane.A mountainous area in the Alps (Northern Italy is considered and the information on therelief extracted from a digital elevation model is exploited. The numerical simulation refersto a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E,i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impacton surface emissivity, scattering of the radiation due to the atmosphere or neighboringelevated surfaces is not considered. C and X bands, for which atmospheric effects arenegligible, and Ka band are analyzed. The results indicate that the changes in the localobservation angle tend to lower the apparent emissivity of a radiometric pixel with respectto the corresponding flat surface characteristics. The effect of the rotation of thepolarization plane enlarges (vertical polarization, or attenuates (horizontal polarizationthis decrease. By doing some simplifying assumptions for the radiometer antenna, theconclusion is that the microwave emissivity at vertical polarization is underestimated,whilst the opposite occurs for horizontal polarization, except for Ka band, for which bothunder- and overprediction may occur. A quantification of the differences with respect to aflat soil and an approximate evaluation of their impact on soil moisture retrieval areyielded.

  7. Adjusting altimetric sea surface height observations in coastal regions. Case study in the Greek Seas

    Directory of Open Access Journals (Sweden)

    Mintourakis Ioannis

    2014-09-01

    Full Text Available When processing satellite altimetry data for Mean Sea Surface (MSS modelling in coastal environments many problems arise. The degradation of the accuracy of the Sea Surface Height (SSH observations close to the coastline and the usually irregular pattern and variability of the sea surface topography are the two dominant factors which have to be addressed. In the present paper, we study the statistical behavior of the SSH observations in relation to the range from the coastline for many satellite altimetry missions and we make an effort to minimize the effects of the ocean variability. Based on the above concepts we present a process strategy for the homogenization of multi satellite altimetry data that takes advantage ofweighted SSH observations and applies high degree polynomials for the adjustment and their uniffcation at a common epoch. At each step we present the contribution of each concept to MSS modelling and then we develop a MSS, a marine geoid model and a grid of gravity Free Air Anomalies (FAA for the area under study. Finally, we evaluate the accuracy of the resulting models by comparisons to state of the art global models and other available data such as GPS/leveling points, marine GPS SSH’s and marine gravity FAA’s, in order to investigate any progress achieved by the presented strategy

  8. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    Science.gov (United States)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.

  9. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  10. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd.

    Science.gov (United States)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M Mofazzel; Zhu, Jian-Xin; Dimitri, Klauss; Xu, Su-Yang; Dhakal, Nagendra; Sankar, Raman; Belopolski, Ilya; Sanchez, Daniel S; Chang, Tay-Rong; Jeng, Horng-Tay; Miyamoto, Koji; Okuda, Taichi; Lin, Hsin; Bansil, Arun; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M Zahid; Durakiewicz, Tomasz

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of such spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.

  11. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry

    2013-01-01

    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  12. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  13. Mission operations concepts for Earth Observing System (EOS)

    Science.gov (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  14. The Virginia Institute of Marine Science Estuarine Observing System

    Science.gov (United States)

    Friedrichs, C.; Anderson, B.; Brasseur, L.; Brubaker, J.; Moore, K.; Nelson, T.; Reay, W.; Vandever, J.; Wright, D.

    2006-05-01

    The estuarine observing system centered at the Virginia Institute of Marine Science (VIMS) aims to provide real-time and archived data in the Lower Chesapeake Bay to help guide the management of natural resources, enable planning for extreme events, facilitate maritime operations, support military security, and advance science and education. The VIMS observing system consists of a growing network of buoy and platform mounted sensors providing data on water quality, currents, winds and waves. Funding has been provided by the Commonwealth of Virginia, the National Oceanic and Atmospheric Administration, the National Science Foundation, the Office of Naval Research, and the U.S. Coast Guard. This presentation will provide an overview of the VIMS estuarine observing system.

  15. A Comet Surface Sample Return System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I investigation will focus on the development of spacecraft systems required to obtain a sample from the nucleus of a comet, hermetically seal the...

  16. Combining hydraulic model, hydrogeomorphological observations and chemical analyses of surface waters to improve knowledge on karst flash floods genesis

    Directory of Open Access Journals (Sweden)

    F. Raynaud

    2015-06-01

    Full Text Available During a flood event over a karst watershed, the connections between surface and ground waters appear to be complex ones. The karst may attenuate surface floods by absorbing water or contribute to the surface flood by direct contribution of karst waters in the rivers (perennial and overflowing springs and by diffuse resurgence along the hillslopes. If it is possible to monitor each known outlet of a karst system, the diffuse contribution is yet difficult to assess. Furthermore, all these connections vary over time according to several factors such as the water content of the soil and underground, the rainfall characteristics, the runoff pathways. Therefore, the contribution of each compartment is generally difficult to assess, and flood dynamics are not fully understood. To face these misunderstandings and difficulties, we analysed surface waters during six recent flood events in the Lirou watershed (a karst tributary of the Lez, in South of France. Because of the specific chemical signature of karst waters, chemical analyses can supply information about water pathways and flood dynamics. Then, we used the dilution law to combine chemical results, flow data and field observations to assess the dynamics of the karst component of the flood. To end, we discussed the surface or karst origin of the waters responsible for the apparent runoff coefficient rise during flash karst flood.

  17. System and method for extracting a sample from a surface

    Science.gov (United States)

    Van Berkel, Gary; Covey, Thomas

    2015-06-23

    A system and method is disclosed for extracting a sample from a sample surface. A sample is provided and a sample surface receives the sample which is deposited on the sample surface. A hydrophobic material is applied to the sample surface, and one or more devices are configured to dispense a liquid on the sample, the liquid dissolving the sample to form a dissolved sample material, and the one or more devices are configured to extract the dissolved sample material from the sample surface.

  18. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  19. Sikorsky interactive graphics surface design/manufacturing system

    Science.gov (United States)

    Robbins, R.

    1975-01-01

    An interactive graphics system conceived to be used in the design, analysis, and manufacturing of aircraft components with free form surfaces was described. In addition to the basic surface definition and viewing capabilities inherent in such a system, numerous other features are present: surface editing, automated smoothing of control curves, variable milling patch boundary definitions, surface intersection definition and viewing, automatic creation of true offset surfaces, digitizer and drafting machine interfaces, and cutter path optimization. Documented costs and time savings of better than six to one are being realized with this system. The system was written in FORTRAN and GSP for use on IBM 2250 CRT's in conjunction with an IBM 370/158 computer.

  20. New Scheme for Validating Remote-Sensing Land Surface Temperature Products with Station Observations

    Directory of Open Access Journals (Sweden)

    Wenping Yu

    2017-11-01

    Full Text Available Continuous land-surface temperature (LST observations from ground-based stations are an important reference dataset for validating remote-sensing LST products. However, a lack of evaluations of the representativeness of station observations limits the reliability of validation results. In this study, a new practical validation scheme is presented for validating remote-sensing LST products that includes a key step: assessing the spatial representativeness of ground-based LST measurements. Three indicators, namely, the dominant land-cover type (DLCT, relative bias (RB, and average structure scale (ASS, are established to quantify the representative levels of station observations based on the land-cover type (LCT and LST reference maps with high spatial resolution. We validated MODIS LSTs using station observations from the Heihe River Basin (HRB in China. The spatial representative evaluation steps show that the representativeness of observations greatly differs among stations and varies with different vegetation growth and other factors. Large differences in the validation results occur when using different representative level observations, which indicates a large potential for large error during the traditional T-based validation scheme. Comparisons show that the new validation scheme greatly improves the reliability of LST product validation through high-level representative observations.

  1. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  2. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  3. Dynamic surface tracking controller design for a constrained hypersonic vehicle based on disturbance observer

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-05-01

    Full Text Available The tracking control problem of a flexible air-breathing hypersonic vehicle subjects to aerodynamic parameter uncertainty and input constraint is investigated by combining nonlinear disturbance observer and dynamic surface control. To design controller simply, a control-oriented model is firstly derived and divided into two subsystems, velocity subsystem and altitude subsystem based on the engineering backgrounds of flexible air-breathing hypersonic vehicle. In every subsystem, compounded disturbances are included to consider aerodynamic uncertainty and the effect of the flexible modes. Then, disturbance observer is not only used to handle the compounded disturbance but also to handle the input constraint, where the estimation error converges to a random small region through appropriately choosing the observer parameters. To sequel, the disturbance observer–based robust control scheme and the disturbance observer-based dynamic surface control scheme are developed for the velocity subsystem and altitude subsystem, respectively. Besides, novel filters are designed to alleviate the problem of “explosion of terms” induced by backstepping method. On the basis of Lyapunov stability theory, the presented control scheme can assure that tracking error converges to an arbitrarily small neighborhood around zero by rigorous theoretical analysis. At last, simulation result shows the effectiveness of the presented control method.

  4. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    Science.gov (United States)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  5. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  6. EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M. [European Southern Observatory, Santiago (Chile); Beauvalet, L. [National Observatory, Rio de Janeiro (Brazil); Marchis, F.; Nielsen, E. L. [Carl Sagan Center at the SETI Institute, Mountain View, CA (United States); Vachier, F., E-mail: byang@eso.org [Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris (France)

    2016-04-01

    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.

  7. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

  8. Global shortwave energy budget at the earth's surface from ERBE observations

    Science.gov (United States)

    Breon, Francois-Marie; Frouin, Robert

    1994-01-01

    A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than

  9. An Evaluation of Satellite Estimates of Solar Surface Irradiance Using Ground Observations in San Antonio, Texas, USA

    Directory of Open Access Journals (Sweden)

    Shuang Xia

    2017-12-01

    Full Text Available Estimates of solar irradiance at the earth’s surface from satellite observations are useful for planning both the deployment of distributed photovoltaic systems and their integration into electricity grids. In order to use surface solar irradiance from satellites for these purposes, validation of its accuracy against ground observations is needed. In this study, satellite estimates of surface solar irradiance from Geostationary Operational Environmental Satellite (GOES are compared with ground observations at two sites, namely the main campus of the University of Texas at San Antonio (UTSA and the Alamo Solar Farm of San Antonio (ASF. The comparisons are done mostly on an hourly timescale, under different cloud conditions classified by cloud types and cloud layers, and at different solar zenith angle intervals. It is found that satellite estimates and ground observations of surface solar irradiance are significantly correlated (p < 0.05 under all sky conditions (r: 0.80 and 0.87 on an hourly timescale and 0.94 and 0.91 on a daily timescale, respectively for the UTSA and ASF sites; on the hourly timescale, the correlations are 0.77 and 0.86 under clear-sky conditions, and 0.74 and 0.84 under cloudy conditions, respectively for the UTSA and ASF sites, and mostly >0.60 under different cloud types and layers for both sites. The correlations under cloudy-sky conditions are mostly stronger than those under clear-sky conditions at different solar zenith angles. The correlation coefficients are mostly the smallest with solar zenith angle in the range of 75–90° under all sky, clear-sky and cloudy-sky conditions. At the ASF site, the overall bias of GOES surface solar irradiance is small (+1.77 Wm−2 under all sky while relatively larger under clear-sky (−22.29 Wm−2 and cloudy-sky (+40.31 Wm−2 conditions. The overall good agreement of the satellite estimates with the ground observations underscores the usefulness of the GOES surface solar

  10. In situ surface-enhanced raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan William; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 mu L) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC

  11. Assimilation of ocean sea-surface height observations of mesoscale eddies

    Science.gov (United States)

    Weiss, Jeffrey B.; Grooms, Ian

    2017-12-01

    Mesoscale eddies are one of the dominant sources of variability in the world's oceans. With eddy-resolving global ocean models, it becomes important to assimilate observations of mesoscale eddies to correctly represent the state of the mesoscale. Here, we investigate strategies for assimilating a reduced number of sea-surface height observations by focusing on the coherent mesoscale eddies. The study is carried out in an idealized perfect-model framework using two-layer forced quasigeostrophic dynamics, which captures the dominant dynamics of ocean mesoscale eddies. We study errors in state-estimation as well as error growth in forecasts and find that as fewer observations are assimilated, assimilating at vortex locations results in reduced state estimation and forecast errors.

  12. The study of discharge cleaning in the JFT-2 tokamak with surface observation by AES

    International Nuclear Information System (INIS)

    Gomay, Yoshio; Tazima, Teruhiko; Fujisawa, Noboru; Suzuki, Norio; Konoshima, Shigeru

    1976-07-01

    Noticeable correlations were observed between the changes of discharge characteristics, wall conditions and typical mass peaks with discharge cleaning in the JFT-2 tokamak. Atomic composition of the vacuum wall surface observed by AES becomes constant with continuing discharge cleaning in the level except hydrogen and helium: 30-50% C, 20-30% Mo, 15-30% stainless steel elements and 10-15% O. The stable reproducible plasma with Z sub(eff)=4.5 was obtained in this wall condition. The limiter and vacuum wall materials (Mo and 304 stainless steel, respectively), carbon and oxygen were observed depositing on the wall in the thickness of about 300 A at the minimum inner radius of the vacuum chamber and 40 A nearly at the maximum after 2900 cleaning pulses. The mechanism determining the wall condition is also discussed. (auth.)

  13. The bursts of high energy events observed by the telescope array surface detector

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-08-01

    The Telescope Array (TA) experiment is designed to detect air showers induced by ultra high energy cosmic rays. The TA ground Surface particle Detector (TASD) observed several short-time bursts of air shower like events. These bursts are not likely due to chance coincidence between single shower events. The expectation of chance coincidence is less than 10-4 for five-year's observation. We checked the correlation between these bursts of events and lightning data, and found evidence for correlations in timing and position. Some features of the burst events are similar to those of a normal cosmic ray air shower, and some are not. On this paper, we report the observed bursts of air shower like events and their correlation with lightning.

  14. Multi sensor validation and error characteristics of Arctic satellite sea surface temperature observations

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna; Tonbo, Rasmus

    2012-01-01

    in the satellite products related to observation techniques, data processing and cloud masking. Temporal and spatial error scales are derived for all satellite products using the satellite versus in situ match-up dataset. Temporal error scales are typically between 1 and 2 days and the characteristic spatial error......Six of the operational global satellite sea surface temperature products from infrared and microwave sensors are validated in a consistent way in waters north of 60° N. The 15-month validation with drifting buoy in situ observations shows that data from the Advanced Along-Tracking Scanning...... Radiometer (AATSR) on-board the ENVISAT satellite and NAVOCEANO data from the Advanced Very High Resolution Radiometer (AVHRR) on-board the NOAA 18 satellite are superior in terms of bias and standard deviation. The observations from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) on-board the Aqua...

  15. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  16. Transitioning MODIS to VIIRS observations for Land: Surface Reflectance results, Status and Long-term Prospective

    Science.gov (United States)

    Vermote, E.

    2015-12-01

    Surface reflectance is one of the key products from VIIRS and as with MODIS, is used in developing several higher-order land products. The VIIRS Surface Reflectance (SR) IP is based on the heritage MODIS Collection 5 product (Vermote et al. 2002). The quality and character of surface reflectance depends on the accuracy of the VIIRS Cloud Mask (VCM) and aerosol algorithms and of course on the adequate calibration of the sensor. Early evaluation of the VIIRS SR product in the context of the maturity of the operational processing system known as the Interface Data Processing System (IDPS), has been a major focus of work to-date, but is now evolving into the development of a VIIRS suite of Climate Data Records produced by the NASA Land Science Investigator Processing System (SIPS). We will present the calibration performance and the role of the surface reflectance in calibration monitoring, the performance of the cloud mask with a focus on vegetation monitoring (no snow conditions), the performance of the aerosol input used in the atmospheric correction with quantitative results of the performance of the SR product over AERONET sites. Based on those elements and further assessment, we will address the readiness of the SR product for the production of higher-order land products such as Vegetation Indices, Albedo and LAI/FPAR, the its application to agricultural monitoring and in particular the integration of VIIRS data into the global agricultural monitoring (GLAM) system developed at UMd. Finally from the lessons learned, we will articulate a set of critical recommendations to ensure consistency and continuity of the JPSS mission with the MODIS data record.

  17. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Directory of Open Access Journals (Sweden)

    A. D. Elvidge

    2016-02-01

    Full Text Available Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol–Cloud Coupling And Climate Interactions in the Arctic (ACCACIA project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10 from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85  ×  10−3. CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012 tailored for sea-ice drag over the MIZ in which the two constituent components of drag – skin and form drag – are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012 scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values – especially at the higher ice fractions – than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on

  18. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2016-02-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012) tailored for sea-ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on surface roughness is recognised, and

  19. Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2015-10-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parameterization of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parameterization scheme (Lüpkes et al., 2012) tailored for sea ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parameterization schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement is found to hold for subsets of the data from different locations despite differences in sea ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea ice morphology and floe size on surface roughness is

  20. Observation of surface features on an active landslide, and implications for understanding its history of movement

    Directory of Open Access Journals (Sweden)

    M. Parise

    2003-01-01

    Full Text Available Surface features are produced as a result of internal deformation of active landslides, and are continuously created and destroyed by the movement. Observation of their presence and distribution, and surveying of their evolution may provide insights for the zonation of the mass movement in sectors characterized by different behaviour. The present study analyses and describes some example of surface features observed on an active mass movement, the Slumgullion earthflow, in the San Juan Mountains of southwestern Colorado. The Slumgullion earthflow is one of the most famous and spectacular landslides in the world; it consists of a younger, active part which moves on and over an older, much larger, inactive part. Total length of the earthflow is 6.8 km, with an estimated volume of 170 × 10 6 m 3 . Its nearly constant rate of movement (ranging from about 2 m per year at the head, to a maximum of 6–7 m per year at its narrow and central part, to values between 1.3 and 2 m per year at the active toe, and the geological properties of moving material, are well suited for the observation of the development and evolution of surface features. In the last 11 years, repeated surveying at the Slumgullion site has been performed through recognition of surface features, measurements of their main characteristics, and detailed mapping. In this study, two sectors of the Slumgullion earthflow are analysed through comparison of the features observed in this time span, and evaluation of the changes occurred: they are the active toe and an area located at the left flank of the landslide. Choice of the sectors was dictated in the first case, by particular activity of movement and the nearby presence of elements at risk (highway located only 250 m downhill from the toe; and in the second case, by the presence of many surface features, mostly consisting of several generations of flank ridges. The active toe of the landslide is characterized by continuous movement

  1. Experimental High-Resolution Land Surface Prediction System for the Vancouver 2010 Winter Olympic Games

    Science.gov (United States)

    Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.

    2008-05-01

    The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.

  2. Broad Band Data and Noise Observed with Surface Station and Borehole Station

    Science.gov (United States)

    Tunc, Suleyman; Ozel, Oguz; Safa Arslan, Mehmet; Behiye Akşahin, Bengi; Hatipoglu, Mustafa; Cagin Yalcintepe, Ragip; Ada, Samim; Meral Ozel, Nurcan

    2016-04-01

    Marmara region tectonically is very active and many destructive earthquakes happened in the past. North Anatolian Fault Zone crosses the Marmara region and it has three branches. The northern branch passes through Marmara Sea and expected future large earthquake will happen along this fault zone. There is a gap in seismic network in the Marmara region at offshore and onshore areas. We have started broadband borehole seismographic observations to obtain the detailed information about fault geometry and its stick-slip behavior beneath the western Marmara Sea, as a part of the MARsite collaborative Project, namely "New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite-MARsite". The target area western Marmara of Turkey. In the beginning of the project, we installed eight Broadband surface station around Marmara Sea in April 2014. Then, we added broadband sensor and broadband surface sensor at the same location in November 2014. In this study, we developed a Matlab application to calculate Power Spectral Density against the New Low Noise Model (NLNM) and New High Noise Model (NHNM) determined for one-hour segments of the data. Also we compared ambient noise of broadband borehole sensor and surface broadband sensor.

  3. Observation of inner surface of flame-tower type reactor for uranium conversion

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Terai, Takayuki; Umetsu, Hiroshi

    2003-01-01

    A fluorination reactor, which has been used to convert uranium tetrafluoride (UF 4 ) into uranium hexafluoride (UF 6 ), was completed after approximately 6000 hours operation at the uranium conversion facility in Japan. The observation of its inner surface was carried out to understand its corrosive condition and mechanism. The main wall of the reactor is made of Monel Alloy and its operational temperature is approximately 450degC at external surface under gaseous fluorine atmosphere. A sampling was undertaken from the most corrosive part of the reactor wall, and its analysis was carried out to obtain the data for the condition of appearance, thickness, macro and micro structure, etc. The results of observation are as follows: (1) The thickness decreased evenly (average 3.9 mm/year); (2) The chemical composition of corrosive products as coating was mainly nickel fluoride (NiF 2 ), which suggested that the corrosion mechanism could have been caused by the high temperature gas corrosion; (3) The total amount of coating was lower than that of a loss in thickness. For some reason, some of coating would seem to become extinct on the surface of the wall. The deterioration of coating, which formed a protector on the wall due to excess heating of the wall, the sand erosion effect by UF 4 , etc. have contributed to this state of condition. (author)

  4. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  5. In situ nanoscale observations of metatorbernite surfaces interacted with aqueous solutions.

    Science.gov (United States)

    Astilleros, José Manuel; Pinto, André Jorge; Gonçalves, Mário A; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    2013-03-19

    Metatorbernite (Cu(UO(2))(2)(PO(4))(2)·8H(2)O) has been identified in contaminated sediments as a phase controlling the fate of U. Here, we applied atomic force microscopy (AFM) to observe in situ the interaction between metatorbernite cleavage surfaces and flowing aqueous solutions (residence time = 1 min) with different pHs. In contact with deionized water the features of (001) surfaces barely modify. However, changes are remarkable both under acidic and basic conditions. In acidic solutions (pH = 2.5) metatorbernite surface develops a rough altered layer and large pits nucleate on it. The altered layer shows a low adhesion and is removed by the AFM tip during the scanning. The large pits spread rapidly, at few tens of nm/s, indicating a collapse of the structure. The combination of dissolution and the presence of defects in the metatorbernite structure can explain both the collapse process and the alteration of the surfaces under acidic conditions. Other mechanisms such as ion exchange reactions remain speculative. In NaOH solutions (pH = 11.5) metatorbernite dissolves by formation of etch pits bounded by steps parallel to [100], the direction of the most straight periodic bond chains (PBCs) in metatorbernite structure. These steps retreat at ∼0.15 nm/s. Under these conditions dissolution is promoted by the formation of stable uranyl carbonate complexes in solution.

  6. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  7. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  8. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  9. Ocean Observing using SMART subsea telecommunications cable systems

    Science.gov (United States)

    Howe, B. M.

    2015-12-01

    Planning is underway to integrate ocean sensors into SMART subsea cable systems providing basin and ultimately global array coverage within the next decades (SMART: Scientific Monitoring And Reliable Telecommunications). SMART cables will: contribute to the understanding of ocean dynamics and climate; improve knowledge of earthquakes and forecasting of tsunamis; and complement and enhance existing satellite and in-situ observing systems. SMART cables will be a first order addition to the ocean observing system, with unique contributions, strengthening and complementing satellite and in situ systems. Cables spanning the ocean basins with repeaters every ~50 km will host sensors/mini-observatories, providing power and real-time communications. The current global infrastructure of commercial submarine telecommunications cable systems consists of 1 Gm of cable with ~20,000 repeaters (to boost optical signals); the overall system is refreshed and expanded on time scales of 10 - 20 years and individual systems have lifetimes in excess of 25 years. Initial instrumentation of the cables with bottom temperature, pressure and acceleration sensors will provide unique information for monitoring and studying climate change and for improved tsunami and earthquake warning. These systems will be a new highly reliable, long-lived component of the ocean observing system, complementing satellite, float and other in situ platforms and measurements. Several UN agencies, the International Telecommunication Union, the World Meteorological Organization, and the UNESCO Intergovernmental Oceanographic Commission have formed a Joint Task Force to move this concept to fruition (ITU/WMO/IOC JTF; http://www.itu.int/en/ITU-T/climatechange/task-force-sc). A review of the overall planning effort and two NASA-funded workshops focusing on the ocean circulation and climate is presented. [Funding provided by NASA.

  10. CUACE/Dust ─ an integrated system of observation and modeling systems for operational dust forecasting in Asia

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2008-05-01

    Full Text Available An integrated sand and dust storm (SDS forecasting system – CUACE/Dust (Chinese Unified Atmospheric Chemistry Environment for Dust has been developed, which consists of a comprehensive dust aerosol module with emission, dry/wet depositions and other atmospheric dynamic processes, and a data assimilation system (DAS using observational data from the CMA (China Meteorological Administration ground dust monitoring network and retrieved dust information from a Chinese geostationary satellite – FY-2C. This is the first time that a combination of surface network observations and satellite retrievals of the dust aerosol has been successfully used in the real time operational forecasts in East Asia through a DAS. During its application for the operational SDS forecasts in East Asia for spring 2006, this system captured the major 31 SDS episodes observed by both surface and satellite observations. Analysis shows that the seasonal mean threat score (TS for 0–24 h forecast over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the DAS, a 41% enhancement. The time series of the forecasted dust concentrations for a number of representative stations for the whole spring 2006 were also evaluated against the surface PM10 monitoring data, showing a very good agreement in terms of the SDS timing and magnitudes near source regions where dust aerosols dominate. This is a summary paper for a special issue of ACP featuring the development and results of the forecasting system.

  11. Tourism and Arctic Observation Systems: exploring the relationships

    NARCIS (Netherlands)

    Barre, de la Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing

  12. The Global Ocean Observing System (GOOS): New developments

    International Nuclear Information System (INIS)

    Summerhayes, C.P.

    1999-01-01

    GOOS will provide information about the present and future states of seas and oceans and their living resources, and on the role of the oceans in climate change. Among other things, it will include monitoring the extent to which the sea is polluted, and applying models enabling the behaviour of polluted environments to be forecast given a variety of forcing conditions including anthropogenic and natural changes. Implementation has begun through integration of previously separate existing observing systems into a GOOS Initial Observing System, and through the development of Pilot Projects, most notably in the coastal seas of Europe and North-east Asia. Although the present emphasis is on the measurement of physical properties, plans are underway for increasing the observation of chemical and biological parameters. The main biological thrust at present comes through the Global Coral Reef Monitoring Network (GCRMN). Consideration needs to be given to incorporation into the GOOS Initial Observing System of present national, international and global chemical and biological monitoring systems, and the development and implementation of new chemical and biological monitoring subsystems, especially in coastal seas for monitoring the health of those environments. GOOS will offer marine scientists and other users a scheme of continuing measurements on a scale larger in time and space than can be accomplished by individuals for their own applications, and a vastly improved store of basic marine environmental data for a multitude of purposes. For GOOS news see the GOOS Homepage at http://ioc.unesco.org/GOOS/. (author)

  13. On the complete system of observables in quantum mechanics

    Science.gov (United States)

    de Oliveira, César R.

    1990-10-01

    This paper contains a series of remarks about the concept of Complete System of Observables (CSO) in quantum mechanics and a discussion of two definitions of CSO, one given by Jauch [Helv. Phys. Acta 33, 711 (1960)] and the other by Prugovecki [Can. J. Phys. 47, 1083 (1968)].

  14. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  15. INVIS : Integrated night vision surveillance and observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Dijk, J.; Son, R. van

    2010-01-01

    We present the design and first field trial results of the all-day all-weather INVIS Integrated Night Vision surveillance and observation System. The INVIS augments a dynamic three-band false-color nightvision image with synthetic 3D imagery in a real-time display. The night vision sensor suite

  16. Emerging Methods and Systems for Observing Life in the Sea

    Science.gov (United States)

    Chavez, F.; Pearlman, J.; Simmons, S. E.

    2016-12-01

    There is a growing need for observations of life in the sea at time and space scales consistent with those made for physical and chemical parameters. International programs such as the Global Ocean Observing System (GOOS) and Marine Biodiversity Observation Networks (MBON) are making the case for expanded biological observations and working diligently to prioritize essential variables. Here we review past, present and emerging systems and methods for observing life in the sea from the perspective of maintaining continuous observations over long time periods. Methods that rely on ships with instrumentation and over-the-side sample collections will need to be supplemented and eventually replaced with those based from autonomous platforms. Ship-based optical and acoustic instruments are being reduced in size and power for deployment on moorings and autonomous vehicles. In parallel a new generation of low power, improved resolution sensors are being developed. Animal bio-logging is evolving with new, smaller and more sophisticated tags being developed. New genomic methods, capable of assessing multiple trophic levels from a single water sample, are emerging. Autonomous devices for genomic sample collection are being miniaturized and adapted to autonomous vehicles. The required processing schemes and methods for these emerging data collections are being developed in parallel with the instrumentation. An evolving challenge will be the integration of information from these disparate methods given that each provides their own unique view of life in the sea.

  17. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    International Nuclear Information System (INIS)

    Ciais, P.; Peregon, A.; Chevallier, F.; Bopp, L.; Breon, F.M.; Broquet, G.; Luyssaert, S.; Moulin, C.; Paris, J.D.; Poulter, B.; Rivier, L.; Wang, R.

    2014-01-01

    resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO 2 proxy measurements such as radiocarbon in CO 2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter operable, and on the calibration of each component of the system to agreed-upon international scales. (authors)

  18. Recent Observations and Simulations of the Sun-Earth System

    Science.gov (United States)

    Jordanova, Vania; Roussev, Ilia

    2007-01-01

    Grand Hotel Varna, Bulgaria, 17-22 September 2006; ISROSES: International Symposium on Recent Observations and Simulations of the Sun-Earth System; Important challenges for solar-terrestrial physics research are to advance our understanding of the Sun-Earth system (SES) and to develop models to the level where timely and accurate predictions of space weather can be made that result in benefits to society. As more advanced technologies are placed into the space environment, our need to forecast space weather becomes more urgent. To achieve such a goal, an integrated understanding of the physical processes of the coupled Sun-Earth system must be developed.

  19. An Earth Observation Land Data Assimilation System (EO-LDAS)

    Science.gov (United States)

    Gomez-Dans, Jose; Lewis, Philip; Quaife, Tristan; Kaminski, Tomas; Styles, Jon

    2013-04-01

    In order to monitor the land surface, EO data provides the means of achieving global coverage in a timely fashion. Different sensors orbit the Earth acquiring data at different times and with different spectral and spatial properties. Blending all these observations presents a considerable challenge. Purely statistical methods based on machine learning techniques require accurate and extensive ground truth for "training" models. The complexities of the processes that take place in the scene result in limited usefulness of these models outside their training region or period. Models that describe the physical processes that give rise to the measurements, based on radiative transfer theory, offer a more robust way of interpreting the recorded data and relating it to surface properties such as leaf area index, chlorophyll concentration, etc. Unfortunately, the information content in the signals is rarely sufficient to unambigously determine the many parameters that are required in typical radiative transfer models. To improve on this, the use of prior information is required. Typically, this information is given as parameter ranges, or maybe even distributions, which can have a positive effect in the so-called "inverse problem". Data assimilation techniques allow one to use models of the land surface as priors, to constrain the inverse problem. These models can be very useful in improving the ability of inverting the observations, as the models can give very valuable information on the dynamics of some parameters, like LAI. However, some parameters that have a strong bearing on the observations (some pigments, leaf angle distributions...) have no analogues in typical DGVMs. In this work, we introduce and demonstrate the use of weak constraint 4DVAR data assimilation to the problem of inverting optical RT models. We demonstrate that the use of this technique results in important gains in parameter uncertainty reduction for a typical satellite mission, including

  20. Ellipso-Microscopic Observation of Titanium Surface under UV-Light Irradiation

    International Nuclear Information System (INIS)

    Fushimi, K.; Kurauchi, K.; Nakanishi, T.; Hasegawa, Y.; Ueda, M.; Ohtsuka, T.

    2016-01-01

    The ellipso-microscopic observation of a titanium surface undergoing anodization in 0.05 mol dm -3 of H 2 SO 4 was conducted. During irradiation by ultra-violet (UV) light with a wavelength of 325 nm, the titanium surface allowed for the flow of a photo-induced current and showed up as a bright, patch-like image on an ellipso-microscopic view. The brightness and patch-pattern in the image changed with flowing photo-induced current. The changes in the brightness and the image corresponded to the formation and/or degradation of titanium oxide due to the photo-electrochemical reaction of the oxide. An in situ monitoring using the ellipso-microscope revealed that the film change was dependent on the irradiation light power, by UV-light increases the anodic current and results in the initiation of pitting at lower potentials as compared with the non-irradiated condition.

  1. Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations

    International Nuclear Information System (INIS)

    Liuzzi, G; Masiello, G; Serio, C; Blasi, M G; Venafra, S

    2015-01-01

    This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007. (paper)

  2. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  3. Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave

    Directory of Open Access Journals (Sweden)

    Florent Jangal

    2016-01-01

    Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.

  4. Determination of surface parameters and fluxes for climate studies from space observation. Methods, results and problems

    Science.gov (United States)

    Becker, F.; Seguin, B.

    Climate being the result of many interconnected processes, it can hardly be understood without models which describe these various processes as quantitatively as possible and define the parameters which are relevant for climate studies. Among those, surface processes and therefore surface parameters are now recognized to be of great importance. Some examples are discussed in the first part, showing the great interest to measure the relevant parameters on a multi-year basis, over large areas with sufficiently dense array and on a stable basis, in order to monitor climate changes or to study the impact on climate of the modifications of some relevant parameters which are analysed. Since space observations from satellites fulfil these requirements, it is clear that they will become very soon a fundamental tool for climate studies. Unfortunately, as it is discussed in the second part, satellites do measure only spectral radiances at the top of the atmosphere and the determination of the relevant surface parameters (or fluxes) from these radiances still raises many problems which have to be solved, although many progresses have already been made. The aim of this paper is therefore to review and discuss these problems and the various ways they have been tackled until now. The first part is devoted to an overview of what needs to be measured and why, while the existing methods for determining the most important surface parameters from space observations are presented in the second part where a particular attention is given to the theoretical and experimental validations of these methods, their limits and the problems still to be solved.

  5. Verifying Embedded Systems using Component-based Runtime Observers

    DEFF Research Database (Denmark)

    Guan, Wei; Marian, Nicolae; Angelov, Christo K.

    Formal verification methods, such as exhaustive model checking, are often infeasible because of high computational complexity. Runtime observers (monitors) provide an alternative, light-weight verification method, which offers a non-exhaustive yet feasible approach to monitoring system behavior...... is a reconfigurable component processing a data structure, representing the state transition diagram of a non-deterministic state machine, i.e. a Buchi automaton derived from a system property specified in Linear Temporal Logic (LTL). Observer components have been implemented using design models and design patterns...... specified properties via simulation. The presented method has been experimentally validated in an industrial case study---a control system for a safety-critical medical ventilator unit....

  6. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  7. A framework for global diurnally-resolved observations of Land Surface Temperature

    Science.gov (United States)

    Ghent, D.; Remedios, J.; Pinnock, S.

    2013-12-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  8. Minimizing Reanalysis Jumps Due to New Observing Systems

    Science.gov (United States)

    Zhou, Y.; Kalnay, E.; Chen, J.

    2014-12-01

    A major problem with reanalyses has been the presence of jumps in the climatology associated with changes in the observing system. These jumps became especially obvious when satellites were first introduced in 1979. After 1979, however, during the "satellite era" jumps have continued to appear whenever a new observing system was introduced. To explore this problem, we develop and test new methodologies to minimize these reanalysis jumps in the reanalyses time series due to new observing systems. We first study a state-of-the-art reanalysis, NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA thereafter). Analysis increments from two 2-year analyses with SSM/I (referred to as MERRA) or without SSM/I (referred to as NoSSMI), are compared and their climatological differences are defined as correction terms. The correction terms are then introduced into the tendency equation of the forecast model, i.e., GEOS-5. The debiased reanalysis without SSM/I observations shows improvements in almost all fields, even in precipitation field that is generally considered to be uncertain on all time and space scales, but the correction is underestimated by about a factor of 2. We believe that this is because the correction terms defined here do not take into account the nonlinear interactions between the temperature and humidity fields observed by SSM/I, which would introduce accumulated errors during the 2-year experiment period. This deficiency can be corrected by doing the No-SSMI analysis using a MERRA background, as in the method of Danforth et al. (2007) We test the new correction method in a simpler data assimilation system, SPEEDY-LETKF because with our limited computational resource it is infeasible to apply this method to the complex MERRA system. The new method defines the correction terms by calculating the difference of analysis increments from the following two analyses, 1) assimilating both RAOB and AIRS observations, named RaobAirs, and 2

  9. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  10. Investigating surface and subsurface physical properties of small bodies from light scattering observations and simulations

    Science.gov (United States)

    Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.; Renard, J. B.

    Investigating surface and subsurface physical properties of small bodies from light scattering observations and simulations A.C. Levasseur-Regourd (1), E. Hadamcik (1), J. Lasue (1), J.B. Renard (2) (1) Université Pierre et Marie Curie-Paris6, UMR 7620, Aéronomie, BP-3, Verrières, 91371 France, (2) LPCE-CNRS, 3A av. Recherche Scientifique, Orléans, F-45071 France Investigating surface and subsurface physical properties of asteroids and comet nuclei is of major interest to i) assess future space missions and ii) constrain formation and evolution models. Our purpose is to infer such properties from the properties of solar light scattered by such media. We will first summarize recent remote polarimetric observations of small bodies, which confirm the main characteristics of the variation of the linear polarization of solar scattered light in the visible domain with the scattering geometry and the wavelength (1). To interpret such characteristics in terms of physical properties of the regoliths (e.g. albedo, size distribution, complex refractive index, porosity), experimental and numerical simulations on various types of particles and aggregates are mandatory, together with some comparisons between experimental and numerical simulations (2,3). We will thus present recent results of such simulations (for dust around bright comets, for core-mantle particles, for loose deposited transparent and dark materials), and point out the trends already suggested by this approach. Finally, we will mention future key observations and elaborate simulations, which could solve open questions about surface and subsurface properties of small bodies. References 1. Levasseur-Regourd et al., ASR 37, 161, 2006. 2. Hadamcik et al., JQSRT 100, 143, 2006. 3. Lasue et al., JQSRT 100, 220, 2006.

  11. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    Science.gov (United States)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  12. Surface-Mount Rotor Motion Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  13. Flexible and Safe Control of Mobile Surface Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel Petri net based approach for safe and flexible control of highly capable mobile surface systems, such as long-duration...

  14. Flexible and Safe Control of Mobile Surface Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel approach for flexible and safe control of highly capable mobile surface systems, such as long-duration science rovers,...

  15. A Surface-Mounted Rotor State Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  16. Chandra X-Ray Observations of the Jovian System

    Science.gov (United States)

    Elsner, R. F.; Waite, J. H.; Crary, F.; Majeed, T.; Gladstone, G. R.; Lewis, W. S.; Ford, P. G.; Howell, R. R.; Johnson, R. E.; Bhardwaj, A.; hide

    2002-01-01

    High-spatial resolution Chandra x-ray observations have demonstrated that most of Jupiter's northern auroral x-rays come from a hot spot located significantly poleward of the latitudes connected to the inner magnetosphere. This hot spot appears fixed in magnetic latitude and longitude and coincides with a region exhibiting anomalous ultraviolet and infrared emissions. The hot spot also exhibited approximately 45 minute quasi-periodic oscillations, a period similar to those reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral x-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the x-rays appear to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths. The Chandra observations also revealed for the first time x-ray emission (about 0.1 GW) from the Io Plasma Torus, as well as very faint x-ray emission (about 1-2 MW) from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is almost certainly due to Kalpha emission of surface atoms (and possibly impact atoms) excited by the impact of highly energetic protons, oxygen, and sulfur atoms and ions from the Torus. The Torus emission is less well understood at present, although bremsstrahlung from the non-thermal tail of the electron distribution may provide a significant fraction. In any case, further observations, already accepted and in the process of being planned, with Chandra, some with the moderate energy resolution of the CCD camera, together with simultaneous Hubble Space Telescope observations and hopefully ground-based IRTF observations should soon provide greater insight into these various processes.

  17. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    As the land space suitable for wind turbine installations becomes saturated, there is a growing interest for oshore locations. There, available measurements of various environmental parameters are limited and the physical environment is still not well understood. Thus, there is a need for readily......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  18. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Science.gov (United States)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  19. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Directory of Open Access Journals (Sweden)

    J. Isern-Fontanet

    2017-10-01

    Full Text Available Ocean currents play a key role in Earth's climate – they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  20. Classifying terrestrial surface water systems using integrated residence time

    Science.gov (United States)

    Jones, Allan; Hodges, Ben; McClelland, James; Hardison, Amber; Moffett, Kevan

    2017-04-01

    Linkages between ecology and hydrology in terrestrial surface water often invoke a discussion of lentic (reservoir) vs. lotic (riverine) system behaviors. However, the literature shows a wide range of thresholds separating lentic/lotic regimes and little agreement on a quantitative, repeatable classification metric that can be broadly and reliably applied across a range of systems hosting various flow regimes and suspended/benthic taxa. We propose an integrated Residence Time (iTR) metric as part of a new Freshwater Continuum Classification (FCC) to address this issue. The iTR is computed as the transit time of a water parcel across a system given observed temporal variations in discharge and volume, which creates a temporally-varying metric applicable across a defined system length. This approach avoids problems associated with instantaneous residence times or average residence times that can lead to misleading characterizations in seasonally- or episodically-dynamic systems. The iTR can be directly related to critical flow thresholds and timescales of ecology (e.g., zooplankton growth). The FCC approach considers lentic and lotic to be opposing end-members of a classification continuum and also defines intermediate regimes that blur the line between the two ends of the spectrum due to more complex hydrological system dynamics. We also discover the potential for "oscillic" behavior, where a system switches between lentic and lotic classifications either episodically or regularly (e.g., seasonally). Oscillic behavior is difficult to diagnose with prior lentic/lotic classification schemes, but can be readily identified using iTR. The FCC approach was used to analyze 15 tidally-influenced river segments along the Texas (USA) coast of the Gulf of Mexico. The results agreed with lentic/lotic designations using prior approaches, but also identified more nuanced intermediate and oscillic regimes. Within this set of systems, the oscillic nature of some of the river

  1. The Coastal Observing System for Northern and Arctic Seas (COSYNA)

    Science.gov (United States)

    Baschek, Burkard; Schroeder, Friedhelm; Brix, Holger; Riethmüller, Rolf; Badewien, Thomas H.; Breitbach, Gisbert; Brügge, Bernd; Colijn, Franciscus; Doerffer, Roland; Eschenbach, Christiane; Friedrich, Jana; Fischer, Philipp; Garthe, Stefan; Horstmann, Jochen; Krasemann, Hajo; Metfies, Katja; Merckelbach, Lucas; Ohle, Nino; Petersen, Wilhelm; Pröfrock, Daniel; Röttgers, Rüdiger; Schlüter, Michael; Schulz, Jan; Schulz-Stellenfleth, Johannes; Stanev, Emil; Staneva, Joanna; Winter, Christian; Wirtz, Kai; Wollschläger, Jochen; Zielinski, Oliver; Ziemer, Friedwart

    2017-05-01

    The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change.The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public.

  2. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    Science.gov (United States)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal

  3. Organizing the Global Geodetic Observing System - Structure, Services and Stakeholders

    Science.gov (United States)

    Kutterer, Hansjoerg

    2017-04-01

    The Global Geodetic Observing System (GGOS) is an essential component of the International Association of Geodesy (IAG). It aims at advancing our understanding of the dynamic Earth system by quantifying our planet's changes in space and time. This is based on the mission of GGOS: (1) to provide the observations needed to monitor, map, and understand changes in the Earth's shape, rotation, and mass distribution, (2) to provide the global geodetic frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications, and (3) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. For this purpose GGOS works with the IAG components to provide the geodetic infrastructure which is necessary for monitoring the Earth system and for global change research. Obviously, this is a cross-cutting issue both of IAG regarding its commissions, services and inter-comission committees and of external stakeholders. Hence, the structure and the activities of GGOS have to deal with various facets of the establishment, maintenance, operation and further development geodetic observation and data infrastructure such as networks, hardware, standards and products. This presentation gives a general overview of the present state of GGOS. In particular, it focuses on the structure of GGOS which is optimized and streamlined regarding role and purpose of GGOS. Moreover, it outlines feasible results of GGOS for the benefit of IAG and of society.

  4. Direct Observation of Asperity Deformation of Specimen with Random Rough Surface in Upsetting Process

    DEFF Research Database (Denmark)

    Azushima, A.; Kuba, S.; Tani, S.

    2004-01-01

    The trapping behavior of liquid lubricant and contact behavior of asperities at the workpiece-tool interface during upsetting and indentation are observed directly using a compression subpress which consists of a transparent die made of sapphire, a microscope with a CCD camera and a video system....

  5. First observations of surface ozone concentration from the summit region of Mount Everest

    Science.gov (United States)

    Semple, John L.; Moore, G. W. K.

    2008-10-01

    The extreme height of Mount Everest is such that its summit region may periodically be in the lower stratosphere. In this regard it provides a unique location for observing the exchange of ozone between the upper troposphere and lower stratosphere. Here we report the first surface ozone measurements from the summit region of Mount Everest. Simultaneous measurements were recorded at different elevations on the north side from base camp (5676 m) to the summit (8848 m) during May 2005. The concentrations measured were as high as 70 ppb. Meteorological diagnostics suggest that the stratosphere as well as the long range transport of polluted tropospheric air masses from South East Asia are sources of the observed ozone. There is evidence that the source region for ozone in the vicinity of Mount Everest may vary with the onset of the summer monsoon.

  6. Bardenas Reales Range, Spain. Revised Uniform Summary of Surface Weather Observations (Russwo). Parts A-F.

    Science.gov (United States)

    1975-06-30

    VAIIIL .3. _____ i TOTAL NUMBER OF OBSERVATIONS 141, USAFETAC Ft6 0-8-5 ( EL A) IP0Mvous SO)T)OOS OF THI OIl S 0* 8oLMT0 -f--. .. ’ . ___ SURFACE...88 4 8 88 8 88a8 A 6 ; 8.4 89.2 ;39.5 b9. 5 9 9.8: 89.9; A9.9, 90. 1 90. 9,.l 90.1 90.11) 0. el 90.3 91.2! 92.0 cI2.3* -9 2 7zj 92.81 92.8 93.0 93: q...00.0 TOTAL NUMBER OF OBSERVATIONS - 147 USAF )TAC ’ 0-4-5 L A , , ’) f.I 0 0 tn-t.c DATA P’ CESSIJC tifO -CH V RU /,DIT USAF ETAC CEILING VES S IIBLT AI

  7. ALMA and VLA observations of the HD 141569 system

    Science.gov (United States)

    White, Jacob Aaron; Boley, A. C.; MacGregor, M. A.; Hughes, A. M.; Wilner, D. J.

    2018-03-01

    We present VLA 9 mm (33 GHz) and archival ALMA 2.9 mm (103 GHz) observations of the HD 141569 system. The VLA observations achieve a resolution of 0.25 arcsec (˜28 au) and a sensitivity of 4.7 μJy beam- 1. We find (1) a 52 ± 5 μJy point source at the location of HD 141569A that shows potential variability, (2) the detected flux is contained within the SED-inferred central clearing of the disc meaning the spectral index of the dust disc is steeper than previously inferred, and (3) the M dwarf companions are also detected and variable. Previous lower resolution VLA observations (semester 14A) found a higher flux density, interpreted as solely dust emission. When combined with ALMA observations, the VLA 14A observations suggested the spectral index, and grain size distribution of HD 141569's disc was shallow and an outlier among debris systems. Using archival ALMA observations of HD 141569 at 0.87 and 2.9 mm, we find a dust spectral index of αmm = 1.81 ± 0.20. The VLA 16A flux corresponds to a brightness temperature of ˜5 × 106 K, suggesting strong non-disc emission is affecting the inferred grain properties. The VLA 16A flux density of the M2V companion HD 141569B is 149 ± 9 μJy, corresponding to a brightness temperature of ˜2 × 108 K and suggesting significant stellar variability when compared to the VLA14A observations, which are smaller by a factor of ˜6.

  8. A surface refractive index scanning system and method

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction, and a s......The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction...

  9. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters

    International Nuclear Information System (INIS)

    Van Sebille, Erik; England, Matthew H; Froyland, Gary

    2012-01-01

    Much of the debris in the near-surface ocean collects in so-called garbage patches where, due to convergence of the surface flow, the debris is trapped for decades to millennia. Until now, studies modelling the pathways of surface marine debris have not included release from coasts or factored in the possibilities that release concentrations vary with region or that pathways may include seasonal cycles. Here, we use observational data from the Global Drifter Program in a particle-trajectory tracer approach that includes the seasonal cycle to study the fate of marine debris in the open ocean from coastal regions around the world on interannual to centennial timescales. We find that six major garbage patches emerge, one in each of the five subtropical basins and one previously unreported patch in the Barents Sea. The evolution of each of the six patches is markedly different. With the exception of the North Pacific, all patches are much more dispersive than expected from linear ocean circulation theory, suggesting that on centennial timescales the different basins are much better connected than previously thought and that inter-ocean exchanges play a large role in the spreading of marine debris. This study suggests that, over multi-millennial timescales, a significant amount of the debris released outside of the North Atlantic will eventually end up in the North Pacific patch, the main attractor of global marine debris. (letter)

  10. Computational studies of experimentally observed structures of sulfur on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Dominic

    2011-09-01

    First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close packed surfaces of a number of important metals - Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001) and Ru(0001). At low coverages ({le} 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of threefold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001) and Ru(0001) at higher coverages (> 1/3 ML) was provided. For the ({radical}7 x {radical}7) phase seen on Ag(111), the most preferred structure identified for adsorbed S trimer consists of an S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the ({radical}7 x {radical}7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5{radical}3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed.

  11. A mechanism for comet surface collapse as observed by Rosetta on 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Prialnik, D.; Sierks, H.

    2017-07-01

    We explore a possible mechanism that may explain sudden depressions of surface areas on a comet nucleus, as suggested by observations of the Rosetta mission on comet 67P/Churyumov-Gerasimenko (hereafter, 67P/C-G). Assuming the area is covered by a thin, compact dust layer of low permeability to gas flow compared to deeper, porous layers, gas can accumulate below the surface when a surge of gas release from amorphous ice occurs upon crystallization. The gas pressure is found to exceed the hydrostatic pressure down to a depth of a few metres. The rapid build-up of pressure may weaken the already fragile, highly porous structure. Eventually, the high pressure gradient that arises drives the gas out and the pressure falls well below the hydrostatic pressure. The rapid pressure drop may result in collapse. Since the crystallization front lies at some depth below the surface, the location on the orbit when this phenomenon occurs is determined by the thermal lag, which, in turn, depends on the thermal conductivity. Numerical simulations show that mostly such activity occurs post-perihelion, but it may also occur pre-perihelion. When permeability is uniform, crystallization still causes increased gas production, but the gas pressure inside the nucleus remains below hydrostatic pressure.

  12. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  13. Metolachlor and atrazine fate in surface water systems

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.J.; Anderson, T.A.; Coats, J.R. [Iowa State Univ., Ames, IA (United States)

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  14. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  15. Field and LiDAR observations of the Hector Mine California 1999 surface rupture

    Science.gov (United States)

    Sousa, F.; Akciz, S. O.; Harvey, J. C.; Hudnut, K. W.; Lynch, D. K.; Scharer, K. M.; Stock, J. M.; Witkosky, R.; Kendrick, K. J.; Wespestad, C.

    2014-12-01

    We report new field- and computer-based investigations of the surface rupture of the October 16, 1999 Hector Mine Earthquake. Since May 2012, in cooperation with the United States Marine Corps Air Ground Combat Center (MCAGCC) at Twentynine Palms, CA, our team has been allowed ground and aerial access to the entire surface rupture. We have focused our new field-based research and imagery analysis along the ~10 kilometer-long maximum slip zone (MSZ) which roughly corresponds to the zone of >4 meter dextral horizontal offset. New data include: 1) a 1 km wide aerial LiDAR survey along the entire surface rupture (@ 10 shots/m2, May 2012, www.opentopography.org); 2) terrestrial LiDAR surveys at 5 sites within the MSZ (@ >1000 shots/m2, April 2014); 3) low altitude aerial photography and ground based photography of the entire MSZ; 4) a ground-truthed database of 87 out of the 94 imagery-based offset measurements made within the MSZ; and 5) a database of 50 new field-based offset measurements made within the MSZ by our team on the ground, 31 of which have also been made on the computer (Ladicaoz) with both the 2000 LiDAR data (@ 0.5 m DEM resolution; Chen et al, in review) and 2012 LiDAR data (@ 35 cm DEM resolution; our team). New results to date include 1) significant variability (> 2 m) in horizontal offsets measured along short distances of the surface rupture (~100 m) within segments of the surface rupture that are localized to a single fault strand; 2) strong dependence of decadal scale fault scarp preservation on local lithology (bedrock vs. alluvial fan vs. fine sediment) and geomorphology (uphill vs. downhill facing scarp); 3) newly observed offset features which were never measured during the post-event field response; 4) newly observed offset features too small to be resolved in airborne LiDAR data (judged by our team to warrant removal from the database due to incorrect feature reconstruction; and 6) significant variability in both accuracy of LiDAR offset

  16. Chaos control of the micro-electro-mechanical resonator by using adaptive dynamic surface technology with extended state observer

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [The Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003 (China); School of Automation, Chongqing University, Chongqing 400044 (China); Sun, Quanping; Cheng, Wei [The Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003 (China)

    2016-04-15

    This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Putting tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.

  17. Economic Value of an Advanced Climate Observing System

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  18. Parameter Identification and Synchronization of Uncertain Chaotic Systems Based on Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Li-lian Huang

    2013-01-01

    Full Text Available The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.

  19. Observed modes of sea surface temperature variability in the South Pacific region

    Science.gov (United States)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2018-02-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  20. Improved identification of clouds and ice/snow covered surfaces in SCIAMACHY observations

    Directory of Open Access Journals (Sweden)

    J. M. Krijger

    2011-10-01

    Full Text Available In the ultra-violet, visible and near infra-red wavelength range the presence of clouds can strongly affect the satellite-based passive remote sensing observation of constituents in the troposphere, because clouds effectively shield the lower part of the atmosphere. Therefore, cloud detection algorithms are of crucial importance in satellite remote sensing. However, the detection of clouds over snow/ice surfaces is particularly difficult in the visible wavelengths as both clouds an snow/ice are both white and highly reflective. The SCIAMACHY Polarisation Measurement Devices (PMD Identification of Clouds and Ice/snow method (SPICI uses the SCIAMACHY measurements in the wavelength range between 450 nm and 1.6 μm to make a distinction between clouds and ice/snow covered surfaces, specifically developed to identify cloud-free SCIAMACHY observations. For this purpose the on-board SCIAMACHY PMDs are used because they provide higher spatial resolution compared to the main spectrometer measurements. In this paper we expand on the original SPICI algorithm (Krijger et al., 2005a to also adequately detect clouds over snow-covered forests which is inherently difficult because of the similar spectral characteristics. Furthermore the SCIAMACHY measurements suffer from degradation with time. This must be corrected for adequate performance of SPICI over the full SCIAMACHY time range. Such a correction is described here. Finally the performance of the new SPICI algorithm is compared with various other datasets, such as from FRESCO, MICROS and AATSR, focusing on the algorithm improvements.

  1. Observed modes of sea surface temperature variability in the South Pacific region

    Science.gov (United States)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2017-04-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  2. Possible origin of linear magnetoresistance: Observation of Dirac surface states in layered PtBi2

    Science.gov (United States)

    Thirupathaiah, S.; Kushnirenko, Y.; Haubold, E.; Fedorov, A. V.; Rienks, E. D. L.; Kim, T. K.; Yaresko, A. N.; Blum, C. G. F.; Aswartham, S.; Büchner, B.; Borisenko, S. V.

    2018-01-01

    The nonmagnetic compounds showing extremely large magnetoresistance are attracting a great deal of research interest due to their potential applications in the field of spintronics. PtBi2 is one of such interesting compounds showing large linear magnetoresistance (MR) in both the hexagonal and pyrite crystal structure. We use angle-resolved photoelectron spectroscopy and density functional theory calculations to understand the mechanism of liner MR observed in the layered PtBi2. Our results uncover linear dispersive surface Dirac states at the Γ ¯ point, crossing the Fermi level with a node at a binding energy of ≈900 meV, in addition to the previously reported Dirac states at the M ¯ point in the same compound. We further notice from our dichroic measurements that these surface states show an asymmetric spectral intensity when measured with left and right circularly polarized light, hinting at a substantial spin polarization of the bands. Following these observations, we suggest that the linear dispersive Dirac states at the Γ ¯ and M ¯ points are likely to play a crucial role for the linear field dependent magnetoresistance recorded in this compound.

  3. Helioseismic Observations of the Structure and Dynamics of a Rotating Sunspot Beneath the Solar Surface

    Science.gov (United States)

    Zhao, Junwei; Kosovichev, Alexander G.

    2003-01-01

    Time-distance helioseismology is applied to study the subphotospheric structures and dynamics of an unusually fast-rotating sunspot observed by the Michelson Doppler Imager on bead SOH0 in 2000 August. The subsurface sound speed structures and velocity fields are obtained for the sunspot region at different depths from 0 to 12 Mm. By comparing the subsurface sound speed variations with the surface magnetic field, we find evidence for structural twists beneath the visible surface of this active region, which may indicate that magnetic twists often seen at the photosphere also exist beneath the photosphere. We also report on the observation of subsurface horizontal vortical flows that extend to a depth of 5 Mm around this rotating sunspot and present evidence that opposite vortical flows may exist below 9 Mm. It is suggested that the vortical flows around this active region may build up a significant amount of magnetic helicity and energy to power solar eruptions. Monte Carlo simulation has been performed to estimate the error propagation, and in addition the sunspot umbra is masked to test the reliability of our inversion results. On the basis of the three-dimensional velocity fields obtained from the time-distance helioseismology inversions, we estimate the subsurface kinetic helicity at different depths for the first time and conclude that it is comparable to the current helicity estimated from vector magnetograms.

  4. Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems

    Science.gov (United States)

    Ginoya, Divyesh; Shendge, P. D.; Phadke, S. B.

    2015-09-01

    This paper presents a new design of multiple-surface sliding mode control for a class of nonlinear uncertain systems with mismatched uncertainties and disturbances. In the method of multiple-surface sliding mode control, it is required to compensate for the derivatives of the virtual inputs which gives rise to the so-called problem of 'explosion of terms'. In this paper a disturbance observer based multiple-surface sliding mode control is proposed to estimate the uncertainties as well as the derivative of the virtual inputs to overcome this problem. The practical stability of the overall system is proved. The effectiveness of the proposed control strategy is illustrated via simulation of a benchmark problem and comparison with other control strategies. The proposed scheme is validated by implementing it on a serial flexible joint manipulator in the laboratory.

  5. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, cultur...... for determining bacterial activity might provide a means for future monitoring and assessment of microbial water quality in aquaculture farming systems......Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  6. Development of the AuScope Australian Earth Observing System

    Science.gov (United States)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  7. CORONAGRAPHIC OBSERVATIONS OF FOMALHAUT AT SOLAR SYSTEM SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Kenworthy, Matthew A.; Meshkat, Tiffany [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Quanz, Sascha P.; Meyer, Michael R. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Girard, Julien H. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Cassilla 19001, Santiago (Chile); Kasper, Markus [European Southern Observatory, Karl Schwarzschild Strasse, 2, D-85748 Garching bei Munchen (Germany)

    2013-02-10

    We report on a search for low mass companions within 10 AU of the star Fomalhaut, using narrowband observations at 4.05 {mu}m obtained with the Apodizing Phase Plate coronagraph on the VLT/NaCo. Our observations place a model-dependent upper mass limit of 12-20 M {sub jup} from 4 to 10 AU, covering the semimajor axis search space between interferometric imaging measurements and other direct imaging non-detections. These observations rule out models where the large semimajor axis for the putative candidate companion Fomalhaut b is explained by dynamical scattering from a more massive companion in the inner stellar system, where such giant planets are thought to form.

  8. Gulf of Mexico Coastal Ocean Observing System: The Gulf Component of the U.S. Integrated Ocean Observing System

    Science.gov (United States)

    Bernard, L. J.; Moersdorf, P. F.

    2005-05-01

    The United States is developing an Integrated Ocean Observing System (IOOS) as the U.S. component of the international Global Ocean Observing System (GOOS). IOOS consists of: (1) a coastal observing system for the U.S. EEZ, estuaries, and Great Lakes; and (2) a contribution to the global component of GOOS focused on climate and maritime services. The coastal component will consist of: (1) a National Backbone of observations and products from our coastal ocean supported by federal agencies; and (2) contributions of Regional Coastal Ocean Observing Systems (RCOOS). The Gulf of Mexico Coastal Ocean Observing System (GCOOS) is one of eleven RCOOS. This paper describes how GCOOS is progressing as a system of systems to carry out data collection, analysis, product generation, dissemination of information, and data archival. These elements are provided by federal, state, and local government agencies, academic institutions, non-government organization, and the private sector. This end-to-end system supports the seven societal goals of the IOOS, as provided by the U.S. Commission on Ocean Policy: detect and forecast oceanic components of climate variability, facilitate safe and efficient marine operations, ensure national security, manage marine resources, preserve and restore healthy marine ecosystems, mitigate natural hazards, and ensure public health. The initial building blocks for GCOOS include continuing in situ observations, satellite products, models, and other information supported by federal and state government, private industry, and academia. GCOOS has compiled an inventory of such activities, together with descriptions, costs, sources of support, and possible out-year budgets. These activities provide information that will have broader use as they are integrated and enhanced. GCOOS has begun that process by several approaches. First, GCOOS has established a web site (www.gcoos.org) which is a portal to such activities and contains pertinent information

  9. Assessment of clear sky radiative fluxes in CMIP5 climate models using surface observations from BSRN

    Science.gov (United States)

    Wild, M.; Hakuba, M. Z.; Folini, D.; Ott, P.; Long, C. N.

    2017-12-01

    Clear sky fluxes in the latest generation of Global Climate Models (GCM) from CMIP5 still vary largely particularly at the Earth's surface, covering in their global means a range of 16 and 24 Wm-2 in the surface downward clear sky shortwave (SW) and longwave radiation, respectively. We assess these fluxes with monthly clear sky reference climatologies derived from more than 40 Baseline Surface Radiation Network (BSRN) sites based on Long and Ackermann (2000) and Hakuba et al. (2015). The comparison is complicated by the fact that the monthly SW clear sky BSRN reference climatologies are inferred from measurements under true cloud-free conditions, whereas the GCM clear sky fluxes are calculated continuously at every timestep solely by removing the clouds, yet otherwise keeping the prevailing atmospheric composition (e.g. water vapor, temperature, aerosols) during the cloudy conditions. This induces the risk of biases in the GCMs just due to the additional sampling of clear sky fluxes calculated under atmospheric conditions representative for cloudy situations. Thereby, a wet bias may be expected in the GCMs compared to the observational references, which may induce spurious low biases in the downward clear sky SW fluxes. To estimate the magnitude of these spurious biases in the available monthly mean fields from 40 CMIP5 models, we used their respective multi-century control runs, and searched therein for each month and each BSRN station the month with the lowest cloud cover. The deviations of the clear sky fluxes in this month from their long-term means have then be used as indicators of the magnitude of the abovementioned sampling biases and as correction factors for an appropriate comparison with the BSRN climatologies, individually applied for each model and BSRN site. The overall correction is on the order of 2 Wm-2. This revises our best estimate for the global mean surface downward SW clear sky radiation, previously at 249 Wm-2 infered from the GCM clear sky

  10. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    Science.gov (United States)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  11. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  12. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    Science.gov (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  13. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  14. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter

  15. Chandra X-Ray Observatory Observations of the Jovian System

    Science.gov (United States)

    Elsner, R. F.; Bhardwaj, A.; Gladstone, R.; Waite, J. H.; Ford, P.; Branduari-Raymont, G.

    2005-01-01

    Chandra X-ray Observatory (CXO) and XMM-Newton observations of x-rays from the Jovian system have answered questions that arose from early observations with the Einstein and Rosat X-ray Observatories, but in the process of vastly increasing our knowledge of x-ray emission from Jupiter and its environs they have also raised new questions and point to new opportunities for future studies. We will review recent x-ray results on the Jovian system, from the point of view of the CXO, and discuss various questions that have arisen in the course of our studies. We will discuss prospects for more observations in the immediate future, and how they might address open questions. Finally we will briefly describe ways in which an imaging x-ray spectrometer in the vicinity of the Jovian system could provide a wealth of data and results concerning Jupiter's x-ray auroral and disk emission, elemental abundance measurements for the Galilean moons, and detailed studies of x-ray emission from the Io Plasma Torus.

  16. Satellite Observed Variability in Antarctic and Arctic Surface Temperatures and Their Correlation to Open Water Areas

    Science.gov (United States)

    Comiso, Josefino C.; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Recent studies using meterological station data have indicated that global surface air temperature has been increasing at a rate of 0.05 K/decade. Using the same set of data but for stations in the Antarctic and Arctic regions (>50 N) only, the increases in temperature were 0.08, and 0.22 K/decade, when record lengths of 100 and 50 years, respectively, were used. To gain insights into the increasing rate of warming, satellite infrared and passive microwave observations over the Arctic region during the last 20 years were processed and analyzed. The results show that during this period, the ice extent in the Antarctic has been increasing at the rate of 1.2% per decade while the surface temperature has been decreasing at about 0.08 K per decade. Conversely, in the Northern Hemisphere, the ice extent has been decreasing at a rate of 2.8% per decade, while the surface temperatures have been increasing at the rate of 0.38 K per decade. In the Antarctic, it is surprising that there is a short term trend of cooling during a global period of warming. Very large anomalies in open water areas in the Arctic were observed especially in the western region, that includes the Beaufort Sea, where the observed open water area was about 1x10(exp 6) sq km, about twice the average for the region, during the summer of 1998. In the eastern region, that includes the Laptev Sea, the area of open water was also abnormally large in the summer of 1995. Note that globally, the warmest and second warmest years in this century, were 1998 and 1995, respectively. The data, however, show large spatial variability with the open water area distribution showing a cyclic periodicity of about ten years, which is akin to the North Atlantic and Arctic Oscillations. This was observed in both western and eastern regions but with the phase of one lagging the other by about two years. This makes it difficult to interpret what the trends really mean. But although the record length of satellite data is still

  17. Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment

    Science.gov (United States)

    Ahmadalipour, Ali; Moradkhani, Hamid

    2017-12-01

    Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought early warning systems. Several sources of uncertainty in hydrologic modeling have been addressed in the literature. However, few studies have assessed the uncertainty of gridded observation datasets from a drought monitoring perspective. This study provides a hydrologic modeling oriented analysis of the gridded observation data uncertainties over the Pacific Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a deterministic observation. Meteorological and hydrological droughts are studied at multiple timescales over the basin, and seasonal long-term trends and variations of drought extent is investigated for each case. Results reveal large uncertainty of observed datasets at monthly timescale, with systematic differences for temperature records, mainly due to different lapse rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an increasing trend is found for winter drought extent across the PNW. Furthermore, a ∼3% decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region being more susceptible to SWE variations of the northern Rockies than the western Cascades. The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as a result of precipitation decline, which implies higher appeal for anthropogenic water storage and irrigation systems.

  18. Reconciling Land-Ocean Moisture Transport Variability in Reanalyses with P-ET in Observationally-Driven Land Surface Models

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.

    2016-01-01

    Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC equals P minus ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P minus ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to minus 0.03 millimeters per day per decade are reduced by the adjustments to 0.016 millimeters per day per decade, much closer to the LSM P minus ET estimate (0.007 millimeters per day per decade). Neither is significant at the 90 percent level. ENSO (El Nino-Southern Oscillation)-related modulation of VMFC and P minus ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86.

  19. Global Mercury Observation System (GMOS) surface observation data from around the world.

    Data.gov (United States)

    U.S. Environmental Protection Agency — GMOS Network Data. This dataset is associated with the following publication: De Simone, F., P. Artaxo, M. Bencardino, S. Cinnirella, F. Carbone, F. D'Amore, A....

  20. Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis and observations

    Science.gov (United States)

    Xie, Jin; Yu, Ye; Li, Jiang-lin; Ge, Jun; Liu, Chuan

    2018-02-01

    Surface sensible and latent heat fluxes (SH and LE) over the Tibetan Plateau (TP) have been under research since 1950s, especially for recent several years, by mainly using observation, reanalysis, and satellite data. However, the spatiotemporal changes are not consistent among different studies. This paper focuses on the spatiotemporal variation of SH and LE over the TP from 1981 to 2013 using reanalysis data sets (ERA-Interim, JRA-55, and MERRA) and observations. Results show that the spatiotemporal changes from the three reanalysis data sets are significantly different and the probable causes are discussed. Averaged for the whole TP, both SH and LE from MERRA are obviously higher than the other two reanalysis data sets. ERA-Interim shows a significant downward trend for SH and JRA-55 shows a significant increase of LE during the 33 years with other data sets having no obvious changes. By comparing the heat fluxes and some climate factors from the reanalysis with observations, it is found that the differences of heat fluxes among the three reanalysis data sets are closely related to their differences in meteorological conditions as well as the different parameterizations for surface transfer coefficients. In general, the heat fluxes from the three reanalysis have a better representation in the western TP than that in the eastern TP under inter-annual scale. While in terms of monthly variation, ERA-Interim may have better applicability in the eastern TP with dense vegetation conditions, while SH of JRA-55 and LE of MERRA are probably more representative for the middle and western TP with poor vegetation conditions.

  1. Validation of VIIRS Land Surface Phenology using Field Observations, PhenoCam Imagery, and Landsat data

    Science.gov (United States)

    Zhang, X.; Jayavelu, S.; Wang, J.; Henebry, G. M.; Gray, J. M.; Friedl, M. A.; Liu, Y.; Schaaf, C.; Shuai, A.

    2016-12-01

    A large number of land surface phenology (LSP) products have been produced from various detection algorithms applied to coarse resolution satellite datasets across regional to global scales. However, validation of the resulting LSP products is very challenging because in-situ observations at comparable spatiotemporal scales are generally not available. This research focuses on efforts to evaluate and validate the global 500m LSP product produced from Visible Infrared Imaging Radiometer Suite (VIIRS) NBAR time series for 2013 and 2014. Specifically, we used three different datasets to evaluate six VIIRS LSP metrics of greenup onset, mid-point of greenup phase, maturity onset, senescence onset, mid-point of senescence phase, and dormancy onset. First, we obtained the field observations from the USA National Phenology Network that has gathered extensive phenological data on individual species. Although it is inappropriate to compare these data directly with the LSP footprints, this large and spatially distributed dataset allows us to evaluate the overall quality of VIIRS LSP results. Second, we gathered PhenoCam imagery from 164 sites, which was used to extract the daily green chromatic coordinate (GCC) and vegetation contrast index (VCI)values. Utilizing these PhenoCam time series, the phenological events were quantified using a hybrid piecewise logistic models for each site. Third, we detected the phenological timing at the landscape scale (30m) from surface reflectance simulated by fusing MODIS data and Landsat 8 OLI observations in an agricultural area (in the central USA) and from overlap zones of OLI scenes in semiarid areas (California and Tibetan Plateau). The phenological timing from these three datasets was used to compare with VIIRS LSP data. Preliminary results show that the VIIRS LSP are generally comparable with phenological data from the USA-NPN, PhenoCam, and Landsat data, with differences arising in specific phenological events and land cover types.

  2. Variations in Near-Infrared Emissivity of Venus Surface Observed by the Galileo Near-Infrared Mapping Spectrometer

    Science.gov (United States)

    Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.

    2004-11-01

    We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  3. Criticality in conserved dynamical systems: experimental observation vs. exact properties.

    Science.gov (United States)

    Marković, Dimitrije; Gros, Claudius; Schuelein, André

    2013-03-01

    Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.

  4. Estimation of Surface CO2 Flux Using a Carbon Tracking System Based on Ensemble Kalman Filter

    Science.gov (United States)

    Kim, J.; Kim, H. M.; Cho, C. H.; Boo, K. O.

    2015-12-01

    Estimation of the surface CO2 flux is crucial to understand the mechanism of surface carbon source and sink. In Asia, there are large uptake regions such as forests in boreal and temperate regions. In this study, to diagnose the surface CO2 flux in the globe and Asia, CO2 observations were assimilated in the CarbonTracker developed by NOAA. The CarbonTracker is an inverse modeling system that estimates the surface CO2 flux using an ensemble Kalman filter with atmospheric CO2 measurements as a constraint. First, the capability of CarbonTracker as an analysis tool for estimating surface CO2 flux in Asia was investigated. Different from the CarbonTracker developed by NOAA, a nesting domain centered on Asia was used with additional observations in Asia. In addition, a diagnostic tool to calculate the effect of individual CO2 observations on estimating the surface CO2 flux was developed using the analysis sensitivity to observation and information content in the CarbonTracker framework. The results showed that CarbonTracker works appropriately for estimating surface CO2 flux. The nesting domain centered in Asia produces a detailed estimate of the surface CO2 fluxes and exhibited better agreement with the CO2 observations in Asia. Additional observations provide beneficial impact on the estimated surface CO2 flux in Asia and Europe. The analysis sensitivity showed seasonal variations with greater sensitivities in summer and lower sensitivities in winter. Strong correlation exists between the information content and the optimized surface CO2 flux.

  5. Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model

    Directory of Open Access Journals (Sweden)

    J. Aubert

    2011-10-01

    Full Text Available Over the past decades, direct three-dimensional numerical modelling has been successfully used to reproduce the main features of the geodynamo. Here we report on efforts to solve the associated inverse problem, aiming at inferring the underlying properties of the system from the sole knowledge of surface observations and the first principle dynamical equations describing the convective dynamo. To this end we rely on twin experiments. A reference model time sequence is first produced and used to generate synthetic data, restricted here to the large-scale component of the magnetic field and its rate of change at the outer boundary. Starting from a different initial condition, a second sequence is next run and attempts are made to recover the internal magnetic, velocity and buoyancy anomaly fields from the sparse surficial data. In order to reduce the vast underdetermination of this problem, we use stochastic inversion, a linear estimation method determining the most likely internal state compatible with the observations and some prior knowledge, and we also implement a sequential evolution algorithm in order to invert time-dependent surface observations. The prior is the multivariate statistics of the numerical model, which are directly computed from a large number of snapshots stored during a preliminary direct run. The statistics display strong correlation between different harmonic degrees of the surface observations and internal fields, provided they share the same harmonic order, a natural consequence of the linear coupling of the governing dynamical equations and of the leading influence of the Coriolis force. Synthetic experiments performed with a weakly nonlinear model yield an excellent quantitative retrieval of the internal structure. In contrast, the use of a strongly nonlinear (and more realistic model results in less accurate static estimations, which in turn fail to constrain the unobserved small scales in the time integration of the

  6. TECHNICAL VISION SYSTEM FOR THE ROBOTIC MODEL OF SURFACE VESSEL

    Directory of Open Access Journals (Sweden)

    V. S. Gromov

    2016-07-01

    Full Text Available The paper presents results of work on creation of technical vision systems within the training complex for the verification of control systems by the model of surface vessel. The developed system allows determination of the coordinates and orientation angle of the object of control by means of an external video camera on one bench mark and without the need to install additional equipment on the object of control itself. Testing of the method was carried out on the robotic complex with the model of a surface vessel with a length of 430 mm; coordinates of the control object were determined with the accuracy of 2 mm. This method can be applied as a subsystem of receiving coordinates for systems of automatic control of surface vessels when testing on the scale models.

  7. Interannual Variation of the Surface Temperature of Tropical Forests from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Huilin Gao

    2016-01-01

    Full Text Available Land surface temperatures (LSTs within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I and the Special Sensor Microwave Imager Sounder (SSMIS, providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP reanalysis data.

  8. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  9. Estimating Antarctic near-surface magnetic anomalies from Oersted and CHAMP satellite magnetometer observations

    Science.gov (United States)

    von Frese, R. R.; Kim, H.; Gaya-Pique, L. R.; Taylor, P. T.; Golynsky, A. V.; Kim, J.

    2004-12-01

    Significant improvement in predicting near-surface magnetic anomalies can result from the highly accurate magnetic observations of the CHAMP satellite that is orbiting at about 400 km altitude. In general, regional magnetic signals of the crust are strongly masked by the core field and its secular variations due to wavelength coupling in the spherical harmonic representation and thus are difficult to isolate in the satellite measurements. However, efforts to isolate the regional lithospheric from core field components can exploit the correlations between the CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations. In addition, we can use spectral correlation theory to filter the static lithospheric field components from the dynamic external field effects. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Oersted and noisier Magsat observations, CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intra-crustal magnetic features and crustal thickness variations of the Antarctic. Moreover, these results greatly facilitate predicting magnetic anomalies in the regional coverage gaps of the ADMAP compilation of Antarctic magnetic anomalies from shipborne, airborne and ground surveys. Our analysis suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.

  10. Simultaneous observations of ULF waves in the Earth's magnetosphere, topside ionosphere and surface

    Science.gov (United States)

    Balasis, Georgios; Daglis, Ioannis A.; Georgiou, Marina; Papadimitriou, Constantinos; Zesta, Eftyhia; Mann, Ian; Haagmans, Roger

    2013-04-01

    We have found a specific time interval during the Halloween 2003 magnetic storm, when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction, and have examined the Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) ULF wave activity using data from Cluster, CHAMP and the CARISMA magnetometer network. We provide evidence for the first simultaneous observation of a Pc3 ULF wave event in the magnetosphere, in the topside ionosphere and on the ground, by Cluster, CHAMP and the Dawson (DAWS) magnetic station respectively at ~ 13:00 LT. Moreover, we show the remarkably clear transition of the wave's frequency into a higher regime within the Pc3 range, simultaneously detected in the magnetosphere and topside ionosphere and on the Earth's surface. The commonly observed wave parameters (i.e., onset, duration and frequency content) at Cluster, CHAMP and DAWS provide evidence that we are, indeed, observing manifestation of the same phenomenon. This work has received support from the European Space Agency under contract ESTEC 4000103770/11/NL/JA/ef and from the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  11. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  12. Toward an integrated Volcanic Ash Observing System in Europe

    Science.gov (United States)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  13. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    National Research Council Canada - National Science Library

    Sullivan, Peter P; McWilliams, James C; Melville, W. K

    2008-01-01

    ... planetary boundary layers (PBL). Efforts were focused on the effects of surface gravity waves on the near-surface dynamics, surface fluxes, and coupling between the atmospheric and oceanic PBLs...

  14. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  15. Planetary systems in polarized light: Debris disk observations and instrumentation

    Science.gov (United States)

    Millar-Blanchaer, Maxwell A.

    Understanding planet formation is one of the major challenges of modern astronomy. Polarimetry is a powerful tool with which we can confront this challenge. In particular, polarimetric observations can be useful for imaging debris disks and characterizing exoplanet atmospheres. With that in mind, this thesis has been constructed with two main aspects: i) observational studies of two debris disk systems, beta Pic and HD 157587, using the Gemini Planet Imager and ii) the characterization and testing of a new type of diffraction grating, called a polarization grating, that we plan to use for future observations of exoplanet atmospheres. The Gemini Planet Imager is a high-contrast imager that includes a polarimetry mode designed to image circumstellar disks. Here we detail the development of new data analysis techniques that reduce systematics and noise in processed GPI data. We apply these techniques to observations of the beta Pic and HD 157587 debris disks and then fit each disk image to a geometric disk model. The beta Pic disk model's morphology cannot be explained by interactions with the planet beta Pic b, and the presence of a second planet could be invoked to explain the discrepancy. In the case of HD 157587, the disk model's geometric centre is offset from the location of the star, which could be explained by a perturbing planet. Characterization of the planets' interactions with their debris disks is a critical method to gain more information about these two systems. The second component of this thesis focuses on polarization gratings, thin film optical devices that can simultaneously act as polarizing beam splitters and as spectral dispersive elements. Moreover, they can be designed for high diffraction efficiency across a broad wavelength range. These features make polarization gratings useful for many types of astronomical observations. We have carried out laboratory and on-sky test observations using a polarization grating optimized for visible

  16. Modeling and observational occurrences of near-surface drainage in Utopia Planitia, Mars

    Science.gov (United States)

    Costard, F.; Sejourne, A.; Kargel, J.; Godin, E.

    2016-12-01

    During the past 15 years, evidence for an ice-rich planet Mars has rapidly mounted, become increasingly varied in terms of types of deposits and types of observational data, and has become more widespread across the surface. The mid-latitudes of Mars, especially Utopia Planitia, show many types of interesting landforms similar to those in periglacial landscapes on Earth that suggest the presence of ice-rich permafrost. These include thermal contraction polygonal networks, scalloped terrains similar to thermokarst pits, debris flows, small mounds like pingos and rock glaciers. Here, we address questions concerning the influence of meltwater in the Utopia Planitia (UP) landscape using analogs of near-surface melting and drainage along ice-wedge troughs on Bylot Island, northern Canada. In Utopia Planitia, based on the identification of sinuous channel-like pits within polygonal networks, we suggest that episodic underground melting was possible under severe periglacial climate conditions. In UP, the collapse pattern and morphology of unconnected sinuous elongated pits that follow the polygon crack are similar to underground melting in Bylot Island (Nunavut, Canada). Based on this terrestrial analogue, we develop a thermal model that consists of a thick insulating dusty layer over ice-saturated dust during a period of slight climatic warming relative to today's climate. In the model, the melting point is reached at depths down to 150 m. We suggest that small-scale melting could have occurred below ground within ground-ice polygonal fractures and pooled in underground cavities. Then the water may have been released episodically causing mechanical erosion as well as undermining and collapse. After melting, the dry surface dusty layer might have been blown away, thus exposing the degraded terrain of the substrate layer.

  17. Observations of multiple order parameters in 5f electron systems

    International Nuclear Information System (INIS)

    Blackburn, E.

    2005-12-01

    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd 2 Al 3 the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)

  18. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  19. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  20. Observed metre scale horizontal variability of elemental carbon in surface snow

    International Nuclear Information System (INIS)

    Svensson, J; Lihavainen, H; Ström, J; Hansson, M; Kerminen, V-M

    2013-01-01

    Surface snow investigated for its elemental carbon (EC) concentration, based on a thermal–optical method, at two different sites during winter and spring of 2010 demonstrates metre scale horizontal variability in concentration. Based on the two sites sampled, a clean and a polluted site, the clean site (Arctic Finland) presents the greatest variability. In side-by-side ratios between neighbouring samples, 5 m apart, a ratio of around two was observed for the clean site. The median for the polluted site had a ratio of 1.2 between neighbouring samples. The results suggest that regions exposed to snowdrift may be more sensitive to horizontal variability in EC concentration. Furthermore, these results highlight the importance of carefully choosing sampling sites and timing, as each parameter will have some effect on EC variability. They also emphasize the importance of gathering multiple samples from a site to obtain a representative value for the area. (letter)

  1. System design description for surface moisture measurement system (SMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  2. UV surface habitability of the TRAPPIST-1 system

    Science.gov (United States)

    O'Malley-James, Jack T.; Kaltenegger, L.

    2017-07-01

    With the discovery of rocky planets in the temperate habitable zone (HZ) of the close-by cool star TRAPPIST-1, the question of whether such planets could harbour life arises. Habitable planets around red dwarf stars can orbit in radiation environments that can be life-sterilizing. Ultraviolet (UV) flares from these stars are more frequent and intense than solar flares. Additionally, their temperate HZs are closer to the star. Here we present UV surface environment models for TRAPPIST-1's HZ planets and explore the implications for life. TRAPPIST-1 has high X-ray/extreme-ultraviolet activity, placing planetary atmospheres at risk from erosion. If a dense Earth-like atmosphere with a protective ozone layer existed on planets in the HZ of TRAPPIST-1, UV surface environments would be similar to the present-day Earth. However, an eroded or an anoxic atmosphere would allow more UV to reach the surface, making surface environments hostile even to highly UV tolerant terrestrial extremophiles. If future observations detect ozone in the atmospheres of any of the planets in the HZ of TRAPPIST-1, these would be interesting targets for the search for surface life. We anticipate our assay to be a starting point for in-depth exploration of stellar and atmospheric observations of the TRAPPIST-1 planets to constrain their UV surface habitability.

  3. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  4. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  5. Observed and simulated effect of plant physiology and structure on land surface energy fluxes and soil conditions

    Science.gov (United States)

    Lu, Yen-Sen; Rihani, Jehan; Langensiepen, Matthias; Simmer, Clemens

    2016-04-01

    parameterizations are implemented into the CLM3.5 version within TerrSysMP. Simulation results from both parameterizations are compared against the original Ball-Berry-Collatz model in the standard version of CLM3.5. Furthermore results using MODIS LAI are compared against simulations using a simple parameterization of LAI based on ground surface temperature. All simulation results are compared against Eddy Covariance flux and soil moisture network observations performed. A Taylor-diagram and other statistic methods including model performance indices are employed to compare the different parameterizations with the observations. The two way feedback between water table dynamics and energy fluxes is explored to evaluate the effect of vegetation input on energy and hydrologic state of the simulated terrestrial system. Preliminary results show that the Jarvis-Stewart along with parameterized LAI performs well in simulating latent heat and sensible heat for grass and winter wheat type of land cover condition during 2012 except for some time period. While applying PF-CLM3.5 for coupled surface-land surface simulation, water table depth increases with the increase of transpiration. This result indicates stomatal control scheme in CLM3.5 is not sensitive to the reduction of soil wetness if the water table is relatively high. In this study changing stomatal scheme and LAI input can lead to high variability of resulting energy fluxes.

  6. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.

  7. Surface resistance of superconductors - examples from Nb - O systems

    International Nuclear Information System (INIS)

    Palmer, F.

    1988-01-01

    The observed surface resistance of most superconductors can be written as the sum of two terms. R/sub obs/ = R/sub BCS/ + R/sub res/. This paper is divided into three sections. The first section describes the BCS theory of surface resistance in terms of a simplified two-fluid model. The second section describes several possible causes of residual resistance including normal conducting materials, tunneling across cracks in the surface, and direct generation of phonons by the RF electric field. The last section describes recent experiments having to do with the effects of oxide layers on surface resistance. Layers grown in pure oxygen at room temperature were found to have little or no effect, but if these layers are heated to temperatures near 300 0 C, they can alter both the BCS resistance and the residual resistance. Heated oxide layers also increased the dependence of the residual resistance on ambient magnetic field. 31 references, 13 figures, 3 tables

  8. Active surface system for the new Sardinia Radiotelescope

    Science.gov (United States)

    Orfei, Alessandro; Morsiani, Marco; Zacchiroli, Giampaolo; Maccaferri, Giuseppe; Roda, Juri; Fiocchi, Franco

    2004-09-01

    In this paper we'll describe the active surface system that will be provided on the new Italian radiotelescope being in the phase of erection in the Sardinia Island. SRT (Sardinia Radiotelescope) will be a 64m shaped dish working up to 100GHz by exploiting the active surface facility designed by the authors. This facility will overcome the effects of gravity deformations on the antenna gain and will also be used to re-shape in a parabolic form the primary mirror, in order to avoid large phase error contribution on the antenna gain for the highest frequencies placed on the primary focus. Together with the description of the SRT system, a wide overview will be given regarding our previous installation of an active surface system, that can be seen like a prototype for SRT, mounted on the 32m dish of the Noto antenna.

  9. Upper wind observing systems used for meteorological operations

    Directory of Open Access Journals (Sweden)

    J. Nash

    Full Text Available Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s-1.

  10. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  11. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    Science.gov (United States)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  12. Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data

    Science.gov (United States)

    Fu, Lee-Lueng

    2007-01-01

    The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.

  13. Satellite Mapping of Agricultural Water Requirements in California with the Terrestrial Observation and Prediction System

    Science.gov (United States)

    Melton, F. S.; Lund, C.; Johnson, L.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Rosevelt, C.; Brandt, W. T.; Votava, P.; Nemani, R. R.

    2012-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The system utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations to map crop canopy development, basal crop coefficients (Kcb), and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface