WorldWideScience

Sample records for surface mount processes

  1. Surface mount component jig

    Science.gov (United States)

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  2. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  3. Surface-Mount Rotor Motion Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  4. A Surface-Mounted Rotor State Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  5. PECULIARITIES OF ASSIGNMENT OF ROLLING BEARING MOUNTING AND PARAMETERS OF GEOMETRIC ACCURACY OF MOUNTING SURFACES OF SHAFTS AND FRAMES

    Directory of Open Access Journals (Sweden)

    Adamenko Yu. І.

    2017-04-01

    Full Text Available The standards and methods concerning assignment of rolling bearing fit with shafts and frames via example of bearing 6-208 are analyzed. We set certain differences of recommendations according to GOST 3325-85, "Rolling bearings. Tolerance zones and technical requirements to mounting surfaces of shafts and frames. Attachment" and by reference of rolling bearing manufacturers. The following factors should be taken into consideration when assigning the mounting with the tension the internal ring of the bearing with shaft and mounting with a gap in the outer ring with a housing bore. The methods of achieving accuracy of mounting surfaces of shafts and frames via form tolerance assignment: roundness tolerance, profile of longitudinal cut, cross section, cylindricity and others. It is possible to limit the bearing rings in different ways, for example appointing the cylindrical mounting surfaces and bead end surfaces the appropriate tolerances, namely: coaxiality tolerance or full radial beat of mounting surfaces, and also perpendicularity tolerance, butt beats and full butt beats of mounting end surfaces. We suggest to expand methods of achieving the accuracy of shafts and frames depending on seriation of production and production operations metrology support.

  6. Development and Evaluation of a Surface-Mount, High-G Accelerometer

    National Research Council Canada - National Science Library

    Peregino, Philip

    2004-01-01

    .... In the area of die level and surface mount components, the 7270A is relatively large. The sensing element is packaged inside a metal case with screw holes for mounting to a rigid surface. In addition...

  7. Multiple-Objective Particle Swarm Optimization for Multi-Head Beam-Type Surface Mounting Machines

    NARCIS (Netherlands)

    Torabi, S.A.; Hamedi, M.; Ashayeri, J.

    2010-01-01

    The growing demand for electronic devices has made the manufacturing of printed circuit boards (PCBs) a promising industry over the last decades. As the demand for printed circuit boards increases, the industry becomes more dependent on highly automated assembly processes using Surface Mounting

  8. Body surface mounted biomedical monitoring system using Bluetooth.

    Science.gov (United States)

    Nambu, Masayuki

    2007-01-01

    Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.

  9. Vortex shedding from two surface-mounted cubes in tandem

    International Nuclear Information System (INIS)

    Martinuzzi, Robert J.; Havel, Brian

    2004-01-01

    Periodic vortex shedding from two surface-mounted cubes, of height H, in tandem arrangement placed in a thin boundary layer is investigated for a spacing 2H using phase-averaged Laser Doppler Velocimetry. Tests were conducted for a Reynolds number of 22,000, based on H and the freestream velocity, and an approximately 0.07H thick laminar boundary layer. For obstacle separations between 1.5H and 2.5H, the shedding frequency scales inversely with the obstacle spacing, S, such that the Strouhal number based on S is constant or geometrically locked. In this locked regime, periodic shedding is triggered by the interference between a vertical flow stream along the front face of the downstream obstacle and the vortex in the inter-obstacle cavity. This three-dimensional mechanism is not observed for two-dimensional geometries and helps explain why a locked regime cannot be observed for square cylinders in tandem arrangement. Furthermore, it is shown that the structure of the turbulent field in the cavity region differs significantly from that in the base region of a two-dimensional obstacle

  10. Assembling surface mounted components on ink-jet printed double sided paper circuit board

    International Nuclear Information System (INIS)

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Sidén, Johan; Nilsson, Hans-Erik; Hummelgård, Magnus; Olin, Håkan; Hummelgård, Christine

    2014-01-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed. (paper)

  11. Probing the switching state of a surface-mounted azobenzene derivative using femtosecond XUV photoemission

    Science.gov (United States)

    Grunau, Jan; Heinemann, Nils; Rohwer, Timm; Zargarani, Dordaneh; Kuhn, Sonja; Jung, Ullrich; Kipp, Lutz; Magnussen, Olaf; Herges, Rainer; Bauer, Michael

    2012-03-01

    Photoemission spectroscopy using femtosecond XUV light pulses is applied to probe the isomerization state of the molecular switch 3-(4-(4-hexyl-phenylazo)-phenoxy)-propane-1-thiol deposited by liquid phase self-assembly on Au(111). Spectral shifts of valence-electronic signatures that we associate with the carbon C2s orbital enable us to distinguish the trans and the cis isomerization state of the adsorbed molecules. These preliminary results envision the potential to probe reversible switching processes of surface-mounted molecules in real time by tracking the temporal evolution of the electronic and nuclear degrees of freedom in a femtosecond XUV photoemission experiment.

  12. Structural response of near surface mounted CFRP strengthened reinforced concrete bridge deck overhang.

    Science.gov (United States)

    2008-11-01

    This report presents the results from an experimental investigation which explores the change in structural response due to the addition of near-surface-mounted (NSM) carbon fiber reinforced polymer (CFRP) reinforcement for increasing the capacity of...

  13. Quality investigation of surface mount technology using phase-shifting digital holography

    Science.gov (United States)

    Boonsri, Chantira; Buranasiri, Prathan

    2016-09-01

    Applying of a phase-shifting digital holography combined with compressive sensing to inspect the soldering quality of surface mount technology (SMT) which is a method for producing electronic circuits. In SMT, the components are mounted and connected with each other directly onto the surface of printed circuit boards (PCBs). By reconstructing the multidimensional images from a few samples of SMT, the results are solved by an optimization problem. In this paper, two problems have been concerned. The first one is to examine the devices and the soldering quality of connections between them, which are in micro-scaled. The second is to observe the effect of heat treatment of soldering material and devices on the surface mount board.

  14. Classification of surface types using SIR-C/X-SAR, Mount Everest area, Tibet

    Science.gov (United States)

    Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric

    1998-11-01

    Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.

  15. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  16. Fundamentally excited flow past a surface-mounted rib. Part II ...

    Indian Academy of Sciences (India)

    However, the selection of proper excitation parameters requires the complete understanding of turbulent transport quantities and their evolution in the reattaching shear layer. Hence, the detailed turbulent statistics and energy budget of the reattaching shear layer behind a surface-mounted rib is the focus of this paper.

  17. The impact of accelerometer mounting methods on the level of vibrations recorded at ground surface

    Directory of Open Access Journals (Sweden)

    Krzysztof Czech

    2014-08-01

    Full Text Available The paper presents the results of field research based on the measurements of accelerations recorded at ground surface. The source of the vibration characterized by high repetition rate of pulse parameters was light falling weight deflectometer ZFG-01. Measurements of vibrations have been carried out using top quality high-precision measuring system produced by Brüel&Kiær. Accelerometers were mounted on a sandy soil surface at the measuring points located radially at 5-m and 10-m distances from the source of vibration. The paper analyses the impact that the method of mounting accelerometers on the ground has on the level of the recorded values of accelerations of vibrations. It has been shown that the method of attaching the sensor to the surface of the ground is crucial for the credibility of the performed measurements.[b]Keywords[/b]: geotechnics, surface vibrations, ground, vibration measurement

  18. First observations of surface ozone concentration from the summit region of Mount Everest

    Science.gov (United States)

    Semple, John L.; Moore, G. W. K.

    2008-10-01

    The extreme height of Mount Everest is such that its summit region may periodically be in the lower stratosphere. In this regard it provides a unique location for observing the exchange of ozone between the upper troposphere and lower stratosphere. Here we report the first surface ozone measurements from the summit region of Mount Everest. Simultaneous measurements were recorded at different elevations on the north side from base camp (5676 m) to the summit (8848 m) during May 2005. The concentrations measured were as high as 70 ppb. Meteorological diagnostics suggest that the stratosphere as well as the long range transport of polluted tropospheric air masses from South East Asia are sources of the observed ozone. There is evidence that the source region for ozone in the vicinity of Mount Everest may vary with the onset of the summer monsoon.

  19. Milk-run kanban system for raw printed circuit board withdrawal to surface-mounted equipment

    Directory of Open Access Journals (Sweden)

    Swee Li Chee

    2012-12-01

    Full Text Available Purpose:  The paper aims to present a case study and later simulation analysis on a kanban system that incorporating milk-run operation to draw in raw material to the process. Design/methodology/approach:  Data collection at the case study company for ten weeks followed by a process study called value stream mapping. The proposed kanban model is simulated to test its various performances including total output, average flow time, average work-in-process, SME utilization, and average waiting time. Response surface methodology is adopted to generate suitable representative regression models.  Findings: For all performance measures, simulation results showed that the proposed system consistently outperforms the push system currently practiced. Second, the system indicates the advantages of leveling, particularly in the event of machine failure and blockage. Third, operator in the proposed kanban system has a lower utilization, even with the additional material handling task.   Research limitations/implications: This study only begins to reveal the implication of leveling for production control on multi-machine scenario. The simulation of the system is solely based only the case study. The control parameters critical to the case study, were naturally used. The furtherance of the research should include generalizing the system and devising the respective methodology to facilitate wider applications. Practical implications: Originality/value:  The kanban system is proposed in the light of conflicting interests in handling the surface mounting and the related upstream processes. Such aspect is common to electronics assembly industry.

  20. Forming the stress state of a vibroisolated building in the process of mounting rubber steel vibration isolator

    Directory of Open Access Journals (Sweden)

    Dashevskiy Mikhail Aronovich

    2015-12-01

    Full Text Available The necessity to specificate the formation process of stress-strain state of buildings in the construction process is a new problem which requires including real production characteristics going beyond calculation models into calculation methods. Today the construction process lacks this specification. When mounting vibroisolators the stress-strein of a structure state is changing. The mounting method of vibroisolators is patented and consists in multistage successive compression loading of each vibroisolator with the constant speed and following fixation of this displacement. The specified engineering method of rubber-steel pads calculation in view of change of their form during deformation, nonlinearity, rheological processes is offered. Resilient pads look like rubber plates rectangular in plane reinforced on the basic surfaces with metal sheets. The influence of a time-variable static load and free vibrations of loaded pads are considered.

  1. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...... of the AFM probe in space. This means that the limited measuring range of the AFM (40 mu m x 40 mu m x 2.7 um) can be extended by positioning the AFM probe using the movements of the CMM axes (400 mm x 100 mm x 75 mm). Evaluation of the background noise by determining the Sa value of an optical fiat gave...

  2. Parallel optical interconnect between surface-mounted devices on FR4 printed wiring board using embedded waveguides and passive optical alignments

    Science.gov (United States)

    Karppinen, Mikko; Alajoki, Teemu; Tanskanen, Antti; Kataja, Kari; Mäkinen, Jukka-Tapani; Karioja, Pentti; Immonen, Marika; Kivilahti, Jorma

    2006-04-01

    Technologies to design and fabricate high-bit-rate chip-to-chip optical interconnects on printed wiring boards (PWB) are studied. The aim is to interconnect surface-mounted component packages or modules using board-embedded optical waveguides. In order to demonstrate the developed technologies, a parallel optical interconnect was integrated on a standard FR4-based PWB. It consists of 4-channel BGA-mounted transmitter and receiver modules as well as of four polymer multimode waveguides fabricated on top of the PWB using lithographic patterning. The transmitters and receivers built on low-temperature co-fired ceramic (LTCC) substrates include flip-chip mounted VCSEL or photodiode array and 4x10 Gb/s driver or receiver IC. Two microlens arrays and a surface-mounted micro-mirror enable optical coupling between the optoelectronic device and the waveguide array. The optical alignment is based on the marks and structures fabricated in both the LTCC and optical waveguide processes. The structures were optimized and studied by the use of optical tolerance analyses based on ray tracing. The characterized optical alignment tolerances are in the limits of the accuracy of the surface-mount technology.

  3. Vibration attenuation and shape control of surface mounted, embedded smart beam

    Directory of Open Access Journals (Sweden)

    Vivek Rathi

    Full Text Available Active Vibration Control (AVC using smart structure is used to reduce the vibration of a system by automatic modification of the system structural response. AVC is widely used, because of its wide and broad frequency response range, low additional mass, high adaptability and good efficiency. A lot of research has been done on Finite Element (FE models for AVC based on Euler Bernoulli Beam Theory (EBT. In the present work Timoshenko Beam Theory (TBT is used to model a smart cantilever beam with surface mounted sensors / actuators. A Periodic Output Feedback (POF Controller has been designed and applied to control the first three modes of vibration of a flexible smart cantilever beam. The difficulties encountered in the usage of surface mounted piezoelectric patches in practical situations can be overcome by the use of embedded shear sensors / actuators. A mathematical model of a smart cantilever beam with embedded shear sensors and actuators is developed. A POF Controller has been designed and applied to control of vibration of a flexible smart cantilever beam and effect of actuator location on the performance of the controller is investigated. The mathematical modeling and control of a Multiple Input multiple Output (MIMO systems with two sensors and two actuators have also been considered.

  4. Fourier decomposition of segmented magnets with radial magnetization in surface-mounted PM machines

    Science.gov (United States)

    Tiang, Tow Leong; Ishak, Dahaman; Lim, Chee Peng

    2017-11-01

    This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent agreement has been achieved.

  5. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  6. Spatiotemporal characterization of land surface temperature in Mount Kilimanjaro using satellite data

    Science.gov (United States)

    Maeda, Eduardo Eiji; Hurskainen, Pekka

    2014-11-01

    Mount Kilimanjaro is considered the highest free-standing mountain in the world and a symbol of the African continent. Steep slopes and high altitudes are on the backdrop of unique biophysical characteristics, in which changes between savannas, tropical cloud forests, and subalpine vegetation can be observed in relatively small distances. In the context of this complex and heterogeneous landscape, describing the interactions between climatic variables and ecosystem functions is crucial for understanding the drivers of biodiversity. However, the characterization of climatic variables, especially surface temperature, still remains a critical bottleneck for a comprehensive understanding of habitats in Kilimanjaro. This study applies satellite-based estimates of land surface temperature (LST), from 2001 to 2011, to delineate a thorough characterization of the spatiotemporal patterns of surface temperature in Mount Kilimanjaro. The ample spatial coverage and continuous observations provided by the satellite measurements allowed the detailed description of characteristics so far poorly understood or not yet described in the literature. We demonstrate that the spatial patterns of LST in this region are rather complex, in the sense that it is characterized by non-linear behaviors and strong interactions with land cover and topography. Daytime observations (measured at 10:30 am) were shown to be strongly influenced by land cover characteristics, which is responsible for defining not only the spatial patterns (e.g., lapse rate) but also the seasonal signature of LST. At nighttime measurements (10:30 pm), the influence of land cover virtually disappears and the spatial patterns are mostly driven by altitude. Moreover, this study provides a brief assessment of LST trends observed within the analyzed period.

  7. Glacier winds in the Rongbuk Valley, north of Mount Everest: 2. Their role in vertical exchange processes

    Science.gov (United States)

    Cai, Xuhui; Song, Yu; Zhu, Tong; Lin, Weili; Kang, Ling

    2007-06-01

    High ozone concentrations, combined with low humidity and strong, persistent glacier winds, were found at the surface of Rongbuk Valley, north of Mount Everest, with sharply increased ozone concentrations in their vertical profiles. Glacier winds and their roles in vertical exchange of the atmosphere were investigated numerically to understand the phenomena. A Lagrangian particle dispersion model was used to carry out numerical experiments (forward-in-time simulations) and footprint analysis (backward-in-time simulations). The meteorological data inputs for these experiments were derived from the Advanced Regional Prediction System. Results showed that glacier winds may lead to significant downward transport of 1.5-2 km during the daytime from the northern slopes of Mount Everest. Glacier winds could advance down through the valley, with strong upward motions shown as a rolling up in front of their leading edge. Combining with upslope winds at two sidewalls of the valley or up-valley winds of tributaries, the lifting flows produced strong mixing of the atmosphere to a depth of approximately 3 km. Three-dimensional footprints derived from the particle dispersion model for the observational site, Rongbuk Monastery, clearly show influence from the mountainside of Mount Everest and from the southern part of the valley. The vertical extension of influence was as much as 2-3 km. Good correlation was found between the influence height and the ozone concentration. All the simulation results strongly indicate that the glacier winds and their related vertical exchange processes "pump down" ozone-rich air from upper levels to the surface of the valley.

  8. Thermocouple Errors when Mounted on Cylindrical Surfaces in Abnormal Thermal Environments.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Suo-Anttila, Jill M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zepper, Ethan T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Jerry J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Valdez, Vincent A. [ECI Inc., Albuquerque, NM (United States)

    2017-05-01

    Mineral-insulated, metal-sheathed, Type-K thermocouples are used to measure the temperature of various items in high-temperature environments, often exceeding 1000degC (1273 K). The thermocouple wires (chromel and alumel) are protected from the harsh environments by an Inconel sheath and magnesium oxide (MgO) insulation. The sheath and insulation are required for reliable measurements. Due to the sheath and MgO insulation, the temperature registered by the thermocouple is not the temperature of the surface of interest. In some cases, the error incurred is large enough to be of concern because these data are used for model validation, and thus the uncertainties of the data need to be well documented. This report documents the error using 0.062" and 0.040" diameter Inconel sheathed, Type-K thermocouples mounted on cylindrical surfaces (inside of a shroud, outside and inside of a mock test unit). After an initial transient, the thermocouple bias errors typically range only about +-1-2% of the reading in K. After all of the uncertainty sources have been included, the total uncertainty to 95% confidence, for shroud or test unit TCs in abnormal thermal environments, is about +-2% of the reading in K, lower than the +-3% typically used for flat shrouds. Recommendations are provided in Section 6 to facilitate interpretation and use of the results. .

  9. Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.M.

    2005-10-24

    High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance

  10. Influence of sodium chloride and weak organic acids (flux residues) on electrochemical migration of tin on surface mount chip components

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2013-01-01

    The electrolytic properties of sodium chloride and no-clean solder flux residue, and their effects on electrochemical migration and dendrite growth on surface mount chip capacitors were investigated. The leakage current dependency on concentration of contaminants was measured by a solution...

  11. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...

  12. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...

  13. Fiber Reinforced Polymer Strengthening of Structures by Near-Surface Mounting Method

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2016-08-01

    Full Text Available This paper provides a critical review of recent studies on strengthening of reinforced concrete and unreinforced masonry (URM structures by fiber reinforced polymers (FRP through near-surface mounting (NSM method. The use of NSM-FRP has been on the rise, mainly due to composite materials’ high strength and stiffness, non-corrosive nature and ease of installation. Experimental investigations presented in this review have confirmed the benefits associated with NSM-FRP for flexural and shear strengthening of RC and URM structures. The use of prestressing and anchorage systems to further improve NSM-FRP strain utilization and changes in failure modes has also been presented. Bond behavior of NSM-FRP-concrete or masonry interface, which is a key factor in increasing the load capacity of RC and URM structures has been briefly explored. Presented studies related to the effect of temperature on the bond performance of NSM-FRP strengthened systems with various insulations and adhesive types, show better performance than externally bonded reinforcement (EBR FRP retrofitting. In summary, the presented literature review provides an insight into the ongoing research on the use of NSM-FRP for strengthening of structural members and the trends for future research in this area.

  14. Near Surface Mounted Composites for Flexural Strengthening of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Md. Akter Hosen

    2016-03-01

    Full Text Available Existing structural components require strengthening after a certain period of time due to increases in service loads, errors in design, mechanical damage, and the need to extend the service period. Externally-bonded reinforcement (EBR and near-surface mounted (NSM reinforcement are two preferred strengthening approach. This paper presents a NSM technique incorporating NSM composites, namely steel and carbon fiber-reinforced polymer (CFRP bars, as reinforcement. Experimental and analytical studies carried out to explore the performance of reinforced concrete (RC members strengthened with the NSM composites. Analytical models were developed in predicting the maximum crack spacing and width, concrete cover separation failure loads, and deflection. A four-point bending test was applied on beams strengthened with different types and ratios of NSM reinforcement. The failure characteristics, yield, and ultimate capacities, deflection, strain, and cracking behavior of the beams were evaluated based on the experimental output. The test results indicate an increase in the cracking load of 69% and an increase in the ultimate load of 92% compared with the control beam. The predicted result from the analytical model shows good agreement with the experimental result, which ensures the competent implementation of the present NSM-steel and CFRP technique.

  15. Recent Developments of Reflectarray Antennas for Reconfigurable Beams Using Surface-Mounted RF-MEMS

    Directory of Open Access Journals (Sweden)

    Eduardo Carrasco

    2012-01-01

    Full Text Available Some of the most recent developments in reconfigurable reflectarrays using surface-mounted RF-MEMS, which have been developed at the Universidad Politécnica de Madrid, are summarized in this paper. The results include reconfigurable elements based on patches aperture-coupled to delay lines in two configurations: single elements and gathered elements which form subarrays with common phase control. The former include traditional aperture-coupled elements and a novel wideband reflectarray element which has been designed using two stacked patches. The latter are proposed as a low cost solution for reducing the number of electronic control devices as well as the manufacturing complexity of large reflectarrays. The main advantages and drawbacks of the grouping are evaluated in both pencil and shaped-beam antennas. In all the cases, the effects of the MEMS switches and their assembly circuitry are evaluated when they are used in a 2-bit phase shifter which can be extended to more bits, demonstrating that the proposed elements can be used efficiently in reconfigurable-beam reflectarrays.

  16. Reliability Study of Solder Paste Alloy for the Improvement of Solder Joint at Surface Mount Fine-Pitch Components

    Directory of Open Access Journals (Sweden)

    Mohd Nizam Ab. Rahman

    2014-12-01

    Full Text Available The significant increase in metal costs has forced the electronics industry to provide new materials and methods to reduce costs, while maintaining customers’ high-quality expectations. This paper considers the problem of most electronic industries in reducing costly materials, by introducing a solder paste with alloy composition tin 98.3%, silver 0.3%, and copper 0.7%, used for the construction of the surface mount fine-pitch component on a Printing Wiring Board (PWB. The reliability of the solder joint between electronic components and PWB is evaluated through the dynamic characteristic test, thermal shock test, and Taguchi method after the printing process. After experimenting with the dynamic characteristic test and thermal shock test with 20 boards, the solder paste was still able to provide a high-quality solder joint. In particular, the Taguchi method is used to determine the optimal control parameters and noise factors of the Solder Printer (SP machine, that affects solder volume and solder height. The control parameters include table separation distance, squeegee speed, squeegee pressure, and table speed of the SP machine. The result shows that the most significant parameter for the solder volume is squeegee pressure (2.0 mm, and the solder height is the table speed of the SP machine (2.5 mm/s.

  17. The December 2015 Mount Etna eruption: An analysis of inflation/deflation phases and faulting processes

    Science.gov (United States)

    Aloisi, Marco; Jin, Shuanggen; Pulvirenti, Fabio; Scaltrito, Antonio

    2017-06-01

    During the first days of December 2015, there were four paroxysmal events at the ;Voragine; crater on Mount Etna, which were among the most violent observed during the last two decades. A few days after the ;Voragine; paroxysms, the Pernicana - Provenzana fault system, located near the crater area, underwent an intense seismic swarm with a maximum ;local; magnitude ML of 3.6. This paper investigates the relationship between the eruptive phenomenon and the faulting process in terms of Coulomb stress changes. The recorded seismicity is compatible with a multicausal stress redistribution inside the volcano edifice, occurring after the four paroxysmal episodes that interrupted the usual trend of inflation observed at Mt. Etna. The recorded seismicity falls within the framework of a complex chain of various and intercorrelated processes that started with the inflation preparing the ;Voragine; magmatic activity. This was followed with the rapid deflation of the volcano edifice during the paroxysmal episodes. We determined that the recorded deflation was not the direct cause of the seismic swarm. In fact, the associated Coulomb stress change, in the area of seismic swarm, was of about -1 [bar]. Instead, the fast deflation caused the rarely observed inversion of dislocation in the eastern flank at the same time as intense hydrothermal activity that, consequently, underwent an alteration. This process probably reduced the friction along the fault system. Then, the new phase of inflation, observed at the end of the magmatic activity, triggered the faulting processes.

  18. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  19. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  20. Characterization of dissolved organic materials in surface waters within the blast zone of Mount St Helens, Washington

    Science.gov (United States)

    McKnight, Diane M.; Pereira, W.E.; Ceazan, M.L.; Wissmar, Robert C.

    1982-01-01

    After the May 18, 1980, eruption of Mount St Helens, the concentration of dissolved organic material in surface waters near the volcano increased significantly as a result of the destruction of the surrounding conifer forest. Low molecular weight organic compounds identified in the blast zone surface waters were derived from pyrolysis of plant and soil organic materials incorporated into pyroclastic flow, mud flow and debris avalanche deposits. A major fraction of the dissolved organic material consisted of high molecular weight, colored, organic acids that are similar in their general properties to aquatic fulvic acids found in more typical surface waters except for greater sulfur contents. The other major fraction of the dissolved organic material consisted of hydrophilic acids, which may include compounds capable of supporting heterotrophic microorganisms, and precursors in the formation of aquatic fulvic acids. The organic chemistry of blast zone surface waters will probably be greatly influenced by the May 18, 1980, eruption for many years. ?? 1982.

  1. Implant surfaces and interface processes.

    Science.gov (United States)

    Kasemo, B; Gold, J

    1999-06-01

    The past decades and current R&D of biomaterials and medical implants show some general trends. One major trend is an increased degree of functionalization of the material surface, better to meet the demands of the biological host system. While the biomaterials of the past and those in current use are essentially bulk materials (metals, ceramics, polymers) or special compounds (bioglasses), possibly with some additional coating (e.g., hydroxyapatite), the current R&D on surface modifications points toward much more complex and multifunctional surfaces for the future. Such surface modifications can be divided into three classes, one aiming toward an optimized three-dimensional physical microarchitecture of the surface (pore size distributions, "roughness", etc.), the second one focusing on the (bio) chemical properties of surface coatings and impregnations (ion release, multi-layer coatings, coatings with biomolecules, controlled drug release, etc.), and the third one dealing with the viscoelastic properties (or more generally the micromechanical properties) of material surfaces. These properties are expected to affect the interfacial processes cooperatively, i.e., there are likely synergistic effects between and among them: The surface is "recognized" by the biological system through the combined chemical and topographic pattern of the surface, and the viscoelastic properties. In this presentation, the development indicated above is discussed briefly, and current R&D in this area is illustrated with a number of examples from our own research. The latter include micro- and nanofabrication of surface patterns and topographies by the use of laser machining, photolithographic techniques, and electron beam and colloidal lithographies to produce controlled structures on implant surfaces in the size range 10 nm to 100 microns. Examples of biochemical modifications include mono- or lipid membranes and protein coatings on different surfaces. A new method to evaluate, e

  2. Nanoscale processes on insulating surfaces

    National Research Council Canada - National Science Library

    Gnecco, Enrico; Szymoński, Marek

    2009-01-01

    ... the group of Prof. Ernst Meyer in Basel, where he investigated friction processes on alkali halide surfaces in ultra high vacuum (UHV). The main result was the observation of a logarithmic velocity dependence of atomic friction, which was interpreted within a combination of the classical Tomlinson and Eyring models. After his Ph.D. he joined the ...

  3. Amphibole trace elements as indicators of magmatic processes at Mount St. Helens

    Science.gov (United States)

    Hampel, T. R.; Rowe, M. C.; Kent, A.; Thornber, C. R.

    2011-12-01

    Amphibole has the capability of incorporating a wide variety of trace elements resulting from a range of magmatic processes. Prior studies have used trace elements such as Li and Cu in amphibole to investigate volatile mobility associated with magma ascent regarding the 2004-2008 eruption of Mount St. Helens (Rowe et al. 2008). In order to investigate magmatic processes associated with the 2004-2008 eruption of Mount St. Helens we have measured a range of fluid-mobile trace elements in conjunction with major element compositions of amphibole phenocrysts in dacite lava. Major elements and volatiles (Cl, F) were measured by electron microprobe analysis at Washington State University and trace elements (Li, Sc, Co, Cu, Zn, Sr, Y, Zr, Mo, Ag, Sn, Sb, Te, Ba, Ce, W, and Pb) were analyzed by laser ablation (LA)-ICP-MS at Oregon State University. Amphibole crystallization temperatures were calculated after Ridolfi et al. (2010). Core to rim transects were measured by electron microprobe to evaluate volatile concentrations and temperature profiles across individual phenocrysts. Core temperatures from 17 days and 226 days post eruption are consistently hotter than the rim temperatures 997 to 881 degrees C, respectively. Amphiboles from the end of the eruption (811 days post eruption) appear to be more complex, with phenocrysts having both increasing and decreasing temperatures toward the rims. The overall calculated temperature range of the amphiboles at the end of the eruption is 1022 to 919 degrees C. There is much diversity in the concentrations of Li and Cu within the phenocrysts in both the samples and throughout the eruption. Concentrations steadily increase in the beginning of the eruption then drop dramatically toward the middle, slowly increase toward the end eruption. Overall concentrations of Sr, Sb, Co, Sn, Mo, Ba, Ce, Sc, and Y do not change over the course of the eruption but do vary sample to sample. Preliminary data for Zn, Sb, Ag, and W suggest the

  4. Preparatory process preceding the 2014 eruption of Mount Ontake volcano, Japan: insights from precise leveling measurements

    Science.gov (United States)

    Murase, Masayuki; Kimata, Fumiaki; Yamanaka, Yoshiko; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Matsushima, Takeshi; Mori, Hitoshi; Ohkura, Takahiro; Yoshikawa, Shin; Miyajima, Rikio; Inoue, Hiroyuki; Mishima, Taketoshi; Sonoda, Tadaomi; Uchida, Kazunari; Yamamoto, Keigo; Nakamichi, Harushisa

    2016-01-01

    Preparatory activity preceding the 2014 eruption of Mount Ontake volcano was estimated from vertical deformation detected using a precise leveling survey. Notable uplift (2006-2009) and subsidence (2009-2014) were detected on the eastern flank of the volcano. We estimated pressure source models based on the vertical deformation and used these to infer preparatory process preceding the 2014 eruption. Our results suggest that the subsidence experienced between 2009 and 2014 (including the period of the 2014 eruption) occurred as a result of a sill-like tensile crack with a depth of 2.5 km. This tensile crack might inflate prior to the eruption and deflate during the 2014 activity. A two-tensile-crack model was used to explain uplift from 2006 to 2009. The geometry of the shallow crack was assumed to be the same as the sill-like tensile crack. The deep crack was estimated to be 2 km in length, 4.5 km in width, and 3 km in depth. Distinct uplifts began on the volcano flanks in 2006 and were followed by seismic activities and a small phreatic eruption in 2007. From the partially surveyed leveling data in August 2013, uplift might continue until August 2013 without seismic activity in the summit area. Based on the uplift from 2006 to 2013, magma ascended rapidly beneath the summit area in December 2006, and deep and shallow tensile cracks were expanded between 2006 and 2013. The presence of expanded cracks between 2007 and 2013 has not been inferred by previous studies. A phreatic eruption occurred on 27 September 2014, and, following this activity, the shallow crack may have deflated.

  5. Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna

    Science.gov (United States)

    La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Murè, Filippo

    2016-04-01

    In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ˜1-2km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (˜2km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.

  6. PV module mounting method and mounting assembly

    Science.gov (United States)

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  7. Analytical Calculation of Magnetic Field Distribution and Stator Iron Losses for Surface-Mounted Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Zhen Tian

    2017-03-01

    Full Text Available Permanent-magnet synchronous machines (PMSMs are widely used in electric vehicles owing to many advantages, such as high power density, high efficiency, etc. Iron losses can account for a significant component of the total loss in permanent-magnet (PM machines. Consequently, these losses should be carefully considered during the PMSM design. In this paper, an analytical calculation method has been proposed to predict the magnetic field distribution and stator iron losses in the surface-mounted permanent magnet (SPM synchronous machines. The method introduces the notion of complex relative air-gap permeance to take into account the effect of slotting. The imaginary part of the relative air-gap permeance is neglected to simplify the calculation of the magnetic field distribution in the slotted air gap for the surface-mounted permanent-magnet (SPM machine. Based on the armature reaction magnetic field analysis, the stator iron losses can be estimated by the modified Steinmetz equation. The stator iron losses under load conditions are calculated according to the varying d-q-axis currents of different control methods. In order to verify the analysis method, finite element simulation results are compared with analytical calculations. The comparisons show good performance of the proposed analytical method.

  8. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    Science.gov (United States)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  9. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.

    Science.gov (United States)

    McGary, R Shane; Evans, Rob L; Wannamaker, Philip E; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-17

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  10. SAS Processing Results for the Detection of Buried Objects with a Ship-Mounted Sonar

    NARCIS (Netherlands)

    Legris, M.; Groen, J.; Sabel, J.C.; Bellec, R.; Amate, M.; Hete, A.; Zerr, B.

    2004-01-01

    In September 2002, TNO-FEL and GESMA carried out a sea experiment with a low frequency (20 kHz) sonar mounted on a mine hunter. To our knowledge, it is the first time the synthetic aperture sonar technique has been implemented on board an operational mine hunter for the purpose of buried mines

  11. The 1996 Mount Everest tragedy: contemplation on group process and group dynamics.

    Science.gov (United States)

    Mangione, Lorraine; Nelson, Debra

    2003-07-01

    In May 1996, one of the most tragic Mt. Everest climbing seasons was about to unfold, and five climbers would perish in the "Death Zone" miles above the earth's surface. This article considers the events from a group dynamic and group process perspective in an attempt to understand what might have been happening to the group members. We summarize the events through the writings of two chroniclers. We then discuss creating the group, leadership, diversity and subgrouping, scapegoating, and multiple interpretations through an interpersonalist/psychodynamic framework.

  12. A Torque Error Compensation Algorithm for Surface Mounted Permanent Magnet Synchronous Machines with Respect to Magnet Temperature Variations

    Directory of Open Access Journals (Sweden)

    Chang-Seok Park

    2017-09-01

    Full Text Available This paper presents a torque error compensation algorithm for a surface mounted permanent magnet synchronous machine (SPMSM through real time permanent magnet (PM flux linkage estimation at various temperature conditions from medium to rated speed. As known, the PM flux linkage in SPMSMs varies with the thermal conditions. Since a maximum torque per ampere look up table, a control method used for copper loss minimization, is developed based on estimated PM flux linkage, variation of PM flux linkage results in undesired torque development of SPMSM drives. In this paper, PM flux linkage is estimated through a stator flux linkage observer and the torque error is compensated in real time using the estimated PM flux linkage. In this paper, the proposed torque error compensation algorithm is verified in simulation and experiment.

  13. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  14. Quantitative measurement of in-plane acoustic field components using surface-mounted fiber sensors

    Science.gov (United States)

    Claus, Richard O.; Dhawan, Rajat R.; Gunther, Michael F.; Murphy, Kent A.

    1993-01-01

    Extrinsic Fabry-Perot interferometric sensors have been used to obtain calibrated, quantitative measurements of the in-plane displacement components associated with the propagation of ultrasonic elastic stress waves on the surfaces of solids. The frequency response of the sensor is determined by the internal spacing between the two reflecting fiber endface surfaces which form the Fabry-Perot cavity, a distance which is easily controlled during fabrication. With knowledge of the material properties of the solid, the out-of-plane displacement component of the wave may also be determined, giving full field data.

  15. Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes.

    Science.gov (United States)

    Li, Xinjian; Cao, Vania Y; Zhang, Wenyu; Mastwal, Surjeet S; Liu, Qing; Otte, Stephani; Wang, Kuan Hong

    2017-11-01

    In vivo optical imaging of neural activity provides important insights into brain functions at the single-cell level. Cranial windows and virally delivered calcium indicators are commonly used for imaging cortical activity through two-photon microscopes in head-fixed animals. Recently, head-mounted one-photon microscopes have been developed for freely behaving animals. However, minimizing tissue damage from the virus injection procedure and maintaining window clarity for imaging can be technically challenging. We used a wide-diameter glass pipette at the cortical surface for infusing the viral calcium reporter AAV-GCaMP6 into the cortex. After infusion, the scalp skin over the implanted optical window was sutured to facilitate postoperative recovery. The sutured scalp was removed approximately two weeks later and a miniature microscope was attached above the window to image neuronal activity in freely moving mice. We found that cortical surface virus infusion efficiently labeled neurons in superficial layers, and scalp skin suturing helped to maintain the long-term clarity of optical windows. As a result, several hundred neurons could be recorded in freely moving animals. Compared to intracortical virus injection and open-scalp postoperative recovery, our methods minimized tissue damage and dura overgrowth underneath the optical window, and significantly increased the experimental success rate and the yield of identified neurons. Our improved cranial surgery technique allows for high-yield calcium imaging of cortical neurons with head-mounted microscopes in freely behaving animals. This technique may be beneficial for other optical applications such as two-photon microscopy, multi-site imaging, and optogenetic modulation. Published by Elsevier B.V.

  16. A Comprehensive Surface Mount Technology Solution for Integrated Circuits onto Flexible Screen Printed Electrical Interconnects

    Science.gov (United States)

    2014-05-19

    18] Weiwei Yin, Dong-Hyun Lee, Jaesoo Choi, Chinho Park and Sung Min Cho , (2008, Nov.), “Screen printing of silver nanoparticle suspension for...Ming Ho , Tsung-Hsiung Wang, Han-Lung Chen, Ker-Ming Chen, Syh-Ming Lian and Aina Hung, (2003, Mar.), “Metallization of polyimide film by wet process

  17. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2018-01-01

    Full Text Available Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM of plate-like structures and nondestructive evaluation (NDE of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  18. Mount St. Helens Rebirth

    Science.gov (United States)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  19. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  20. Flexural Behavior of Concrete Beam Strengthened by Near-Surface Mounted CFRP Reinforcement Using Equivalent Section Model

    Directory of Open Access Journals (Sweden)

    Woo-tai Jung

    2017-01-01

    Full Text Available FRP (fiber reinforced polymer has found wide applications as an alternative to steel rebar not only for the repair and strengthening of existing structures but also for the erection of new structures. Near-surface mounted (NSM strengthening was introduced as an alternative of externally bonded reinforcement (EBR but this method also experiences early bond failure, which stresses the importance of predicting accurately the bond failure behavior in order to evaluate precisely the performance of NSM reinforcement. This study proposes the equivalent section model assuming monolithic behavior of the filler and CFRP reinforcement. This equivalent section model enables establishing a bond failure model applicable independently of the sectional shape of the CFRP reinforcement. This so-derived bond failure model is then validated experimentally by means of beams flexure-strengthened by NSM CFRP reinforcements with various cross-sections. Finally, analytical analysis applying the bond failure model considering the equivalent section and defined failure criteria is performed. The results show the accuracy of the prediction of the failure mode as well as the accurate prediction of the experimental results regardless of the sectional shape of the CFRP reinforcement.

  1. Structure Crack Identification Based on Surface-mounted Active Sensor Network with Time-Domain Feature Extraction and Neural Network

    Directory of Open Access Journals (Sweden)

    Chunling DU

    2012-03-01

    Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.

  2. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    Science.gov (United States)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  3. Erosion and lateral surface processes

    Science.gov (United States)

    : Erosion can cause serious agricultural and environmental hazards. It can generate severe damage to the landscape, lead to significant loss of agricultural land and consequently to reduction in agricultural productivity, induce surface water pollution due to the transport of sediments and suspende...

  4. Surface studies of plasma processed Nb samples

    International Nuclear Information System (INIS)

    Tyagi, Puneet V.; Doleans, Marc; Hannah, Brian S.; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO 2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  5. Surface studies of plasma processed Nb samples

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Puneet V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Doleans, Marc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Hannah, Brian S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Afanador, Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Stewart, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Mammosser, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Howell, Matthew P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Saunders, Jeffrey W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Degraff, Brian D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  6. Description of two-process surface topography

    International Nuclear Information System (INIS)

    Grabon, W; Pawlus, P

    2014-01-01

    After two machining processes, a large number of surface topography measurements were made using Talyscan 150 stylus measuring equipment. The measured samples were divided into two groups. The first group contained two-process surfaces of random nature, while the second group used random-deterministic textures of random plateau parts and portions of deterministic valleys. For comparison, one-process surfaces were also analysed. Correlation and regression analysis was used to study the dependencies among surface texture parameters in 2D and 3D systems. As the result of this study, sets of parameters describing multi-process surface topography were obtained for two-process surfaces of random and of random-deterministic types. (papers)

  7. Two-dimensional motifs in organic materials: Nanodisks, nanodisk-based nanocomposites and nanothin surface-mounted films

    Science.gov (United States)

    Tekobo, Samuel

    Various new technologies are benefiting from the incorporation of new nanophase materials into existing materials and devices. This dissertation explores two-dimensional motifs in creation of organic nanomaterials with new and superior properties. The major part of this thesis focuses on organic nanodisks prepared by controlled polymerization in the interior of bicelles, discoidal lipid aggregates. Another shape studied here is nanothin film mounted on a gold surface. Synthesis of nanodisks is carried out by UV-initiated polymerization of a mixture of styrene and divinylbenzene loaded into self-assembled bicelles. Bicelles act as temporary self-assembled scaffolds, and after the synthesis lipids can be separated and recycled to template a new batch of nanodisks. This method yields new two-dimensional nanoparticles with 15--30 nm diameter and 2 nm thickness. Aggregation behavior of nanodisks was studied in water, organic solvents, and solid phase. Aggregation of nanoparticles has been a major problem in developing various applications. Nanodisks formed a stable (>1 week) suspension of single particles in toluene and carbon tetrachloride, but required a surfactant for uniform dispersion in water. Using sodium docecylsulfate (SDS) as the surfactant, zeta potential studies revealed that particles have a good electrostatic stability at SDS concentrations below the critical micelle concentration. Further, varying the surface density of surfactants can control the size of aggregates of nanodisks in water. Upon drying, nanodisks aggregate into sub-micron platelets. Cross-linked polystyrene nanodisks were then incorporated into bulk polystyreme to determine whether they reinforced its thermal and mechanical properties. Small-angle neutron scattering data suggest that material containing small amounts of nanodisks, as little as 0.001%, form true nanocomposites as evidenced by the presence of individual nanodisks in polystyrene matrix. Thermogravimetric analysis and flexure

  8. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  9. Sticky pin mounting

    OpenAIRE

    Lilja, David

    2016-01-01

    The study was conducted at Volvo Arvika were pins sometimes are sticky to mount during assembly of wheel loaders. This causes problems regarding ergonomic, quality, cost and productivity. Due to deviations in tolerances, defects and errors, assemblers are forced to use equipment such as sledgehammers to mount the pins. The purpose of this study is to achieve and assembly process which meets Volvo´s criteria’s. By investigation the flows for frames at Volvo Arvika, defects and errors were disc...

  10. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Science.gov (United States)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  11. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  12. A Novel Method to Magnetic Flux Linkage Optimization of Direct-Driven Surface-Mounted Permanent Magnet Synchronous Generator Based on Nonlinear Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Qian Xie

    2016-07-01

    Full Text Available This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG. A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.

  13. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the

  14. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  15. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  16. Surface transport processes in charged porous media.

    Science.gov (United States)

    Gabitto, Jorge; Tsouris, Costas

    2017-07-15

    Surface transport processes are very important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Integrated mold/surface-micromachining process

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  18. Surface quality in rapid prototype MMD process

    Directory of Open Access Journals (Sweden)

    Lisandro Vargas Henríquez

    2004-09-01

    Full Text Available This article summarises a Manufacturing Materials and Processes MSc thesis written for the Mechanical and Electrical Engineering Department. The paper shows the interaction of process, gap (deposition distance and extursion terminal velocity modelled process parameters for CEIF's (Centro de Equipos Interfacultades rapid prototype molten material deposit (MMD Titan SH-1 machine by analysing prototupes improved surface quality and resistence to tension and characterising material. The project applies experimental design criteria for orientating the selection of experimental process parameters. Acrylonitrile-buttadin-styrene (ABS had alredy been mechanically and physicochemically characterised (i.e the material used in the MMD process.

  19. THE PRODUCT DESIGN PROCESS USING STYLISTIC SURFACES

    Directory of Open Access Journals (Sweden)

    Arkadiusz Gita

    2017-06-01

    Full Text Available The increasing consumer requirements for the way what everyday use products look like, forces manufacturers to put more emphasis on product design. Constructors, apart from the functional aspects of the parts created, are forced to pay attention to the aesthetic aspects. Software for designing A-class surfaces is very helpful in this case. Extensive quality analysis modules facilitate the work and allow getting models with specific visual features. The authors present a design process of the product using stylistic surfaces based on the front panel of the moped casing. In addition, methods of analysis of the design surface and product technology are presented.

  20. Time Series Surface Deformation using Multi-Temporal InSAR Technique at Mount Sinabung Eruption in North Sumatra, Indonesia

    Science.gov (United States)

    Hwang, Eui-Hong; Lee, ChangWook; Jo, Eunyoung; Lee, SeulKi; Kim, KiYeon

    2014-05-01

    Sinabung volcano in Indonesia is a part of the Pacific Ring of Fire, formed due to the subduction between the Eurasian and the Indo-Australian plate. After about 400-year dormancy, Sinabung volcano erupted on August 29, 2010 and January 4, 2014, recently. We study the surface deformation of Sinabung volcano using ALOS/PALSAR and RADARSAT-2 interferometric synthetic aperture radar (InSAR) images acquired from February 2007 to September 2013. Based on multi-temporal InSAR processing, we can generate the ground surface deformation map due to the 2010 eruption. During the 3 years before the 2010 eruption, the volcano inflated at an average rate ~1.7 cm/yr with marked higher rate of 6.6 cm/year during the 6 months prior to the 2010 eruption. The inflation is constrained to the top of the volcano. Since the 2010 eruption to January 2011, the volcano has subsided for about 3 cm (or about 6 cm/yr). The observed inflation and deflation are modeled with a Mogi and Prolate spheroid source. The source of inflation is located about 0.3 - 1.3 km below sea level directly underneath the crater. On the other hand, deflation source is modeled about 0.6-1.0 km with coeruption period. The average volumetric change was about from 1.9x10-6 to -2.7x10-5 km3/yr during the eruption event using ALOS/PALSAR images. Recently, RADARSAT-2 SAR data were applied to new eruption event from September 2013 to January 2014 for frequently eruption during short time period. We interpret the inflation was due to magma accumulation at a shallow reservoir beneath the Sinabung volcano. The deflation was due to the magma withdrawal from the shallow reservoir during the eruption as well as thermo-elastic compaction of erupted material.

  1. Mathematical Modeling of Heat Friction Contact Master Belt with the Gun Mount Barrel During the Process of High-Speed Motion

    Directory of Open Access Journals (Sweden)

    Zezulinsky Jaroslav

    2016-01-01

    Full Text Available The friction in the gun mount barrel at sliding speeds of artillery projectile 500 - 700 m/s is not sufficiently studied. The main problem is to increase the efficiency of the master belt with a significant increase of the interaction parameters of the barrel with the projectile. To determine the effect of heating on the change of physical and mechanical properties of the surface layer and friction coefficient on the surface of the master belt were made mathematical modeling of heat transfer.

  2. Surface-Assisted Dynamic Search Processes.

    Science.gov (United States)

    Shin, Jaeoh; Kolomeisky, Anatoly B

    2018-03-01

    Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

  3. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  4. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  5. ENVISAT Land Surface Processes. Phase 2

    Science.gov (United States)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  6. The Mounting process and dielectric tests of the Parque Caballero armored substation in SF6(220 Kv); Montaje y pruebas dielectricas de la estacion blindada en gas SF6 (220 kV) 'Parque Caballero'

    Energy Technology Data Exchange (ETDEWEB)

    Decoud, Carlos; Bobadilla, Alberto [ANDE - Administracion Nacional de Electricidad, Assuncion (Paraguay)

    2001-07-01

    This document approaches the aspects referring to the mounting and also dielectric tests for the Parque Caballero armored substation in SF6. This type of installation represents a innovation regarding substations in urban centres. The most relevant items in relation to the mounting process are shown in a summarized way, as well as the aspects related to dielectric tests executed during the substation commissioning.

  7. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  8. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    Science.gov (United States)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  9. Loss Prediction and Thermal Analysis of Surface-Mounted Brushless AC PM Machines for Electric Vehicle Application Considering Driving Duty Cycle

    Directory of Open Access Journals (Sweden)

    Tianxun Chen

    2016-01-01

    Full Text Available This paper presents a computationally efficient loss prediction procedure and thermal analysis of surface-mounted brushless AC permanent magnet (PM machine considering the UDDS driving duty cycle by using a lumped parameters’ thermal model. The accurate prediction of loss and its variation with load are essential for thermal analysis. Employing finite element analysis (FEA to determine loss at every load point would be computationally intensive. Here, the finite element analysis and/or experiment based computationally efficient winding copper and iron loss and permanent magnet (PM power loss models are employed to calculate the electromagnetic loss at every operation point, respectively. Then, the lumped parameter thermal method is used to analyse the thermal behaviour of the driving PM machine. Experiments have been carried out to measure the temperature distribution in a motor prototype. The calculation and experiment results are compared and discussed.

  10. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  11. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.

    2014-01-01

    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  12. The surface of Mars: Morphology and process

    Science.gov (United States)

    Aharonson, Oded

    The goal of this work is a quantitative description of the morphology of the surface of Mars, in order to constrain the nature of processes acting during the ancient past through today. Emphasis is placed on linking geometric properties to physical mechanisms. Surface smoothness on Mars is distinctive in the vast northern hemisphere plains. Amazonis Planitia is remarkable in its smoothness, exhibiting an rms variation in topography of building tectonics and volcanics. The shallower long-wavelength portion of the lowlands' topographic power spectrum relative to the highlands' can be accounted for by a simple model of sedimentation such as might be expected at an ocean's floor, but the addition of another process such as cratering is necessary to explain the spectral slope in short wavelengths. Large drainage systems on Mars have geomorphic characteristics that are inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. We demonstrate that features known as slope streaks form exclusively in regions of low thermal inertia, steep slopes, and incredibly, only where daily peak temperatures exceed 275 K during the martian year. The results suggest that at least small amounts of water may be currently present and undergo phase transitions. We detect subtle changes of the polar surface height during the course of seasonal cycles. Using altimetric crossover residuals, we show that while zonally averaged data captures the global behavior of CO 2 exchange, there is a strong dependence of the pattern on longitude. Decomposition of the signal into harmonics in time shows the amplitudes are correlated with the polar cap deposits. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  13. Dynamics of seismogenic volcanic extrusion resisted by a solid surface plug, Mount St. Helens, 2004-2005: Chapter 21 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Iverson, Richard M.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens exhibited sustained, near-equilibrium behavior characterized by nearly steady extrusion of a solid dacite plug and nearly periodic occurrence of shallow earthquakes. Diverse data support the hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upward by ascending, solidifying, gas-poor magma. I formalize this hypothesis with a mathematical model derived by assuming that magma enters the base of the eruption conduit at a steady rate, invoking conservation of mass and momentum of the magma and plug, and postulating simple constitutive equations that describe magma and conduit compressibilities and friction along the plug margins. Reduction of the model equations reveals a strong mathematical analogy between the dynamics of the magma-plug system and those of a variably damped oscillator. Oscillations in extrusion velocity result from the interaction of plug inertia, a variable upward force due to magma pressure, and a downward force due to the plug weight. Damping of oscillations depends mostly on plug-boundary friction, and oscillations grow unstably if friction exhibits rate weakening similar to that observed in experiments. When growth of oscillations causes the extrusion rate to reach zero, however, gravity causes friction to reverse direction, and this reversal instigates a transition from unstable oscillations to self-regulating stick-slip cycles. The transition occurs irrespective of the details of rate-weakening behavior, and repetitive stick-slip cycles are, therefore, robust features of the system’s dynamics. The presence of a highly compressible elastic driving element (that is, magma containing bubbles) appears crucial for enabling seismogenic slip events to occur repeatedly at the shallow earthquake focal depths (8 N. These results imply that the system’s self-regulating behavior is not susceptible to dramatic change--provided that the

  14. Detector Mount Design for IGRINS

    Directory of Open Access Journals (Sweden)

    Jae Sok Oh

    2014-06-01

    Full Text Available The Immersion Grating Infrared Spectrometer (IGRINS is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  15. Surface processing by high power excimer laser

    International Nuclear Information System (INIS)

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  16. Effects of the Mount Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere

    Science.gov (United States)

    Kinnison, Douglas E.; Grant, Keith E.; Connell, Peter S.; Wuebbles, Donald J.

    1994-01-01

    The Lawrence Livermore National Laboratory two-dimensional zonally-averaged chemical-radiative-transport model of the global atmosphere was used to study the effects of the 15 June 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE 2 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By 22 December 1991, a maximum equatorial change of -1.8 percent in column ozone was derived from heterogeneous chemical processes that convert NO(x) into HNO3 on sulfuric acid aerosols. Radiative feedbacks from increased aerosol optical thickness independently changes column ozone by approximately -3.5 percent for the same period. This occurs from increasing the net heating of the lower stratosphere, which indirectly increases chemical reaction rates via their temperature dependence and from changes in actinic fluxes, which directly modify photodissociation rates. Including both heterogeneous and radiative effects changes column ozone by -5.5 percent. The model-derived change overestimates the decrease in column ozone relative to the TOMS instrument on the Nimbus 7 satellite. Maximum local ozone decreases of 12 percent were derived in the equatorial region, at 25 km. Model-derived column NO2 peaked (-14 percent) at 30 deg S in October 1991. The timing of the NO2 peak is consistent with observation, but the model underestimates the magnitude of the decrease. Local concentrations of NO(x) (NO + NO2), ClO(x) (Cl + ClO), and HO(x) (OH + HO2), in the lower stratosphere between 30 deg S and 30 deg N, were calculated to have changed by -40 percent, +100 to +160 percent, and +120 to +140 percent respectively.

  17. Genetic Diversity of Plasmodium falciparum Merozoite Surface Protein-1 Block 2 in Sites of Contrasting Altitudes and Malaria Endemicities in the Mount Cameroon Region

    Science.gov (United States)

    Wanji, Samuel; Kengne-Ouafo, Arnaud J.; Joan Eyong, Ebanga E.; Kimbi, Helen K.; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L.; Nana-Djeunga, Hugues C.; Bourguinat, Catherine; Sofeu-Feugaing, David D.; Charvet, Claude L.

    2012-01-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein–enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction–based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms. PMID:22556072

  18. An inertia-type hybrid mount combining a rubber mount and a piezostack actuator for naval shipboard equipment

    Directory of Open Access Journals (Sweden)

    Seok-Jun Moon

    2013-03-01

    Full Text Available This paper has been focused on developing a new hybrid mount for shipboard equipment used in naval surface ships and submarines. While the hybrid mount studied in our previous research was 100 kg-class series-type mount, the new hybrid mount has been designed as an inertia-type mount capable of supporting a static of 500 kg. The proposed mount consists of a commercial rubber resilient mount, a piezostack actuator and an inertial mass. The piezostack actuator connected with the inertial mass generates actively the control force. The performances of the proposed mount with a newly designed specific controller have been evaluated in accordance with US military specifications and compared with the passive mount. An isolation system consisting of four proposed mounts and auxiliary devices has been also tested. Through a series of experimental tests, it has been confirmed that the proposed mount provides better performance than the US Navy's standard passive mounts.

  19. Impact of Urban Surfaces on Precipitation Processes

    Science.gov (United States)

    Shepherd, J. M.

    2004-01-01

    The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.

  20. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore

    2013-04-01

    The aim of this talk is to provide an overview about the most recent outcomes in Earth Sciences, describe the role of satellite remote sensing, together with GPS, ground measurement and further data, for geophysical parameter retrieval in well known case studies where the combined approach dealing with the use of two or more techniques/datasets have demonstrated their effectiveness. The Earth Sciences have today a wide availability of instruments and sensors able to provide scientists with an unprecedented capability to study the physical processes driving earthquakes, volcanic eruptions, landslides, and other dynamic Earth systems. Indeed measurements from satellites allow systematic observation of the Earth surface covering large areas, over a long time period and characterized by growing sample intervals. Interferometric Synthetic Aperture Radar (InSAR) technique has demonstrated its effectiveness to investigate processes responsible for crustal faulting stemming from the detection of surface deformation patterns. Indeed using satellite data along ascending and descending orbits, as well as different incident angles, it is possible in principle to retrieve the full 3D character of the ground motion. To such aim the use of GPS stations providing 3D displacement components is a reliable complementary instrument. Finally, offset tracking techniques and Multiple Aperture Interferometry (MAI) may provide a contribution to the analysis of horizontal and NS deformation vectors. The estimation of geophysical parameters using InSAR has been widely discussed in seismology and volcanology, and also applied to deformation associated with groundwater and other subsurface fluids. These applications often involve the solution of an inverse problem, which means the retrieval of optimal source parameters at depth for volcanoes and earthquakes, from the knowledge of surface deformation from InSAR. In recent years, InSAR measurements combined with traditional seismological and

  1. An experimental study of flow patterns and endwall heat transfer upstream of a surface-mounted rectangular obstruction in a turbulent boundary layer

    Science.gov (United States)

    Chen, Quan

    1991-02-01

    A seven-phase experimental investigation documented the three-dimensional separation region in front of a surface-mounted rectangular obstruction. The obstruction was centered between sidewalls of a wind tunnel in a turbulent approaching boundary layer. The major feature of this flow was a horseshoe vortex system near the junction. Real-time vortex structures were visualized with a laser sheet. Interior velocity, turbulence intensity and velocity power spectrum measurements were obtained with a Laser Doppler Anemometer (LDA) and a hot-wire anemometer. Ink dot surface flow visualizations and pressure measurements were acquired on the endwall under the vortex system. Endwall heat transfer coefficients were nonintrusively measured by an infrared imaging system. Laser sheet flow visualizations indicated a vortex system with randon oscillations. In the time-averaged sense, ink-dot flow visualizations, LDA measurements and endwall pressure measurements indicated a well defined primary vortex. The separation region was 70 percent larger, in the streamwise direction, than that in front of a cylinder with a diameter the same as the obstruction width. The time-averaged primary vortex center, where maximum values of turbulence intensity were measured, was located farther away from the obstruction leading edge at higher freestream velocities. Endwall heat transfer coefficient distribution measurements on the endwall surface revealed that the obstruction established a complex heat transfer pattern. Local heat transfer rates as much as 80 percent greater than the undisturbed two-dimensional level were recorded upstream of the obstruction along the test section centerline. A local heat transfer coefficient peak was associated with the local maximum turbulence intensity measured near the endwall by LDA.

  2. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  3. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  4. Process control of laser surface alloying

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.; Olde Benneker, Jeroen

    1998-01-01

    In spite of the many advantages of laser surface treatment, such as high production rates and low induced thermal distortion, and its great potential for modifying the surface properties of a wide range of new and existing materials, industrial applications are still limited. This is not only

  5. Process of treating surfaces of metals

    International Nuclear Information System (INIS)

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  6. Tropical forest phenology and metabolism: Integrated analysis of tower-mounted camera images and tower derived GPP for interpreting ecosystem scale processes

    Science.gov (United States)

    Wu, J.; Restrepo-Coupe, N.; Hayek, M.; Stark, S. C.; Smith, M.; Wiedemann, K.; Marostica, S.; Ferreira, M.; Woodcock, T.; Prohaska, N.; da Silva, R.; Nelson, B. W.; Huete, A. R.; Saleska, S. R.

    2013-12-01

    Seasonal and interannual patterns of leaf development and metabolism are a central topic of global change ecology. However, the seasonality of leaf development in tropical forests remains poorly understood due to the relatively low variation in climate, the high biodiversity of tropical biomes and the limitations of current observation techniques. In this study, we aim to demonstrate the feasibility of using near-surface remote sensing techniques to understand the phenology of an evergreen tropical forest (Tapajos National Forest or TNF site, Santarem, Para, Brazil), and how this phenology affects the metabolism of tropical vegetation. Two continuous years (2010-2011) of daily images from a tower mounted three-channel (red, green, and near-infrared) TetraCAM ADC camera were analyzed for this study. A new approach was developed based on an automatic image classification scheme which decomposed the images into two components (leaves and bare wood) to extract seasonality of leaf development. A confusion matrix method was used to assess the accuracy of image classification. MODIS EVI composites (MOD13Q1) were also acquired and processed for the TNF site (5km*5km). The camera based phenology information was first compared with MODIS EVI, and then combined with tower based eddy covariance measurements at the same site to quantify the effect of canopy-scale phenology on ecosystem metabolism. We found that: (1) Tower-based images revealed a clear seasonal pattern in leaf phenology that was supported by confusion matrix analysis. Matrix analysis gave a 96.7% user accuracy (user accuracy represents the probability that an image pixel classification actually corresponds to that category on the ground) for the leaf component, based on 24 images in 2010 (2 images per month). The tower-based pattern matched that retrieved from satellites (camera-sensed leaf phenology vs monthly MODIS EVI (01/2010-12/2011, R2=0.57, P-valuesatellite and tower were robust to changes in solar zenith

  7. Modification of surfaces and surface layers by non equilibrium processes

    International Nuclear Information System (INIS)

    Beamson, G.; Brennan, W.J.; Clark, D.T.; Howard, J.

    1988-01-01

    Plasmas are examples of non-equilibrium phenomena which are being used increasingly for the synthesis and modification of materials impossible by conventional routes. This paper introduces methods available by describing the construction and characteristics of some equipment used for the production of different types of plasmas and other non-equilibrium phenomena. This includes high energy ion beams. The special features, advantages and disadvantages of the techniques will be described. There are a multitude of potential application relevant to electronic, metallic, ceramic, and polymeric materials. However, scale-up from the laboratory to production equipment depends on establishing a better understanding of both the physics and chemistry of plasma as well as plasma-solid interactions. Examples are given of how such an understanding can be gained. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species, and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with our current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries where the modification has had a largely physical rather than chemical effect on the starting material. (orig.)

  8. Surface Electromyography Signal Processing and Classification Techniques

    Science.gov (United States)

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  9. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  10. Computer simulation of surface and film processes

    Science.gov (United States)

    Tiller, W. A.; Halicioglu, M. T.

    1984-01-01

    All the investigations which were performed employed in one way or another a computer simulation technique based on atomistic level considerations. In general, three types of simulation methods were used for modeling systems with discrete particles that interact via well defined potential functions: molecular dynamics (a general method for solving the classical equations of motion of a model system); Monte Carlo (the use of Markov chain ensemble averaging technique to model equilibrium properties of a system); and molecular statics (provides properties of a system at T = 0 K). The effects of three-body forces on the vibrational frequencies of triatomic cluster were investigated. The multilayer relaxation phenomena for low index planes of an fcc crystal was analyzed also as a function of the three-body interactions. Various surface properties for Si and SiC system were calculated. Results obtained from static simulation calculations for slip formation were presented. The more elaborate molecular dynamics calculations on the propagation of cracks in two-dimensional systems were outlined.

  11. Auger processes in ion-surface collisions

    International Nuclear Information System (INIS)

    Zampieri, Guillermo.

    1985-01-01

    Bombardment of solid targets with low-energy noble gas ions can produce Auger electron emission from the target atoms and/or from the projectiles. In the case of Auger emission from the projectile, Auger emission was observed during the bombardment of Na, Mg, Al and Si with Ne + ions. This emission was studied as a function of the energy, incidence angle and charge state of the projectile. From the analysis, it is concluded that the emission originates in the decay in vacuum of excited and reflected Ne atoms, moving outside the surface. Auger emission was not observed during the bombardment of K, V and Ni with Ar + ions; Zr and Cs with Kr + , and Xe + ions, respectively; and Li and Be with He + ions. In the case of Auger emission from the target, studies of certain aspects of the Na, Mg and Al Auger electron emission spectra were made. The results allow to identify two components in the Auger feature, coresponding to two kinds of Auger transition. The total spectra results from the superposition of both kinds of emission. Auger spectra from K obtained during Ar + and K + bombardment of K-implanted Be, Mg, Al and Cu were also analyzed. Similar to the Na, Mg and Al Auger spectra, the K Auger feature is composed of an atomic like peak superimposed on a bandlike structure. Both components correspond to Auger transitions in K atoms with a 3p vacancy, occuring in vacuum and inside the solid, respectively. (M.E.L.) [es

  12. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  13. Sample mounts for microcrystal crystallography

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  14. Mounting with compliant cylinders for deformable mirrors.

    Science.gov (United States)

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  15. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  16. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  17. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range

    Science.gov (United States)

    Dong, Guocheng; Zhou, Weijian; Yi, Chaolu; Fu, Yunchong; Zhang, Li; Li, Ming

    2018-04-01

    Mountain glaciers are sensitive to climate change, and can provide valuable information for inferring former climates on the Tibetan Plateau (TP). The increasing glacial chronologies indicate that the timing of the local Last Glacial Maximum (LGM) recorded across the TP is asynchronous, implying different local influences of the mid-latitude westerlies and Asian Summer Monsoon in triggering glacier advances. However, the well-dated sites are still too few, especially in the transition zone between regions controlled by the two climate systems. Here we present detailed last glacial chronologies for the Mount Jaggang area, in the Xainza range, central Tibet, with forty-three apparent 10Be exposure-ages ranging from 12.4 ± 0.8 ka to 61.9 ± 3.8 ka. These exposure-ages indicate that at least seven glacial episodes occurred during the last glacial cycle east of Mount Jaggang. These include: a local LGM that occurred at ∼61.9 ± 3.8 ka, possibly corresponding to Marine Isotope Stage 4 (MIS 4); subsequent glacial advances at ∼43.2 ± 2.6 ka and ∼35.1 ± 2.1 ka during MIS 3; one glacial re-advance/standstill at MIS3/2 transition (∼29.8 ± 1.8 ka); and three glacial re-advances/standstills that occurred following MIS 3 at ∼27.9 ± 1.7 ka, ∼21.8 ± 1.3 ka, and ∼15.1 ± 0.9 ka. The timing of these glacial activities is roughly in agreement with North Atlantic millennial-scale climate oscillations (Heinrich events), suggesting the potential correlations between these abrupt climate changes and glacial fluctuations in the Mount Jaggang area. The successively reduced glacial extent might have resulted from an overall decrease in Asian Summer Monsoon intensity over this timeframe.

  18. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  19. An integrated approach to friction surfacing process optimisation

    OpenAIRE

    Voutchkov, I.I.; Jaworski, B.; Vitanov, V.I.; Bedford, G.M.

    2001-01-01

    This paper discusses the procedures for data collection, management and optimisation of the friction surfacing process. Experimental set-up and characteristics of measuring equipment are found to match the requirements for accurate and unbiased data signals. The main friction surfacing parameters are identified and the first stage of the optimisation process is achieved by visually assessing the coatings and introducing the substrate speed vs. force map. The optimum values from this first sta...

  20. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  1. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  2. Surface engineering of glazing materials and structures using plasma processes

    International Nuclear Information System (INIS)

    Anders, Andre; Monteiro, Othon R.

    2003-01-01

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes

  3. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  4. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  5. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  6. Measurement of surface crack length using image processing technology

    International Nuclear Information System (INIS)

    Nahm, Seung Hoon; Kim, Si Cheon; Kim, Yong Il; Ryu, Dae Hyun

    2001-01-01

    The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using image processing software which was developed by ourselves. Block matching method was applied to the detection of surface fatigue cracks. By comparing the data measured by image processing system with the data measured by manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced

  7. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope

    Science.gov (United States)

    Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang

    2017-12-01

    A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.

  8. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  9. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion

    International Nuclear Information System (INIS)

    Foucault, M.

    2012-01-01

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  10. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  11. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film......The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  12. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  13. Regionalization and parameterization of hydrological processes at the land surface

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Elbers, J.A.; Bastiaanssen, W.G.M.; Ogink-Hendriks, M.J.

    1995-01-01

    Hydrological processes on the land surface play a critical role in physically based hydrological and atmospheric modelling. A series of experiments have been initiated to test and develop parametrizations of spatial heterogeneity on the full range of spatial and temporal scales considered relevant.

  14. Sunspot Groups as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last ...

  15. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of. Astrophysics during the last decade or ...

  16. Plasmodium falciparum merozoite surface protein 1 block 2 gene polymorphism in field isolates along the slope of mount Cameroon: a cross - sectional study.

    Science.gov (United States)

    Apinjoh, Tobias O; Tata, Rolland B; Anchang-Kimbi, Judith K; Chi, Hanesh F; Fon, Eleanor M; Mugri, Regina N; Tangoh, Delphine A; Nyingchu, Robert V; Ghogomu, Stephen M; Nkuo-Akenji, Theresa; Achidi, Eric A

    2015-08-05

    Malaria remains a major global health burden despite the intensification of control efforts, due partly to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a major impediment to vaccine development efforts and is limited in some endemic settings. The present study characterized diversity by investigating msp1 block 2 polymorphisms and the relationship between the allele families with ethnodemographic indices and clinical phenotype. Individuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural, semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the parasite DNA genotyped by nested PCR. Length polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of individuals harbored more than one parasite clone, with a significant proportion (p = 0.009) in rural compared to other settings. AP individuals had higher (p = 0.007) K1 allele frequencies but lower (p = 0.003) mean multiplicity of genotypes per infection (2.00 ± 0.98 vs. 2.56 ± 1.17) compared to UM patients. These results indicate enormous diversity of P. falciparum in the area and suggests that allele specificity and complexity may be relevant for the progression to symptomatic disease.

  17. Inkjet printed paper based frequency selective surfaces and skin mounted RFID tags: The interrelation between silver nanoparticle ink, paper substrate and low temperature sintering technique

    NARCIS (Netherlands)

    Sanchez-Romaguera, V.; Wünscher, S.; Turki, B.M.; Abbel, R.; Barbosa, S.; Tate, D.J.; Oyeka, D.; Batchelor, J.C.; Parker, E.A.; Schubert, U.S.; Yeates, S.G.

    2015-01-01

    Inkjet printing of functional frequency selective surfaces (FSS) and radio frequency identification (RFID) tags on commercial paper substrates using silver nanoparticle inks sintered using low temperature thermal, plasma and photonic techniques is reported. Printed and sintered FSS devices

  18. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  19. Photovoltaic module mounting clip with integral grounding

    Science.gov (United States)

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  20. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Shengjie [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Lijuan, E-mail: lilj@isl.ac.cn [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China); Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China)

    2016-09-30

    Highlights: • A modification mechanism for magnesium hydroxide using silane by dry process was proposed. • Si−O−Mg bonds were formed directly by the reaction between Si-OC{sub 2}H{sub 5} and hydroxyl groups of magnesium hydroxide. • Dispersibility and compatibility of modified magnesium hydroxide improved in organic phase. - Abstract: In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material’s crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Si−O−Mg) formed by the reaction between Si-OC{sub 2}H{sub 5} and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  1. DETECTING GLASS SURFACE CORROSION WITH IMAGE PROCESSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Rafet AKDENİZ

    2012-12-01

    Full Text Available Glass is a kind of amorphous materials that exhibits a transition from rigid to viscous state and finally liquid state when heated. For daily usage, it is desirable to have different forms and differenttransparencies for different purposes. Most widely used one is the one with high transparency and flat surface.One of the detrimental effects that glass is undergone during the storage or usage periods is corrosion. In this work, a way for detecting corrosion on the glass surface by image processing methodis presented.

  2. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  3. Development of sustainable paper coatings using nanoscale industrial surface processing

    DEFF Research Database (Denmark)

    Markert, Frank; Breedveld, Leo; Lahti, Johanna

    to inform the public about the processes and benefits of the prototype products, and partly to give feedback to the project partners on the environmental and safety aspects of the different material, processing, use and waste stages. By that being a link between the industrial project partners developing...... products, and the process and material developers providing new coatings with specific properties. The combination of RA and LCA/LCC within the early stages of product development provide a more holistic approach, It is commonly believed to be also economical beneficial as changes are easier to implement...... developers, production industries, consumers and authorities. Part of the consideration is the public perception of the new product and the processes to manufacture it, which is an important aspect for products being developed using nanoscale surface processing. Such considerations are integrated...

  4. Low-speed wind-tunnel investigation of a large-scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper-surface blowing

    Science.gov (United States)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1975-01-01

    The Langley full scale tunnel was used to investigate the low speed stability and control of an advanced arrow wing supersonic transport with engines mounted above the wing for upper-surface blowing. Tests were made over an angle of attack range of -10 to 32 deg, slideslip angles of + or -5 deg and a Reynolds number ranging from 3.53 million to 7.33 million (referenced to mean aerodynamic chord of the wing). Configuration variables included trailing-edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing-edge BLC for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  5. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhi, E-mail: c2002z@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Li Feng [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Hao Limei [Department of Applied Physics, Xi' an University of Science and Technology, Xi' an 710054 (China); Chen Anqi; Kong Youchao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China)

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl{sub 2}{center_dot}4H{sub 2}O), myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163 Degree-Sign and rolling angle is less than 3 Degree-Sign . Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  6. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  7. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  8. Fiscal 1998 report on data processing for geothermal energy development enhancement. No. A-4 Mount Kumbetsu area (primary data processing); 1998 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. No.A-4. Kunbetsu chiiki (dai 1 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This is part of the state-operated 'geothermal energy development enhancement' project, under which a comprehensive analysis is conducted into the results of a survey of geothermal resources in existence in the Mount Kumbetsu area. The local geothermal structure is examined, and the Kumbetsu hot spring area, the Uebetsu river middle reach area, and the Unabetsu hot spring area are extracted as promising high-temperature supply areas. The Kumbetsu hot spring area and the Uebetsu river middle reach area lie on a heave positioned west of the Mount Musa/Mount Shitabanupuri fault. There is a distinguished bending in the zone of discontinuous resistivity, and, when geology is considered, it is inferred that there exists a geothermal fluid field formed by the Mount Musa/Mount Shitabanupuri fault running NNW-SSW and a fracture zone that runs across the fault. The two areas are located at spots where gravity gradient is sharp. It is concluded that, with the alteration zone, temperature distribution, etc., also taken into account, the Kumbetsu hot spring area is the more promising as a source of geothermal energy. The water of the Kumbetsu hot spring is of the Cl-SO{sub 4} type, 64.5 degrees C hot and neutral, and arises from the depth where water of meteoric origin is heated by heat conduction. The heat source is supposedly the magma reservoir whose eruption once formed Mount Unabetsu etc. (NEDO)

  9. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  10. Publications of the Western Earth Surface Processes Team 2006

    Science.gov (United States)

    Powell, Charles L.; Stone, Paul

    2007-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2006 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. This compilation gives the bibliographical citations for 123 new publications, most of which are available online using the hyperlinks provided.

  11. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  12. Wright Valley Sediments as Potential Analogs for Martian Surface Processes

    Science.gov (United States)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2015-12-01

    The Antarctic Dry Valleys (ADV) may provide a unique terrestrial analog for current Martian surface processes. The Wright Valley located in the ADV contains streams, lakes and ponds that host highly saline, sedimentary environments. This project highlights comparisons of formation and salt accumulation processes at the Don Juan Pond (DJP) and Don Quixote Pond (DQP). These are located in the north and south forks of the Wright Valley, which are unique areas where unusual terrestrial processes can be studied. DQP is located in the western part of the north fork about 100 m above mean seawater level. The DQP Valley walls are up to 2500 m high and the brine is seasonally frozen. DJP from the south fork is located ~9 km west of Lake Vanda. The basin floor is 117 m above mean seawater level with activity to the north and south rising above 1000 m. The DJP brine does not freeze and may be a model environment for Ca and Cl weathering and distribution on Mars. Our findings indicate that DJP and DQP have formed in similar climatic and geological environments, but likely experienced different formation conditions. Samples were collected from surface, soil pits and depth profiles during the 1979/1980, the 1990/1991 and the 2005/2006 field seasons. Elemental abundances and mineralogy were evaluated for several sets of sediments. The DJP basin shows low surface abundances of halite and relatively high abundances of sulfates throughout with gypsum or anhydrite dominating at different locations. The DQP area has high surface abundances of halite with gypsum present as the major sulfate. Two models have been proposed to explain these differences: DQP may have formed through a combination of shallow and some deep groundwater influx, while deep groundwater upwelling likely played the dominant role of salt formation at DJP. Our study seeks to understand the formation of DQP and DJP as unique terrestrial processes and as models for Ca, Cl, and S weathering and distribution on Mars.

  13. Free surface BCP self-assembly process characterization with CDSEM

    Science.gov (United States)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  14. Surface encapsulation process for managing low-level radioactive wastes

    International Nuclear Information System (INIS)

    Unger, S.L.; Telles, R.W.

    1986-01-01

    Current processes for low-level radioactive waste (LLRW) stabilization involve mixing contaminants with a fixative such as cement, asphalt, polyethylene, or vinyl monomers, and subsequently curing the mixtures in containers. These methods give rise to processing difficulties and yield products lacking performance to assure long-term LLRW immobilization. Mixing of LLRW into fixatives is impeded by viscous media and the curing reaction is inhibited by LLRW constituents. Product performance is affected by corrosion of the containers which ultimately expose the cured mixtures to environmental stresses. This process, termed the ''Surface Encapsulation Process,'' circumvents these problems. A thermosetting fixative is employed that mixes readily with LLRW and is highly insensitive to inhibition in curing. The agglomerated mixtures are further stabilized by encapsulation with seamless jackets of corrosion resistant plastic, such as polyethylene. In laboratory-scale investigations, feasibility of the technique was demonstrated for managing a broad spectrum of LLRW simulants including ion-exchange resins, beads, and glasses, and sodium salts. Products tested to date meet all relevant NRC and DOT regulations governing waste fixation. The high waste loadings of the products, use of commodity resins, and processing simplicity indicated our process would provide high performance LLRW stabilization at costs that are competitive to those for processes employing state-of-the-art fixatives. An economic analysis based on managing LLRW generated by commercial power plants (≅1,000 MeW) substantiates the competitive process costs advantages

  15. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  16. Exposing earth surface process model simulations to a large audience

    Science.gov (United States)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  17. Detection of cracks on concrete surfaces by hyperspectral image processing

    Science.gov (United States)

    Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo

    2017-06-01

    All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly

  18. Clamp-mount device

    Science.gov (United States)

    Clark, K. H. (Inventor)

    1983-01-01

    A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein.

  19. Evidence of Space Weathering Processes Across the Surface of Vesta

    Science.gov (United States)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; hide

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  20. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Directory of Open Access Journals (Sweden)

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  1. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  2. UMTRA Surface Project management action process document: Final. Revision 2

    International Nuclear Information System (INIS)

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites

  3. Decontamination Efficiency of Fish Bacterial Flora from Processing Surfaces

    Directory of Open Access Journals (Sweden)

    Birna Guðbjörnsdóttir

    2009-01-01

    Full Text Available There are numerous parameters that can influence bacterial decontamination during washing of machinery and equipment in a food processing establishment. Incomplete decontamination of bacteria will increase the risk of biofilm formation and consequently increase the risk of pathogen contamination or prevalence of other undesirable microorganisms such as spoilage bacteria in the processing line. The efficiency of a typical washing protocol has been determined by testing three critical parameters and their effects on bacterial decontamination. Two surface materials (plastic and stainless steel, water temperatures (7 and 25 °C and detergent concentrations (2 and 4 % were used for this purpose in combination with two types of detergents. Biofilm was prepared on the surfaces with undefined bacterial flora obtained from minced cod fillets. The bacterial flora of the biofilm was characterised by cultivation and molecular analysis of 16S rRNA genes. All different combinations of washing protocols tested were able to remove more than 99.9 % of the bacteria in the biofilm and reduce the cell number from 7 to 0 or 2 log units of bacteria/cm2. The results show that it is possible to use less diluted detergents than recommended with comparable success, and it is easier to clean surface material made of stainless steel compared to polyethylene plastic.

  4. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  5. Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2016-06-01

    Full Text Available In this paper we combine SO2 and ash plume dispersion modelling with satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna on the optical and micro-physical properties of Mediterranean aerosols. We analyse the Mount Etna eruption episode of 25–27 October 2013. The evolution of the plume along the trajectory is investigated by means of the FLEXible PARTicle Lagrangian dispersion (FLEXPART model. The satellite data set includes true colour images, retrieved values of volcanic SO2 and ash, estimates of SO2 and ash emission rates derived from MODIS (MODerate resolution Imaging Spectroradiometer observations and estimates of cloud top pressure from SEVIRI (Spinning Enhanced Visible and InfraRed Imager. Surface remote sensing measurements of aerosol and SO2 made at the ENEA Station for Climate Observations (35.52° N, 12.63° E; 50 m a.s.l. on the island of Lampedusa are used in the analysis. The combination of these different data sets suggests that SO2 and ash, despite the initial injection at about 7.0 km altitude, reached altitudes around 10–12 km and influenced the column average aerosol particle size distribution at a distance of more than 350 km downwind. This study indicates that even a relatively weak volcanic eruption may produce an observable effect on the aerosol properties at the regional scale. The impact of secondary sulfate particles on the aerosol size distribution at Lampedusa is discussed and estimates of the clear-sky direct aerosol radiative forcing are derived. Daily shortwave radiative forcing efficiencies, i.e. radiative forcing per unit AOD (aerosol optical depth, are calculated with the LibRadtran model. They are estimated between −39 and −48 W m−2 AOD−1 at the top of the atmosphere and between −66 and −49 W m−2 AOD−1 at the surface, with the variability in the estimates mainly depending on the

  6. Multi-scale surface-groundwater interactions: Processes and Implications

    Science.gov (United States)

    Packman, A. I.; Harvey, J. W.; Worman, A.; Cardenas, M. B.; Schumer, R.; Jerolmack, D. J.; Tank, J. L.; Stonedahl, S. H.

    2009-05-01

    Site-based investigations of stream-subsurface interactions normally focus on a limited range of spatial scales - typically either very shallow subsurface flows in the hyporheic zone, or much larger scale surface- groundwater interactions - but subsurface flows are linked across this entire continuum. Broad, multi-scale surface-groundwater interactions produce complex patterns in porewater flows, and interfacial fluxes do not average in a simple fashion because of the competitive effects of flows induced at different scales. For example, reach-scale stream-groundwater interactions produce sequences of gaining and losing reaches that can either suppress or enhance local-scale hyporheic exchange. Many individual topographic features also produce long power-law tails in surface residence time distributions, and the duration of these tails is greatly extended by interactions over a wide range of spatial scales. Simultaneous sediment transport and landscape evolution further complicates the analysis of porewater flow dynamics in rivers. Finally, inhomogeneity in important biogeochemical processes, particularly microbial processes that are stimulated near the sediment- water interface, leads to a great degree of non-linearity in chemical transformation rates in stream channels. This high degree of complexity in fluvial systems requires that careful approaches be used to extend local observations of hyporheic exchange and associated nutrient, carbon, and contaminant transformations to larger spatial scales. It is important to recognize that conventional advection-dispersion models are not expected to apply, and instead anomalous transport models must be used. Unfortunately, no generally applicable model is available for stream-groundwater interactions at the present time. Alternative approaches for modeling conservative and reactive transport will be discussed, and a strategy articulated for coping with the complexity of coupled surface-subsurface dynamics in fluvial

  7. Interdependencies of Arctic land surface processes: A uniquely sensitive environment

    Science.gov (United States)

    Bowling, L. C.

    2007-12-01

    The circumpolar arctic drainage basin is composed of several distinct ecoregions including steppe grassland and cropland, boreal forest and tundra. Land surface hydrology throughout this diverse region shares several unique features such as dramatic seasonal runoff differences controlled by snowmelt and ice break-up; the storage of significant portions of annual precipitation as snow and in lakes and wetlands; and the effects of ephemeral and permanently frozen soils. These arctic land processes are delicately balanced with the climate and are therefore important indicators of change. The litany of recently-detected changes in the Arctic includes changes in snow precipitation, trends and seasonal shifts in river discharge, increases and decreases in the extent of surface water, and warming soil temperatures. Although not unique to the arctic, increasing anthropogenic pressures represent an additional element of change in the form of resource extraction, fire threat and reservoir construction. The interdependence of the physical, biological and social systems mean that changes in primary indicators have large implications for land cover, animal populations and the regional carbon balance, all of which have the potential to feed back and induce further change. In fact, the complex relationships between the hydrological processes that make the Artic unique also render observed historical change difficult to interpret and predict, leading to conflicting explanations. For example, a decrease in snow accumulation may provide less insulation to the underlying soil resulting in greater frost development and increased spring runoff. Similarly, melting permafrost and ground ice may lead to ground subsidence and increased surface saturation and methane production, while more complete thaw may enhance drainage and result in drier soil conditions. The threshold nature of phase change around the freezing point makes the system especially sensitive to change. In addition, spatial

  8. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  9. Assessing the Contribution of the CFRP Strip of Bearing the Applied Load Using Near-Surface Mounted Strengthening Technique with Innovative High-Strength Self-Compacting Cementitious Adhesive (IHSSC-CA

    Directory of Open Access Journals (Sweden)

    Alyaa Mohammed

    2018-01-01

    Full Text Available Efficient transfer of load between concrete substrate and fibre reinforced polymer (FRP by the bonding agent is the key factor in any FRP strengthening system. An innovative high-strength self-compacting non-polymer cementitious adhesive (IHSSC-CA was recently developed by the authors and has been used in a number of studies. Graphene oxide and cementitious materials are used to synthesise the new adhesive. The successful implementation of IHSSC-CA significantly increases carbon FRP (CFRP strip utilization and the load-bearing capacity of the near-surface mounted (NSM CFRP strengthening system. A number of tests were used to inspect the interfacial zone in the bonding area of NSM CFRP strips, including physical examination, pore structure analysis, and three-dimensional laser profilometery analysis. It was deduced from the physical inspection of NSM CFRP specimens made with IHSSC-CA that a smooth surface for load transfer was found in the CFRP strip without stress concentrations in some local regions. A smooth surface of the adhesive layer is very important for preventing localized brittle failure in the concrete. The pore structure analysis also confirmed that IHSSC-CA has better composite action between NSM CFRP strips and concrete substrate than other adhesives, resulting in the NSM CFRP specimens made with IHSSC-CA sustaining a greater load. Finally, the results of three-dimensional laser profilometery revealed a greater degree of roughness and less deformation on the surface of the CFRP strip when IHSSC-CA was used compared to other adhesives.

  10. 3D-additive manufactured optical mount

    Science.gov (United States)

    Mammini, Paul V.; Ciscel, David; Wooten, John

    2015-09-01

    The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.

  11. Experimental investigation of surface roughness in electrical discharge turning process

    Science.gov (United States)

    Gohil, Vikas; Puri, Y. M.

    2016-10-01

    In the present study the effects of machining parameters on the average surface roughness (Ra) in electrical discharge turning (EDT) is investigated. EDT is a new machining process in which a rotary spindle is added to a conventional die-sinking EDM machine in order to produce cylindrical components. In this method a new process parameter (spindle rotation) along with pulse on time and current is introduced to study its effect on Ra. This has been done by means of full factorial design (21 × 32) of experiments. A mathematical model has been developed for Ra by regression analysis and factor effects were analyzed using analysis of variance (ANOVA). Signal-to-noise ratio analysis is used to find the optimal condition.

  12. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion; Surfaces: traitement, revetements, decontamination, pollution, etc. Maitrise de la surface pour prevenir la corrosion des composants

    Energy Technology Data Exchange (ETDEWEB)

    Foucault, M. [Departement Corrosion Chimie, AREVA Centre Technique, BP 181, 71205 Le Creusot (France)

    2012-07-01

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  13. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    Science.gov (United States)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  14. Surface Wave Simulation and Processing with MatSeis

    Energy Technology Data Exchange (ETDEWEB)

    THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.

    2000-08-07

    In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a

  15. Parabolic flights as Earth analogue for surface processes on Mars

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2017-04-01

    The interpretation of landforms and environmental archives on Mars with regards to habitability and preservation of traces of life requires a quantitative understanding of the processes that shaped them. Commonly, qualitative similarities in sedimentary rocks between Earth and Mars are used as an analogue to reconstruct the environments in which they formed on Mars. However, flow hydraulics and sedimentation differ between Earth and Mars, requiring a recalibration of models describing runoff, erosion, transport and deposition. Simulation of these processes on Earth is limited because gravity cannot be changed and the trade-off between adjusting e.g. fluid or particle density generates other mismatches, such as fluid viscosity. Computational Fluid Dynamics offer an alternative, but would also require a certain degree of calibration or testing. Parabolic flights offer a possibility to amend the shortcomings of these approaches. Parabolas with reduced gravity last up to 30 seconds, which allows the simulation of sedimentation processes and the measurement of flow hydraulics. This study summarizes the experience gathered during four campaigns of parabolic flights, aimed at identifying potential and limitations of their use as an Earth analogue for surface processes on Mars.

  16. The Effect of Tool Dimension, Tool Overhang and Cutting Parameters Towards Tool Vibration and Surface Roughness on Turning Process

    Directory of Open Access Journals (Sweden)

    Zuingli Santo Bandaso

    2017-03-01

    Full Text Available Turning process is the removal of metal from the outer diameter of a rotating cylindrical workpiece. Turning is used to reduce the diameter of the workpiece, usually to a specified dimension, and to produce a smooth finish on the metal. This research investigates the effect of feed rate, spindle speed, tool overhang and tool dimensions toward vibration amplitude and surface roughness on turning process. This study uses both statistical and graphical analysis of the data collected. The experimentation was carried out on conventional lathe machine with straight turning operation. Material used as workpiece was St.60 carbon steel which was turned with HSS tool bit with the dimension of 3/8 Inches and ½ Inches. Cutting parameters varied by spindle speed, feed rate, and tool overhang, while the depth of cut is maintained at a depth of 0.5 mm. The vibration data of cutting tool obtained from a transducer (vibrometer mounted at a distance of 10 mm from the tip of the cutting tool during the cutting process takes place, whereas the surface roughness data obtained from measurements of surface roughness apparatus after turning process. The results showed that, The effect of feed rate, spindle speed, tool overhang, and tool dimension simultaneously towards vibration amplitude and surface roughness has a grater effects on the use of 3/8 inches cutting tool than ½ inches cutting tool. With the use of the same tool dimensions obtained that, The most influential parameters on the vibration amplitude is tool overhang while the most influential parameter on surface roughness value is feed rate.

  17. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  18. Field-trip guide to Mount Hood, Oregon, highlighting eruptive history and hazards

    Science.gov (United States)

    Scott, William E.; Gardner, Cynthia A.

    2017-06-22

    This guidebook describes stops of interest for a geological field trip around Mount Hood volcano. It was developed for the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon. The intent of this guidebook and accompanying contributions is to provide an overview of Mount Hood, including its chief geologic processes, magmatic system, eruptive history, local tectonics, and hazards, by visiting a variety of readily accessible localities. We also describe coeval, largely monogenetic, volcanoes in the region. Accompanying the field-trip guidebook are separately authored contributions that discuss in detail the Mount Hood magmatic system and its products and behavior (Kent and Koleszar, this volume); Mount Hood earthquakes and their relation to regional tectonics and the volcanic system (Thelen and Moran, this volume); and young surface faults cutting the broader Mount Hood area whose extent has come to light after acquisition of regional light detection and ranging coverage (Madin and others, this volume).The trip makes an approximately 175-mile (280-kilometer) clockwise loop around Mount Hood, starting and ending in Portland. The route heads east on Interstate 84 through the Columbia River Gorge National Scenic Area. The guidebook points out only a few conspicuous features of note in the gorge, but many other guides to the gorge are available. The route continues south on the Mount Hood National Scenic Byway on Oregon Route 35 following Hood River, and returns to Portland on U.S. Highway 26 following Sandy River. The route traverses rocks as old as the early Miocene Eagle Creek Formation and overlying Columbia River Basalt Group of middle Miocene age, but chiefly lava flows and clastic products of arc volcanism of late Miocene to Holocene age.

  19. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  20. Mount St. Helens Flyover

    Science.gov (United States)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  1. Use of Radiotracers to Study Surface Water Processes

    International Nuclear Information System (INIS)

    2015-03-01

    This publication represents a sound knowledge base for the conduct of radiotracer studies in the environment, with papers on radiotracer methodology, radiation protection and regulation, data analysis and modelling. Environmental case histories from five Member States - Australia, Brazil, France, the Republic of Korea and Sweden - provide information on conducting studies involving he use of radioactive tracers. These case histories are not meant as guidelines for preparing a field study but can rather serve as examples of the type, caution and extent of work involved in environmental studies using radiotracers. This publication can provide guidance for conducting potential future training events in the use of radioactive traces in the environment and can serve as a key reference to all concerned directly with surface water processes

  2. The Amazon River reversal explained by tectonic and surface processes

    Science.gov (United States)

    Sacek, V.

    2014-12-01

    The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.

  3. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. ...

  4. A hydrogeophysical conceptual model of Mount Toondina impact crater, South Australia

    Science.gov (United States)

    Dressler, Andrew Kelly

    Mount Toondina, South Australia is an impact crater that currently has groundwater discharging through evapotranspiration, but formerly had eight springs or more flowing around the crater ring. Using field geophysical and geochemical data, a hydrogeophysical conceptual model was developed that suggests that advection of groundwater to the surface through a sandstone layer is the dominant flow mechanism for the system, creating a ring of vegetation at the surface, although faults provide controls over some spring locations. The data also suggest that sufficient fluid density contrast combined with a vertical permeability structure may allow free convection to occur in the impact crater. The conceptual model was tested by developing numerical models to evaluate the permeability structure and the potential for mixed convection in the Mount Toondina system. The FEFLOW models suggest that the Mount Toondina impact crater spring system is controlled by mixed convective flow from the subsurface to the ring of vegetation around the springs which maintains brackish conditions relative to adjacent saline conditions. The models indicated that convective processes result throughout the crater although the character of convection is controlled by the relative permeability of the formations. The results can be applied to better manage flora and fauna in the Mount Toondina area and help to interpret potential for groundwater flow in and around other impact craters.

  5. Publications of the Western Earth Surfaces Processes Team 2005

    Science.gov (United States)

    Powell, Charles; Stone, Paul

    2007-01-01

    Introduction The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2005 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2005 as well as additional 2002, 2003, and 2004 publications that were not included in the previous lists (USGS Open-File Reports 03-363, 2004- 1267, 2005-1362). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web at http://www.usgs.gov/pubprod/, or by calling 1-888-ASK-USGS. The U.S. Geological Survey's web

  6. Geothermal Potential Analysis Using Landsat 8 and Sentinel 2 (Case Study: Mount Ijen)

    Science.gov (United States)

    Sukojo, B. M.; Mardiana, R.

    2017-12-01

    Geothermal energy is also a heat energy contained in the earth’s internal. Indonesia has a total geothermal potential of around 27 GWe. The government is eager for the development of geothermal in Indonesia can run well so that geothermal can act as one of the pillars of national energy. However, the geothermal potential has not been fully utilized. One of the geothermal potention is Mount Ijen. Mount Ijen is a strato volcano that has a crater lake with a depth of about 190 m and has a very high degree of acidity and the volume of lake water is very large. With the abundance of potential geothermal potential in Indonesia, it is necessary to have an activity in the form of integrated geoscience studies to be able to maximize the potential content that exists in a geothermal area. One of the studies conducted is to do potential mapping. This research performs image data processing of Landsat 8, Sentinel 2, RBI Map, and preliminary survey data. This research carried out the Vegetation Index, surface temperature and altitude. The equipment used in this research includes image processing software, number processing software, GPS Handheld and Laptop. Surface Temperatures in the Mount Ijen have anomalies with large temperatures ranging between 18° C to 38° C. The best correlation value of altitude and ground surface temperature is -0.89 ie the correlation of January surface temperature. While the correlation value of Landsat 8 and Sentinel 2 vegetation index was 0.81. The land cover confidence matrix scored 80%. Land cover in the research area is dominated by forests by 35% of the research area. There is a potential area of geothermal potential is very high on Mount Ijen with an area of 39.43 hectares located in Wongsorejo District and adjacent to District Sempol.

  7. Solar panel parallel mounting configuration

    Science.gov (United States)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  8. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    Science.gov (United States)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  9. Mounting clips for panel installation

    Science.gov (United States)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph

    2017-07-11

    A photovoltaic panel mounting clip comprising a base, central indexing tabs, flanges, lateral indexing tabs, and vertical indexing tabs. The mounting clip removably attaches one or more panels to a beam or the like structure, both mechanically and electrically. It provides secure locking of the panels in all directions, while providing guidance in all directions for accurate installation of the panels to the beam or the like structure.

  10. Cognitive performance during a simulated climb of Mount Everest: implications for brain function and central adaptive processes under chronic hypoxic stress.

    Science.gov (United States)

    Abraini, J H; Bouquet, C; Joulia, F; Nicolas, M; Kriem, B

    1998-07-01

    High altitude is characterized by hypoxic environmental conditions and is well known to induce both physiological and psychological disturbances. In the present study, called ”Everest-Comex 97”, the authors investigated the effects of high altitude on the psychosensorimotor and reasoning processes of eight climbers participating in a simulated climb from sea level to 8,848 m over a 31-day period of confinement in a decompression chamber. Tests of visual reaction time, psychomotor ability, and number ordination were used. The climbers’ data were compared with data from a similar laboratory study at sea level in control subjects. Continued testing of the control subjects at sea level clearly led to learning effects and improvement of performance in psychomotor ability and number ordination. In the climbers, similar learning effects occurred up to an altitude of 5,500–6,500 m. With further increases in altitude, the climbers’ psychomotor performance and mental efficiency deteriorated progressively, leading to significant differences in psychomotor ability and mental efficiency between control subjects and climbers (9 and 13% respectively at 8,000 m and 17.5 and 16.5% respectively at 8,848 m). Three days (72 h) after the climbers had returned to sea level, their mental and psychomotor performances were still significantly lower than those of control subjects (by approximately 10%). In contrast, visual reaction time showed no significant changes in either climbers or control subjects. It is suggested that chronic hypoxic stress could alter selectively mental learning processes, i.e. explicit, rather than implicit (stimulus-response learning processes) memory and cortico-limbic rather than basal ganglia-sensorimotor system function.

  11. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  13. Publications of Western Earth Surface Processes Team 2001

    Science.gov (United States)

    Powell, II; Graymer, R.W.

    2002-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth-science studies in the Western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues, such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the Western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2001, as well as additional 1999 and 2000 publications that were not included in the previous list (USGS Open-File Report 00–215 and USGS Open-File Report 01–198). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File Reports that contain large digital databases of geologic map and related information.

  14. Publications of the Western Earth Surface Processes Team 2000

    Science.gov (United States)

    Powell, Charles L.; Stone, Paul

    2001-01-01

    The Western Earth Surface Processes Team (WESP) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2000 included southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2000 as well as additional 1999 publications that were not included in the previous list (USGS Open-file Report 00-215). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information.

  15. Climbing Mount Probable

    Science.gov (United States)

    Harper, Marc Allen

    2009-01-01

    This work attempts to explain the relationships between natural selection, information theory, and statistical inference. In particular, a geometric formulation of information theory known as information geometry and its deep connections to evolutionary game theory inform the role of natural selection in evolutionary processes. The goals of this…

  16. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2018-01-30

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  17. Solar panel truss mounting systems and methods

    Science.gov (United States)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  18. Micro-inverter solar panel mounting

    Science.gov (United States)

    Morris, John; Gilchrist, Phillip Charles

    2016-02-02

    Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solar panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.

  19. Publications of the Western Earth Surface Processes Team 2002

    Science.gov (United States)

    Powell, Charles; Graymer, R.W.

    2003-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2002 as well as additional 1998 and 2001 publications that were not included in the previous list (USGS Open-File Report 00-215, USGS Open-File Report 01-198, and USGS Open-File Report 02-269). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS open-file reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web or by calling 1-888-ASK-USGS. The U.S. Geological Survey’s web server for geologic information in the western United States is located at http

  20. Electron beam processed plasticized epoxy coatings for surface protection

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Mervat S. [National Center for Radiation Research and Technology, Nasr City (Egypt); Mohamed, Heba A., E-mail: hebaamohamed@gmail.com [National Research Center, Dokki (Egypt); Kandile, Nadia G. [University College for Girls, Ain Shams University (Egypt); Said, Hossam M.; Mohamed, Issa M. [National Center for Radiation Research and Technology, Nasr City (Egypt)

    2011-10-17

    Highlights: {center_dot} Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass{sup -1} irradiation dose showed the best adhesion and passed bending tests. {center_dot} The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. {center_dot} The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass{sup -1}) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass{sup -1} irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion

  1. Triangle geometry processing for surface modeling and cartesian grid generation

    Science.gov (United States)

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  2. Microstructural and hardness gradients in Cu processed by high pressure surface rolling

    DEFF Research Database (Denmark)

    He, Q. Y.; Zhu, X.-M.; Mei, Q. S.

    2017-01-01

    The surface of an annealed Cu plate was processed by a high pressure surface rolling (HPSR) process. It is found that the deformed surface layer in the Cu plate after HPSR can be as thick as 2 mm and is characterized by a gradient microstructure, with grain sizes varying from the nanoscale...

  3. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  4. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining...

  5. 30 CFR 937.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 937.764 Section 937.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.764 Process for designating areas unsuitable for surface coal mining...

  6. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal mining...

  7. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary shall...

  8. 30 CFR 941.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 941.764 Section 941.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.764 Process for designating areas unsuitable for surface coal mining...

  9. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 939.764 Section 939.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal mining...

  10. A rapid method of ferromanganese nodule mounting

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, S.; Banerjee, R.

    surfaces, standard diamond polishing method is recommended. It is important to note that all there~gentsarc 10 be stored i.n deep freeze to retain their chemical and physical propertJes unchanged. In parucular, the pol\\". ester resin, jf kept in deep freeze... adopted in mounting loose beach sands for mineral identification under arc-microscope. References MARGOLIS, S. V. and GLASIIY, G. P. (1973) Report on Inter-Univcrsity program of rcsearch co ferromanganese deposits of the ocean floor (unpub.), phase-I, pp...

  11. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    holes need different processing techniques. Conventional finishing methods used so far become almost impossible or cumbersome. In this paper, a nano material especially multi wall carbon nano tube is used in the machining process like ...

  12. Lunar rock surfaces as detectors of solar processes

    International Nuclear Information System (INIS)

    Hartung, J.B.; Hunter College, New York, NY)

    1980-01-01

    Lunar rock surfaces exposed at or just below the lunar surface are considered as detectors of the solar wind, solar flares and solar-derived magnetic fields through their interactions with galactic cosmic rays. The degradation of the solar detector capabilities of lunar surface rocks by meteoroid impact erosion, accreta deposition, loose dust, and sputtering, amorphous layer formation and accelerated diffusion due to solar particles and illumination is discussed, and it is noted that the complex interactions of factors affecting the outer micron of exposed surface material has so far prevented the development of a satisfactory model for a particle detector on the submicron scale. Methods for the determination of surface exposure ages based on the accumulation of light solar wind noble gases, Fe and Mg, impact craters, solar flare tracks, and cosmogenic Kr isotopes are examined, and the systematic variations in the ages determined by the various clocks are discussed. It is concluded that a means of obtaining satisfactory quantitative rate or flux data has not yet been established

  13. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate......-process determination of the process endpoint. This makes it possible to reliably determine the right time for changing the polishing media to finer abrasive when applying a given set of parameters is no longer effective to create a smoother surface, thus improving the efficiency of the process. The findings enabling...

  14. Process chain for fabrication of anisotropic optical functional surfaces on polymer components

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    2017-01-01

    This paper aims to introduce a process chain for fabrication of anisotropic optical functional surfaces on polymer products. Thesurface features under investigation are composed of micro serrated ridges. The scope was to maximize the visible contrast betweenhorizontally orthogonal textured surfaces...

  15. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  16. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4',6'-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria...

  17. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  18. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  19. Analysis and research on curved surface's prototyping error based on FDM process

    Science.gov (United States)

    Gong, Y. D.; Zhang, Y. C.; Yang, T. B.; Wang, W. S.

    2008-12-01

    Analysis and research methods on curved surface's prototyping error with FDM (Fused Deposition Modeling) process are introduced in this paper, then the experiment result of curved surface's prototyping error is analyzed, and the integrity of point cloud information and the fitting method of curved surface prototyping are discussed as well as the influence on curved surface's prototyping error with different software. Finally, the qualitative and quantitative conclusions on curved surface's prototyping error are acquired in this paper.

  20. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  1. Mounting power cables on SOLEIL

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The power couplers are mounted on the SOLEIL cryomodule in a clean room. The cryomodule will allow superconducting technology to be used at SOLEIL, the French national synchrotron facility. This work is carried out as part of a collaboration between CERN and CEA Saclay, the French National Atomic Energy Commission.

  2. Engine mounts and structural joints

    Indian Academy of Sciences (India)

    While finite element (FEM) solutions are useful if. SaÅdhanaÅ, Vol. 25, Part 3, June 2000, pp. ... A more general set of analysis tools and design dynamics is required to understand existing ... and highly damped to control the idle shake and engine mounting resonance over 5±30 Hz. Also, it must be able to control, like a ...

  3. Prospects of DLC coating as environment friendly surface treatment process.

    Science.gov (United States)

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2018-03-01

    Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.

  5. Thin film surface processing by ultrashort laser pulses (USLP)

    Science.gov (United States)

    Scorticati, D.; Skolski, J. Z. P.; Römer, G. R. B. E.; Huis in't Veld, A. J.; Workum, M.; Theelen, M.; Zeman, M.

    2012-06-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed laser source (230 fs-10 ps) was applied using a focused Gaussian beam profile (15-30 μm). Laser parameters such as fluence, overlap (OL) and Overscans (OS), repetition frequency (100-200 kHz), wavelength (1030 nm, 515 nm and 343 nm) and polarization were varied to study the effect on periodicity, height and especially regularity of LIPSS obtained in layers of different thicknesses (150-400 nm). The aim was to produce these structures without cracking the metal layer and with as little ablation as possible. It was found that USLP are suitable to reach high power densities at the surface of the thin layers, avoiding mechanical stresses, cracking and delamination. A possible photovoltaic (PV) application could be found in texturing of thin film cells to enhance light trapping mechanisms.

  6. [Water cults on Soratte Mount].

    Science.gov (United States)

    Falchetti, Mario; Ottini, Laura

    2011-01-01

    Mount Soratte is a limestone ridge that rises on a lonely plateau of Pliocene tuff on the right of the Tiber, about forty kilometers North of Rome. Studies related to human settlements during prehistory in this territory have been sporadic and occasional. The first evidence of prehistoric cults on mount Soratte has been found in the early Fifties when ajar, dating back to Neolithic times, was discovered in the cave of the Meri. The jar was placed in a position to be always filled of water and indicates the existence of ancient practices of worship linked to groundwater. In the Middle Ages, although caves became a step towards the Hell, dripping caves were often associated with the magical-religious and therapeutic aspects of water linked to fertility in the popular imagination. In the cave church of the Saint Romana, on the eastern slope of Mount Soratte close to Meri, there is a small marble basin near the altar and the water drips from the rock above it. This water is taken out for devotion and drunk by mothers who did not get milk from their breasts. Recently, the water of the Saint Romana would have drained as a result of an act of sacrilege, albeit unintentionally, as reported in a oral testimony. Overall, the territory of Mount Soratte is characterized by a sharp and clear karst. This causes the water, that collects on the inside, coming out in many springs all around the valley. This water is collected to supply fountains used years ago by farmers and livestock and nowadays may represent a cultural space of social life with the aim to build a strong link with the territory and a new awareness of the past and history of the countryside around Mount Soratte.

  7. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes

    Science.gov (United States)

    Nakayama, Katsutoshi; Hiraga, Takuya; Zhu, Chunyu; Tsuji, Etsushi; Aoki, Yoshitaka; Habazaki, Hiroki

    2017-11-01

    Herein we report simple electrochemical processes to fabricate a self-healing superhydrophobic CeO2 coating on Type 304 stainless steel. The CeO2 surface anodically deposited on flat stainless steel surface is hydrophilic, although high temperature-sintered and sputter-deposited CeO2 surface was reported to be hydrophobic. The anodically deposited hydrophilic CeO2 surface is transformed to hydrophobic during air exposure. Specific accumulation of contaminant hydrocarbon on the CeO2 surface is responsible for the transformation to hydrophobic state. The deposition of CeO2 on hierarchically rough stainless steel surface produces superhydrophobic CeO2 surface, which also shows self-healing ability; the surface changes to superhydrophilic after oxygen plasma treatment but superhydrophobic state is recovered repeatedly by air exposure. This work provides a facile method for preparing a self-healing superhydrophobic surface using practical electrochemical processes.

  8. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  9. Surface gas-exchange processes of snow algae

    OpenAIRE

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, becaus...

  10. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  11. Statistical and signal processing concepts in surface metrology

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.

    1986-01-01

    This paper proposes the use of a simple two-scale model of surface roughness for testing and specifying the topographic figure and finish of synchrotron-radiation mirrors. In this approach the effects of figure and finish are described in terms of their slope distribution and power spectrum, respectively, which are then combined with the system point spread function to produce a composite image. The result can be used to predict mirror performance or to translate design requirements into manufacturing specifications. Pacing problems in this approach are the development of a practical long-trace slope-profiling instrument and realistic statistical models for figure and finish errors

  12. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal mining... coal mining operations beginning one year after the effective date of this program. ...

  13. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions...

  14. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 947.764 Section 947.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  15. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program. ...

  16. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal mining... coal mining operations beginning June 24, 1996, one year after the effective date of this program. ...

  17. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  18. Coronal Structures as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    tribpo

    The corona - a tenuous portion of the solar upper atmosphere - was observed as early as 1063 ... is still open. Considering the possible processes that can affect the appearance of coronal structures, one can divide them into two categories: ones that take place above the ... The hemispheric helicity rule in the solar corona.

  19. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    cations of carbon nanotubes, with the aim of drawing attention to useful available information and to enhancing ... of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analysed by .... dimensions, the force loading mechanism, the probe-sample-position control system allow. Figure 3.

  20. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  1. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  2. Recycling and surface erosion processes in contemporary tokamaks

    International Nuclear Information System (INIS)

    McCracken, G.M.

    1979-03-01

    A number of global models have recently had considerable success in describing recycling. These are briefly reviewed. It is shown that large gas concentrations can build up in the walls and that these concentrations are seriously affected by erosion and deposition processes and by deliberate gettering with titanium. Finally, the measurement of the concentration of hydrogen in probes is discussed as a means of measuring plasma edge characteristics

  3. Influence of the surface layer characteristics on the regularities of the cutting process

    Directory of Open Access Journals (Sweden)

    Krainev Dmitriy V.

    2017-01-01

    Full Text Available The article considers the influence of the surface layer characteristics on the regularities of the cutting process and the formation of the quality of the surface machined. This effect has been confirmed by the study results of the combined cutting method with advanced plastic deformation (APD. The work estimates the impact of the change in the surface layer properties on the forces and temperature of cutting, stability of the chip formation and quality parameters of the surface machined.

  4. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  5. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  6. Quaternary glaciation of Mount Everest

    Science.gov (United States)

    Owen, Lewis A.; Robinson, Ruth; Benn, Douglas I.; Finkel, Robert C.; Davis, Nicole K.; Yi, Chaolu; Putkonen, Jaakko; Li, Dewen; Murray, Andrew S.

    2009-07-01

    The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24-27 ka (Jilong moraine), 14-17 ka (Rongbuk moraine), 8-2 ka (Samdupo moraines) and ˜1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8-7.7 ka) and Samdupo II (˜2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.

  7. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  8. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  9. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  10. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  11. Fire and forest history at Mount Rushmore.

    Science.gov (United States)

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a

  12. The theory of development of surface morphology by sputter erosion processes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.

    1984-01-01

    When a surface is bombarded by an energetic ion flux a rich variety of surface structures are observed to develop at the atomic, microscopic and macroscopic scales. Such structures include elevated, with respect to the surrounding surface, features such as mesas or plateaux, ridges, cones and pyramids and depressed features such as etch pits and cavities. These elementary features may be isolated or in profusion and frequently repetitive patterns of coordinated pyramidal structures, etch pits, surface ledges or facets and ripple or wave-like structures occur. The majority of the features arise rather directly from the erosion action of the sputtering process, particularly from differential erosion processes at different surface localities. The authors outline a general approach to sputter erosion induced surface morphology development based on the concept of the surface as an advancing wave. (Auth.)

  13. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  14. Anaglyph with Landsat Overlay, Mount Meru, Tanzania

    Science.gov (United States)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park, but Ngurdoto Crater to the east (image top) is also prominent. The fertile slopes of both volcanoes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards, while the floor of Ngurdoto Crater hosts herds of elephants and buffaloes.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a digital elevation data from the Shuttle Radar Topography Mission (SRTM), and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  15. Earth Surface Processes and Environmental Changes in Lake-catchment Systems(Earth Surface Processes, Natural Disasters and Historical Environmental Changes)

    OpenAIRE

    Kenji, KASHIWAYA; Institute of Nature and Environmental Technology, Kanazawa University

    2012-01-01

    Lake-catchment systems including continuous records of various climatic regimes are discussed for combining earth surface processes with temporal environmental changes. Three types of external forces (climatic, tectonic and anthropogenic), which are printed in lacustrine sediments and drainage landforms, are significant for understanding processes and changes. Present observations on small lake-catchment systems in Japan and past information on large lake-catchment systems in east Eurasia sho...

  16. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  17. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    Science.gov (United States)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  18. 78 FR 59954 - Notice of Inventory Completion: Michigan State Police, Mount Pleasant Post, Mount Pleasant, MI

    Science.gov (United States)

    2013-09-30

    ....R50000] Notice of Inventory Completion: Michigan State Police, Mount Pleasant Post, Mount Pleasant, MI... Pleasant Post, has completed an inventory of human remains, in consultation with the appropriate Indian...: Detective Sergeant Gary Green; Michigan State Police, Mount Pleasant Post, 3580 S. Isabella Road, Mount...

  19. Measurement & Minimization of Mount Induced Strain on Double Crystal Monochromator Crystals

    Science.gov (United States)

    Kelly, J.; Alcock, S. G.

    2013-03-01

    Opto-mechanical mounts can cause significant distortions to monochromator crystals and mirrors if not designed or implemented carefully. A slope measuring profiler, the Diamond-NOM [1], was used to measure the change in tangential slope as a function of crystal clamping configuration and load. A three point mount was found to exhibit the lowest surface distortion (Diamond Light Source.

  20. Non destructive evaluation of residual stresses in welding and hard-surfacing processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Aragon, B.; Merino, F.

    1995-01-01

    In this paper transversal and longitudinal stress profiles in welding and hard-surfacing by welding processes are presented. The stresses were measured by RMS of Barkhausen signal. In this work it is shown that in each case the level of stresses is strongly dependent on the number of weld beads of surfacing layers deposited. The subsequent deposition of new weld beads or surfacing layers produces a stress-relieving effect

  1. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    Science.gov (United States)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  2. Characterization of surface processes on mineral surfaces in aqueous solutions. Annual report for fiscal year 1993

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1993-11-01

    Performance assessments by Los Alamos National Laboratory for the DOE's Yucca Mountain Site Characterization Project (YMP) are being done investigating the environmental risk related to long-term disposal of hazardous wastes resulting from the use of radioactive materials that must subsequently be isolated from the environment. The YMP site, located in southwestern Nevada, is intended for the storage of high-level wastes generated by nuclear energy-related activities, including spent fuel and waste from reprocessed fuel rods. The work covered by this contract is necessary for producing a defensible model and dataset, and may be critical for evaluation of repository compliance. This work, performed by the Environmental Engineering and Science research group at Stanford University, will quantify the adsorption of uranyl on various minerals. The project's principle objective is to provide sorption coefficients for uranyl and other ions of interest to predict radionuclide movements form the repository to accessible environments. This adsorption data is essential for the unambiguous interpretation of field experiments and observations. In this report, details of the activity and progress made with respect to the study of uranyl adsorption on mineral surfaces is presented and discussed

  3. Experimental determination of void fraction in surface aeration using image processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpur, Amir; Akhavan-Behabadi, Mohammad Ali; Ebrahimzaedh, Masoud; Hanafizadeh, Pedram; Raisee, Mehrdad [University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper, a new method for determination of void fraction in surface aeration process is presented and discussed. The proposed method is based on the image processing technique. The experimental setup has been designed to create various surface aeration conditions in the water. Void fraction has been calculated for the wide range of water height, impeller immersion depth and rotational speed. Experiments have been performed in an open cubic tank with side length of 60 cm, equipped with one Rushton disk turbine. Moreover, the void fraction has been measured with level gauge method. The results showed that the image processing technique provides more accurate results than the level gauge measurements for void fraction calculation in surface aeration especially in low void fraction aeration. In addition, the experimental data revealed that increase in impeller immersion depth and rotational speed increase void fraction and oxygen transfer rate in surface aeration process.

  4. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  5. Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium

    Science.gov (United States)

    Chithirai Pon Selvan, M.; Mohana Sundara Raju, N.; Sachidananda, H. K.

    2012-12-01

    Abrasive waterjet cutting is a novel machining process capable of processing wide range of hard-to-cut materials. Surface roughness of machined parts is one of the major machining characteristics that play an important role in determining the quality of engineering components. This paper shows the influence of process parameters on surface roughness ( R a) which is an important cutting performance measure in abrasive waterjet cutting of aluminium. Taguchi's design of experiments was carried out in order to collect surface roughness values. Experiments were conducted in varying water pressure, nozzle traverse speed, abrasive mass flow rate and standoff distance for cutting aluminium using abrasive waterjet cutting process. The effects of these parameters on surface roughness have been studied based on the experimental results.

  6. Theoretical and experimental approach to the texturization process of bioreactive surfaces by high-power laser

    Science.gov (United States)

    Conde, J. C.; Riveiro, A.; Comesana, R.; Pou, J.

    2011-11-01

    The properties of orthopaedic/dental implants can be tuned through the laser surface modifications that take place during a laser ablation process. Processing assisted by a laser is adequate to produce macro- and micro-structures on metallic alloys and polymer surfaces in order to improve their biological response. The evaluation of the minimum energy density that causes an optimum ablation process on different kinds of surfaces was theoretically established by numerical simulation of the thermal process and some experiments have been systematically carried out to produce a periodic pattern in the surface. The selection of the laser power has been predicted from numerical analysis solving of the heat conduction differential equation using commercial software, ANSYS (11.0). This analysis has allowed us to predict the extent and the depth of the holes. The theoretical results agree with the experimental measurements that were carried out by profilometry.

  7. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical...

  8. A facile two-step dipping process based on two silica systems for a superhydrophobic surface.

    Science.gov (United States)

    Li, Xiaoguang; Shen, Jun

    2011-10-14

    A silica microsphere suspension and a silica sol are employed in a two-step dipping process for the preparation of a superhydrophobic surface. It's not only a facile way to achieve the lotus effect, but can also create a multi-functional surface with different wetabilities, adhesive forces and transparencies. This journal is © The Royal Society of Chemistry 2011

  9. Coupled Deep Earth and surface processes and their impact on geohazards

    NARCIS (Netherlands)

    Cloetingh, S.; Tibaldi, A.; Burov, E.

    2012-01-01

    Better understanding of coupled Deep Earth and surface processes is the key for resolving the evolution of the continental lithosphere and its surface topography. The thermo-mechanical structure of the lithosphere exerts a prime control on the interaction of mantle instabilities and tectonic forces

  10. Fabrication of superhydrophobic wood surfaces via a solution-immersion process

    Science.gov (United States)

    Liu, Changyu; Wang, Shuliang; Shi, Junyou; Wang, Chengyu

    2011-11-01

    Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.

  11. Modeling and simulation of the deformation process of PTFE flexiblestamps for nanoimprint lithography on curved surfaces

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Smistrup, K.; Hannibal, Morten

    2015-01-01

    In the presented work, simulations of the deformation process of flexible stamps used for nanoimprint lithographron curved surfaces are presented. The material used for the flexible stamps was polytetrafluoroethylene (PTFE) whose material behavior was found to be viscoelastic-viscoplastic. This b......In the presented work, simulations of the deformation process of flexible stamps used for nanoimprint lithographron curved surfaces are presented. The material used for the flexible stamps was polytetrafluoroethylene (PTFE) whose material behavior was found to be viscoelastic...

  12. Linear and nonlinear characterization of surfaces from a laser beam melt ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Bube, Kevin [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Neto, Camilo Rodrigues [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); University of Sao Paulo, Av. Arlindo Bettio 1000, EACH, 03828-000 Sao Paulo (Brazil); Donner, Reik [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Schwarz, Udo [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Feudel, Ulrike [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)

    2006-04-07

    We apply linear and nonlinear methods to study the properties of surfaces generated by a laser beam melt ablation process. As a result we present a characterization and ordering of the surfaces depending on the adjusted process parameters. Our findings give some insight into the performance of two widely applied multifractal analysis methods-the detrended fluctuation analysis and the wavelet transform modulus maxima method-on short real world data.

  13. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  14. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  15. Mount Ararat, Turkey, Perspective with Landsat Image Overlay

    Science.gov (United States)

    2004-01-01

    This perspective view shows Mount Ararat in easternmost Turkey, which has been the site of several searches for the remains of Noah's Ark. The main peak, known as Great Ararat, is the tallest peak in Turkey, rising to 5165 meters (16,945 feet). This southerly, near horizontal view additionally shows the distinctly conically shaped peak known as 'Little Ararat' on the left. Both peaks are volcanoes that are geologically young, but activity during historic times is uncertain.This image was generated from a Landsat satellite image draped over an elevation model produced by the Shuttle Radar Topography Mission (SRTM). The view uses a 1.25-times vertical exaggeration to enhance topographic expression. Natural colors of the scene are enhanced by image processing, inclusion of some infrared reflectance (as green) to highlight the vegetation pattern, and inclusion of shading of the elevation model to further highlight the topographic features. Volcanoes pose hazards for people, the most obvious being the threat of eruption. But other hazards are associated with volcanoes too. In 1840 an earthquake shook the Mount Ararat region, causing an unstable part of mountain's north slope to tumble into and destroy a village. Visualizations of satellite imagery when combined with elevation models can be used to reveal such hazards leading to disaster prevention through improved land use planning.But the hazards of volcanoes are balanced in part by the benefits they provide. Over geologic time volcanic materials break down to form fertile soils. Cultivation of these soils has fostered and sustained civilizations, as has occurred in the Mount Ararat region. Likewise, tall volcanic peaks often catch precipitation, providing a water supply to those civilizations. Mount Ararat hosts an icefield and set of glaciers, as seen here in this late summer scene, that are part of this beneficial natural processElevation data used in this image was acquired by the Shuttle Radar Topography Mission

  16. Processing method and processing device for liquid waste containing surface active agent and radioactive material

    International Nuclear Information System (INIS)

    Nishi, Takashi; Matsuda, Masami; Baba, Tsutomu; Yoshikawa, Ryozo; Yukita, Atsushi.

    1998-01-01

    Washing liquid wastes containing surface active agents and radioactive materials are sent to a deaerating vessel. Ozone is blown into the deaerating vessel. The washing liquid wastes dissolved with ozone are introduced to a UV ray irradiation vessel. UV rays are irradiated to the washing liquid wastes, and hydroxy radicals generated by photodecomposition of dissolved ozone oxidatively decompose surface active agents contained in the washing liquid wastes. The washing liquid wastes discharged from the UV ray irradiation vessel are sent to an activated carbon mixing vessel and mixed with powdery activated carbon. The surface active agents not decomposed in the UV ray irradiation vessel are adsorbed to the activated carbon. Then, the activated carbon and washing liquid wastes are separated by an activated carbon separating/drying device. Radioactive materials (iron oxide and the like) contained in the washing liquid wastes are mostly granular, and they are separated and removed from the washing liquid wastes in the activated carbon separating/drying device. (I.N.)

  17. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... appearance was studied. Microstructural and morphological characterization was performed using transmission electron microscopy (TEM). The surface appearance was analysed using an integrating sphere-spectrometer setup. Increasing the anodizing voltage changed the surface appearance of the composites from...

  18. Assessment of surface contamination level in an operating uranium ore processing facility of Jaduguda, India

    International Nuclear Information System (INIS)

    Meena, J.S.; Patnaik, R.L.; Jha, V.N.; Sahoo, S.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Radiological concern of the occupational workers and the area is given priority over other safety issue in confirmation with the stipulated guideline of national regulatory agency (AERB/FEFCF/SG-2, 2007). The key concern from the radiological hazard evaluation point of view is air activity, external gamma level and surface contamination. Present investigations was carried out to ascertain the surface contamination level of uranium ore processing facility at Jaduguda, Jharkhand. For a low grade uranium ore processing industry surface contamination is a major concern in product precipitation and recovery section. In view of this, the ore processing plant can broadly be classified into three areas i.e. ion exchange area, precipitation and product recovery section and other areas. The monitoring results incorporate the level of surface contamination of the plant during the last five years. The geometric mean activity of surface contamination level was 31.1, 34.5 and 9.8 Bq dm -2 in ion exchange, product precipitation and recovery and other areas with GSD of 2, 2.5 and 1.9. In most of the cases the surface contamination level was well within the recommended limit of 100 Bq dm -2 for M class uranium compound. Occasional cases of surface contamination levels exceeding the recommended limit were addressed and areas were decontaminated. Based on the study, modification in the design feature of the surface of the finished product section was also suggested so that the decontamination procedure can be more effectively implemented

  19. Space radar image of Mount Everest

    Science.gov (United States)

    1995-01-01

    These are two comparison images of Mount Everest and its surroundings, along the border of Nepal and Tibet. The peak of Mount Everest, the highest elevation on Earth at 8,848 meters (29,028 feet), can be seen near the center of each image. The image at the top was acquired through thick cloud cover by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 16, 1994. The image on the bottom is an optical photograph taken by the Endeavour crew under clear conditions during the second flight of SIR-C/X-SAR on October 10, 1994. Both images show an area approximately 70 kilometers by 38 kilometers (43 miles by 24 miles) that is centered at 28.0 degrees north latitude and 86.9 degrees east longitude. North is toward the upper left. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Radar illumination is from the top of the frame. The optical photograph has been geometrically adjusted to better match the area shown in the radar image. Many features of the Himalayan terrain are visible in both images. Snow covered areas appear white in the optical photograph while the same areas appear bright blue in the radar image. The radar image was taken in early spring and shows deep snow cover, while the optical photograph was taken in late summer and shows minimum snow cover. The curving and branching features seen in both images are glaciers. The two wavelengths and multiple polarizations of the SIR-C radar are sensitive to characteristics of the glacier surfaces that are not detected by conventional photography, such as the ice roughness, water content and stratification. For this reason, the glaciers show a variety of colors in the radar image (blue, purple, red

  20. Non-adiabatic effects in elementary reaction processes at metal surfaces

    Science.gov (United States)

    Alducin, M.; Díez Muiño, R.; Juaristi, J. I.

    2017-12-01

    Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.

  1. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  2. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  3. Specifics of adsorption and chemical processes on the surface of gamma-irradiated vanadium dioxide

    International Nuclear Information System (INIS)

    Kaurkovskaya, V.N.; Dzyubenko, L.S.; Doroshenko, V.N.; Chujko, A.A.; Shakhov, A.P.

    2006-01-01

    Effect of γ-irradiation on electrophysical properties and processes of thermal desorption of water from the surface of vanadium oxides V 2 O 3 -VO 2-δ -VO 2+δ -V 2 O 5 was investigated by derivatography and electric conductivity. Content of adsorbed water at the surface and phase composition of the surface was demonstrated to change under the action of low radiation doses. Surface electric conductivity of the irradiated samples VO 2-δ in the process of chemical reactions of adsorbed following irradiation benzoic acid and ethanol was established to be much above than in irradiated-free ones. It is presumed that metal-semiconductor phase transition at the surface of VO 2-δ during chemical reaction is intensified by irradiation [ru

  4. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  5. Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Min; Qin, Hong Yi; Hong, Seok Jun; Jeon, Sang Hyuk; Kulkarni, Atul; Kim, Tae Sun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    During the Chemical mechanical planarization (CMP), the pad conditioning process can affect the pad surface characteristics. Among many CMP process parameters, the improper applied load on the conditioner arm may have adverse effects on the polyurethane pad. In this work, we evaluated the pad surface properties under the various conditioner arm applied during pad conditioning process. The conditioning pads were evaluated for surface topography, surface roughness parameters such as Rt and Rvk and Material removal rate (MRR) and within-wafer non-uniformity after wafer polishing. We observed that, the pad asperities were collapsed in the direction of conditioner rotation and blocks the pad pores applied conditioner load. The Rvk value and MRR were founded to be in relation with 4 > 1 > 7 kgF conditioner load. Hence, this study shows that, 4 kgF applied load by conditioner is most suitable for the pad conditioning during CMP.

  6. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  7. Evaluation of HOPG mounting possibilities for multiplexing spectrometers

    DEFF Research Database (Denmark)

    Groitl, Felix; Bartkowiak, Marek; Bergmann, Ryan M.

    2017-01-01

    Four different methods for mounting HOPG analyzer crystals on Si holders have been evaluated in the design process of the new multiplexing spectrometer CAMEA. Contrary to neutron optics used in standard spectrometers, the new instrument concept employs a series of analyzer segments behind each ot...

  8. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  9. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  10. Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing

    Science.gov (United States)

    Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun

    2018-01-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.

  11. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes

    KAUST Repository

    Tsai, Meng-Yu

    2011-08-01

    This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass. © 2011 Elsevier B.V. All rights reserved.

  12. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-03-01

    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  13. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  14. The synthesis of flexible zeolite nanofibers by a polymer surface thermal etching process

    Science.gov (United States)

    Ji, Sang Hyun; Cho, Jeong Ho; Jeong, Young Hun; Yun, Jon Do; Yun, Ji Sun

    2017-09-01

    Flexible zeolite nanofibers with high surface area were synthesized by an electrospinning method and a thermal surface partial etching process. The thermal surface partial etching temperature range for maintaining flexibility of zeolite nanofibers was investigated based on thermogravimetric analysis (TGA), and the as-spun zeolite nanofibers were thermal etched at a temperature range from 250 °C to 450 °C. Field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) images clearly showed that the polymer surface of the nanofibers was partially etched, and zeolite particles were exposed on the surface of the nanofibers. X-ray diffraction (XRD) results confirmed that a phase change did not occur in the zeolite nanofibers with a thermal etching process. The specific surface area characteristics were analyzed by N2 adsorption/desorption isotherms, and the thermal surface etched zeolite nanofibers at 400 °C had a specific surface area of 816 m2/g similar to the value of zeolite powders.

  15. Impact of overall and particle surface heat transfer coefficients on thermal process optimization in rotary retorts.

    Science.gov (United States)

    Simpson, R; Abakarov, A; Almonacid, S; Teixeira, A

    2008-10-01

    This study attempts to examine the significance of recent research that has focused on efforts to estimate values for global and surface heat transfer coefficients under forced convection heating induced by end-over-end rotation in retorting of canned peas in brine. The study confirms the accuracy of regression analysis used to predict values for heat transfer coefficients as a function of rotating speed and headspace, and uses them to predict values over a range of process conditions, which make up the search domain for process optimization. These coefficients were used in a convective heat transfer model to establish a range of lethality-equivalent retort temperature-time processes for various conditions of retort temperature, rotating speed, and headspace. Then, they were coupled with quality factor kinetics to predict the final volume average and surface quality retention resulting from each process and to find the optimal thermal process conditions for canned fresh green peas. Results showed that maximum quality retention (surface and volume average retention) was achieved with the shortest possible process time (made possible with highest retort temperature), and reached the similar level in all cases with small difference between surface and volume average quality retention. The highest heat transfer coefficients (associated with maximum rotating speed and headspace) showed a 10% reduction in process time over that required with minimum rotating speed and headspace. The study concludes with a discussion of the significance of these findings and degree to which they were expected.

  16. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.

    Science.gov (United States)

    Mugunthan, Pradeep; Russell, Kevin T; Gong, Binglei; Riley, Michael J; Chin, Arthur; McDonald, Blair G; Eastcott, Linda J

    2017-05-01

    There is an identified need for fully representing groundwater-surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state-of-the-science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field-scale two- and three-dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field-scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two-dimensional field case were consistent with site-specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water. © 2016, National Ground Water Association.

  17. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    Science.gov (United States)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  18. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  19. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    Are low-relief high-elevation surfaces generally a result of uplift of flat surfaces formed close to sea-level or can they be formed "in situ" by climate dependent surface processes such as those associated with glaciation? This question is important to resolve in order to understand the geological...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... periglacial erosion, sediment transport, and the evolving topography. We show that smooth peaks, convex hillslopes, and a few meters thick regolith cover at high elevation are emergent properties of the landscape evolution model. By varying climate and other model parameters, we discuss how the landscape...

  20. The study of sub-surface damage distributions during grinding process on different abrasion materials

    Science.gov (United States)

    Kuo, Ching-Hsiang; Huang, Chien-Yao; Yu, Zong-Ru; Shu, Shyu-Cheng; Chang, Keng-Shou; Hsu, Wei-Yao

    2017-10-01

    The grinding process is the primary technology for curvature generation (CG) on glass optics. The higher material removal rate (MRR) leads to deeper sub-surface damage (SSD) on lens surface. The SSD must be removed by following lapping and polishing processes to ensure the lens quality. However, these are not an easy and an efficient process to remove the SSD from ground surface directly for aspheric surfaces with tens or hundreds microns departure from bestfit- sphere (BFS). An efficient fabrication procedure for large aspheric departure on glass materials must be considered. We propose 3-step fabrication procedures for aspheric surface with larger departure. 1st step is to generate a specific aspheric surface with depth less than 10 μm of SSD residual. 2nd step is to remove SSD and keep the aspheric form by using Zeeko polisher with higher MRR pad. Final step is to figure and finish the aspheric surface by using QED MRF machine. In this study, we focus on the 1st step to investigate the residual depth of SSD after grinding process on different abrasion materials. The materials of tested part are fused silica, S-NPH2, and S-PHM52. The cross grinding would be configured and depth of SSD/surface roughness would be evaluated in this study. The characteristic of SSD could be observed after etching by confocal microscope. The experimental results show the depth of SSD below 31.1 μm with #400 grinding wheel. And the near 10 μm depth of SSD would be achieved with #1,000 grinding wheel. It means the aspherization polishing on large parts with large departure from best fit sphere would be replaced. The fabrication of large aspheric part would be efficient.

  1. Surface Processing and Modification of Polymers by Water Cluster Ion Beam

    Science.gov (United States)

    Ryuto, H.; Takeuchi, M.; Ichihashi, G.; Sommani, P.; Takaoka, G. H.

    2011-01-01

    A water cluster ion beam was irradiated on a poly(methyl methacrylate) (PMMA) surface to examine the possibility of applying the water cluster ion beam technique to the surface processing and modification of polymers. The sputtering yields of PMMA substrates irradiated with water cluster ion beams increased with acceleration voltage and dose of the water cluster ion beam. The threshold acceleration voltage of sputtering was approximately 3 kV. The X-ray photoelectron spectroscopy (XPS) analysis of the PMMA surface irradiated with the water cluster ion beam suggested the degradation of the PMMA side chains. The XPS spectrum of the surface of the sputtered particle catcher at 45° backward direction showed approximately the same shape as the XPS spectrum of the PMMA surface irradiated with the water cluster ion beam.

  2. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2017-12-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  3. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  4. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  5. Isogloss: language and legacy on Mount St. Helens

    Science.gov (United States)

    E. Dodd

    2012-01-01

    Nothing standing aboveground today was here thirty years ago. The ground itself wasn't here. Oh, there was ground, but much of it lay below the surface where my boot soles slip a little in the loose pebbles of pumice. Rolling on loose rock and big ideas, for a moment I lose my sense of balance, glancing first at the sky above, then at the nearby peak of Mount St...

  6. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    Science.gov (United States)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-07-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ~ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2-2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation.

  7. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-01-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ∼ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2–2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation

  8. Modeling and optimization of surface roughness in single point incremental forming process

    Directory of Open Access Journals (Sweden)

    Suresh Kurra

    2015-07-01

    Full Text Available Single point incremental forming (SPIF is a novel and potential process for sheet metal prototyping and low volume production applications. This article is focuses on the development of predictive models for surface roughness estimation in SPIF process. Surface roughness in SPIF has been modeled using three different techniques namely, Artificial Neural Networks (ANN, Support Vector Regression (SVR and Genetic Programming (GP. In the development of these predictive models, tool diameter, step depth, wall angle, feed rate and lubricant type have been considered as model variables. Arithmetic mean surface roughness (Ra and maximum peak to valley height (Rz are used as response variables to assess the surface roughness of incrementally formed parts. The data required to generate, compare and evaluate the proposed models have been obtained from SPIF experiments performed on Computer Numerical Control (CNC milling machine using Box–Behnken design. The developed models are having satisfactory goodness of fit in predicting the surface roughness. Further, the GP model has been used for optimization of Ra and Rz using genetic algorithm. The optimum process parameters for minimum surface roughness in SPIF have been obtained and validated with the experiments and found highly satisfactory results within 10% error.

  9. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, Intaek; Yun, Dong-Jin

    2015-10-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  10. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    these coatings are not mechanically stable, they do not tolerate high enough temperatures (above 260⁰ C) to give the right product quality, and the surfaces wear easily calling for regular service of the equipment. The present project concerns an investigation of the possibilities of replacing the widely used......Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because...

  11. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing.

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin

    2015-10-22

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  12. Gliding arc surface modification of carrot nanofibre coating - perspective for composite processing

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Berglund, L; Aitomäki, Y

    2016-01-01

    Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials......, these changes to the nanofibres can potentially improve their processability when they are to be impregnated with a polymeric matrix. However, longer exposure to the gliding arc reduced oxidation and roughness of the surface, and thus there exists an optimum condition to achieve good wetting to solvents....

  13. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  14. Mount Athos: Between autonomy and statehood

    Directory of Open Access Journals (Sweden)

    Avramović Dragutin

    2013-01-01

    Full Text Available Legal status of the Mount Athos is characterized by many special features that make it internationally unique legal regime. The author analyzes peculiarities of Mount Athos territorial status, legal position of residents and visitors, as well as organization of Mount Athos authorities. The author concludes that the Mount Athos is characterized by a kind of para-sovereignty. Its autonomy involves not only the internal organization, autonomous governance and religious autonomy, but it also includes many elements of secular life of their visitors. Mount Athos has its own, separate legislative, administrative and judicial powers, while the Statute of the Mount Athos has greater legal force than all the other laws of the Greek state, because the state can not unilaterally change its provisions. Having in mind that the wide self-government is vested in church authorities and that the monks have very specific way of living, the author takes a position that the Mount Athos represent 'monastic state', but without statehood. The author also states that the Mount Athos will be faced with many challenges in the context of spreading of an assimilating, universal conception of human rights.

  15. Alaska research natural areas: 1. Mount Prindle.

    Science.gov (United States)

    G.P. Juday

    1988-01-01

    The 2412-hectare Mount Prindle Research Natural Area is located in central Alaska on the border of the Steese National Conservation Area and White Mountains National Recreation Area. It is managed by the U.S. Department of the Interior, Bureau of Land Management, Steese-White Mountains District. Mount Prindle was selected as a Research Natural Area (RNA) because it...

  16. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  17. Turning process monitoring of internal combustion engine piston’s cylindrical surface

    Directory of Open Access Journals (Sweden)

    Twardowski Pawel

    2017-01-01

    Full Text Available In this paper the monitoring method of turning process of combustion engine piston’s cylindrical surface is proposed. During this process, the PCD diamond tool cuts the piston’s cylindrical surface with the 3 grooves. The first groove is made in the cast iron insert. In case, when the machining allowances are selected inappropriately, the tool cuts the cast iron insert and consequently generates the reject. The proposed monitoring system based on vibration signals analysis enables the detection of these critical situations and react, in order to maintain the production quality.

  18. Analysis of the Forming Process of Conical-Like Helical Surfaces with Roller Tools

    Directory of Open Access Journals (Sweden)

    Kacalak W.

    2017-02-01

    Full Text Available The article presents a methodology of an analysis and modeling of technological systems and the grinding process of conical-like helical surfaces with the use of modern CAD/CAE systems and calculations in the Matlab system. The methodology developed allows one to carry out simulation tests for the accuracy of the grinding process of helical surfaces taking into consideration the deviations of the location and shape of the system’s elements, axial and radial striking the spindle of the workpiece machined and the grinding wheel as well as the tool’s geometrical features.

  19. Uniformity analysis of dielectric barrier discharge (DBD) processed polyethylene terephthalate (PET) surface

    Science.gov (United States)

    Liu, Chaozong; Brown, Norman M. D.; Meenan, Brian J.

    2006-01-01

    A dielectric barrier discharge (DBD) plasma, operating in air at atmospheric pressure, has been used to induce changes in the surface properties of polyethylene terephthalate (PET) films. The effects that the key DBD operating parameters: discharge power, processing speed, processing duration, and electrode configurations, have on producing wettability changes in the PET surface region have been investigated. The approach taken involves the application of an Taguchi experimental design and robust analysis methodology. The various data sets obtained from these analyses have been used to studies the effect of the operating parameters on the surface uniformity and efficiency of the said treatment. In general, the results obtained indicate that DBD plasma processing is an effective method for the controlled surface modification of PET. Relatively short exposures to the atmospheric pressure discharge produces significant wettability changes at the polymer film surface, as indicted by pronounced reductions in the water contact angle measured. It was observed that the wettability of the resultant surface shows no significant differences in respect to orientation parallel (L-direction) or perpendicular (T-direction) to the electrode long axis. However, there was significant differences between the data obtained from these two orientations. Analysis of the role of each of the operating parameters concerned shows that they have a selective effectiveness with respect to resultant surface modification in terms of uniformity of modification and wettability. The number of treatment cycles and the electrode configuration used were found to have the most significant effects on the homogeneity of the resultant PET surface changes in L- and T-orientation, respectively. On the other hand, the applied power showed no significant role in this regard. The number of treatment cycles was found to be the dominant factor (at significance level of 0.05) in respect of water contact angle

  20. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel.

    Science.gov (United States)

    Alavi, S Habib; Harimkar, Sandip P

    2015-05-01

    Simultaneous application of ultrasonic vibrations during conventional materials processing (casting, welding) and material removal processes (machining) has recently been gaining widespread attention due to improvement in metallurgical quality and efficient material removal, respectively. In this paper, ultrasonic vibration-assisted laser surface melting of austenitic stainless steel (AISI 316) is reported. While the application of ultrasonic vibrations during laser processing delays the laser interaction with material due to enhancement of surface convection, it resulted in expulsion of melt from the irradiated region (forming craters) and transition from columnar to equiaxed dendritic grain structure in the resolidified melt films. Systematic investigations on the effect of ultrasonic vibrations (with vibrations frequency of 20 kHz and power output in the range of 20-40%) on the development of microstructure during laser surface melting (with laser power of 900 W and irradiation time in the range of 0.30-0.45 s) are reported. The results indicate that the proposed ultrasonic vibration-assisted laser processing can be designed for efficient material removal (laser machining) and improved equiaxed microstructure (laser surface modifications) during materials processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Investigation of electrical characteristics of no-insulation coil wound with surface-processed HTS tape

    Science.gov (United States)

    Jeon, Haeryong; Lee, Woo Seung; Kim, Jinsub; Baek, Geonwoo; Jeon, Sangsu; Yoon, Yong Soo; Ko, Tae Kuk

    2017-08-01

    This paper deals with the electrical characteristics of no-insulation coil wound with surface-processed HTS tape. The bypassing current path through turn-to-turn contacts within a coil is formed in the no-insulation coil, and this bypassing current path determines two characteristics: 1) self-protection and 2) charge-discharge delay. The amplitude of bypassing current is determined by contact resistance between the turn-to-turn contacts of the no-insulation coil. The surface roughness of the HTS tape is one of the parameters to change the contact resistance. The HTS tapes were processed to roughen by bead blast and abrasive paper, and the no-insulation coil is fabricated using processed HTS tape. We have studied the charge-discharge delay and self-protecting characteristic of each no-insulation coil by 1) sudden discharge tests and 2) overcurrent tests. The FEM simulations of contact resistance of no-insulation coil were carried out. The contact surface resistance of a case processed by abrasive paper has almost three times larger than that of reference no-insulation coil, and a case processed by bead blast presents almost same contact surface resistance with reference no-insulation coil.

  2. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  3. Radar signal pre-processing to suppress surface bounce and multipath

    Science.gov (United States)

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    of the application of ultrasonic vibration on drawing, rolling and other metal forming process show that the load and friction coefficient would be decreased with the presence of ultrasonic vibration. Investigations on forging processes and under low frequency, especially the quantitative analysis of friction......The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... on die surface vibration in forging process. After a general introduction to friction mechanisms and friction test techniques in metal forming, the application of ultrasonic vibration in metal forming, the influence of sliding velocity on friction is described. Some earlier investigations...

  5. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    Science.gov (United States)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  6. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  7. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    Science.gov (United States)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  8. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    International Nuclear Information System (INIS)

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  9. Identification of soil erosion land surfaces by Landsat data analysis and processing

    International Nuclear Information System (INIS)

    Lo Curzio, S.

    2009-01-01

    In this paper, we outline the typical relationship between the spectral reflectance of aileron's on newly-formed land surfaces and the geo morphological features of the land surfaces at issue. These latter represent the products of superficial erosional processes due to the action of the gravity and/or water; thus, such land surfaces are highly representative of the strong soil degradation occurring in a wide area located on the boundary between Molise and Puglia regions (Southern Italy). The results of this study have been reported on thematic maps; on such maps, the detected erosional land surfaces have been mapped on the basis of their typical spectral signature. The study has been performed using Landsat satellite imagery data which have been then validated by means of field survey data. The satellite data have been processed using remote sensing techniques, such as: false colour composite, contrast stretching, principal component analysis and decorrelation stretching. The study has permitted to produce, in a relatively short time and at low expense, a map of the eroded land surfaces. Such a result represents a first and fundamental step in evaluating and monitoring the erosional processes in the study area [it

  10. Impact of nitinol stent surface processing on in-vivo nickel release and biological response.

    Science.gov (United States)

    Nagaraja, Srinidhi; Sullivan, Stacey J L; Stafford, Philip R; Lucas, Anne D; Malkin, Elon

    2018-03-27

    Although nitinol is widely used in percutaneous cardiovascular interventions, a causal relationship between nickel released from implanted cardiovascular devices and adverse systemic or local biological responses has not been established. The objective of this study was to investigate the relationship between nitinol surface processing, in-vivo nickel release, and biocompatibility. Nitinol stents manufactured using select surface treatments were implanted into the iliac arteries of minipigs for 6 months. Clinical chemistry profile, complete blood count, serum and urine nickel analyses were performed periodically during the implantation period. After explant, stented arteries were either digested and analyzed for local nickel concentration or fixed and sectioned for histopathological analysis of stenosis and inflammation within the artery. The results indicated that markers for liver and kidney function were not different than baseline values throughout 180 days of implantation regardless of surface finish. In addition, white blood cell, red blood cell, and platelet counts were similar to baseline values for all surface finishes. Systemic nickel concentrations in serum and urine were not significantly different between processing groups and comparable to baseline values during 180 days of implantation. However, stents with non-optimized surface finishing had significantly greater nickel levels in the surrounding artery compared to polished stents. These stents had increased stenosis with potential for local inflammation compared to polished stents. These findings demonstrate that proper polishing of nitinol surfaces can reduce in-vivo nickel release locally, which may aid in minimizing adverse inflammatory reactions and restenosis. Nitinol is a commonly used material in cardiovascular medical devices. However, relationships between nitinol surface finishing, in-vivo metal ion release, and adverse biological responses have yet to be established. We addressed

  11. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  12. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications

    Directory of Open Access Journals (Sweden)

    David K. Matlock

    2005-12-01

    Full Text Available With the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of automotive components. These advances have led to increased component life and smaller power transfer systems. New processing approaches to enhance the fatigue performance of steels are reviewed with an emphasis on carburizing and deep rolling. Selected examples are presented to illustrate the importance of the base steel properties on the final performance of surface modified materials. Results on carburized gear steels illustrate the dependence of the fatigue behavior on carburizing process control (gas and vacuum carburizing, alloy additions and microstructure. The importance of retained austenite content, case and core grain size as controlled by processing and microalloy additions, extent of intergranular oxidation, and the residual stress profile on fatigue performance is also illustrated. Specific recent results on the use of microalloying elements (e.g. Nb and process history control to limit austenite grain growth at the higher carburizing temperatures associated with vacuum carburizing are highlighted. For crankshaft applications, deep rolling is highlighted, a process to mechanically work fillet surfaces to improve fatigue resistance. The influence of the deformation behavior of the substrate, as characterized by standard tensile and compression tests, on the ability to create desired surface properties and residual stress profiles will be illustrated with data on several new steels of current and future interest for crankshaft applications.

  13. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    Science.gov (United States)

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  14. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  15. The free radical process for the polymer surface treated by radio frequency plasma

    International Nuclear Information System (INIS)

    Ma Yuguang; Yang Meiling; Shen Jiacong; Zheng Yingguang

    1992-01-01

    The formation and translation of the free radicals on the polymer surface treated by plasmas were studied and observed by ESR measurement. The results show that C-C bond split was main reaction in the process of the polymer irradiated by plasma, by which a stable alkyl free radical was formed. When alkyl free radical contacted with air, they translate into peroxide radical instantaneously. The peroxide radical was not as stable as radical in vacuum, they can react each other to form some polar-groups on polymer surface. The interaction between the peroxide free radical and polymer chain was correlative not only to the structure of polymer but also to the molecular motion of the polymer chain. The nature of plasma treating polymer surface was that the peroxide radicals were led onto polymer surface

  16. Evaluating the performance of free-formed surface parts using an analytic network process

    Science.gov (United States)

    Qian, Xueming; Ma, Yanqiao; Liang, Dezhi

    2018-03-01

    To successfully design parts with a free-formed surface, the critical issue of how to evaluate and select a favourable evaluation strategy before design is raised. The evaluation of free-formed surface parts is a multiple criteria decision-making (MCDM) problem that requires the consideration of a large number of interdependent factors. The analytic network process (ANP) is a relatively new MCDM method that can systematically deal with all kinds of dependences. In this paper, the factors, which come from the life-cycle and influence the design of free-formed surface parts, are proposed. After analysing the interdependence among these factors, a Hybrid ANP (HANP) structure for evaluating the part’s curved surface is constructed. Then, a HANP evaluation of an impeller is presented to illustrate the application of the proposed method.

  17. Surface of Maximums of AR(2 Process Spectral Densities and its Application in Time Series Statistics

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2017-09-01

    Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2 process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.

  18. Mathematical Modeling of Aerodynamic Space -to - Surface Flight with Trajectory for Avoid Intercepting Process

    OpenAIRE

    Gornev, Serge

    2006-01-01

    Modeling has been created for a Space-to-Surface system defined for an optimal trajectory for targeting in terminal phase with avoids an intercepting process. The modeling includes models for simulation atmosphere, speed of sound, aerodynamic flight and navigation by an infrared system. The modeling and simulation includes statistical analysis of the modeling results.

  19. Design Process Control for Improved Surface Finish of Metal Additive Manufactured Parts of Complex Build Geometry

    Directory of Open Access Journals (Sweden)

    Mikdam Jamal

    2017-12-01

    Full Text Available Metal additive manufacturing (AM is increasingly used to create complex 3D components at near net shape. However, the surface finish (SF of the metal AM part is uneven, with surface roughness being variable over the facets of the design. Standard post-processing methods such as grinding and linishing often meet with major challenges in finishing parts of complex shape. This paper reports on research that demonstrated that mass finishing (MF processes are able to deliver high-quality surface finishes (Ra and Sa on AM-generated parts of a relatively complex geometry (both internal features and external facets under select conditions. Four processes were studied in this work: stream finishing, high-energy (HE centrifuge, drag finishing and disc finishing. Optimisation of the drag finishing process was then studied using a structured design of experiments (DOE. The effects of a range of finishing parameters were evaluated and optimal parameters and conditions were determined. The study established that the proposed method can be successfully applied in drag finishing to optimise the surface roughness in an industrial application and that it is an economical way of obtaining the maximum amount of information in a short period of time with a small number of tests. The study has also provided an important step in helping understand the requirements of MF to deliver AM-generated parts to a target quality finish and cycle time.

  20. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis In 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  1. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2016-01-01

    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  2. Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy

    International Nuclear Information System (INIS)

    Shahzad, Majid; Chaussumier, Michel; Chieragatti, Remy; Mabru, Catherine; Rezai-Aria, Farhad

    2011-01-01

    Highlights: → We studied the effect of surface treatments on fatigue behaviour of 7050 alloy. → Dissolution of constituent particles in pickling solution result in pits formation. → Decrease is fatigue life caused by anodization is small. → Multi-site cracks initiation has been observed for pickled and anodized specimens. -- Abstract: The present study investigates the influence of anodizing process on fatigue life of aluminium alloy 7050-T7451 by performing axial fatigue tests at stress ratio 'R' of 0.1. Effects of pre-treatments like degreasing and pickling employed prior to anodizing on fatigue life were studied. The post-exposure surface observations were made by scanning electron microscope (SEM) to characterize the effect of each treatment before fatigue testing. The surface observations have revealed that degreasing did not change the surface topography while pickling solution resulted in the formation of pits at the surface. Energy dispersive spectroscopy (EDS) was used to identify those constituent particles which were responsible for the pits formation. These pits are of primary concern with respect to accelerated fatigue crack initiation and subsequent anodic coating formation. The fatigue test results have shown that pickling process was detrimental in reducing the fatigue life significantly while less decrease has been observed for anodized specimens. Analyses of fracture surfaces of pickled specimens have revealed that the process completely changed the crack initiation mechanisms as compared to non-treated specimens and the crack initiation started at the pits. For most of the anodized specimens, fatigue cracks still initiated at the pits with very few cracks initiated from anodic coating. The decrease in fatigue life for pickled and anodized specimens as compared to bare condition has been attributed to decrease in initiation period and multi-site crack initiations. Multi-site crack initiation has resulted in rougher fractured surfaces for

  3. Improvement in the surface quality of structural components produced by the RTM-process

    Energy Technology Data Exchange (ETDEWEB)

    Michaeli, W.; Dyckhoff, J. [Institute of Plastics Processing, Aachen (Germany)

    1993-12-31

    During the production of long or continuous fiber reinforced structural components in Resin Transfer Moulding (RTM), surface defects like voids, pinholes or unevenness frequently occur. These have to be repaired by manual labor before final painting. The conditions for the formation of voids in the laminate as well as surface defects are investigated by model experiments, making use of a window mould. Generally the resin is assumed to flow through the fiber reinforcement in a plug flow. The investigations indicate that advance either in the nonwovens of the surface or in the center of the laminate depends on the flow front velocity. This can be attributed to a superposition of capillary and flow effects. In order to obtain a high surface quality, the flow front velocity has to be kept within a material-related band width. Otherwise, areas of air enclosure in the laminate or surface defects like pinholes will result. With the aid of a steel mould with a large area, procedural variants are investigated to reduce surface faults and to decrease the air content in the laminate. The analysis indicates that the air content can be significantly reduced by injecting the resin into a cavity filled with gaseous acetone and increasing the cavity pressure during the time of curing. Furthermore the long and short-term waviness of the surface is improved by these process modifications.

  4. Effects of surface processes on multilayer detachment folding: a numerical approach

    Science.gov (United States)

    Collignon, M.; May, D.; Kaus, B.; Fernandez, N.

    2013-12-01

    Over the past decades, the interaction between surface processes and development of mountain belts has been extensively studied. While syntectonic sedimentation appears to control the external development of the fold-and-thrust belts, erosion strongly influences the evolution of internal regions within mountain belts. The effects of surface processes on brittle deformation have been thoroughly studied using analogue and numerical models of accretionary wedges, however, most of the numerical studies used a 2D model of deformation and/or a simple formulation for the surface processes, where both sedimentation and erosion are rarely present together. Coupled analogue models of deformation and surface processes are challenging, due to material and scaling issues, and often only reproduce two end-member cases (no erosion vs very strong erosion, where all the material is removed), but fail to investigate the transitional cases. In contrast, interactions between surface processes and ductile deformation (e.g. multilayer detachment folding) have been poorly investigated. Thin-skinned fold and thrust belts are seen as the result of compressional deformation of a sediment pile over a weak layer acting as a décollement level. The resulting surface expression has often been interpreted, based on geometrical criteria in terms of fault bend folds, propagation folds and/or detachment folds. A few analogue studies have demonstrated that fold morphology can be influenced by erosion rates or preferential localization of sedimentation, and additionally, that the fold growth can be stopped by increasing the supply of sediments. Here we aim to numerically investigate the effects of surface processes and multilayer folding in three dimensions. For this purpose, we have developed a finite-element based landscape evolution model (both erosion and sedimentation) using PETSc, and coupled it to the 3D mechanical code LaMEM. The landscape evolution model uses a non-linear diffusion

  5. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Donghai, E-mail: zhudonghai-2001@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Nai, Xueying [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Lan, Shengjie; Bian, Shaoju [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Liu, Xin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Li, Wu, E-mail: driverlaoli@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China)

    2016-12-30

    Highlights: • Dry process was adopted to modify the surface of MHSH whiskers using silane. • Si−O−Mg bonds were formed directly by the reaction between Si−OC{sub 2}H{sub 5} and −OH of MHSH. • Dispersibility and compatibility of modified whiskers greatly improved in organic phase. • Thermal stability of whiskers was enhanced after modified. - Abstract: In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Si−O−Mg) were formed by the reaction between Si−OC{sub 2}H{sub 5} or Si−OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  6. Snow observations in Mount Lebanon (2011–2016

    Directory of Open Access Journals (Sweden)

    A. Fayad

    2017-08-01

    Full Text Available We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m. The dataset consists of (1 continuous meteorological and snow height observations, (2 snowpack field measurements, and (3 medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l. include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November–June between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS, snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014–2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA and snow cover duration (SCD maps derived from MODIS snow products are provided for the same period (2011–2016. We used the dataset to characterize mean snow height, snow water equivalent (SWE, and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m−3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l. and 62 % for high mountain regions (elevation 2200–2900 m a.s.l.. The dataset is suitable for

  7. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    Science.gov (United States)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets

  8. Development of a segmented grating mount system for FIREX-1

    International Nuclear Information System (INIS)

    Ezaki, Y; Tabata, M; Kihara, M; Horiuchi, Y; Endo, M; Jitsuno, T

    2008-01-01

    A mount system for segmented meter-sized gratings has been developed, which has a high precision grating support mechanism and drive mechanism to minimize both deformation of the optical surfaces and misalignments in setting a segmented grating for obtaining sufficient performance of the pulse compressor. From analytical calculations, deformation of the grating surface is less than 1/20 lambda RMS and the estimated drive resolution for piston and tilt drive of the segmented grating is 1/20 lambda, which are both compliant with the requirements for the rear-end subsystem of FIREX-1

  9. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  10. FPGA based image processing for optical surface inspection with real time constraints

    Science.gov (United States)

    Hasani, Ylber; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2015-02-01

    Today, high-quality printing products like banknotes, stamps, or vouchers, are automatically checked by optical surface inspection systems. In a typical optical surface inspection system, several digital cameras acquire the printing products with fine resolution from different viewing angles and at multiple wavelengths of the visible and also near infrared spectrum of light. The cameras deliver data streams with a huge amount of image data that have to be processed by an image processing system in real time. Due to the printing industry's demand for higher throughput together with the necessity to check finer details of the print and its security features, the data rates to be processed tend to explode. In this contribution, a solution is proposed, where the image processing load is distributed between FPGAs and digital signal processors (DSPs) in such a way that the strengths of both technologies can be exploited. The focus lies upon the implementation of image processing algorithms in an FPGA and its advantages. In the presented application, FPGAbased image-preprocessing enables real-time implementation of an optical color surface inspection system with a spatial resolution of 100 μm and for object speeds over 10 m/s. For the implementation of image processing algorithms in the FPGA, pipeline parallelism with clock frequencies up to 150 MHz together with spatial parallelism based on multiple instantiations of modules for parallel processing of multiple data streams are exploited for the processing of image data of two cameras and three color channels. Due to their flexibility and their fast response times, it is shown that FPGAs are ideally suited for realizing a configurable all-digital PLL for the processing of camera line-trigger signals with frequencies about 100 kHz, using pure synchronous digital circuit design.

  11. A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.

    Science.gov (United States)

    Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu

    2017-10-01

    We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Astrophotography on the go using short exposures with light mounts

    CERN Document Server

    Ashley, Joseph

    2015-01-01

    No longer are heavy, sturdy, expensive mounts and tripods required to photograph deep space. With today's advances in technology, all that is required is an entry-DSLR and an entry level GoTo telescope. Here is all of the information needed to start photographing the night sky without buying expensive tracking mounts. By using multiple short exposures and combining them with mostly ‘freeware’ computer programs, the effect of image rotation can be minimized to a point where it is undetectable in normal astrophotography, even for a deep-sky object such as a galaxy or nebula. All the processes, techniques, and equipment needed to use inexpensive, lightweight altazimuth and equatorial mounts and very short exposures photography to image deep space objects are explained, step-by-step, in full detail, supported by clear, easy to understand graphics and photographs.   Currently available lightweight mounts and tripods are identified and examined from an economic versus capability perspective to help users deter...

  13. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  14. Wavelet theory and belt finishing process, influence of wavelet shape on the surface roughness parameter values

    International Nuclear Information System (INIS)

    Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El

    2011-01-01

    This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.

  15. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.

    Science.gov (United States)

    Hu, Rui; Liu, Shutian; Li, Quhao

    2017-05-20

    For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.

  16. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  17. Comparison of different types of plasma in radioactive surface decontamination process

    International Nuclear Information System (INIS)

    Suzuki, M.; Kadowaki, M.; Windarto, F.H.; Mori, S.

    2005-01-01

    A highly effective decontamination technique is required for the recycling of material from decommissioned reactors and the decontamination of the spent fuel clad in future reprocessing. The plasma technique, based on the plasma etching process for producing semiconductors, is one of the candidates for an advanced alternative to the aqueous process using oxalic-acid solution. In this paper, we compare and discuss various plasma decontamination processes, the low-pressure and the atmospheric-pressure processes, also bringing into the discussion the processes, which we have developed. Consequently, we conclude the following. The low-pressure process is suitable for basic experiments and may be used in the decontamination process for alpha-ray emitters because of its advantage of confinement. The atmospheric-pressure process has an etching rate one or two orders higher than the low-pressure process. Therefore, the atmospheric-pressure process is superior for decontaminating wide areas such as the inner surfaces of reactor vessels. In particular, the non-equilibrium plasma process has the peculiar characteristic of being able to supply a great number of active atoms to the fluorination reaction without extra heat generation, and so it can be useful for this purpose. (orig.)

  18. Influence of milling process in the surface energy of glass tile frits

    International Nuclear Information System (INIS)

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-01-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO 2 by 5% of B 2 O 3 and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A 2 if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m - 2) and the less acidic constant (0.13 kJ.mol - 1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  19. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  20. Thermo-mechanical processing of austenitic steel to mitigate surface related degradation

    Science.gov (United States)

    Idell, Yaakov Jonathan

    Thermo-mechanical processing plays an important role in materials property optimization through microstructure modification, required by demanding modern materials applications. Due to the critical role of austenitic stainless steels, such as 316L, as structural components in harsh environments, e.g. in nuclear power plants, improved degradation resistance is desirable. A novel two-dimensional plane strain machining process has shown promise achieving significant grain size refinement through severe plastic deformation (SPD) and imparting large strains in the surface and subsurface regions of the substrate in various metals and alloys. The deformation process creates a heavily deformed 20 -- 30 micron thick nanocrystalline surface layer with increased hardness and minimal martensite formation. Post-deformation processing annealing treatments have been applied to assess stability of the refined scale microstructures and the potential for obtaining grain boundary engineered microstructures with increased fraction of low-energy grain boundaries and altered grain boundary network structure. Varying the deformation and heat treatment process parameters, allows for development of a full understanding of the nanocrystalline layer and cross-section of the surface substrate created. Micro-characterization was performed using hardness measurements, magnetometry, x-ray diffraction, scanning and transmission electron microscopy to assess property and microstructural changes. This study provides a fundamental understanding of two-dimensional plane strain machining as a thermo-mechanical processing technique, which may in the future deliver capabilities for creating grain boundary engineered surface modified components, typified by a combination of grain refinement with improved grain boundary network interconnectivity attributes suitable for use in harsh environments, such as those in commercial nuclear power plants where improved resistance to irradiation stress corrosion

  1. Mathematical Heat Transfer Model of Surface Quenching Process for Hot Charging

    Science.gov (United States)

    Zhong, Jing; Wang, Qian; Li, Yugang; Zhang, Shaoda; Yan, Chen

    Online surface quenching technology has been developed for the hot charging process to prevent the surface cracks in high strength low-alloy steel slabs. In this paper, a two-dimensional heat transfer model of surface quenching process was presented. This finite element model includes nonlinear thermodynamic properties, by which the slab temperature distributions were computed. The model predicted temperatures show reasonable agreement with the measurements. The effects of the water flow rate and slab movement velocity on temperature variation during the quenching and subsequent tempering process were investigated. The result shows that the temperature drop increases but the tempering temperature changes slightly with increasing water flow rate and decreasing slab velocity. Keeping the slab movement velocity at 1.2-2.1m/min and the water flow rate at 55-70m3/h, the slab surface experiences a temperature drop of 400-600°C firstly, then recovers above 650°C, the quenching and energy-saving effect are remarkable.

  2. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    Science.gov (United States)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  3. Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate

    Directory of Open Access Journals (Sweden)

    E. L. Davin

    2012-05-01

    Full Text Available The influence of land processes and in particular of diffuse/direct radiation partitioning on surface fluxes and associated regional-scale climate feedbacks is investigated using ERA-40 driven simulations over Europe performed with the COSMO-CLM2 Regional Climate Model (RCM. Two alternative Land Surface Models (LSMs, a 2nd generation LSM (TERRA_ML and a more advanced 3rd generation LSM (Community Land Model version 3.5, and two versions of the atmospheric component are tested, as well as a revised coupling procedure allowing for variations in diffuse/direct light partitioning at the surface, and their accounting by the land surface component.

    Overall, the RCM performance for various variables (e.g., surface fluxes, temperature and precipitation is improved when using the more advanced 3rd generation LSM. These improvements are of the same order of magnitude as those arising from a new version of the atmospheric component, demonstrating the benefit of using a realistic representation of land surface processes for regional climate simulations. Taking into account the variability in diffuse/direct light partitioning at the surface further improves the model performance in terms of summer temperature variability at the monthly and daily time scales. Comparisons with observations show that the RCM realistically captures temporal variations in diffuse/direct light partitioning as well as the evapotranspiration sensitivity to these variations. Our results suggest that a modest but consistent fraction (up to 3 % of the overall variability in summer temperature can be explained by variations in the diffuse to direct ratio.

  4. A process-based decomposition of decadal-scale surface temperature evolutions over East Asia

    Science.gov (United States)

    Chen, Junwen; Deng, Yi; Lin, Wenshi; Yang, Song

    2017-08-01

    This study partitions the observed decadal evolution of surface temperature and surface temperature differences between two decades (early 2000s and early 1980s) over the East Asian continent into components associated with individual radiative and non-radiative (dynamical) processes in the context of the coupled atmosphere-surface climate feedback-response analysis method (CFRAM). Rapid warming in this region occurred in late 1980s and early 2000s with a transient pause of warming between the two periods. The rising CO2 concentration provides a sustained, region-wide warming contribution and surface albedo effect, largely related to snow cover change, is important for warming/cooling over high-latitude and high-elevation regions. Sensible hear flux and surface dynamics dominates the evolution of surface temperature, with latent heat flux and atmospheric dynamics working against them mostly through large-scale and convective/turbulent heat transport. Cloud via its shortwave effect provides positive contributions to warming over southern Siberia and South China. The longwave effect associated with water vapor change contributes significant warming over northern India, Tibetan Plateau, and central Siberia. Impacts of solar irradiance and ozone changes are relatively small. The strongest year-to-year temperature fluctuation occurred at a rapid warming (1987-1988) and a rapid cooling (1995-1996) period. The pattern of the rapid warming receives major positive contributions from sensible heat flux with changes in atmospheric dynamics, water vapor, clouds, and albedo providing secondary positive contributions, while surface dynamics and latent heat flux providing negative contributions. The signs of the contributions from individual processes to the rapid cooling are almost opposite to those to the rapid warming.

  5. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  6. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    Energy Technology Data Exchange (ETDEWEB)

    Suratwala, Tayyab [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) model used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also

  7. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  8. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  9. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  10. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  11. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    Science.gov (United States)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the

  12. Exchange processes from the deep interior to the surface of icy moons

    Science.gov (United States)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  13. Biodiversity of the flora of Mount Papa

    International Nuclear Information System (INIS)

    Yin-Yin-Kyi

    1995-07-01

    Even though Mount Papa is in the dry zone area, it is almost evergreen, due to its elevation of 4981 feet above the sea level and its fertile soil conditions. A has a rich biodiversity with vegetation of many types

  14. Fast Picometer Mirror Mount, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a 6DOF controllable mirror mount with high dynamic range and fast tip/tilt capability for space based applications. It will enable the...

  15. May 1980 Mount Saint Helens, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake occurred at 15 32 UT, only seconds before the explosion that began the eruption of Mount St. Helens volcano. This eruption and blast blew off the top...

  16. Mount Everest region as seen from the STS-66 orbiter Atlantis

    Science.gov (United States)

    1994-01-01

    View of the Mount Everst region, Nepal and China. Low morning sun highlights Mount Everest (the highest mountain in the world at 8,848 meters), Cho Oyu (8,153 meters) to the northwest, and other peaks of 'The Roof of the World'. New snow seems to be confined to the highest peaks. Abundant details of glacier surfaces, including moraines, crevasse fields, and ice falls are displayed for study.

  17. Models of printed boards for solderless mounting of electronic components by foil perforation method

    Directory of Open Access Journals (Sweden)

    Yefimenko A. A.

    2017-10-01

    Full Text Available The paper presents models of printed circuit boards for an improved foil perforation method. The density of electrical connections of such printed circuit boards is estimated in comparison with circuit boards obtained using the methods of mounting in holes and surface mounting. The technological differences in the manufacture of printed circuit boards for the foil perforation method and the traditional method are considered.

  18. Tool for assessment of process importance at the groundwater/surface water interface.

    Science.gov (United States)

    Palakodeti, Ravi C; LeBoeuf, Eugene J; Clarke, James H

    2009-10-01

    The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (P(i)) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.

  19. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Science.gov (United States)

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  20. 76 FR 27173 - Carolina Coastal Railway, Inc.-Acquisition and Operation Exemption-Rocky Mount & Western Railroad...

    Science.gov (United States)

    2011-05-10

    ... Surface Transportation Board Carolina Coastal Railway, Inc.--Acquisition and Operation Exemption--Rocky Mount & Western Railroad Co., Inc. d/b/a Nash County Railroad Carolina Coastal Railway, Inc. (CLNA), a... Rocky Mount & Western Railroad Co., Inc. d/b/a Nash County Railroad (NCR), and to operate, approximately...

  1. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Lih, Shyh-Shiuh (Inventor); Sherrit, Stewart (Inventor); Takano, Nobuyuki (Inventor); Ostlund, Patrick N. (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  2. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  3. PROCESSES PROCEEDING ON CONCRETE COATING SURFACES IN CASE OF THEIR CHEMICAL PROTECTION AGAINST WINTER SLIPPERINESS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Concrete coatings of road traffic highways along with operational loadings caused by flow of traffic are subjected to weather and climate impacts. These are the following impacts: changes in temperature and air humidity, solar radiation,surface wind speed which is participating in formation of active heat-and-mass transfer in a surface layer of the concrete coating. One of the most complicated and important periods in the road traffic highway operation is so called transitional nature period (from Summer to Autumn and from Winter to Spring. These periods are accompanied by intensive rain and snow fall and possible formation of ice loading on the surface of cement and concrete coatings. These impacts significantly deteriorate friction properties of road pavement (friction factor φ is decreased up to 0.4 and less that can be a prerequisite to creation of various accident situations due to sharp increase in braking distance. For example, while having dry pavement the friction factor φ is equal to 0.80–0.85, and during icy condition of the road the factor φ constitutes 0.08–0.15 that consequently entails an increase in braking distance from 7.5 up to 20.0 m and more. It is quite possible that ice layer appears on the surface of concrete coatings when road traffic highways are used in winter season. Various methods are applicable to remove ice from the surface they can include also ice-melting chemicals and sodium chloride NaCl in particular. The chemical decreases freezing temperature of the formed brine and causes ice melting at negative temperature. Processes of NaCl dissolution and ice melting have an endothermic character, in other words these processes are accompanied by heat ingress and due to it temperature is sharply decreasing in the surface layer of the concrete coating which is under the melting ice and in this case phenomenon of thermal shock is observed.

  4. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  5. Experimental investigation of surface determination process on multi-material components for dimensional computed tomography

    DEFF Research Database (Denmark)

    Borges de Oliveira, Fabrício; Stolfi, Alessandro; Bartscher, Markus

    2016-01-01

    and suitable surface determination settings, limits a better acceptance of CT as a CMS. Moreover, standard CT users are subject to the algorithms and boundary conditions implied by the use of commercial analysis software. In this context, this paper is concerned with the experimental evaluation...... of the influence of surface determination process on multi-material measurements, using functions available in the commercial CT data analysis software Volume Graphics VGStudio Max 2.2.6. Calibrated step gauges made of different materials, i.e. PEEK, PPS, and Al were used as reference standards. The step gauges...... were assembled in such a way as to have different multi-material X-ray absorption ratios. Comparative measurements of mono-material assemblies were performed as well. Different segmentation processes were considered (e.g. ISO-50%, local threshold, region growing, etc.), patch-based bidirectional length...

  6. Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions

    Science.gov (United States)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-01-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  7. Linear and nonlinear post-processing of numerically forecasted surface temperature

    Directory of Open Access Journals (Sweden)

    M. Casaioli

    2003-01-01

    Full Text Available In this paper we test different approaches to the statistical post-processing of gridded numerical surface air temperatures (provided by the European Centre for Medium-Range Weather Forecasts onto the temperature measured at surface weather stations located in the Italian region of Puglia. We consider simple post-processing techniques, like correction for altitude, linear regression from different input parameters and Kalman filtering, as well as a neural network training procedure, stabilised (i.e. driven into the absolute minimum of the error function over the learning set by means of a Simulated Annealing method. A comparative analysis of the results shows that the performance with neural networks is the best. It is encouraging for systematic use in meteorological forecast-analysis service operations.

  8. Effects of a dry-ice process on surface and carcase decontamination in the poultry industry.

    Science.gov (United States)

    Uyarcan, M; Kayaardı, S

    2018-04-01

    1. The objective of this study was to evaluate the effects of dry-ice decontamination on equipment and carcase surfaces in a poultry slaughterhouse and to present an effective alternative method to the conventional decontamination processes. 2. Appreciable reductions occurred in total aerobic mesophilic bacterial counts of surface swab samples treated with dry ice (maximum difference 3.92 log cfu/100 cm 2 ). 3. After dry-ice treatment, Listeria spp. were detected on surfaces of pluckers and chiller cylinders, whereas Salmonella spp. were totally inhibited. 4. A dry-ice spraying application was more effective than a dry-ice immersing application on total aerobic mesophilic bacteria and yeast and mould counts on poultry carcases. 5. Dry-ice treatment has advantages over conventional processes. Unlike other decontamination techniques, there are no residues, so no need to wash off chemical residues from surfaces as it removes contaminants effortlessly and is environmentally friendly. 6. Dry-ice blasting of production equipment can reduce the microbial load and has potential for use in the poultry industry.

  9. Perspective with Landsat Overlay, Mount Kilimanjaro, Tanzania

    Science.gov (United States)

    2002-01-01

    Mount Kilimanjaro (Kilima Njaro or 'shining mountain' in Swahili), the highest point in Africa, reaches 5,895 meters (19,340 feet) above sea level, tall enough to maintain a permanent snow cap despite being just 330 kilometers (210 miles) south of the equator. It is the tallest free-standing mountain on the Earth's land surface world, rising about 4,600 meters (15,000 feet) above the surrounding plain. Kilimanjaro is a triple volcano (has three peaks) that last erupted perhaps more than 100,000 years ago but still exudes volcanic gases. It is accompanied by about 20 other nearby volcanoes, some of which are seen to the west (left) in this view, prominently including Mount Meru, which last erupted only about a century ago. The volcanic mountain slopes are commonly fertile and support thick forests, while the much drier grasslands of the plains are home to elephants, lions, and other savanna wildlife.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 7 satellite image, and a false sky. Topographic expression is vertically exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and

  10. Bibliographic data on surface processes in particle-material interactions published in Japan, 1986-1987

    International Nuclear Information System (INIS)

    Gesi, Kazuo; Nagai, Siro; Ozawa, Kunio.

    1989-01-01

    Data on surface processes in particle-material interactions for fusion technology have been surveyed and collected over 24 publications which have been published during January, 1986 - December, 1987 in Japan. The bibliographic data in the form of data sheets were sent to the International Data Center in IAEA. This report presents 97 selected data sheets arranged in the order of codes of relevant phenomena. A list of literature is given. (author) 159 refs

  11. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  12. Surface characterization of activated chalcopyrite particles via the FLSmidth ROL process. Part 1: Electron microscope investigations

    DEFF Research Database (Denmark)

    Karcz, Adam Paul; Damø, Anne Juul; Illerup, Jytte Boll

    of copper(II) to dope the semiconductor lattice and thereby "activate" the chalcopyrite, thereby reducing leach times below 2 hours (>98% recovery). Because the activation plays a major role in accelerating the leaching step, it is critical to understand the nature of this intermediate and its part...... in the ROL process. The current work presents results from electron microscope investigations of surface-activated particles....

  13. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  14. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  15. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    Science.gov (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  16. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  17. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Improvement of the model for surface process of tritium release from lithium oxide

    International Nuclear Information System (INIS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-01-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model

  19. Steel surface treatment by a dual process of ion nitriding and thermal shock

    International Nuclear Information System (INIS)

    Feugeas, J.N.; Gomez, B.J.; Nachez, L.; Lesage, J.

    2003-01-01

    Samples of AISI 4140 steel were surface treated under two different processes: ion nitriding and high energy pulsed plasma irradiation. Ion nitriding was performed with a 100 Hz square wave glow discharge, in an atmosphere of an 80% N 2 and 20% H 2 mixture, under a total pressure of 5.6 mbar. Pulsed plasma irradiation consisted in the surface irradiation with a predetermined number of pulses of high energy and short duration argon plasmas, accelerated in a Z-Pinch experiment. Each pulse can induce high temperatures in a short time (<200 ns), followed by an also fast (∼10 μs) cooling down. The samples, ion nitrided and post-irradiated with pulsed plasmas showed important surface property improvements with respect to samples subjected only to ion nitriding. Those improvements consisted of an increase in the thickness of the hardened layer, and in a reduction of the micro-hardness gradient. These results show a complex surface layer structure that improves the support base for loads, reducing the probability of surface layer loosening

  20. Chemical processes at the surface of various clays on acid-base titration

    International Nuclear Information System (INIS)

    Park, K. K.; Park, Y. S.; Jung, E. C.

    2010-01-01

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO 3/2 OH and octahedral Al(OH) 6/2 sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  1. Development of an opto-hydrodynamic process to remove nanoparticles from solid surfaces

    Science.gov (United States)

    Ahn, Daehwan; Ha, Jeonghong; Kim, Dongsik

    2013-01-01

    We developed a surface cleaning process to remove nanoscale contaminants as small as 10 nm from solid surfaces using a laser-induced micro liquid jet. In the process, laser-induced breakdown of a micron-sized water droplet (∼10 nl) produces a high-speed jet with speeds up to 1600 m/s liquid jet via an explosive vaporization process. Impingement of the liquid jet with atomized droplets on the contaminated substrate removes the nanoparticles under the hydrodynamic drag forces. The process parameters, including the incident laser energy and the position of the droplet relative to the laser focus, were optimized to maximize the cleaning power. Polystyrene latex particles 20, 30, or 90 nm in diameter and Al2O3 particles 10-50 nm in diameter were used to demonstrate the cleaning performance of the opto-hydrodynamic cleaning technique. The proposed cleaning process is expected to be useful for selectively cleaning local areas with minimal exposure to water.

  2. Characterization of wet granulation process parameters using response surface methodology. 1. Top-spray fluidized bed.

    Science.gov (United States)

    Lipps, D M; Sakr, A M

    1994-07-01

    Randomized full-factorial designs (3(2)) were used to investigate the effects of processing conditions in the top-spray fluidized bed (TSFB) on the granulation of acetaminophen powder (USP) using 5% polyvinylpyrrolidone (w/w) as the binder. Measured granule properties included the following: mean size and size distribution, specific surface area, bulk density, tapped density, flow rate through an orifice, angle of repose, residual moisture content, and percent overs (> 2 mm). The granules were then compressed (500, 1000, 1500 lbs) into tablets (9-mm shallow concave) using an instrumented rotary press and analyzed for both physical properties and drug-release characteristics. All experimental batches were run in triplicate to reduce the possibility of erroneous results and to increase the confidence in the resulting empirical relationships derived using response-surface methodology. Measured responses were then related to process parameters using two-factor and three-factor linear, interactions, and quadratic regression models. These models were used to generate three-dimensional response surfaces for use in the final analyses. Coefficients of determination (R2) ranging from 0.08 to 0.81 were obtained, indicating that only a portion of the variation in the data could be explained by the changes in process parameter settings during granulation and tableting. The best overall model fits were observed for mean granule size, size distribution, bulk density, tapped density, percent drug dissolution, tablet disintegration time, and tablet friability.

  3. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    International Nuclear Information System (INIS)

    Zhu Mingyong; Tan Shuduan; Dang Haishan; Zhang Quanfa

    2011-01-01

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20 o (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: → Soil erosion processes with rare earth elements was conducted under natural rainfall. → Experimental setup developed here has seldom implemented in the world. → Sheet erosion is the main erosion type and main contributor to sediment loss. → Sediment source changed in different sections on the slope surface. → The primary sediment source area tended to move upslope as erosion progressed.

  4. Simple surface sulfonation retards plasticiser migration and impacts upon blood/material contact activation processes.

    Science.gov (United States)

    Gourlay, Terence; Shedden, Laurie; Horne, David; Stefanou, Demetrios M

    2010-01-01

    The use of Di-2-ethylhexyl phthalate (DEHP) plasticised polyvinyl chloride (DEHPPPVC) in medical devices persists despite evidence suggesting that DEHP migration can be harmful. Researchers have shown that a simple surface sulfonation process can retard the migration of DEHP, which may reduce the associated inflammatory response. The present study is designed to investigate the effects of surface sulfonation on DEHP migration and blood contact activation using in vitro and rodent models. The study was carried out in two phases: phase 1, in which the migration rate of DEHP from DEHPPPVC and sulfonated DEHP plasticised PVC (SDEHPPPVC) was measured; phase 2 of the study, in which the materials were incorporated into a rat recirculation biomaterial test model and blood samples taken to assess CD11b expression on neutrophils, IL-6 and Factor XIIa. The initial DEHP concentration washed from the surface after storage was 37.19 +/- 1.17 mg/l in the PPVC group and 5.89 +/- 0.81 mg/l in the SPPVC group (psulfonation process significantly retards the migration of DEHP and is associated with the moderation of contact activation processes.

  5. In situ investigation of titanium nitride surface dynamics: The role of surface and bulk mass transport processes

    Science.gov (United States)

    Bareno, Javier

    NaCl-structure TiN and related transition-metal (TM) nitrides are widely used as hard wear-resistant coatings on cutting tools, diffusion-barriers in microelectronic devices, corrosion-resistant layers on mechanical components, and abrasion-resistant thin films on optics and architectural glass. Since the elastic and physical properties of TiN are highly anisotropic, controlling the microstructural and surface morphological evolution of polycrystalline TM nitride films is important for all of the above applications. In this thesis, I used in-situ high-temperature low-energy electron microscopy (LEEM) to gain insight into film growth and microstructure development dynamics by studying mass-transport processes occurring during annealing of three dimensional (3D) structures on TiN surfaces. Additionally, in order to extend the current understanding of nanostructure development in binary nitride films to more complex ternary TM-nitride-based nanocomposites, I employed in-situ scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED), as well as ab-initio modeling, to investigate the atomic structure of the SiNx/TiN heterointerfaces which control the properties of SiNx-TiN nanocomposites. The LEEM studies of mass transport on TiN(111) focus on two specific surface morphologies which are observed to be present during growth of TiN single-crystals. (1) I investigated the temperature-dependent coarsening/decay kinetics of three-dimensional TiN island mounds on large (>1000 A) atomically-flat terraces; showing that TiN(111) steps are highly permeable and exhibit strong repulsive temperature-dependent step-step interactions that vary from 0.03 eV-A at 1559 K to 0.76 eV-A at 1651 K. (2) I studied the nucleation and growth of spiral steps originating at surface-terminated screw dislocations; I developed a model of spiral growth relating the emission rate of point defects from the bulk to the temperature-dependent spiral rotation frequency o(T); and I

  6. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Liedke, Bartosz

    2011-01-01

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  7. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  8. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  9. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    International Nuclear Information System (INIS)

    Lyons, Shawn M; Harrison, Mark A; Law, S Edward

    2011-01-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  10. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Shawn M; Harrison, Mark A [Food Science and Technology Department, University of Georgia, Athens, GA, 30602-2610 (United States); Law, S Edward, E-mail: edlaw@engr.uga.edu [Biological and Agricultural Engineering Department, Applied Electrostatics Laboratory www.ael.engr.uga.edu, University of Georgia, Athens, GA, 30602-4435 (United States)

    2011-06-23

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  11. THE TIBIAL APERTURE SURFACE ANALYSIS IN ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION PROCESS.

    Science.gov (United States)

    Milojević, Zoran; Tabaković, Slobodan; Vićević, Marija; Obradović, Mirko; Vranjes, Miodrag; Milankov, Miroslav Z

    2016-01-01

    The tibial tunnel aperture in the anterior cruciate ligament reconstruction is usually analyzed as an ellipse, generated as an intersection between a tibial plateau and a tibial bone tunnel. The aim of this study is to show that the tibial tunnel aperture, which utilizes 3D tibial surface bone model, differs significantly from common computations which present the tibial tunnel anterior cruciate ligament aperture surface as an ellipse. An interactive program system was developed for the tibial tunnel aperture analysis which included the real tibia 3D surface bone model generated from a series of computed tomography images of ten male patients, their mean age being 25 years. In aperture calculation, the transverse drill angle of 10 degrees was used, whereas sagittal drill angles of 40 degrees, 50 degrees and 60 degrees were used with the drill-bit diameter set to 10 mm. The real 3D and 2D tibial tunnel aperture surface projection was calculated and compared with an ellipse. According to the calculations, generated 3D aperture surfaces were different for every patient even though the same drill parameters were used. For the sagittal drill angles of 40 degrees, 50 degrees and 60 degrees, the mean difference between the projected 3D and 2D area on the tibial plateau was 19.6 +/- 5.4%, 21.1 +/- 8.0% and 21.3 +/- 9.6%, respectively. The difference between the projected 3D area on the tibial plateau and ellipse surface was 54.8 +/- 16.3%, 39.6 +/- 10.4% and 25.0 +/- 8.0% for sagittal drill angles of 40 degrees, 50 degrees and 60 degrees, respectively. The tibial tunnel aperture surface area differs significantly from the ellipse surface area, which is commonly used in the anterior cruciate ligament reconstruction analysis. Inclusion of the 3D shape of the tibial attachment site in the preoperative anterior cruciate ligament reconstruction planning process can lead to a more precise individual anatomic anterior cruciate ligament reconstruction on the tibial bone. Both

  12. Preparation of source mounts for 4π counting

    International Nuclear Information System (INIS)

    Johnson, E.P.

    1991-01-01

    The 4πβ/γ counter in the ANSTO radioisotope standards laboratory at Lucas Heights constitutes part of the Australian national standard for radioactivity. Sources to be measured in the counter must be mounted on a substrate which is strong enough to withstand careful handling and transport. The substrate must also be electrically conducting to minimise counting errors caused by charging of the source, and it must have very low superficial density so that little or none of the radiation is absorbed. The entire process of fabrication of VYNS films, coating them with gold/palladium and transferring them to source mount rings, as carried out in the radioisotope standards laboratory, is documented. 3 refs., 2 tabs., 6 figs

  13. Siting study for small platform-mounted industrial energy reactors

    International Nuclear Information System (INIS)

    1975-07-01

    Utilizing an existing 313 MW(t) ship propulsion reactor design, a concept has been formulated for a floating platform-mounted nuclear plant and an evaluation has been made to determine reductions in construction time and cost achievable by repetitive platform construction in a shipyard. Concepts and estimates are presented for siting platform-mounted nuclear plants at the location of industrial facilities where the nuclear plants would furnish industrial process heat and/or electrical power. The representative industrial site designated for this study is considered typical of sites that might be used along the extensive network of navigable canals adjacent to the ocean and is similar to potential sites along the inland waterways of the United States

  14. Payload isolation and stabilization by a Suspended Experiment Mount (SEM)

    Science.gov (United States)

    Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.

    1992-01-01

    Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.

  15. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    Science.gov (United States)

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues.

  16. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    Science.gov (United States)

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Bulgakova

    2014-12-01

    Full Text Available In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a “plasma pipe”; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.

  18. Determination of injection molding process windows for optical lenses using response surface methodology.

    Science.gov (United States)

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  19. Salmonella species on meat contact surfaces and processing water in Sokoto main market and abattoir, Nigeria

    Directory of Open Access Journals (Sweden)

    Olufemi Oludayo Faleke

    2017-03-01

    Full Text Available This study was carried out to determine Salmonella contamination of food contact surfaces and processing water in meat, fish and poultry processing units in Sokoto State, Nigeria. A total of 200 swab (100 from abattoir and 100 from poultry and fish markets and 60 processing water samples (30 from abattoir and 30 from poultry and fish markets were collected between May to August 2015. Cultural isolation, bio-typing and sero-grouping using Salmonella Sero-Quick Group Kit was conducted to analyse the samples. Seventy-five (75/260, 28.8 % of the total samples were positive to Salmonella by cultural isolation and bio-typing. Thirty (30/130; 23.1 % of samples collected in abattoir and 45 (45/130; 34.6 % of those collected from poultry and fish markets were positive for Salmonella respectively. Sero-groups D+Vi (Salmonella Typhi, B (Salmonella Paratyphi B, Salmonella Typhimurium and C (Salmonella Paratyphi C, Salmonella Cholerae suis were identified as the prevailing sero-groups in this study. Sero-group D+Vi has the highest prevalence (73.3 %; 55/75 from the positive bio-typing isolates. This study revealed the presence of contaminating and pathogenic Salmonella on food contact surfaces and processing water in the meat retail markets, indicating there is an urgent need to improve on the hygienic status of retail meat, poultry and fish markets.

  20. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  1. Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Cartigueyen Srinivasan

    2015-01-01

    Full Text Available Friction stir processing (FSP technique has been successfully employed as low energy consumption route to prepare copper based surface level nanocomposites reinforced with nanosized silicon carbide particles (SiCp. The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nanosized SiCp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nanocomposites was remarkably enhanced and about 95% more than that of copper matrix.

  2. Comparative study of submerged and surface culture acetification process for orange vinegar.

    Science.gov (United States)

    Cejudo-Bastante, Cristina; Durán-Guerrero, Enrique; García-Barroso, Carmelo; Castro-Mejías, Remedios

    2018-02-01

    The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated. Seventeen polyphenols and 24 volatile compounds were determined in the samples during both acetification processes. For phenolic compounds, analysis of variance showed significant higher concentrations when surface culture acetification was employed. However, for the majority of volatile compounds higher contents were observed for submerged culture acetification process, and it was also reflected in the sensory analysis, presenting higher scores for the different descriptors. Multivariate statistical analysis such as principal component analysis demonstrated the possibility of discriminating the samples regarding the type of acetification process. Polyphenols such as apigenin derivative or ferulic acid and volatile compounds such as 4-vinylguaiacol, decanoic acid, nootkatone, trans-geraniol, β-citronellol or α-terpineol, among others, were those compounds that contributed more to the discrimination of the samples. The acetification process employed in the production of orange vinegar has been demonstrated to be very significant for the final characteristics of the vinegar obtained. So it must be carefully controlled to obtain high quality products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  4. Multi-scale roughness spectra of Mount St. Helens debris flows

    Science.gov (United States)

    Austin, Richard T.; England, Anthony W.

    1993-01-01

    A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.

  5. Modal analysis of gear housing and mounts

    Science.gov (United States)

    Lim, Teik C.; Singh, RAJ.; Zakrajsek, James J.

    1989-01-01

    Dynamic finite element analysis of a real gear housing is presented. The analysis was conducted for the housing without the rotating components (gears, shafts, and bearings). Both rigid and flexible mounting conditions for the gear housing are considered in this analysis. The flexible support simulates the realistic mounting condition on a rotorcraft, and the rigid one is analyzed for comparison purposes. The effect of gear housing stiffeners is also evaluated. The results indicate that the first six natural modes of the flexibly mounted gear housing in the 0 to 200 Hz range correspond to the translational and rotational rigid body vibration modes of the housing. Above this range, the housing plate elastic modes begin to occur. In the case of the rigid mount, only the housing plate elastic modes are observed which are verified by modal analysis experiments. Parametric studies show that the housing plate stiffeners and rigid mounts tend to increase most of the natural frequencies, the lower ones being affected the most.

  6. Surface tension driven processes densify and retain permeability in magma and lava

    Science.gov (United States)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  7. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Babak. B. Naghshine

    2017-02-01

    Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  8. SURFACE CHEMISTRY AND PARTICLE SHAPE: PROCESSES FOR THE EVOLUTION OF AEROSOLS IN TITAN's ATMOSPHERE

    International Nuclear Information System (INIS)

    Lavvas, P.; Imanaka, H.; Sander, M.; Kraft, M.

    2011-01-01

    We use a stochastic approach in order to investigate the production and evolution of aerosols in Titan's atmosphere. The simulation initiates from the benzene molecules observed in the thermosphere and follows their evolution to larger aromatic structures through reaction with gas-phase radical species. Aromatics are allowed to collide and provide the first primary particles, which further grow to aggregates through coagulation. We also consider for the first time the contribution of heterogenous processes at the surface of the particles, which are described by the deposition of the formed aromatic structures on the surface of the particles, and also through the chemical reaction with radical species. Our results demonstrate that the evolution of aerosols in terms of size, shape, and density is a result of competing processes between surface growth, coagulation, and sedimentation. Furthermore, our simulations clearly demonstrate the presence of a spherical growth region in the upper atmosphere followed by a transition to an aggregate growth region below. The transition altitude ranges between 500 and 600 km based on the parameters of the simulation.

  9. Laser material micro-working (LMμW): some new surface processes

    Science.gov (United States)

    Daurelio, G.; D'Alonzo, M.

    2007-05-01

    On the last recent years many new Laser Surface Processes have been studied and tested in the field of the L.M. μW. - Laser Material Micro Working. Still today many of these "young" processes are to study and more and more searches are dedicated to they. These are the Marking, Texturing, Fine Texturing, Filling, Polishing, Micro Shot-Penning, Silking and Colouring. This experimental work reports the results obtained in the field of the Laser Surface Fine Texturing on AISI 304 and 430 Stainless Steels by using a Marking System, that is a Nd:YAG Laser, VECTORMARK type by TRUMPH ( D ). So some new laser surface finishes, called by Authors, - Effetto tessuto, con trama e ordito (Woven effect, with weft and warp) - Effetto pelle scamosciata ( Effect shammy leather ) - Effetto pelle uncinata ( Effect hooked skin ) - Effetto pelle unghiata ( Effect skin looking like scratch ) - Effetto pelle damascata ( Effect damask skin ) - Effetto speculare , ottonato ( Specular effect, looking like brass ) Effetto speculare, bronzato ( specular effect looking like bronze ) - Effetto speculare, argenteo ( specular, looking like silver effect ) - Effetto speculare, ramato ( Specular effect, looking like copper ), Effetto Speculare, dorato ( Specular effect, looking like gold ) - Effetto speculare , dorato, a raggiera ( Specular effect, looking like gold, to aureole) , were carried out. The work is still in progress.

  10. Surface Modification by Friction Stir Processing of Low-Carbon Steel: Microstructure Investigation and Wear Performance

    Science.gov (United States)

    Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi

    2018-01-01

    A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.

  11. The integration of surface electromyography in the clinical decision making process: a case report

    Science.gov (United States)

    Nicholson, W Reg

    1998-01-01

    Objective: To demonstrate how the findings of surface electromyography (S.E.M.G.) were integrated into the clinical decision-making process. Clinical Features: This is a retrospective review of the file of a 27-year-old male suffering from mechanical low back pain. He was evaluated on 3 separate occasions over a 3 year period. History, radiography, functional outcome studies, visual-numerical pain score, pain drawing, physical examination and surface electromyography were utilized in evaluating this patient. Intervention and Outcome: The two clinical interventions of spinal manipulative therapy (S.M.T.) had positive results in that the patient achieved an asymptomatic state and returned to his position of employment. The S.E.M.G. data collected during the industrial assessment, did not provide the outcome that the patient had anticipated. Conclusion: Surface electromyography is a useful clinical tool in the author’s decision-making process for the treatment of mechanical lower back pain. Therapeutic intervention by S.M.T., therapeutic exercises and rating risk factors were influenced by the S.E.M.G. findings.

  12. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  13. Process of motion by unit steps over a surface provided with elements regularly arranged

    International Nuclear Information System (INIS)

    Cooper, D.E.; Hendee, L.C. III; Hill, W.G. Jr.; Leshem, Adam; Marugg, M.L.

    1977-01-01

    This invention concerns a process for moving by unit steps an apparatus travelling over a surface provided with an array of orifices aligned and evenly spaced in several lines and several parallel rows regularly spaced, the lines and rows being parallel to axes x and y of Cartesian co-ordinates, each orifice having a separate address in the Cartesian co-ordinate system. The surface travelling apparatus has two previously connected arms aranged in directions transversal to each other thus forming an angle corresponding to the intersection of axes x and y. In the inspection and/or repair of nuclear or similar steam generator tubes, it is desirable that such an apparatus should be able to move in front of a surface comprising an array of orifices by the selective alternate introduction and retraction of two sets of anchoring claws of the two respective arms, in relation to the orifices of the array, it being possible to shift the arms in a movement of translation, transversally to each other, as a set of claws is withdrawn from the orifices. The invention concerns a process and aparatus as indicated above that reduces to a minimum the path length of the apparatus between the orifices it is effectively opposite and a given orifice [fr

  14. Surface Modification by Friction Stir Processing of Low-Carbon Steel: Microstructure Investigation and Wear Performance

    Science.gov (United States)

    Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi

    2018-02-01

    A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.

  15. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  16. User's guide to designing and mounting lenses and mirrors

    International Nuclear Information System (INIS)

    Kowalskie, B.J.

    1978-01-01

    The guidebook is a practitioner-oriented supplement to standard texts in optics and mechanical engineering. It reflects practical experience with the oftentimes troublesome aspects of effectively integrating optical components with mechanical hardware. Accordingly, its focus is on the techniques, assumptions, and levels of design sophistication needed for a wide variety of sizes and optical surface quality levels. It is intended to be a primer for engineers, designers, and draftsmen already familiar with some of the problems encountered in mounting optical components and who are responsible for developing components for high-energy laser systems

  17. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, İstanbul (Turkey); Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr [Adnan Menderes University, Faculty of Engineering, Department of Mechanical Engineering, Aytepe, 09010, Aydin (Turkey); Durakbasa, M. N., E-mail: durakbasa@gmx.at [Department of Interchangeable Manufacturing and Industrial Metrology, Institute for Production Engineering and Laser Technology, Vienna University of Technology, Karlsplatz 13/3113 A-1040 Wien (Austria); Katiboglu, A. B., E-mail: abkatiboglu@hotmail.com [Istanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Istanbul (Turkey)

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in

  18. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Science.gov (United States)

    Bulutsuz, A. G.; Demircioglu, P.; Bogrekci, I.; Durakbasa, M. N.; Katiboglu, A. B.

    2015-03-01

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface

  19. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    International Nuclear Information System (INIS)

    Bulutsuz, A. G.; Demircioglu, P.; Bogrekci, I.; Durakbasa, M. N.; Katiboglu, A. B.

    2015-01-01

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in

  20. Recent surface modification based on advanced energy processes; Ko energy process ni yoru zairyo no hyomen kaishitsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Y. [Osaka University, Osaka (Japan). Joining and Welding Research Institute

    1997-08-20

    This paper introduces nitrides with metastable phase created by advanced energy processes using ion and plasma as new surface modification methods of materials. Since carbon nitride is a highly hard material harder than diamond which was suggested by Cohen, synthesis of {beta}-C3N4 crystal has been tried by means of the magnetron spattering, plasma CVD, ion beam assisted deposition, and laser abrasion processes. Obtained CN film with high hardness should be based on the sp{sup 3} hybrid bonding. However, the whole atomic configuration has not been clarified yet. Synthesis of cubic system BN (c-BN) is being succeeded for these non-equilibrium metastable phases. The c-BN has a high temperature and high pressure equilibrium phase, and provides properties equivalent to diamond. For the AlN metastable phase, creation of abrasion resistance films superior to haploid TiN has been tried through the synthesis of quasi-2D nitrides by adding AlN to TiN. 24 refs., 4 figs., 1 tab.

  1. Subthreshold radiation-induced processes in the bulk and on surfaces and interfaces of solids

    International Nuclear Information System (INIS)

    Itoh, N.

    1998-01-01

    A review is given on the processes induced under irradiation by electronic encounters and by elastic encounters below the knock-on threshold. It is pointed out that electronic encounters cause bond scission that results in defect formation and sputtering in a variety of materials. The conditions for generation of permanent radiation-induced process as a consequence of electronic encounters are critically examined. Two critical issues are localization of electronic excitation energy and energetics. Self-trapping of excitons is one way of localization; otherwise defects are involved in localization and therefore in radiation-induced processes (RIP) by electronic excitation. Arguments on energetics indicate presence of linear and nonlinear electronic process with respect to the density of excitation. The registration of energetic heavy-ion tracks is explained in terms of non-linear electronic processes. The difference in the processes in the bulk, on surfaces and at interfaces is critically discussed. The possible contribution of subthreshold elastic encounters to thermodynamically driven interface reaction is also discussed. (orig.)

  2. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  3. Ball mounting fixture for a roundness gage

    Science.gov (United States)

    Gauler, A.L.; Pasieka, D.F.

    1983-11-15

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball. 6 figs.

  4. Flow distortion on boom mounted cup anemometers

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Friis Pedersen, Troels; Gottschall, Julia

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models...... are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted...... in the measurement of wind turbine power performance, wind resource assessment and for providing purposeful in-field comparisons between different sensors, e.g. lidar anemometers. With the proposed method, direction dependent errors can be extracted and the mast flow distortion effect on the wind measurements...

  5. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  6. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters.

    Science.gov (United States)

    Singh, Mandeep; Kaushik, Anupama; Ahuja, Dheeraj

    2016-10-05

    Aggregates of microfibrillated cellulose isolated from wheat straw fibers were subjected to propionylation under different processing conditions of time, temperature and concentration. The treated fibers were then homogenized to obtain surface modified nanofibrillated cellulose. For varying parameters, progress of propionylation and its effects on various characteristics was investigated by FTIR, degree of substitution, elemental analysis, SEM, EDX, TEM, X-ray diffraction, static and dynamic contact angle measurements. Thermal stability of the nanofibrils was also investigated using thermogravimetric technique. FTIR analysis confirmed the propionylation of the hydroxyl groups of the cellulose fibers. The variations in reaction conditions such as time and temperature had shown considerable effect on degree of substitution (DS) and surface contact angle (CA). These characterization results represent the optimizing conditions under which cellulose nanofibrils with hydrophobic characteristics up to contact angle of 120° can be obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    Science.gov (United States)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  8. Near surface modification of aluminum alloy induced by laser shock processing

    Science.gov (United States)

    Saklakoglu, Nursen; Gencalp Irizalp, Simge; Akman, Erhan; Demir, Arif

    2014-12-01

    This paper investigates the influences of near surface modification induced in 6061-T6 aluminum alloy by laser shock processing (LSP). The present study evaluates LSP with a Q-switched Nd:YAG low power laser using water confinement medium and absorbent overlay on the workpiece. The near surface microstructural change of 6061-T6 alloy after LSP was studied. The residual stress variation throughout the depth of the workpiece was determined. The results showed an improvement of the material resistance to pit formation. This improvement may be attributed to compressive residual stress and work-hardening. The size and number of pits revealed by immersion in an NaOH-HCl solution decreased in comparison with the untreated material.

  9. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhu

    2017-01-01

    Full Text Available The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  10. Analysis of tightening process of bolted joint with tensioner. Effects of incorrect geometry at contact surface

    International Nuclear Information System (INIS)

    Fukuoka, Toshimichi

    1996-01-01

    In tightening critical structural members such as pressure vessels of nuclear reactors and chemical plants and important parts of diesel engines, a hydraulic tensioner is widely used because of its high accuracy in controlling clamping force. The ratio of the desired clamping force to initial tension, which is termed the effective tensile coefficient, is the most important factor to be predicted in the actual operation of given joint configurations. It is reported, however, that a certain amount of scatter in clamping force cannot be avoided. In this paper, an elementary approach to analyze the tightening process is proposed using spring elements, where the effects of incorrect geometry at contact surface on the coefficient are taken into account. The influences of pitch error and flatness deviation at the nut-loaded surface are discussed. Finally, a simple equation for estimating the coefficient is presented, where the major factors influencing scatter in clamping force are considered. (author)

  11. The correct lens mount lightweighting design of thermal cycle stress in Cassegrain telescope

    Science.gov (United States)

    Hsu, M. Y.; Chang, S. T.; Huang, T. M.; Hsu, Ming-Ying

    2011-10-01

    The Cassegrain telescope system was design for space environment. The correct lens mount assembly is included as correct lens, lens mount, spacer, mount barrel and retainer. The system mass budget allocated to correct lens assembly was 5 Kg. Meanwhile, according to optical design the correct lens is made from fused silica, the lens diameter is 130 mm, and the mass is 2.3 Kg. Therefore, remain mass budget is 2.7 Kg; including the lens mount, spacer, mount barrel and retainer. The telescope system deformation is mainly caused by thermal deformation on space orbit. The correct lens mount was made from invar material in initial design. The CTE (Coefficient of Thermal Expansion) of invar is only 1* 10-6/°C, low CTE would be resistant to thermal deformation, but invar density is 8* 10-6 kg/mm3. If all components were made from invar, the total mass was over 2.7 kg. Thus, the components material would consider titanium alloy (CTE is 8.6* 10-6/°C, density is 4.43* 10-6 kg/mm3) or aluminum alloy (CTE is 23.6* 10-6/°C, density is 2.81* 10-6 kg/mm3). The titanium alloy density is 1.83 times lighter than invar, but CTE is 8.6 times higher. The aluminum alloy density is 2.84 times lighter then invar, but CTE is 23.6 times higher. The lens mount thermal deformation would effect correct lens surface wavefront error and introduce optical aberration. This article analyzes the correct lens assembly thermal deformation and optical performance in different lens mount material. From above conditions, using FEM (Finite Element Method) and optical software, simulation and optimization on the lens mount design have been performed to achieve system mass requirement.

  12. Mirror deformation versus contact area in mounted flat mirrors

    Science.gov (United States)

    Clark, James H., III; Penado, F. Ernesto; Cornelius, Frank

    2009-08-01

    Surface flatness of 6-inch diameter mirrors at the Navy Prototype Optical Interferometer is specified to be within 32 nanometers over a 5.4-inch diameter circle centered on the mirror. The current mounting technique is to use three spring plungers applied to the back surface of the mirror, near the perimeter edge, thereby pressing the front surface against three small diameter Teflon pads directly opposite the plungers. The pads have the effect of dissipating the deformation effects within the 5.4-inch diameter region. This paper describes the effects of varying the size of the pads, from a 7/32 inch diameter pad to a point-type contact such as a ball bearing. Experimental results using a phase shifting interferometer are presented, as well as finite element analysis results.

  13. Direct mounted photovoltaic device with improved adhesion and method thereof

    Science.gov (United States)

    Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C

    2014-12-23

    The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.

  14. AN ELECTROLYTIC CIP-CLEANING PROCESS FOR REMOVING IMPURITIES FROM THE INNER SURFACE OF A METALLIC CONTAINER

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to a novel electrolytic process for removing impurities from the inner surface of a metallic container. The process is particularly useful for cleaning process reactors used for culturing microorganisms, and storage tanks used for storing metabolites formed in the process...... reactor, as well as containers for dairy products....

  15. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  16. Surface texture and hardness of dental alloys processed by alternative technologies

    Science.gov (United States)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  17. DISTINCTION OF MECHANICALLY PROCESSED WOOD SURFACES WITH SIMILAR QUALITIES USING SUNSET LASER TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Anna Carolina de Almeida Andrade

    2016-06-01

    Full Text Available The ASTM D 1666-11 (2011 norm classifies the quality of wood surface pieces after its mechanical processing. Although this classification is difficult to achieve visually, the use of some tools, such as solid state laser, can facilitate this classification. The aim of this work was to evaluate the use of sunset laser to qualify mechanically processed surfaces with similar visual qualities. We used a log from the base of a Khaya ivorensis tree and one from a K. senegalensis tree, both 11 years old. 22 specimens of dimensions 600x140x30 mm (CxLxE were made of each species. The specimens were flattened with speeds of 2400, 3600 and 4000 min-1 and advanced speeds were predetermined in 6 and 15 m.min-1. Then the samples were illuminated with sunset laser and photographed at high resolution, the images were transferred to the software Image J. To evaluate the sunset laser, areas of defects in wood that are classified as regular and bad by ASTM D 1666-11 (2011 were used. There was a difference in classification of wood defects between the two methods used, from the 31 specimens classified as regularly by visual analysis, 8 of them were classified as bad by the laser method. The use of solid-state laser in the sunset laser technique was more efficient in evaluating small differences in mechanically processed wood defects compared to visual evaluation.

  18. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Science.gov (United States)

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  19. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  20. Processing optimization of probiotic yogurt containing glucose oxidase using response surface methodology.

    Science.gov (United States)

    Cruz, A G; Faria, J A F; Walter, E H M; Andrade, R R; Cavalcanti, R N; Oliveira, C A F; Granato, D

    2010-11-01

    Exposure to oxygen may induce a lack of functionality of probiotic dairy foods because the anaerobic metabolism of probiotic bacteria compromises during storage the maintenance of their viability to provide benefits to consumer health. Glucose oxidase can constitute a potential alternative to increase the survival of probiotic bacteria in yogurt because it consumes the oxygen permeating to the inside of the pot during storage, thus making it possible to avoid the use of chemical additives. This research aimed to optimize the processing of probiotic yogurt supplemented with glucose oxidase using response surface methodology and to determine the levels of glucose and glucose oxidase that minimize the concentration of dissolved oxygen and maximize the Bifidobacterium longum count by the desirability function. Response surface methodology mathematical models adequately described the process, with adjusted determination coefficients of 83% for the oxygen and 94% for the B. longum. Linear and quadratic effects of the glucose oxidase were reported for the oxygen model, whereas for the B. longum count model an influence of the glucose oxidase at the linear level was observed followed by the quadratic influence of glucose and quadratic effect of glucose oxidase. The desirability function indicated that 62.32 ppm of glucose oxidase and 4.35 ppm of glucose was the best combination of these components for optimization of probiotic yogurt processing. An additional validation experiment was performed and results showed acceptable error between the predicted and experimental results. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Magnetic Signatures of Fine-scale Processes in the Ocean Surface Layer

    Science.gov (United States)

    Soloviev, A.; Dean, C.; Avera, W. E.

    2015-12-01

    Fine-scale processes in the upper ocean turbulent boundary layer may have a measurable electromagnetic signature. In order to study magnetic signatures of these fine-scale processes, we have applied a magnetohydrodynamic (MHD) model combining a 3D computational fluid dynamics model and electromagnetic block, based on ANSYS Fluent software. In addition, the hydrodynamic component of the MHD model is coupled with a radar imaging algorithm, which potentially provides a link to synthetic aperture radar (SAR) satellite imagery. Capabilities of this model have been demonstrated using a simulation and observation of an internal wave soliton in the Straits of Florida, observed with in situ instrumentation (ADCP mooring) and COSMO Sky Med (SAR) satellite image. We have applied this model to study magnetic signatures of surface waves, freshwater lenses, spatially coherent organized motions in the near-surface layer of the ocean (Langmuir circulation and ramp-like structures), and bio-turbulence induced by diel vertical migrations of zooplankton in some areas of the ocean. Investigation of electromagnetic signatures in upper ocean processes offers a valuable new prospect in air-sea interaction.

  2. Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing

    Science.gov (United States)

    Canning, J.; Petermann, I.; Cook, K.

    2012-02-01

    Contact angle measurements of water on pathology grade borosilicate glass microscope slides before and after base piranha treatment are compared to treatment with 193nm laser irradiation. 193nm irradiation in the presence of hydrogen was also explored. Within experimental resolution, the observed changes in contact angle as a result of treatment either with base Piranha solution or with laser processing are identical. The contact angle, a, in both cases is reduced from a = (27 +/- 6)º to a = (8 +/- 3)º with treatment. However, for the piranha base method, there is an observed reversal over time either fully recovering or partially recovering within hours. By contrast, with laser processed, the increased surface wettability is retained with no change for more than 15 hours. In all cases, surface functionalisation, as measured by contact angle, with (3-mercaptopropyl)trimethoxysilane (MPTS) is found to be largely independent of any processing. We conclude that the method of contact angle as a means for qualitatively asserting improvements in attachment is unjustified.

  3. Influence of composite processing on the properties of CNT grown on carbon surfaces

    Science.gov (United States)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2018-01-01

    Carbon nanotubes (CNT) grafted on carbon fibres (CF) are the subject of more and more studies on the reinforcement of composite materials thanks to the CNT' mechanical properties. This study concerns the growth of CNT directly on CF by the flame method, which is an assembly-line process. However the industrial-scale use of this method and of the composite processing leads to stresses on the CNT-grafted fabrics, such as friction and pulling-out. The aim of this study is to determine the behaviour of the CNT under these kinds of stresses and to study theirs consequences in composite processing. For this purpose, adhesion tests and friction tests were performed as well as analysis of the surface by Scanning Electron Microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). In friction tests, CNT formed a transfer film, and its effect on the wettability of the fabric with epoxy resin is determined. Finally, the wear of the CNT does not influence the wettability of the fabric. Furthermore, it is proven that the nature of the catalyst needed to grow the CNT modifies the behaviour of the surface.

  4. Modeling the land surface heat exchange process with the aid of moderate resolution imaging spectroradiomer images

    Science.gov (United States)

    Gao, Zhiqiang; Zhang, Wenjiang; Gao, Wei; Chang, Ni-Bin

    2009-12-01

    Most ecosystems and crops experience water stress in arid and semiarid areas of the Inner Mongolia grassland, Northern China. Yet the lack of long-term in situ monitoring data hinders the managerial capacity of changing water vapor environment, which is tied with sustaining the grassland in the Inner Mongolia. Environmental remote sensing monitoring and modeling may provide synergistic means of observing changes in thermodynamic balance during drought onset at the grassland surface, providing reliable projections accounting for variations and correlations of water vapor and heat fluxes. It is the aim of this paper to present a series of estimates of latent heat, sensible heat, and net radiation using an innovative first-principle, physics-based model (GEOMOD: GEO-model estimated the land surface heat with MODis data) with the aid of integrated satellite remote sensing and in situ eddy covariance data. Based on the energy balance principle and aerodynamics diffusion theory, the GEOMOD model is featured with MODIS (Moderate Resolution Imaging Spectroradiometer) data with 250 m spatial resolution to collectively reflect the spatial heterogeneity of surface properties, supplement missing data with the neighborhood values across both spatial and temporal domains, estimate the surface roughness height and zero-plane displacement with dynamic look-up table, and implement a fast iterative algorithm to calculate sensible heat. Its analytical framework is designed against overreliance on local micro-meteorological parameters. Practical implementation was assessed in the study area, the Xilin Gol River Basin, a typical grassland environment, Northern China. With 179 days of MODIS data in support of modeling, coincident ground-based observations between 2000 and 2006 were selected for model calibration. The findings indicate that GEOMOD performs reasonably well in modeling the land surface heat exchange process, as demonstrated by a case study of Inner Mongolia.

  5. Calibration of an integrated land surface process and radiobrightness (LSP/R) model during summertime

    Science.gov (United States)

    Judge, Jasmeet; England, Anthony W.; Metcalfe, John R.; McNichol, David; Goodison, Barry E.

    2008-01-01

    In this study, a soil vegetation and atmosphere transfer (SVAT) model was linked with a microwave emission model to simulate microwave signatures for different terrain during summertime, when the energy and moisture fluxes at the land surface are strong. The integrated model, land surface process/radiobrightness (LSP/R), was forced with weather and initial conditions observed during a field experiment. It simulated the fluxes and brightness temperatures for bare soil and brome grass in the Northern Great Plains. The model estimates of soil temperature and moisture profiles and terrain brightness temperatures were compared with the observed values. Overall, the LSP model provides realistic estimates of soil moisture and temperature profiles to be used with a microwave model. The maximum mean differences and standard deviations between the modeled and the observed temperatures (canopy and soil) were 2.6 K and 6.8 K, respectively; those for the volumetric soil moisture were 0.9% and 1.5%, respectively. Brightness temperatures at 19 GHz matched well with the observations for bare soil, when a rough surface model was incorporated indicating reduced dielectric sensitivity to soil moisture by surface roughness. The brightness temperatures of the brome grass matched well with the observations indicating that a simple emission model was sufficient to simulate accurate brightness temperatures for grass typical of that region and surface roughness was not a significant issue for grass-covered soil at 19 GHz. Such integrated SVAT-microwave models allow for direct assimilation of microwave observations and can also be used to understand sensitivity of microwave signatures to changes in weather forcings and soil conditions for different terrain types.

  6. Robotic mounting of ATLAS barrel SCT modules

    International Nuclear Information System (INIS)

    Nickerson, R.B.; Viehhauser, G.; Wastie, R.; Terada, S.; Unno, Y.; Kohriki, T.; Ikegami, Y.; Hara, K.; Kobayashi, H.; Barbier, G.; Clark, A.G.; Perrin, E.; Carter, A.A.; Mistry, J.; Morris, J.

    2006-01-01

    The 2112 silicon detector modules of the barrel part of the ATLAS SemiConductor Tracker (SCT) have been mounted on their carbon fibre support structure. Module insertion, placement and fixing were performed by robotic assembly tooling. We report on our experience with this assembly method. Part of the mounting sequence involves a partial survey of elements of the support structure which is needed to align the modules properly during insertion. An analysis of these data is used to estimate the positional accuracy of the robots

  7. The alignment and isostatic mount bonding technique of the aerospace Cassegrain telescope primary mirror

    Science.gov (United States)

    Lin, Wei Cheng; Chang, Shenq-Tsong; Lin, Yu-Chuan; Hsu, Ming-Ying; Chang, Yu-Ting; Chang, Sheng-Hsiung; Huang, Ting-Ming

    2012-10-01

    In order to meet both optical performance and structural stiffness requirements of the aerospace Cassegrain telescope, iso-static mount is used as the interface between the primary mirror and the main plate. This article describes the alignment and iso-static mount bonding technique of the primary mirror by assistance of CMM. The design and assembly of mechanical ground support equipment (MGSE) which reduces the deformation of primary mirror by the gravity effect is also presented. The primary mirror adjusting MGSE consists of X-Y linear translation stages, rotation stage and kinematic constrain platform which provides the function of decenter, orientation, tilt and height adjustment of the posture sequentially. After CMM measurement, the radius of curvature, conic constant, decenter and tilt, etc. will be calculated. According to these results, the posture of the mirror will be adjusted to reduce the tilt by the designed MGSE within 0.02 degrees and the distance deviation from the best fitted profile of mirror to main plate shall be less than 0.01 mm. After that, EC 2216 adhesive is used to bond mirror and iso-static mount. During iso-static mount bonding process, CMM is selected to monitor the relative position deviation of the iso-static mount until the adhesive completely cured. After that, the wave front sensors and strain gauges are used to monitor the strain variation while the iso-static mount mounted in the main plate with the screws by the torque wrench. This step is to prevent deformation of the mirror caused from force of the iso-static mount during the mounting process. In the end, the interferometer is used for the optical performance test with +1G and -1G to check the alignment and bonding technique is well or not.

  8. Interplay between tectonics and topography: Topographic stress controls on bedrock fractures and surface processes

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.; Holbrook, W. S.; St Clair, J. T.; Singha, K.

    2016-12-01

    The interaction of tectonics, topography, and surface processes influences the evolution of landscapes in tectonically active regions. Though tectonic controls on topography have been extensively studied, the influence of topography on tectonics has been examined less. Theoretical studies have suggested that topography can perturb the tectonic and gravitational stress fields in landscapes, which can influence bedrock fracture patterns and in turn influence erosion. This hypothesis implies that there could be a feedback between topographic stress and landscape evolution such that topographically induced bedrock fractures influence and are influenced by surface processes in evolving topography. In this work, we explore the predictions of a three-dimensional topographic stress model and illustrate how different topographic forms and tectonic settings could influence bedrock fracture patterns. We show that the stress field is most sensitive to topographic perturbations if the most compressive horizontal tectonic stress is oriented perpendicular to the long axis of elongated landforms such as ridges and valleys, and that topographic stress perturbations are most pronounced beneath landforms with higher mean curvatures, such as channel junctions and ridge crests. The shape of a predicted fracture-rich zone in the subsurface depends mainly on the orientation of landforms relative to the most compressive horizontal tectonic stress direction and a dimensionless ratio that expresses the relative magnitudes of topographic stresses associated with tectonics and topographic relief. Variations in this dimensionless ratio can also change the predicted orientations of potential opening-mode fracture planes beneath ridges and valleys. We use these model results to illustrate how topographic perturbations of three-dimensional tectonic and gravitational stresses could influence landscape evolution by altering the rates and spatial heterogeneity of surface processes such as

  9. A decision-making process on cleanup of contaminated surface soil

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1996-01-01

    This study presents principles for determining derived intervention levels (DILs) for surface soil cleanup. The people concerned were divided into major three groups: residents, responsible parties, and cleanup workers; it was considered that each group has different interests. The DILs for soil cleanup were determined from the viewpoints of these three groups: safety of residence, advantages of the countermeasures, and safety of cleanup activities, respectively. An example process for determination of the DILs in accordance with the principles was also presented for a site contaminated by 137 Cs. This decision-making frame is expected to be applicable to other contaminants. (author)

  10. Scanning tunneling microscopy of initial nitridation processes on oxidized Si(100) surface with radical nitrogen

    CERN Document Server

    Takahashi, R; Ikeda, H; Sakashita, M; Sakai, A; Yasuda, Y; Nakatsuka, O; Zaima, S

    2003-01-01

    We have investigated the initial nitridation processes on oxidized Si(100) with radical nitrogen at a substrate temperature of 850degC using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). It is found that the thin oxide layer suppresses the changes of original Si step structures during nitridation, and this effect critically depends on the growth conditions of the oxide layer. Comparison of the nitride island morphology to the case of the clean surface suggests that the migration of the precursor during nitridation is suppressed by the oxygen in the layer. (author)

  11. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...

  12. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    Science.gov (United States)

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  13. Warpage minimization on wheel caster by optimizing process parameters using response surface methodology (RSM)

    Science.gov (United States)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.

  14. Evaluation of optical functional surfaces on the injection moulding insert by micro milling process

    DEFF Research Database (Denmark)

    Li, Dongya; Davoudinejad, Ali; Zhang, Yang

    2017-01-01

    This study presents the optimization of micro milling process for manufacturing injection moulding inserts with an optical functionalsurface. The objective is the optimal surface functionality. Micro ridges were used as the microstructures to realize the function to generate contrast between...... orthogonally textured areas by reflecting light in different directions. In order to maximize the contrast,a sample was machined with the same structures and dimensions, according to a Design of Experiments (DOEs) to optimize the milling parameters by considering the contrast as a response. The contrast...

  15. Artificial Intelligence Mechanisms on Interactive Modified Simplex Method with Desirability Function for Optimising Surface Lapping Process

    Directory of Open Access Journals (Sweden)

    Pongchanun Luangpaiboon

    2014-01-01

    Full Text Available A study has been made to optimise the influential parameters of surface lapping process. Lapping time, lapping speed, downward pressure, and charging pressure were chosen from the preliminary studies as parameters to determine process performances in terms of material removal, lap width, and clamp force. The desirability functions of the-nominal-the-best were used to compromise multiple responses into the overall desirability function level or D response. The conventional modified simplex or Nelder-Mead simplex method and the interactive desirability function are performed to optimise online the parameter levels in order to maximise the D response. In order to determine the lapping process parameters effectively, this research then applies two powerful artificial intelligence optimisation mechanisms from harmony search and firefly algorithms. The recommended condition of (lapping time, lapping speed, downward pressure, and charging pressure at (33, 35, 6.0, and 5.0 has been verified by performing confirmation experiments. It showed that the D response level increased to 0.96. When compared with the current operating condition, there is a decrease of the material removal and lap width with the improved process performance indices of 2.01 and 1.14, respectively. Similarly, there is an increase of the clamp force with the improved process performance index of 1.58.

  16. An investigation on impact resistance of FDM processed Nylon-12 parts using response surface methodology

    Science.gov (United States)

    Kamoona, Salam Nori; Masood, Syed Hasan; Mohamed, Omar Ahmed

    2017-07-01

    Fused Deposition Modelling (FDM) is one of the leading additive manufacturing processes for plastic part manufacturing. However, engineers often face difficulties to specify the actual levels of process parameters in FDM process to achieve the proper mechanical properties of FDM fabricated parts. The effect of large number of FDM process parameters and the interaction among them need to be understood to achieve desired level of mechanical performance. This paper presents a study on the influence of three FDM process parameters (air gap, raster angle, and build orientation) on the impact strength and mechanical properties of the FDM Nylon 12 fabricated parts by Fortus 450mc FDM machine. The Response Surface Methodology (RSM) based on face centered central composite design was used to analyse, validate, and optimize the results. The significance of parameters was statistically validated with the analysis of variance (ANOVA) technique. The results show that the part build Y-orientations (flat) at 0° and 45° have a significant directly proportional influence on the impact strength, while Z-orientation (upright) at 90° has indirectly proportional effect on the impact strength. Moreover, raster angle has a much significant directly proportional influence on the impact strength at 0° and 60° angles and indirectly proportion influence at 30°.

  17. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade

    Directory of Open Access Journals (Sweden)

    Prashant J. Patil

    2016-09-01

    Full Text Available Close tolerance and good surface finish are achieved by means of grinding process. This study was carried out for multi-objective optimization of MQL grinding process parameters. Water based Al2O3 and CuO nanofluids of various concentrations are used as lubricant for MQL system. Grinding experiments were carried out on instrumented surface grinding machine. For experimentation purpose Taguchi's method was used. Important process parameters that affect the G ratio and surface finish in MQL grinding are depth of cut, type of lubricant, feed rate, grinding wheel speed, coolant flow rate, and nanoparticle size. Grinding performance was calculated by the measurement G ratio and surface finish. For improvement of grinding process a multi-objective process parameter optimization is performed by use of Taguchi based grey relational analysis. To identify most significant factor of process analysis of variance (ANOVA has been used.

  18. Application of Finite Element Method to Analyze the Influences of Process Parameters on the Cut Surface in Fine Blanking Processes by Using Clearance-Dependent Critical Fracture Criteria

    Directory of Open Access Journals (Sweden)

    Phyo Wai Myint

    2018-04-01

    Full Text Available The correct choice of process parameters is important in predicting the cut surface and obtaining a fully-fine sheared surface in the fine blanking process. The researchers used the value of the critical fracture criterion obtained by long duration experiments to predict the conditions of cut surfaces in the fine blanking process. In this study, the clearance-dependent critical ductile fracture criteria obtained by the Cockcroft-Latham and Oyane criteria were used to reduce the time and cost of experiments to obtain the value of the critical fracture criterion. The Finite Element Method (FEM was applied to fine blanking processes to study the influences of process parameters such as the initial compression, the punch and die corner radii and the shape and size of the V-ring indenter on the length of the sheared surface. The effects of stress triaxiality and punch diameters on the cut surface produced by the fine blanking process are also discussed. The verified process parameters and tool geometry for obtaining a fully-fine sheared SPCC surface are described. The results showed that the accurate and stable prediction of ductile fracture initiation can be achieved using the Oyane criterion.

  19. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  20. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  1. A contribution to the electron-beam surface-melting process of metallic materials. Numerical simulation and experimental verification

    International Nuclear Information System (INIS)

    Bruckner, A.

    1996-08-01

    For the optimization of the surface melting process it is necessary to make many different experiments. Therefore, the simulation of the surface melting process becomes a major role for the optimization. Most of the simulations, developed for the laser surface melting process, are not usable for the electron-beam surface melting process, because of the different energy input and the possibility of high frequent movement of the electron-beam. In this thesis, a calculation model for electron-beam surface melting is presented. For this numerical simulation a variable volume source is used, which moves in axial direction with the same velocity as the vapor cavity into the material. With this calculation model also the high frequent movement of the electron-beam may be taken into account. The electron-beam diameter is measured with a method of drilling holes with short electron-beam pulses in thin foils. The diameter of the holes depends on the pulse length and reaches a maximal value, which is used for the diameter of the volume source in the calculation. The crack-formation, seen in many treated surfaces, is examined with the Acoustic-Emission Testing. The possibilities of the electron-beam surface melting process are shown with some experiments for different requirements of the treated surfaces, like increasing the hardness, reducing the porosity of a sintered material and the alloying of tin in an aluminium-silicon surface. (author)

  2. Fatigue properties of a biomedical 316L steel processed by surface mechanical attrition

    International Nuclear Information System (INIS)

    Sun, Z; Chemkhi, M; Kanoute, P; Retraint, D

    2014-01-01

    This work deals with the influence of surface mechanical attrition treatment (SMAT) on fatigue properties of a medical grade 316L stainless steel. Metallurgical parameters governed by SMAT such as micro-hardness and nanocrystalline layer are characterized using different techniques. Low cycle fatigue tests are performed to investigate the fatigue properties of untreated and SMAT-processed samples. The results show that the stress amplitude of SMAT- processed samples with two different treatment intensities is significantly enhanced compared to untreated samples, while the fatigue strength represented by the number of cycles to failure is not improved in the investigated strain range. The enhancement in the stress amplitude of treated samples can be attributed to the influence of the SMAT affected layer

  3. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  4. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Science.gov (United States)

    Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele

    2015-01-01

    In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers. PMID:28793427

  5. Shaded Relief with Height as Color, Mount Meru, Tanzania

    Science.gov (United States)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park. Its fertile slopes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in June. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to blue and white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space

  6. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water.

    Science.gov (United States)

    Wang, Zheng; He, Shengbing; Huang, Jungchen; Zhou, Weili; Chen, Wanning

    2018-03-29

    Phosphorus (P) limitation has been demonstrated for micro-polluted surface water denitrification treatment in previous study. In this paper, a lab-scale comparative study of autotrophic denitrification (ADN) and heterotrophic denitrification (HDN) in phosphorus-limited surface water was investigated, aiming to find out the optimal nitrogen/phosphorus (N/P) ratio and the mechanism of the effect of P limitation on ADN and HDN. Furthermore, the optimal denitrification process was applied to the West Lake denitrification project, aiming to improve the water quality of the West Lake from worse than grade V to grade IV (GB3838-2006). The lab-scale study showed that the lack of P indeed inhibited HDN more greatly than ADN. The optimal N/P ratio for ADN and HDN was 25 and a 0.15 mg PO 4 3- -P L -1 of microbial available phosphorus (MAP) was observed. P additions could greatly enhance the resistance of ADN and HDN to hydraulic loading shock. Besides, The P addition could effectively stimulate the HDN performance via enriching the heterotrophic denitrifiers and the denitrifying phosphate-accumulating organisms (DNPAOs). Additionally, HDN was more effective and cost-effective than ADN for treating P-limited surface water. The study of the full-scale HDBF (heterotrophic denitrification biofilter) indicated that the denitrification performance was periodically impacted by P limitation, particularly at low water temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    Science.gov (United States)

    Tao, Wei-Kuo; Starr, David (Technical Monitor)

    2002-01-01

    ) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.

  8. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  9. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  10. June 1992 Mount Spurr, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following 39 years of inactivity, Crater Peak vent on the south flank of Mount Spurr volcano burst into eruption at 7:04 a.m. Alaska daylight time (ADT) on June 27,...

  11. Artificial surface-mounted molecular rotors: Molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Vacek, Jaroslav; Michl, Josef

    2007-01-01

    Roč. 17, č. 5 (2007), s. 730-739 ISSN 1616-301X R&D Projects: GA AV ČR IAA400550616; GA MŠk ME 857 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * molecular machines * nanomaterials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.496, year: 2007

  12. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  13. UMTRA Surface Project management action process document. Final report: Revision 1

    International Nuclear Information System (INIS)

    1996-04-01

    A critical mission of the US Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC) from the late 1940s into the 1970s. Among these facilities are the 24 former uranium mill sites designed in the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC section 7901 et seq.) Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designated sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project only; a separate MAP document has been prepared for the UMTRA Ground Water Project

  14. Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Valledor Llopis, Marta; Campo Rodriguez, Juan Carlos; Ferrero Martin, Francisco J [Departamento de Ingenieria Electrica, Electronica, C y S Universidad de Oviedo, Campus de Gijon s/n, 33204 Gijon, Asturias, (Spain); Coto, Ana Maria; Fernandez-Argueelles, Maria T; Costa-Fernandez, J M; Sanz-Medel, A [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Campus del Cristo, 33006 Oviedo, Asturias (Spain)

    2011-09-23

    Photoinduced fluorescence enhancement of colloidal quantum dots (QDs) is a hot topic addressed in many studies due to its great influence on the bioanalytical performance of such nanoparticles. However, understanding of this process is not a simple task, and it cannot be explained by a general mechanism as it greatly depends on the QDs' nature, solubilization strategies, surrounding environment, etc. In this vein, we have critically compared the behavior of CdSe QDs (widely used in bioanalytical applications) with different surface modifications (ligand exchange and polymer coating), in different controlled experimental conditions, in the presence-absence of the ZnS layer and in different media when exposed for long times to intense UV irradiation. Thus six different types of colloidal QDs were finally studied. This research was carried out from a novel perspective, based on the analysis of the dynamic behavior of the photoactivation process (of great interest for further applications of QDs as labels in biomedical applications). The results showed a different behavior of the studied colloidal QDs after UV irradiation in terms of their photoluminescence characteristics, potential toxicity due to metal release to the environment, nanoparticle stability and surface coating degradation.

  15. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site

    International Nuclear Information System (INIS)

    1993-09-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m 2 grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards

  16. Laser-plasma EUV source dedicated for surface processing of polymers

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Wachulak, P. W.

    2011-08-01

    In this work, a 10 Hz laser-plasma extreme ultraviolet (EUV) source built for surface processing of polymers is presented. The source is based on a double-stream gas puff target created in a vacuum chamber synchronously with the pumping laser pulse. The target is formed by pulsed injection of Kr, Xe or a KrXe gas mixture into a hollow stream of helium. The EUV radiation is focused using a grazing incidence gold-plated ellipsoidal collector. Spectrum of the reflected radiation consists of a narrow feature with intensity maximum at 10-11 nm wavelength and a long-wavelength spectral tail up to 70 nm. The exact spectral distribution depends on a gas applied for plasma creation. To avoid strong absorption of the EUV radiation in a residual gas present in the chamber during the source operation a two step differential pumping system was employed. The system allows for polymer processing under relatively high vacuum conditions (10 -5 mbar) or in a reactive gas atmosphere. Polymer samples can be irradiated in a focal plane of the EUV collector or at some distance downstream the focal plane. This way fluence of the EUV beam at the polymer surface can be regulated.

  17. Multiobjective Optimization of Precision Forging Process Parameters Based on Response Surface Method

    Directory of Open Access Journals (Sweden)

    Fayuan Zhu

    2015-01-01

    Full Text Available In order to control the precision forging forming quality and improve the service life of die, a multiobjective optimization method for process parameters design was presented by applying Latin hypercube design method and response surface model approach. Meanwhile the deformation homogeneity and material damage of forging parts were proposed for evaluating the forming quality. The forming load of die was proposed for evaluating the service life of die. Then as a case of study, the radial precision forging for a hollow shaft with variable cross section and wall thickness was carried out. The 3D rigid-plastic finite element (FE model of the hollow shaft radial precision forging was established. The multiobjective optimization forecast model was established by adopting finite element results and response surface methodology. Nondominated sorting genetic algorithm-II (NSGA-II was adopted to obtain the Pareto-optimal solutions. A compromise solution was selected from the Pareto solutions by using the mapping method. In the finite element study on the forming quality of forging parts and the service life of dies by multiobjective optimization process parameters, the feasibility of the multiobjective optimization method presented by this work was verified.

  18. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.

    Science.gov (United States)

    Benselfelt, Tobias; Cranston, Emily D; Ondaral, Sedat; Johansson, Erik; Brumer, Harry; Rutland, Mark W; Wågberg, Lars

    2016-09-12

    The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

  19. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej, E-mail: maciej.sowa@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Woszczak, Maja; Kazek-Kęsik, Alicja [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1A, 41-500 Chorzów (Poland); Korotin, Danila M. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Zhidkov, Ivan S. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, Ernst Z. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Basiaga, Marcin [Faculty of Biomedical Engineering, Silesian University of Technology, Gen. de Gaulle’a Street 66, 41-800 Zabrze (Poland); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2017-06-15

    Highlights: • 2-step plasma electrolytic oxidation (PEO) of tantalum was investigated. • PEO coatings surface composition were reflected by the composition of anodizing baths. • Hydrophobic surfaces were obtained from acetate and formate containing baths. • Bioactive phases were identified. - Abstract: This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm{sup −2}) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H{sub 2}PO{sub 2}){sub 2} solution, which was then modified by the addition of 1.15 M Ca(HCOO){sub 2} as well as 1.15 M and 1.5 M Mg(CH{sub 3}COO){sub 2}. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO{sup −} and CH{sub 3}COO{sup −} ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  20. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    Science.gov (United States)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.