WorldWideScience

Sample records for surface meteorological instruments

  1. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  2. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  3. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  4. Instruments for meteorological measurement

    International Nuclear Information System (INIS)

    1983-08-01

    The Fundamental Safety Rules applicable to certain types of nuclear installation are intended to clarify the conditions of which observance, for the type of installation concerned and for the subject that they deal with, is considered as equivalent to compliance with regulatory French technical practice. These Rules should facilitate safety analysises and the clear understanding between persons interested in matters related to nuclear safety. They in no way reduce the operator's liability and pose no obstacle to statutory provisions in force. For any installation to which a Fundamental Safety Rule applies according to the foregoing paragraph, the operator may be relieved from application of the Rule if he shows proof that the safety objectives set by the Rule are attained by other means that he proposes within the framework of statutory procedures. Furthermore, the Central Service for the Safety of Nuclear Installations reserves the right at all times to alter any Fundamental Safety Rule, as required, should it deem this necessary, while specifying the applicability conditions. This present rule has for objective to determine the means for meteorological measurement near a site of nuclear facility in which there is not a PWR power plant [fr

  5. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  6. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  7. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  8. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  9. Quantifying the Influence of Near-Surface Water-Energy Budgets on Soil Thermal Properties Using a Network of Coupled Meteorological and Vadose Zone Instrument Arrays in Indiana, USA

    Science.gov (United States)

    Naylor, S.; Gustin, A. R.; Ellett, K. M.

    2012-12-01

    Weather stations that collect reliable, sustained meteorological data sets are becoming more widely distributed because of advances in both instrumentation and data server technology. However, sites collecting soil moisture and soil temperature data remain sparse with even fewer locations where complete meteorological data are collected in conjunction with soil data. Thanks to the advent of sensors that collect continuous in-situ thermal properties data for soils, we have gone a step further and incorporated thermal properties measurements as part of hydrologic instrument arrays in central and northern Indiana. The coupled approach provides insights into the variability of soil thermal conductivity and diffusivity attributable to geologic and climatological controls for various hydrogeologic settings. These data are collected to facilitate the optimization of ground-source heat pumps (GSHPs) in the glaciated Midwest by establishing publicly available data that can be used to parameterize system design models. A network of six monitoring sites was developed in Indiana. Sensors that determine thermal conductivity and diffusivity using radial differential temperature measurements around a heating wire were installed at 1.2 meters below ground surface— a typical depth for horizontal GSHP systems. Each site also includes standard meteorological sensors for calculating reference evapotranspiration following the methods by the Food and Agriculture Organization (FAO) of the United Nations. Vadose zone instrumentation includes time domain reflectometry soil-moisture and temperature sensors installed at 0.3-meter depth intervals down to a 1.8-meter depth, in addition to matric potential sensors at 0.15, 0.3, 0.6, and 1.2 meters. Cores collected at 0.3-meter intervals were analyzed in a laboratory for grain size distribution, bulk density, thermal conductivity, and thermal diffusivity. Our work includes developing methods for calibrating thermal properties sensors based on

  10. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  11. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  12. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the surface, and...

  13. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the...

  14. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    Science.gov (United States)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  15. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  16. Physical, chemical, current profile, water pressure, sea surface temperature, meteorological, and other data from current meters, bottle casts, pressure gauges, meteorological sensors, current meters, and other instruments from the ANDRE NIZERY and other platforms from the TOGA Area - Atlantic as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 1964-01-01 to 1985-12-31 (NODC Accession 8700150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, current profile, water pressure, sea surface temperature, meteorological, and other data were collected from the ANDRE NIZERY and other platforms...

  17. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  18. Sensitivity of surface meteorological analyses to observation networks

    Science.gov (United States)

    Tyndall, Daniel Paul

    A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.

  19. Validation of the guidelines for portable meteorological instrument packages. Task IV. Development of an insolation handbook and instrumentation package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The purpose of this report is to show how the objective of developing guidelines for a solar energy related portable meteorology instrument package, under the auspices of the International Energy Agency (IEA), was carried out and preliminarily demonstrated and validated. A project to develop guidelines for such packages was initiated at IEA's Solar Heating and Cooling of Buildings Program Expert's Meeting held in Norrkoping, Sweden in February 1976. An international comparison of resultant devices was conducted on behalf of the IEA at a conference held in Hamburg, Federal Republic of Germany, in 1978. Results of the 1978 Hamburg comparison of two devices and the Swiss Mobile Solar Radiation System, using German meteorological standards, are discussed. The consensus of the IEA Task Group is that the objective of the subtask has been accomplished.

  20. Meteorological Support Interface Control Working Group (MSICWG) Instrumentation, Data Format, and Networks Document

    Science.gov (United States)

    Brenton, James; Roberts, Barry C.

    2017-01-01

    The purpose of this document is to provide an overview of instrumentation discussed at the Meteorological Interface Control Working Group (MSICWG), a reference for data formats currently used by members of the group, a summary of proposed formats for future use by the group, an overview of the data networks of the group's members. This document will be updated as new systems are introduced, old systems are retired, and when the MSICWG community necessitates a change to the formats. The MSICWG consists of personnel from the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC), NASA Marshall Space Flight Center (MSFC), NASA Johnson Space Center (JSC), National Oceanic and Atmospheric Administration National Weather Service Spaceflight Meteorology Group (SMG), and the United States Air Force (USAF) 45th Space Wing and Weather Squadron. The purpose of the group is to coordinate the distribution of weather related data to support NASA space launch related activities.

  1. On-site meteorological instrumentation requirements to characterize diffusion from point sources: workshop report. Final report Sep 79-Sep 80

    International Nuclear Information System (INIS)

    Strimaitis, D.; Hoffnagle, G.; Bass, A.

    1981-04-01

    Results of a workshop entitled 'On-Site Meteorological Instrumentation Requirements to Characterize Diffusion from Point Sources' are summarized and reported. The workshop was sponsored by the U.S. Environmental Protection Agency in Raleigh, North Carolina, on January 15-17, 1980. Its purpose was to provide EPA with a thorough examination of the meteorological instrumentation and data collection requirements needed to characterize airborne dispersion of air contaminants from point sources and to recommend, based on an expert consensus, specific measurement technique and accuracies. Secondary purposes of the workshop were to (1) make recommendations to the National Weather Service (NWS) about collecting and archiving meteorological data that would best support air quality dispersion modeling objectives and (2) make recommendations on standardization of meteorological data reporting and quality assurance programs

  2. IceBridge NSERC L1B Geolocated Meteorologic and Surface Temperature Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge National Suborbital Education & Research Center (NSERC) L1B Geolocated Meteorologic and Surface Temperature (IAMET1B) data set is a collection of...

  3. IceBridge NSERC L1B Geolocated Meteorologic and Surface Temperature Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge National Suborbital Education & Research Center (NSERC) L1B Geolocated Meteorologic and Surface Temperature (IAMET1B) data set is a collection of...

  4. On the spectra and coherence of some surface meteorological parameters in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    . In addition to peaks in the annual, semiannual and four-month periodicities, the various surface parameters exhibited some energy at 2, 3 and 4 year cycles. It was also found that most of the surface meteorological parameters were coherent (at 95% confidence...

  5. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A

    different parameters shows that the sea surface temperature and air temperature are positively and significantly correlated over the study area. A similar relationship is found between wind speed and cloudiness amount. Wind speed and cloudiness...

  6. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay

  7. Summary of Meteorological Observations, Surface (SMOS), El Toro, California

    Science.gov (United States)

    1983-10-01

    SURFACE WINDS DETACHMENT ASHEVILLE. NC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) EL TIPO , CALIrQO𔃾IA 73-’.? A ir, U~~tiAL...OF WiND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ... 112L. E L TIPO , ALIODkI1A 71-q2 r ALL wEANCP _______ MEAN 11-11 6.S 7.A 1.U 11.W6 17.21 n...nTa IO STyVIO. *..M YUOnb0U T-mp. WIT BULl TEMPERATUIE DEPRESSION fF) TOTAL TOTAL 0 1- 2 3 -4 - j 8 9 10 11-12113 14,11516117. 18119 270:i21 . 2 23

  8. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Maturilli

    2013-04-01

    Full Text Available A consistent meteorological dataset of the Arctic site Ny-Ålesund (11.9° E, 78.9° N spanning the 18 yr-period 1 August 1993 to 31 July 2011 is presented. Instrumentation and data handling of temperature, humidity, wind and pressure measurements are described in detail. Monthly mean values are shown for all years to illustrate the interannual variability of the different parameters. Climatological mean values are given for temperature, humidity and pressure. From the climatological dataset, we also present the time series of annual mean temperature and humidity, revealing a temperature increase of +1.35 K per decade and an increase in water vapor mixing ratio of +0.22 g kg−1 per decade for the given time period, respectively. With the continuation of the presented measurements, the Ny-Ålesund high resolution time series will provide a reliable source to monitor Arctic change and retrieve trends in the future. The relevant data are provided in high temporal resolution as averages over 5 (1 min before (after 14 July 1998, respectively, placed on the PANGAEA repository (doi:10.1594/PANGAEA.793046. While 6 hourly synoptic observations in Ny-Ålesund by the Norwegian Meteorological Institute reach back to 1974 (Førland et al., 2011, the meteorological data presented here cover a shorter time period, but their high temporal resolution will be of value for atmospheric process studies on shorter time scales.

  9. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    Science.gov (United States)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  10. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  11. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    Science.gov (United States)

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  13. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  14. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  15. Land surface modelling in hydrology and meteorology – lessons learned from the Baltic Basin

    Directory of Open Access Journals (Sweden)

    L. P. Graham

    2000-01-01

    Full Text Available By both tradition and purpose, the land parameterization schemes of hydrological and meteorological models differ greatly. Meteorologists are concerned primarily with solving the energy balance, whereas hydrologists are most interested in the water balance. Meteorological climate models typically have multi-layered soil parameterisation that solves temperature fluxes numerically with diffusive equations. The same approach is carried over to a similar treatment of water transport. Hydrological models are not usually so interested in soil temperatures, but must provide a reasonable representation of soil moisture to get runoff right. To treat the heterogeneity of the soil, many hydrological models use only one layer with a statistical representation of soil variability. Such a hydrological model can be used on large scales while taking subgrid variability into account. Hydrological models also include lateral transport of water – an imperative if' river discharge is to be estimated. The concept of a complexity chain for coupled modelling systems is introduced, together with considerations for mixing model components. Under BALTEX (Baltic Sea Experiment and SWECLIM (Swedish Regional Climate Modelling Programme, a large-scale hydrological model of runoff in the Baltic Basin is used to review atmospheric climate model simulations. This incorporates both the runoff record and hydrological modelling experience into atmospheric model development. Results from two models are shown. A conclusion is that the key to improved models may be less complexity. Perhaps the meteorological models should keep their multi-layered approach for modelling soil temperature, but add a simpler, yet physically consistent, hydrological approach for modelling snow processes and water transport in the soil. Keywords: land surface modelling; hydrological modelling; atmospheric climate models; subgrid variability; Baltic Basin

  16. Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description

    Directory of Open Access Journals (Sweden)

    T. Dinoev

    2013-05-01

    Full Text Available A new Raman lidar for unattended, round-the-clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology, Lausanne. The lidar uses narrow field-of-view, narrowband configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the nighttime range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day- and nighttime lidar profiles compared to Vaisala RS92 and Snow White® profiles and a six-day continuous observation are presented as an illustration of the lidar measurement capability.

  17. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  18. Modulation of surface meteorological parameters by extratropical planetary-scale Rossby waves

    Directory of Open Access Journals (Sweden)

    K. Niranjan Kumar

    2016-01-01

    Full Text Available This study examines the link between upper-tropospheric planetary-scale Rossby waves and surface meteorological parameters based on the observations made in association with the Ganges Valley Aerosol Experiment (GVAX campaign at an extratropical site at Aryabhatta Research Institute of Observational Sciences, Nainital (29.45° N, 79.5° E during November–December 2011. The spectral analysis of the tropospheric wind field from radiosonde measurements indicates a predominance power of around 8 days in the upper troposphere during the observational period. An analysis of the 200 hPa meridional wind (v200 hPa anomalies from the Modern-Era Retrospective Analysis for Research and Applications (MERRA reanalysis shows distinct Rossby-wave-like structures over a high-altitude site in the central Himalayan region. Furthermore, the spectral analysis of global v200 hPa anomalies indicates the Rossby waves are characterized by zonal wave number 6. The amplification of the Rossby wave packets over the site leads to persistent subtropical jet stream (STJ patterns, which further affects the surface weather conditions. The propagating Rossby waves in the upper troposphere along with the undulations in the STJ create convergence and divergence regions in the mid-troposphere. Therefore, the surface meteorological parameters such as the relative humidity, wind speeds, and temperature are synchronized with the phase of the propagating Rossby waves. Moreover, the present study finds important implications for medium-range forecasting through the upper-level Rossby waves over the study region.

  19. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    Science.gov (United States)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  20. VIGO: Instrumental Interaction in Multi-Surface Environments

    DEFF Research Database (Denmark)

    Klokmose, Clemens Nylandsted; Beaudouin-Lafon, Michel

    2009-01-01

    This paper addresses interaction in multi-surface environments and questions whether the current application-centric approaches to user interfaces are adequate in this context, and presents an alternative approach based on instrumental interaction. The paper presents the VIGO (Views, Instruments...

  1. The Role of Meteorology and Surface Condition to Multi-Decadal Variations of Dust Emission in Sahara and Sahel

    Science.gov (United States)

    Kim, D.; Chin, M.; Diehl, T. L.; Bian, H.; Brown, M. E.; Remer, L. A.; Stockwell, W. R.

    2014-12-01

    North Africa is the world's largest dust source region influencing regional and global climate, human health, and even the local economy. However North Africa as a dust source is not uniform but it consists of the arid region (Sahara) and the semi-arid region (Sahel) with emission rates depending on meteorological and surface conditions. Several recent studies have shown that dust from North Africa seems to have a decreasing trend in the past three decades. The goal of this study is to better understand the controlling factors that determine the change of dust in North Africa using observational data and model simulations. First we analyze surface bareness conditions determined from a long-term satellite observed Normalized Difference Vegetation Index for 1980-2008. Then we examine the key meteorological variables of precipitation and surface winds. Modeling experiments were conducted using the NASA Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which has been recently updated with a dynamic dust source function. Using the method we separate the dust originating from the Sahel from that of the Sahara desert. We find that the surface wind speed is the most dominant factor affecting Sahelian dust emission while vegetation has a modulating effect. We will show regional differences in meteorological variables, surface conditions, dust emission, and dust distribution and address the relationships among meteorology, surface conditions, and dust emission/loading in the past three decades (1980-2008).

  2. Integrated modeling of the dynamic meteorological and sea surface conditions during the passage of Typhoon Morakot

    Science.gov (United States)

    Lee, Han Soo; Yamashita, Takao; Hsu, John R.-C.; Ding, Fei

    2013-01-01

    In August 2009, Typhoon Morakot caused massive flooding and devastating mudslides in the southern Taiwan triggered by extremely heavy rainfall (2777 mm in 4 days) which occurred during its passage. It was one of the deadliest typhoons that have ever attacked Taiwan in recent years. In this study, numerical simulations are performed for the storm surge and ocean surface waves, together with dynamic meteorological fields such as wind, pressure and precipitation induced by Typhoon Morakot, using an atmosphere-waves-ocean integrated modelling system. The wave-induced dissipation stress from breaking waves, whitecapping and depth-induced wave breaking, is parameterized and included in the wave-current interaction process, in addition to its influence on the storm surge level in shallow water along the coast of Taiwan. The simulated wind and pressure field captures the characteristics of the observed meteorological field. The spatial distribution of the accumulated rainfall within 4 days, from 00:00 UTC 6 August to 00:00 UTC 10 August 2009, shows similar patterns as the observed values. The 4-day accumulated rainfall of 2777 mm at the A-Li Shan mountain weather station for the same period depicted a high correlation with the observed value of 2780 mm/4 days. The effects of wave-induced dissipation stress in the wave-current interaction resulted in increased surge heights on the relatively shallow western coast of Taiwan, where the bottom slope of the bathymetry ranges from mild to moderate. The results also show that wave-breaking has to be considered for accurate storm surge prediction along the east coast of Taiwan over the narrow bank of surf zone with a high horizontal resolution of the model domain.

  3. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    Science.gov (United States)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the

  4. The Use of a Poisson Regression to Evaluate Antihistamines and Fatal Aircraft Mishaps in Instrument Meteorological Conditions.

    Science.gov (United States)

    Gildea, Kevin M; Hileman, Christy R; Rogers, Paul; Salazar, Guillermo J; Paskoff, Lawrence N

    2018-04-01

    Research indicates that first-generation antihistamine usage may impair pilot performance by increasing the likelihood of vestibular illusions, spatial disorientation, and/or cognitive impairment. Second- and third-generation antihistamines generally have fewer impairing side effects and are approved for pilot use. We hypothesized that toxicological findings positive for second- and third-generation antihistamines are less likely to be associated with pilots involved in fatal mishaps than first-generation antihistamines. The evaluated population consisted of 1475 U.S. civil pilots fatally injured between September 30, 2008, and October 1, 2014. Mishap factors evaluated included year, weather conditions, airman rating, recent airman flight time, quarter of year, and time of day. Due to the low prevalence of positive antihistamine findings, a count-based model was selected, which can account for rare outcomes. The means and variances were close for both regression models supporting the assumption that the data follow a Poisson distribution; first-generation antihistamine mishap airmen (N = 582, M = 0.17, S2 = 0.17) with second- and third-generation antihistamine mishap airmen (N = 116, M = 0.20, S2 = 0.18). The data indicate fewer airmen with second- and third-generation antihistamines than first-generation antihistamines in their system are fatally injured while flying in IMC conditions. Whether the lower incidence is a factor of greater usage of first-generation antihistamines versus second- and third-generation antihistamines by the pilot population or fewer deleterious side effects with second- and third-generation antihistamines is unclear. These results engender cautious optimism, but additional research is necessary to determine why these differences exist.Gildea KM, Hileman CR, Rogers P, Salazar GJ, Paskoff LN. The use of a Poisson regression to evaluate antihistamines and fatal aircraft mishaps in instrument meteorological conditions. Aerosp Med Hum Perform

  5. Comparison of instrumental and interpolated meteorological data-based summer temperature reconstructions on Mt. Taibai in the Qinling Mountains, northwestern China

    Science.gov (United States)

    Qin, Jin; Bai, Hongying; Su, Kai; Liu, Rongjuan; Zhai, Danping; Wang, Jun; Li, Shuheng; Zhou, Qi; Li, Bin

    2018-01-01

    Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological stations, but the climate conditions somehow differ between sampling sites and distant population centers. Thus, in this study, we performed a comparison between the 152-year reconstruction of June to July mean air temperature on the basis of interpolated meteorological data and instrumental meteorological data. The reconstruction explained 38.7% of the variance in the interpolated temperature data (37.2% after the degrees of freedom were adjusted) and 39.6% of the variance in the instrumental temperature data (38.4% after adjustment for loss of degrees of freedom) during the period 1962-2013 AD. The first global warming (the 1920s) and recent warming (1990-2013) found from the reconstructed temperature series match reasonably well with two other reported summer temperature reconstructions from north-central China. Cold periods occurred three times during 1866-1885, 1901-1921, and 1981-2000, while hot periods occurred four times during 1886-1900, 1922-1933, 1953-1966, and 2001-2007. The extreme warm (cold) years are coherent with the documentary drought (flood) events. Significant 31-22-year, 22-18-year, and 12-8-year cycles indicate major fluctuations in regional temperatures may reflect large-scale climatic shifts.

  6. Dynamic surface-pressure instrumentation for rods in parallel flow

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Lawrence, W.

    1979-01-01

    Methods employed and experience gained in measuring random fluid boundary layer pressures on the surface of a small diameter cylindrical rod subject to dense, nonhomogeneous, turbulent, parallel flow in a relatively noise-contaminated flow loop are described. Emphasis is placed on identification of instrumentation problems; description of transducer construction, mounting, and waterproofing; and the pretest calibration required to achieve instrumentation capable of reliable data acquisition

  7. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment

    Science.gov (United States)

    Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.

    2018-01-01

    The properties of sea breeze circulations are influenced by a variety of meteorological and geophysical factors that interact with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local air quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the sea breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the sea breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the sea breeze front. For this dry sea breeze regime, we find that the background wind speed was the most influential factor for the sea breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, sea-air temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the sea breeze front. This study highlights potential avenues for further research regarding sea breeze dynamics and the impact of sea breeze circulations on pollution dispersion and remote sensing algorithms.

  8. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  9. BOREAS TF-06 SSA-YA Surface Energy Flux and Meteorological Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains meteorology data collected at the SSA-YA tower flux site by the TF6 group. These data were reported at 10 minute intervals. The flux and ancillary...

  10. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  11. Pantex Plant meteorological monitoring program

    International Nuclear Information System (INIS)

    Snyder, S.F.

    1993-07-01

    The current meteorological monitoring program of the US Department of Energy's Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated

  12. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  13. Response of surface and groundwater on meteorological drought in Topla River catchment, Slovakia

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Vrablikova, Dana; Blaskovicova, Lotta; Slivova, Valeria; Horvat, Oliver

    2016-04-01

    Continuously increasing number of drought studies published in scientific journals reflects the attention of the scientific community paid to drought. The fundamental works among many others were published by Yevjevich (1967), Zelenhasic and Salvai (1987), later by Tallaksen and van Lanen Eds. (2004). The aim of the paper was to analyze the response of surface and groundwater to meteorological drought occurrence in the upper and middle part of the Topla River Basin, Slovakia. This catchment belongs to catchments with unfavourable hydrogeological conditions, being built of rocks with quite low permeability. The basin is located in the north-eastern part of Slovakia covering the area of 1050.05 km2. The response was analyzed using precipitation data from the Bardejov station (long-term annual average of 662 mm in 1981 - 2012) and discharge data from two gauging stations - Bardejov and Hanusovce nad Toplou. Data on groundwater head from eight observation wells, located in the catchment, were also used, covering the same observation period. Meteorological drought was estimated using characterisation of the year humidity and SPI index. Hydrological drought was evaluated using the threshold level method and method of sequent peak algorithm, both with the fixed and also variable thresholds. The centroid method of the cluster analysis with the squared Euclidean distance was used for clustering data according to occurrence of drought periods, lasting for 100 days and more. Results of the SPI index showed very good applicability for drought periods identification in the basin. The most pronounced dry periods occurred in 1982 - 1983, 1984, 1998 and 2012 being classified as moderately dry, and also in 1993 - 1994, 2003 - 2004 and 2007 evolving from moderately to severely dry years. Short-term drought prevailed in discharges, only three periods of drought longer than 100 days occurred during the evaluated period in 1986 - 1987, 1997 and 2003 - 2004. Discharge drought in the

  14. Meteorological and other data collected from CTD, XBT casts, and other instruments in the TOGA Area - Pacific Ocean by NATSUSHIMA from 23 January 1993 to 11 March 1993 (NODC Accession 9400083)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological, temperature, and salinity data were collected using CTD, BT, XBT casts, and other instruments from the NATSUSHIMA in the TOGA Area - Pacific Ocean....

  15. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    Science.gov (United States)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may

  16. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within......Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  17. An international comparison of surface texture parameters quantification on polymer artefacts using optical instruments

    DEFF Research Database (Denmark)

    Tosello, Guido; Haitjema, H.; Leach, R.K.

    2016-01-01

    An international comparison of optical instruments measuring polymer surfaces with arithmetic mean height values in the sub-micrometre range has been carried out. The comparison involved sixteen optical surface texture instruments (focus variation instruments, confocal microscopes and coherent...

  18. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  19. Disturbance induced by surface preparation on instrumented indentation test

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yugang, E-mail: yugang.li@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); Kanouté, Pascale, E-mail: pascale.kanoute@onera.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); The French Aerospace Lab (ONERA), DMSM/MCE, 29 avenue de la Division Leclerc-BP 72, F-92322 Chatillon Cedex (France); François, Manuel, E-mail: manuel.francois@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France)

    2015-08-26

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h{sub max} (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease.

  20. Analysis of meteorological data and the surface energy balance of Keqicar Glacier, Tien Shan, China

    Science.gov (United States)

    Zhang, Y.; Liu, S.; Fujita, K.; Han, H.; Li, J.

    2009-04-01

    Northwestern China currently experiences a climate change with fundamental consequences for the hydrological cycle. In the strongly arid region where water resources are essential for agriculture and food production, glaciers represent important water resources, contributing significantly to streamflow. The debris is an important glaciological feature of the region and has major impact on melt rates. It is essential to understand and quantify the interaction of climate and sub-debris melt in order to assess the current situation and to predict future water yield. Note that the surface energy balance determines glacier melt. However, little is known about the variability characteristics of the surface energy fluxes in this region. For this reason, we set up two automatic weather stuation (AWSs) in the ablation area of Keqicar Glacier. Keqicar Glacier is located in the Tarim River basin (largest inland river basin in China), southwestern Tien Shan, China. It is a representative debris-covered glacier with a length of 26.0 km and a total surface area of 83.6 km2. The thickness of the debris layer varies from 0.0 to 2.50 m in general. In some places large rocks are piled up to several meters. In this study, we report on analysis of meteorological data for the period 1 July-13 September 2003, from two automatic weather stations, aimed at studying the relationship between climate and ablation. One station is located on the lower part of the ablation area where the glacier is covered by debris layer, and the other near the equilibrium line altitude (ELA). All sensors were sampled every 10 seconds, and data were stored as hourly averages. The stations were visited regularly for maintenance at two weeks intervals depending on the weather conditions and location of the AWS. A total of 17 ablation stakes were drilled into the glacier at different elevations to monitor glacier melt during the study period. Readings were taken regularly in connection with AWS maintenance. The

  1. Introduction to meteorological measurements and data handling for solar energy applications. Task IV-Development of an insolation handbook and instrument package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one task was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.

  2. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  3. Exploring the relationship between meteorology and surface PM2.5 in Northern India

    Science.gov (United States)

    Schnell, J.; Naik, V.; Horowitz, L. W.; Paulot, F.; Ginoux, P. A.

    2017-12-01

    Northern India is one of the most polluted and densely populated regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region's pollution regime. We evaluate a developmental version of the new-generation NOAA GFDL Atmospheric Model, version 4 (AM4) in its ability to simulate observed wintertime PM2.5 and its relationship to meteorology over the Northern India (23°N-31°N, 68°E-90°E). We perform two simulations of the GFDL-AM4 nudged to observed meteorology for the period (1980-2016) with two emission inventories developed for CMIP5 and CMIP6 and compare results with observations from India's Central Pollution Control Board (CPCB) for the period 1 October 2015 - 31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions has substantially reduced the low model bias in the region. The AM4, albeit biased low, generally simulates the magnitude and daily variability in observed total PM2.5. Ammonium nitrate and ammonium sulfate are the primary components of PM2.5 in the model, and although not directly observed, correlations of total observed PM2.5 and meteorology with the modeled individual PM2.5 components suggest the same for the observations. The model correctly reproduces the shape and magnitude of the seasonal cycle of PM2.5; but for the diurnal cycle, it misses the early evening rise and secondary maximum found in the observations. Observed PM2.5 abundances within the densely populated Indo-Gangetic Plain are by far the highest and are closely related to boundary layer meteorology, specifically relative humidity, wind speed, boundary layer height, and inversion strength. The GFDL-AM4 reproduces the observed pollution gradient over Northern India as well as the strength of the meteorology-PM2.5 relationship in most locations.

  4. Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System from 2007-04-25 to 2016-12-31 (NCEI Accession 0159578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System. Ten stations are located from the mouth of the Susquehanna river near...

  5. El Niño Rapid Response (ENRR) Field Campaign: Surface Meteorological Data from Kiritimati Island, January-March 2016 (NCEI Accession 0161526)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains surface meteorological data from Kiritimati (Christmas) Island, collected 25 January to 28 March 2016. These data have been corrected for known...

  6. Underway sea surface temperature and salinity data from thermosalinographs collected from multiple platforms assembled by NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains sea surface oceanographic data in netCDF and ASCII formatted files assembled by the NOAA Atlantic Oceanographic and Meteorological...

  7. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    Science.gov (United States)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  8. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    Science.gov (United States)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  9. Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis

    International Nuclear Information System (INIS)

    Lazaro, M.

    1989-06-01

    The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs

  10. Effects of nearby surface features on wind speed at a nuclear plant meteorological station

    International Nuclear Information System (INIS)

    Nielsen, N.A.; Goodwin, R.J.; Pittman, D.E.

    1984-01-01

    There is a definite cause and effect relationship between the trees in the vicinity of the meteorological tower and the wind speed at the 10-meter level on the meteorological tower. For the affected directions, horizontal wind speed is significantly reduced below what it would be for that level if the trees were not present. This effect is only slightly less for the 10:1 exposure achieved with the 1977 tree clearing, which illustrates that meeting this commonly accepted distance to height ratio does not assure representativeness of 10-meter data collected at a nuclear plant site. The somewhat stronger effect for winds from the south through southwest directions may be partly attributable to the abrupt change in roughness and elevation encountered by air moving at an angle or directly across the reservoir, which is 3.5 to 5.0 kilometers wide at this site. This general reduction in wind speed values below what would be expected at the plant location will result in biased dispersion estimates. Calculated relative concentration values for releases treated as ground-level or building-wake releases would be larger than actual concentrations. While this would provide conservative concentration values, radioactive plume transport calculations would be nonconservative. The calculated, or predicted, transport rate would be slower than the actual transport rate. Such local biases affecting the spatial representativeness of airflow at 10 meters are a primary reason for TVA's decision to use 46-meter wind data for ground-level transport and diffusion modeling in its radiological emergency preparedness program

  11. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    Science.gov (United States)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  12. Motivational Meteorology.

    Science.gov (United States)

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  13. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  14. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    Directory of Open Access Journals (Sweden)

    R. H. Giesen

    2009-03-01

    Full Text Available We compare 5 years of meteorological records from automatic weather stations (AWSs on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September 2001 to September 2006. Air temperature at the AWS locations is found to be highly correlated, even with the seasonal cycle removed. The most striking difference between the two sites is the difference in wind climate. Midtdalsbreen is much more under influence of the large-scale circulation with wind speeds on average a factor 1.75 higher. On Storbreen, weaker katabatic winds are dominant. The main melt season is from May to September at both locations. During the melt season, incoming and net solar radiation are larger on Midtdalsbreen, whereas incoming and net longwave radiation are larger on Storbreen, primarily caused by thicker clouds on the latter. The turbulent fluxes are a factor 1.7 larger on Midtdalsbreen, mainly due to the higher wind speeds. Inter-daily fluctuations in the surface energy fluxes are very similar at the AWS sites. On average, melt energy is a factor 1.3 larger on Midtdalsbreen, a result of both larger net radiation and larger turbulent fluxes. The relative contribution of net radiation to surface melt is larger on Storbreen (76% than on Midtdalsbreen (66%. As winter snow depth at the two locations is comparable in most years, the larger amount of melt energy results in an earlier disappearance of the snowpack on Midtdalsbreen and 70% more ice melt than on Storbreen. We compare the relative and absolute values of the energy fluxes on Storbreen and Midtdalsbreen with reported values for glaciers at similar latitudes. Furthermore, a comparison is made with meteorological variables measured at two nearby weather stations, showing that on-site measurements are essential for an accurate calculation of the surface energy balance and

  15. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  16. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime

    Science.gov (United States)

    Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei

    2017-11-01

    In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width

  17. Development of an alpha scattering instrument for heavy element detection in surface materials. Final report

    International Nuclear Information System (INIS)

    Turkevich, A.L.; Economou, T.; Blume, E.; Anderson, W.

    1974-12-01

    The development and characteristics of a portable instrument for detecting and measuring the amounts of lead in painted surfaces are discussed. The instrument is based on the ones used with the alpha scattering experiment on the Surveyor lunar missions. The principles underlying the instrument are described. It is stated that the performance tests of the instrument were satisfactory. (auth)

  18. Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Elokhov, A.S.; Makarov, O.V.; Mokhov, I.I. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics)

    1993-01-01

    Surface ozone measurements were carried out at Molodezhnaya and Mirny stations in spring 1987-autumn 1988. The data show an annual variation with a summer minimum at 15 ppbv value. The striking feature of the surface ozone record is two types of day-to-day variability. One of the types is characterized by large day-to-day variations with about 10 ppbv magnitude. The likely mechanism of such variations is the vertical transport induced by cyclonic activity. The other type occurs in synoptically quiet periods (frequent in summer) when the day-to-day ozone variations are significant but not so large. The most likely mechanism of these variations is the slope katabatic wind which transports ozone from inside the Antarctic continent. The latitudinal distribution of surface ozone for this period, measured aboard an aircraft, showed a slight increase towards Vostok station. (26 refs., 3 figs.).

  19. Surface meteorological conditions at benthic disturbance experiment site - INDEX area during austral winter 1997

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Murty, V.S.N.; RameshBabu, V.; Beena, B.S.

    latent heat flux of 220 W/m sup(2), leading to net surface heat loss (100 W/m sup(2)) in June and near heat balance in August. Temporal variation of weather elements and the heat budget parameters showed fluctuations of period 10-13 days in June and 7...

  20. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    Science.gov (United States)

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.

    2017-12-01

    Fixed monitoring sites, such as those in the US National Weather Service Automated Surface Observing System (ASOS) and the Oklahoma Mesonet provide valuable, high temporal resolution information about the atmosphere to forecasters and the general public. The Oklahoma Mesonet is comprised of a network of 120 surface sites providing a wide array of atmospheric measurements up to a height of 10 m with an update time of five minutes. The deployment of small unmanned aircraft to collect in-situ vertical measurements of the atmospheric state in conjunction with surface conditions has potential to significantly expand weather observation capabilities. This concept can enhance the safety of individuals and support commerce through improved observations and short-term forecasts of the weather and other environmental variables in the lower atmosphere. We report on a concept of adding the capability of collecting vertical atmospheric measurements (profiles) through the use of unmanned aerial systems (UAS) at remote Oklahoma sites deemed suitable for this application. While there are a number of other technologies currently available that can provide measurements of one or a few variables, the proposed UAS concept will be expandable and modular to accommodate several different sensor packages and provide accurate in-situ measurements in virtually all weather conditions. Such a system would facilitate off-site maintenance and calibration and would provide the ability to add new sensors as they are developed or as new requirements are identified. The small UAS must be capable of accommodating the weight of all sensor packages and have lighting, communication, and aircraft avoidance systems necessary to meet existing or future FAA regulations. The system must be able to operate unattended, which necessitates the inclusion of risk mitigation measures such as a detect and avoid radar and the ability to transmit and receive transponder signals. Moreover, the system should be able to

  1. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  2. Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands

    NARCIS (Netherlands)

    Tolk, L.F.; Peters, W.; Meesters, A.G.C.A.; Groenendijk, M.; Vermeulen, A.T.; Steeneveld, G.J.; Dolman, A.J.

    2009-01-01

    We simulated meteorology and atmospheric CO2 transport over the Netherlands with the mesoscale model RAMS-Leaf3 coupled to the biospheric CO2 flux model 5PM. The results were compared with meteorological and CO2 observations, with emphasis on the tall tower of Cabauw. An analysis of the coupled

  3. A comparison of root surface instrumentation using manual, ultrasonic and rotary instruments: an in vitro study using scanning electron microscopy.

    Science.gov (United States)

    Marda, Preeti; Prakash, Shobha; Devaraj, C G; Vastardis, S

    2012-01-01

    The commonly accepted idea concerning root planing is that excessive removal of cementum is not necessary for removal of endotoxins. The ideal instrument should enable the removal of all extraneous substances from the root surfaces, without causing any iatrogenic effects. To compare the remaining calculus, loss of tooth substance, and roughness of root surface after root planing with Gracey curette, ultrasonic instrument (Slimline insert FSI-SLI-10S), and DesmoClean rotary bur. The efficiency of calculus removal, the amount of lost tooth substance, and root surface roughness resulting from the use of hand curette, ultrasonic instrument, and rotary bur on 36 extracted mandibular incisors were examined by SEM. We used three indices to measure the changes: Remaining calculus index (RCI), Loss of tooth substance index (LTSI), and Roughness loss of tooth substance index (RLTSI). Twelve samples were treated with each instrument. The time required for instrumentation was also noted. Kruskal-Wallis ANOVA was used for multiple group comparisons and the Mann-Whitney test for group-wise comparisons. Analysis was carried out with SPSS software (version 13). The RCI and LTSI showed nonsignificant differences between the three groups. RLTSI showed a significant difference between Slimline and hand curette as well as Slimline and Desmo-Clean. Slimline showed the least mean scores for RCI, LTSI, and RLTSI. Thus, even though the difference was not statistically significant, Slimline insert was shown to be better than the other methods as assessed by the indices scores and the instrumentation time.

  4. Modeling detailed hydro-meteorological surfaces and runoff response in large diverse watersheds

    International Nuclear Information System (INIS)

    Byrne, J.; Kienzle, S.W.; MacDonald, R.J.

    2008-01-01

    An understanding of local variability in climatic conditions over complex terrain is imperative to making accurate assessments of impacts from climate change on fresh water ecosystems (Daly, 2006). The derivation of representative spatial data in diverse environments poses a significant challenge to the modelling community. This presentation describes the current status of a long term ongoing hydro-climate model development program. We are developing a gridded hydroclimate dataset for diverse watersheds using SimGrid (Larson, 2008; Lapp et al., 2005; Sheppard, 1996), a model that applies the Mountain Climate Model (MTCLIM; Hungerford et al., 1989) to simulate hydro-climatic conditions over diverse terrain. The model uses GIS based terrain categories (TC) classified by slope, aspect, elevation, and soil water storage. SimGrid provides daily estimates of solar radiation, air temperature, relative humidity, precipitation, snowpack and soil water storage over space. Earlier versions of the model have been applied in the St. Mary (Larson, 2008) and upper Oldman basins (Lapp et al., 2005), giving realistic estimates of hydro-climatic variables. The current study demonstrates improvements to the estimation of temperature, precipitation, snowpack, soil water storage and runoff from the basin. Soil water storage data for the upper drainage were derived with GIS and included in SimGrid to estimate soil water flux over the time period. These changes help improve the estimation of spatial climatic variability over the basin while accounting for topographical influence. In further work we will apply spatial hydro-climatic surfaces from the SimGrid model to assess the hydrologic response to environmental change for watersheds in Canada and beyond. (author)

  5. Variability of the Surface Meteorological Fields over Eurasia for the Recent 30 Years

    International Nuclear Information System (INIS)

    Basharin, D.V.

    2009-10-01

    On the basis of the Japanese reanalysis (JRA25) dataset (1979-2008), linear trends, interannual to decadal variability of the sea level pressure (SLP), surface air temperature (SAT) and precipitation fields over the Eurasian region have been studied. For the recent 30 years there are only significant positive linear trends of SAT in the northwestern part of the Eurasia/eastern Asia in winter and central Europe in summer. Areas with significant negative trends of SAT are absent. For precipitation field there are no significant tendencies except for the significantly positive area over England both in winter and in summer time. In winter, there are two areas with the opposite SLP tendencies: insignificant negative (to the north of 45-50N) and significant positive (to the south of 45-50N) one. These trends could be accompanied by the corresponding tendencies bee-hive reproduction and honey production in different regions of Ukraine. Space-time patterns of the first, second and third EOF of the fields under study are mainly determined by the NAO and in the less extent by the SO (only in spring-summer). It was found that the leading modes become more contributive over the Eurasia for the last 30 years comparing with NCEP data for the previous period (1950-2001). It could imply that an internal signal of the ocean-atmosphere system, which determines space-time patterns over Eurasia, has arisen. Intercomparison of the space-time EOF patterns between JRA25 and NCEP (1950-2001) re-analyses show that in autumn, winter and spring the first 3-4 corresponding time coefficients stay at the same order (coefficient correlations between them are significant), while in summer such correspondence in order of modes is changed. (author)

  6. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  7. Meteorological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-year summaries of one or more meteorological elements at a station or in a state. Primarily includes Form 1078, a United States Weather Bureau form designed...

  8. Meteorology Online.

    Science.gov (United States)

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  9. The meteorological data acquisition system

    International Nuclear Information System (INIS)

    Bouharrour, S.; Thomas, P.

    1975-07-01

    The 200 m meteorological tower of the Karlsruhe Nuclear Research Center has been equipped with 45 instruments measuring the meteorological parameters near the ground level. Frequent inquiry of the instruments implies data acquisition with on-line data reduction. This task is fulfilled by some peripheral units controlled by a PDP-8/I. This report presents details of the hardware configuration and a short description of the software configuration of the meteorological data acquisition system. The report also serves as an instruction for maintenance and repair work to be carried out at the system. (orig.) [de

  10. Physical and meteorological data collected from current meters and other instruments from Swedish Lightships from 1860 to 1989 (NODC Accession 0113242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Lightships were placed along the Swedish coast to lead the Mariners from 1844 to 1972. From 1860 routine measurements of meteorological and oceanographic...

  11. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  12. Calibration of the geometrical characteristics of areal surface topography measuring instruments

    International Nuclear Information System (INIS)

    Giusca, C L; Leach, R K; Helery, F; Gutauskas, T

    2011-01-01

    The use of areal surface topography measuring instruments has increased significantly over the past ten years as industry starts to embrace the use of surface structuring to affect the function of a component. This has led to a range of areal surface topography measuring instruments being developed and becoming available commercially. For such instruments to be used as part of quality control during production, it is essential for them to be calibrated according to international standards. The ISO 25178 suite of specification standards on areal surface topography measurement presents a series of tests that can be used to calibrate the metrological characteristics of an areal surface topography measuring instrument. Calibration artefacts and test procedures have been developed that are compliant with ISO 25178. The material measures include crossed gratings, resolution artefacts and pseudorandom surfaces. Traceability is achieved through the NPL Areal Instrument - a primary stylus-based instrument that uses laser interferometers to measure the displacement of the stylus tip. Good practice guides on areal calibration have also been drafted for stylus instruments, coherence scanning interferometers, scanning confocal microscopes and focus variation instruments.

  13. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  14. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  15. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  16. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  17. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    Science.gov (United States)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  18. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  19. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  20. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  1. Calibration guidelines for surface texture instruments - horizontal axis

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Shem, R. Krüger

    The present report is a documentation of the work carried out at DTU, on TASK 5.1: PROCEDURES FOR CALIBRATION IN X- AND Y- DIRECTION the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale. After a short introduc......The present report is a documentation of the work carried out at DTU, on TASK 5.1: PROCEDURES FOR CALIBRATION IN X- AND Y- DIRECTION the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale. After a short...

  2. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    NARCIS (Netherlands)

    Giesen, R.H.; Andreassen, L.M.; van den Broeke, M.R.; Oerlemans, J.

    2009-01-01

    We compare 5 years of meteorological records from automatic weather stations (AWSs) on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September

  3. Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander

    2017-04-01

    The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of

  4. Development of a surface topography instrument for automotive textured steel plate

    Science.gov (United States)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  5. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  6. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  7. Progress in the specification of optical instruments for the measurement of surface form and texture

    Science.gov (United States)

    de Groot, Peter J.

    2014-05-01

    Specifications for confocal microscopes, optical interferometers and other methods of measuring areal surface topography can be confusing and misleading. The emerging ISO 25178 standards, together with the established international vocabulary of metrology, provide a foundation for improved specifications for 3D surface metrology instrumentation. The approach in this paper links instrument specifications to metrological characteristics that can influence a measurement, using consistent definitions of terms, and reference to verification procedures.

  8. Oceanographic and meteorological data measurements collected from CTD, bottle and other instruments from Gerda, J.E., Pillsbury and Calanus in the North Atlantic Ocean and Gulf of Mexico from 1967-02-24 to 1970-11-13 (NCEI Accession 7100821)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic and meteorological data measurements collected from CTD, bottle and other instruments. Data were collected from Gerda, J.E., Pillsbury and Calanus in...

  9. Physical and other data from current meters, bottle casts, CTD casts, meteorological sensors, and other instruments from the GYRE as part of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX PART A) from 09 April 1992 to 02 October 1994 (NODC Accession 9500056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from current meters, bottle casts, CTD casts, meteorological sensors, and other instruments from the GYRE from 09 April 1992...

  10. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  11. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  13. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments.

    Science.gov (United States)

    Lopes, Hélio P; Elias, Carlos N; Vieira, Márcia V B; Vieira, Victor T L; de Souza, Letícia Chaves; Dos Santos, Alexander Lopes

    2016-06-01

    The goal of the present study was to evaluate the influence of surface grooves (peaks and valleys) resulting from machining during the manufacturing process of polished and unpolished nickel-titanium BR4C endodontic files on the fatigue life of the instruments. Ten electropolished and 10 unpolished endodontic files were provided by the manufacturer. Specimens were from the same batch, but the unpolished instruments were removed from the production line before surface treatment. The instruments were evaluated with a profilometer to quantify the surface roughness on the working part of the instruments. Then the files were subjected to rotating bending fatigue tests. Analysis with the profilometer showed that surface grooves were deeper on the unpolished instruments compared with their electropolished counterparts. In the rotating bending fatigue test, the mean and standard deviation for the number of cycles until fracture (NCF) were greater for instruments with less pronounced grooves. Student t test revealed significant differences in all tests (P instruments tested; the smaller the groove depth, the greater the NCF. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  15. Oceanographic and surface meteorological data collected from MTU1 Buoy by Michigan Technological University and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123646 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  16. Oceanographic and surface meteorological data collected from MTU Buoy by Michigan Technological University and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-09-01 (NODC Accession 0123644)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123644 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  17. Oceanographic and surface meteorological data collected from Holland Buoy by LimnoTech and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123650)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123650 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic and surface meteorological data collected from Oregon Pump Station by City of Oregon and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-06-20 to 2017-08-31 (NCEI Accession 0130547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130547 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. El Niño Rapid Response (ENRR) Field Campaign: Surface Meteorological and Ship Data from NOAA Ship Ronald H. Brown, 2016-02 to 2016-03 (NCEI Accession 0161528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains surface meteorological and ship data from NOAA Ship Ronald H. Brown, collected 16 February to 16 March 2016. These data have been corrected for...

  20. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  1. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  2. Evaluation of surface characteristics of rotary nickel-titanium instruments produced by different manufacturing methods.

    Science.gov (United States)

    Inan, U; Gurel, M

    2017-02-01

    Instrument fracture is a serious concern in endodontic practice. The aim of this study was to investigate the surface quality of new and used rotary nickel-titanium (NiTi) instruments manufactured by the traditional grinding process and twisting methods. Total 16 instruments of two rotary NiTi systems were used in this study. Eight Twisted Files (TF) (SybronEndo, Orange, CA, USA) and 8 Mtwo (VDW, Munich, Germany) instruments were evaluated. New and used of 4 experimental groups were evaluated using an atomic force microscopy (AFM). New and used instruments were analyzed on 3 points along a 3 mm. section at the tip of the instrument. Quantitative measurements according to the topographical deviations were recorded. The data were statistically analyzed with paired samples t-test and independent samples t-test. Mean root mean square (RMS) values for new and used TF 25.06 files were 10.70 ± 2.80 nm and 21.58 ± 6.42 nm, respectively, and the difference between them was statistically significant (P instruments produced by twisting method (TF 25.06) had better surface quality than the instruments produced by traditional grinding process (Mtwo 25.06 files).

  3. Autonomous Operation of Mars Meteorological Network

    Science.gov (United States)

    Schmidt, W.; Harri, A.-M.; Vázquez, L.; Linkin, V.; Alexashkin, S.

    2012-09-01

    In the next years a series of small landing vehicles concentrating on Martian meteorology should be deployed to the surface of Mars. As commanding from Earth will not be possible most of the time, the station software has to be capable of adapting to any foreseeable conditions and optimize the science return as much as feasible. In this paper we outline the constraints and strategies implemented into the control system of the MetNet Landers. For details to the mission and its instruments see the mission home page [1].

  4. A new method for the assessment of the surface topography of NiTi rotary instruments.

    Science.gov (United States)

    Ferreira, F; Barbosa, I; Scelza, P; Russano, D; Neff, J; Montagnana, M; Zaccaro Scelza, M

    2017-09-01

    To describe a new method for the assessment of nanoscale alterations in the surface topography of nickel-titanium endodontic instruments using a high-resolution optical method and to verify the accuracy of the technique. Noncontact three-dimensional optical profilometry was used to evaluate defects on a size 25, .08 taper reciprocating instrument (WaveOne ® ), which was subjected to a cyclic fatigue test in a simulated root canal in a clear resin block. For the investigation, an original procedure was established for the analysis of similar areas located 3 mm from the tip of the instrument before and after canal preparation to enable the repeatability and reproducibility of the measurements with precision. All observations and analysis were taken in areas measuring 210 × 210 μm provided by the software of the equipment. The three-dimensional high-resolution image analysis showed clear alterations in the surface topography of the examined cutting blade and flute of the instrument, before and after use, with the presence of surface irregularities such as deformations, debris, grooves, cracks, steps and microcavities. Optical profilometry provided accurate qualitative nanoscale evaluation of similar surfaces before and after the fatigue test. The stability and repeatability of the technique enables a more comprehensive understanding of the effects of wear on the surface of endodontic instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  6. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.

    1985-01-01

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  7. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    Science.gov (United States)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  8. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments.

    Science.gov (United States)

    Lopes, Hélio P; Elias, Carlos N; Vieira, Victor T L; Moreira, Edson J L; Marques, Raquel V L; de Oliveira, Julio C Machado; Debelian, Gilberto; Siqueira, José F

    2010-10-01

    This study evaluated the influence of electropolishing surface treatment on the number of cycles to fracture of BioRace rotary nickel-titanium endodontic instruments. BioRace size BR5C instruments with or without electropolishing surface treatment were used in an artificial curved canal under rotational speed of 300 rpm until fracture. Fractured surfaces and the helical shafts of fractured instruments were analyzed by scanning electron microscopy (SEM). Polished instruments displayed a significantly higher number of cycles to fracture when compared with nonpolished instruments (P ductile morphologic characteristics. Evaluation of the separated fragments after cyclic fatigue testing showed the presence of microcracks near the fracture surface. Polished instruments exhibited fine cracks that assumed an irregular path (zigzag crack pattern), whereas nonpolished instruments showed cracks running along the machining grooves. Electropolishing surface treatment of BioRace endodontic instruments significantly increased the cyclic fatigue resistance. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  10. Overall analysis of meteorological information in the Daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Woo; Lee, Young Bok; Han, Moon Hee; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done with DAS (data aquisition system) updating. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. Wireless data transmission to MIPS (Meteorological Information Processing System) has been done after collection in the DAS where enviromental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. The meteorological data as the result of this project had been used to report `Environmental Impact Assessment of the Korean Multi-purpose Research Reactor` and {sup S}ite Selection of Meteorological Tower and Environment Impact Assessment of the Cooling Tower of the Korean Multi-purpose Research Reactor{sup .} (Author).

  11. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  12. Study on the cloud detection of GOCI by using the simulated surface reflectance from BRDF-model for the land application and meteorological utilization

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Woo, Sun-Hee; Chae, Tae-Byeong

    2016-04-01

    COMS (Communication, Ocean, and Meteorological Satellite) was launched at French Guiana Kourou space center on 27 June 2010. Geostationary Ocean Color Imager (GOCI), which is the first ocean color geostationary satellite in the world for observing the ocean phenomena, is able to obtain the scientific data per an hour from 00UTC to 07UTC. Moreover, the spectral channels of GOCI would enable not only monitoring for the ocean, but for extracting the information of the land surface over the Korean Peninsula, Japan, and Eastern China. Since it is extremely important to utilize GOCI data accurately for the land application, cloud pixels over the surface have to be removed. Unfortunately, infra-red (IR) channels that can easily detect the water vapor with the cloud top temperature, are not included in the GOCI sensor. In this paper, the advanced cloud masking algorithm will be proposed with visible and near-IR (NIR) bands that are within GOCI bands. The main obstacle of cloud masking with GOCI is how to handle the high variable surface reflectance, which is mainly depending on the solar zenith angle. In this study, we use semi-empirical BRDF model to simulate the surface reflectance by using 16 day composite cloudy free image. When estimating the simulated surface reflectance, same geometry for GOCI observation was applied. The simulated surface reflectance is used to discriminate cloud areas especially for the thin cloud and shows more reasonable result than original threshold methods.

  13. Saipan 2005 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Saipan, CNMI (15.2375N, 145.72283W) ARGOS Buoy ID 26105 Time series data from this mooring provide high resolution sea surface temperature, and surface...

  14. A New Instrument for Testing Wind Erosion by Soil Surface Shape Change

    International Nuclear Information System (INIS)

    Hai, C.; Yuan, X.; Jiang, H.; Zhou, R.; Wang, J.; Liu, B.; Ye, Y.; Du, P.

    2010-01-01

    Wind erosion, a primary cause of soil degeneration, is a problem in arid and semiarid areas throughout the world. Many methods are available to study soil erosion, but there is no an effective method for making quantitative measurements in the field. To solve this problem, we have developed a new instrument that can measure the change in the shape of the soil surface, allowing quick quantification of wind erosion. In this paper, the construction and principle of the new instrument are described. Field experiments are carried out using the instrument, and the data are analyzed. The erosion depth is found to vary by 11% compared to the average for measurement areas ranging from 30 x 30 cm 2 to 10 x 10 cm 2 . The results show that the instrument is convenient and reliable for quantitatively measuring wind erosion in the field.

  15. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  16. Portable instrumentation for quantitatively measuring radioactive surface contaminations, including 90Sr

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-10-01

    In order to measure the effectiveness of decontamination efforts, a quantitative analysis of the radiocontamination is necessary, both before and after decontamination. Since it is desirable to release the decontaminated material for unrestricted use or disposal, the assay equipment must provide adequate sensitivity to measure the radioactivity at or below the release limit. In addition, the instrumentation must be capable of measuring all kinds of radiocontaminants including fission products, activation products, and transuranic materials. Finally, the survey instrumentation must be extremely versatile in order to assay the wide variety of contaminated surfaces in many environments, some of which may be extremely hostile or remote. This communication describes the development and application of portable instrumentation capable of quantitatively measuring most transuranics, activation products, and fission products, including 90 Sr, on almost any contaminated surface in nearly any location

  17. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview

    NARCIS (Netherlands)

    Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, J.P.; Levelt, P.F.

    2007-01-01

    We present an overview of the theoretical and algorithmic aspects of the Ozone Monitoring Instrument (OMI) aerosol and surface UV algorithms. Aerosol properties are derived from two independent algorithms. The nearUV algorithm makes use of OMI observations in the 350-390 nm spectral region to

  18. Surface topography of machined fibre reinforced plastics obtained by stylus instruments and optical profilometers

    DEFF Research Database (Denmark)

    Eriksen, Else; Hansen, Hans Nørgaard

    1998-01-01

    In the manufacturing industry it is important to be able to specify and control the surface quality of the components produced. This is often done with stylus profilometers, by which standardized roughness parameters are found. In recent years instruments based on laser autofocusing have been int...

  19. POSEIDON: An integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area

    Science.gov (United States)

    Speranza, A.; Accadia, C.; Casaioli, M.; Mariani, S.; Monacelli, G.; Inghilesi, R.; Tartaglione, N.; Ruti, P. M.; Carillo, A.; Bargagli, A.; Pisacane, G.; Valentinotti, F.; Lavagnini, A.

    2004-07-01

    The Mediterranean area is characterized by relevant hydrological, meteorological and marine processes developing at horizontal space-scales of the order of 1-100 km. In the recent past, several international programs have been addressed (ALPEX, POEM, MAP, etc.) to "resolving" the dynamics of such motions. Other projects (INTERREG-Flooding, MEDEX, etc.) are at present being developed with special emphasis on catastrophic events with major impact on human society that are, quite often, characterized in their manifestation by processes with the above-mentioned scales of motion. In the dynamical evolution of such events, however, equally important is the dynamics of interaction of the local (and sometimes very damaging) processes with others developing at larger scales of motion. In fact, some of the most catastrophic events in the history of Mediterranean countries are associated with dynamical processes covering all the range of space-time scales from planetary to local. The Prevision Operational System for the mEditerranean basIn and the Defence of the lagOon of veNice (POSEIDON) is an integrated system for the analysis and forecast of hydrological, meteorological, oceanic fields specifically designed and set up in order to bridge the gap between global and local scales of motion, by modeling explicitly the above referred to dynamical processes in the range of scales from Mediterranean to local. The core of POSEIDON consists of a "cascade" of numerical models that, starting from global scale numerical analysis-forecast, goes all the way to very local phenomena, like tidal propagation in Venice Lagoon. The large computational load imposed by such operational design requires necessarily parallel computing technology: the first model in the cascade is a parallelised version of BOlogna Limited Area Model (BOLAM) running on a Quadrics 128 processors computer (also known as QBOLAM). POSEIDON, developed in the context of a co-operation between the Italian Agency for New

  20. A hybrid instrument combining electronic and photonic tunnelling for surface analysis

    International Nuclear Information System (INIS)

    Pechou, R.; Ajustron, F.; Seine, G.; Coratger, R.; Maurel, C.; Beauvillain, J.

    2004-01-01

    A PSTM working in the collection mode and based on an STM probe-sample regulation scheme has been developed. This original hybrid instrument for surface analysis uses apertureless metal-coated chemically etched optical fibres. The use of an electronic tunnelling-based feedback loop significantly reduces tip-sample distance and leads to the collection of a high level near-field optical (NFO) signal. A simple amplified photodiode is thus used to perform optical signal acquisition and to draw electromagnetic field maps of sample surfaces. Experimental results on nanostructured gold surfaces are presented

  1. Modern history of meteorological services with pictures for a century

    International Nuclear Information System (INIS)

    2004-07-01

    This book deals with modern history of meteorological services with pictures for a century. It is divided into twelve chapters, which mention meteorological services before the Joseon Dynasty period, meteorological observation about surface weather observation, aero logical observation, meteorological satellite, seismometry, observation on yellow dust, and observation on the falling of thunderbolt, weather forecast, meteorological telecommunication, education for weather, research for weather, promotion on weather, international cooperation, main events, special aid on meteorological services, meteorological disaster and the list of the offices for meteorological services.

  2. Airline meteorological requirements

    Science.gov (United States)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  3. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  4. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  5. Palmyra Atoll, 2006 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Palmyra Atoll, (5.88467, -162.10281 ) ARGOS ID 307-001. Time series data from this mooring provide high resolution sea surface temperature and conductivity, and...

  6. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  7. From Landsat through SLI: Ball Aerospace Instrument Architecture for Earth Surface Monitoring

    Science.gov (United States)

    Wamsley, P. R.; Gilmore, A. S.; Malone, K. J.; Kampe, T. U.; Good, W. S.

    2017-12-01

    The Landsat legacy spans more than forty years of moderate resolution, multi-spectral imaging of the Earth's surface. Applications for Landsat data include global environmental change, disaster planning and recovery, crop and natural resource management, and glaciology. In recent years, coastal water science has been greatly enhanced by the outstanding on-orbit performance of Landsat 8. Ball Aerospace designed and built the Operational Land Imager (OLI) instrument on Landsat 8, and is in the process of building OLI 2 for Landsat 9. Both of these instruments have the same design however improved performance is expected from OLI 2 due to greater image bit depth (14 bit on OLI 2 vs 12 bit on OLI). Ball Aerospace is currently working on two novel instrument architectures applicable to Sustainable Land Imaging for Landsat 10 and beyond. With increased budget constraints probable for future missions, technological improvements must be included in future instrument architectures to enable increased capabilities at lower cost. Ball presents the instrument architectures and associated capabilities enabling new science in past, current, and future Landsat missions.

  8. Mean surface meteorological parameter characterization at Kavaratti, Lakshadweep Island, South-East Arabian Sea, West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Vijaykumar, K.; Mehra, P.; Nair, B.; Agarwadekar, Y.; Luis, R.; Ghatge, D.; Lobo, S.; Halmalkar, B.

    with lesser intensity. Monthly mean wind speed in October was ~ 2 m/s while in July it was ~7 m/s. Monthly mean atmospheric pressure in October was ~1008 mbar as against ~1007 mbar in July. Surface air-temperature and relative humidity have also exhibited...

  9. Effect of citric acid, tetracycline, and doxycycline on instrumented periodontally involved root surfaces: A SEM study

    Directory of Open Access Journals (Sweden)

    Gurparkash Singh Chahal

    2014-01-01

    Full Text Available Background: A surface smear layer consisting of organic and inorganic material is formed on the root surface following mechanical instrumentation and may inhibit the formation of new connective tissue attachment to the root surface. Modification of the tooth surface by root conditioning has resulted in improved connective tissue attachment and has advanced the goal of reconstructive periodontal treatment. Aim: The aim of this study was to compare the effects of citric acid, tetracycline, and doxycycline on the instrumented periodontally involved root surfaces in vitro using a scanning electron microscope. Settings and Design: A total of 45 dentin samples obtained from 15 extracted, scaled, and root planed teeth were divided into three groups. Materials and Methods: The root conditioning agents were applied with cotton pellets using the "Passive burnishing technique" for 5 minutes. The samples were then examined by the scanning electron microscope. Statistical Analysis Used: The statistical analysis was carried out using Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, version 15.0 for Windows. For all quantitative variables means and standard deviations were calculated and compared. For more than two groups ANOVA was applied. For multiple comparisons post hoc tests with Bonferroni correction was used. Results: Upon statistical analysis the root conditioning agents used in this study were found to be effective in removing the smear layer, uncovering and widening the dentin tubules and unmasking the dentin collagen matrix. Conclusion: Tetracycline HCl was found to be the best root conditioner among the three agents used.

  10. Mapping the Martian Meteorology

    Science.gov (United States)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  11. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites

    International Nuclear Information System (INIS)

    Sutton, J.L.; Leovy, C.B.; Tillman, J.E.

    1978-01-01

    Wind speed, ambient and surface temperatures from both Viking Landers have been used to compute bulk Richardson numbers and Monin-Obukhov lengths during the earliest phase of the Mars missions. These parameters are used to estimate drag and heat transfer coefficients, friction velocities and surface heat fluxes at the two sites. The principal uncertainty is in the specification of the roughness length. Maximum heat fluxes occur near local noon at both sites, and are estimated to be in the range 15--20 W m -2 at the Viking 1 site and 10--15 W m -2 at the Viking 2 site. Maximum values of friction velocity occur in late morning at Viking 1 and are estimated to be 0.4--0.6 m s -1 . They occur shortly after drawn at the Viking 2 site where peak values are estimated to be in the range 0.25--0.35 m s -1 . Extension of these calculations to later times during the mission will require allowance for dust opacity effects in the estimation of surface temperature and in the correction of radiation errors of the Viking 2 temperature sensor

  12. Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015.

    Science.gov (United States)

    Mora, Marco; Braun, Rachel A; Shingler, Taylor; Sorooshian, Armin

    2017-08-27

    This paper presents an aerosol characterization study from 2003 to 2015 for the Mexico City Metropolitan Area using remotely sensed aerosol data, ground-based measurements, air mass trajectory modeling, aerosol chemical composition modeling, and reanalysis data for the broader Megalopolis of Central Mexico region. The most extensive biomass burning emissions occur between March and May concurrent with the highest aerosol optical depth, ultraviolet aerosol index, and surface particulate matter (PM) mass concentration values. A notable enhancement in coarse PM levels is observed during vehicular rush hour periods on weekdays versus weekends owing to nonengine-related emissions such as resuspended dust. Among wet deposition species measured, PM 2.5 , PM 10 , and PM coarse (PM 10 -PM 2.5 ) were best correlated with NH 4 + , SO 4 2- , and Ca 2+ , suggesting that the latter three constituents are important components of the aerosol seeding raindrops that eventually deposit to the surface in the study region. Reductions in surface PM mass concentrations were observed in 2014-2015 owing to reduced regional biomass burning as compared to 2003-2013.

  13. Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance

    Science.gov (United States)

    Ratnayake, Nalin A.

    2009-01-01

    Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of

  14. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    Science.gov (United States)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.

  15. The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India

    Science.gov (United States)

    Sati, Ankur Prabhat; Mohan, Manju

    2017-10-01

    An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.

  16. Comparison of the Retrieval of Sea Surface Salinity Using Different Instrument Configurations of MICAP

    Directory of Open Access Journals (Sweden)

    Lanjie Zhang

    2018-04-01

    Full Text Available The Microwave Imager Combined Active/Passive (MICAP has been designed to simultaneously retrieve sea surface salinity (SSS, sea surface temperature (SST and wind speed (WS, and its performance has also been preliminarily analyzed. To determine the influence of the first guess values uncertainties on the retrieved parameters of MICAP, the retrieval accuracies of SSS, SST, and WS are estimated at various noise levels. The results suggest that the errors on the retrieved SSS have not increased dues poorly known initial values of SST and WS, since the MICAP can simultaneously acquire SST information and correct ocean surface roughness. The main objective of this paper is to obtain the simplified instrument configuration of MICAP without loss of the SSS, SST, and WS retrieval accuracies. Comparisons are conducted between three different instrument configurations in retrieval mode, based on the simulation measurements of MICAP. The retrieval results tend to prove that, without the 23.8 GHz channel, the errors on the retrieved SSS, SST, and WS for MICAP could also satisfy the accuracy requirements well globally during only one satellite pass. By contrast, without the 1.26 GHz scatterometer, there are relatively large increases in the SSS, SST, and WS errors at middle/low latitudes.

  17. ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models

    Science.gov (United States)

    Faroux, S.; Kaptué Tchuenté, A. T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P.

    2013-04-01

    The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1 km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and normalized difference vegetation index (NDVI) from SPOT/Vegetation (a global monitoring system of vegetation) yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 plant functional types (PFTs) representing generic vegetation types - principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land - as incorporated by the SVAT model ISBA (Interactions Surface Biosphere Atmosphere) developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land

  18. Investigation of Titan's surface and atmosphere photometric functions using the Cassini/VIMS instrument

    Science.gov (United States)

    Cornet, Thomas; Altobelli, Nicolas; Rodriguez, Sébastien; Maltagliati, Luca; Le Mouélic, Stéphane; Sotin, Christophe; Brown, Robert; Barnes, Jason; Buratti, Bonnie; Baines, Kevin; Clark, Roger; Nicholson, Phillip

    2015-04-01

    After 106 flybys spread over 10 years, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) instrument acquired 33151 hyperspectral cubes pointing at the surface of Titan on the dayside. Despite this huge amount of data available for surface studies, and due to the strong influence of the atmosphere (methane absorption and haze scattering), Titan's surface is only visible with VIMS in 7 spectral atmospheric windows centred at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns. Atmospheric scattering and absorption effects dominate Titan's spectrum at wavelengths shorter than 3 microns, while the 5 micron window, almost insensitive to the haze scattering, only presents a reduced atmospheric absorption contribution to the signal recorded by VIMS. In all cases, the recorded I/F represents an apparent albedo, which depends on the atmospheric contributions and the surface photometry at each wavelength. We therefore aim to determine real albedo values for Titan's surface by finding photometric functions for the surface and the atmosphere that could be used as a basis for empirical corrections or Radiative Transfer calculations. After updating the navigation of the VIMS archive, we decomposed the entire VIMS data set into a MySQL relational database gathering the viewing geometry, location, time (season) and I/F (for pure atmosphere and surface-atmosphere images) for each pixel of the 33151 individual VIMS cubes. We then isolated all the VIMS pixels where Titan's surface has been repeatedly imaged at low phase angles (< 20 degrees) in order to characterize phase curves for the surface at 5 microns and for the atmosphere. Among these, the T88 flyby appears noteworthy, with a "Emergence-Phase Function (EPF)"-type observation: 25 cubes acquired during the same flyby, over the same area (close to Tortola Facula, in relatively dark terrains), at a constant incidence and with varying emergence and phase (from 0 to 60 degrees) angles. The data clearly exhibit an increase

  19. Calibrate the aerial surveying instrument by the limited surface source and the single point source that replace the unlimited surface source

    CERN Document Server

    Lu Cun Heng

    1999-01-01

    It is described that the calculating formula and surveying result is found on the basis of the stacking principle of gamma ray and the feature of hexagonal surface source when the limited surface source replaces the unlimited surface source to calibrate the aerial survey instrument on the ground, and that it is found in the light of the exchanged principle of the gamma ray when the single point source replaces the unlimited surface source to calibrate aerial surveying instrument in the air. Meanwhile through the theoretical analysis, the receiving rate of the crystal bottom and side surfaces is calculated when aerial surveying instrument receives gamma ray. The mathematical expression of the gamma ray decaying following height according to the Jinge function regularity is got. According to this regularity, the absorbing coefficient that air absorbs the gamma ray and the detective efficiency coefficient of the crystal is calculated based on the ground and air measuring value of the bottom surface receiving cou...

  20. ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1-km resolution based on satellite information for use in land surface, meteorological and climate models

    Science.gov (United States)

    Faroux, S.; Kaptué Tchuenté, A. T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P.

    2012-11-01

    The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1-km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and NDVI from SPOT/Vegetation yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 Plant Functional Types (PFTs) representing generic vegetation types - principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land - as incorporated by the SVAT model ISBA developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.

  1. A thermal control system for long-term survival of scientific instruments on lunar surface.

    Science.gov (United States)

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  2. A thermal control system for long-term survival of scientific instruments on lunar surface

    International Nuclear Information System (INIS)

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-01-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system

  3. A thermal control system for long-term survival of scientific instruments on lunar surface

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba (Japan); Iijima, Y.; Tanaka, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa (Japan); Sakatani, N. [The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa (Japan); Otake, H. [JAXA Space Exploration Center, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa (Japan)

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  4. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser

    International Nuclear Information System (INIS)

    Guimaraes Filho, Arlindo Lopes

    2004-01-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm 2 (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm 2 (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any thermic damage

  5. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    Science.gov (United States)

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  6. Automated data system for emergency meteorological response

    International Nuclear Information System (INIS)

    Kern, C.D.

    1975-01-01

    The Savannah River Plant (SRP) releases small amounts of radioactive nuclides to the atmosphere as a consequence of the production of radioisotopes. The potential for larger accidental releases to the atmosphere also exists, although the probability for most accidents is low. To provide for emergency meteorological response to accidental releases and to conduct research on the transport and diffusion of radioactive nuclides in the routine releases, a series of high-quality meteorological sensors have been located on towers in and about SRP. These towers are equipped with instrumentation to detect and record temperature and wind turbulence. Signals from the meterological sensors are brought by land-line to the SRL Weather Center-Analysis Laboratory (WC-AL). At the WC-AL, a Weather Information and Display (WIND) system has been installed. The WIND system consists of a minicomputer with graphical displays in the WC-AL and also in the emergency operating center (EOC) of SRP. In addition, data are available to the system from standard weat []er teletype services, which provide both routine surface weather observations and routine upper air wind and temperature observations for the southeastern United States. Should there be an accidental release to the atmosphere, available recorded data and computer codes would allow the calculation and display of the location, time, and downwind concentration of the atmospheric release. These data are made available to decision makers in near real-time to permit rapid decisive action to limit the consequences of such accidental releases. (auth)

  7. A comparison of root surface instrumentation using manual, ultrasonic and rotary instruments: An in vitro study using scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Preeti Marda

    2012-01-01

    Results and Conclusion: The RCI and LTSI showed nonsignificant differences between the three groups. RLTSI showed a significant difference between Slimline™ and hand curette as well as Slimline™ and Desmo-Clean™. Slimline™ showed the least mean scores for RCI, LTSI, and RLTSI. Thus, even though the difference was not statistically significant, Slimline™ insert was shown to be better than the other methods as assessed by the indices scores and the instrumentation time.

  8. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    Science.gov (United States)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  9. Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Houtas, Franzeska

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.

  10. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    Science.gov (United States)

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  11. Meteorological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Werner, Kent; Oehman, Johan; Holgersson, Bjoern; Roennback, Kristoffer; Marelius, Fredrick

    2008-12-01

    This report presents and analyses meteorological, hydrological and hydrogeological time-series data and near-surface hydrogeological properties data from the Laxemar-Simpevarp area, available in SKB's Sicada database at time of the Laxemar 2.3 data freeze (Aug. 31, 2007). The meteorological data set includes data from two local stations, located on the island of Aespoe and at Plittorp, located further inland. In addition, the data evaluation uses a longer-term data set from 7 surrounding stations, operated by SMHI. As part of this study, a time series is constructed of the water content of snow. According to the data evaluation, the site-average annual precipitation and potential evapotranspiration can be estimated to be on the order of 600 and 535 mm, respectively. In particular, precipitation demonstrates a near-coastal gradient, with less precipitation at the coast compared to areas further inland. The surface-water level data set includes data from 4 lake-level gauging stations and 3 sea-level gauging stations. All lakes are located above sea level, including the near-coastal Lake Soeraa. Hence, no intrusion of sea water to lakes takes place. There is a strong co-variation among the monitored lake-water levels, typically with maxima during spring and minima during late summer and early autumn. Concerning the sea as a hydraulic boundary, the maximum and minimum sea levels (daily averages) during the site-investigation period were -0.52 and 0.71 metres above sea level, respectively, whereas the average sea level was 0.03 metres above sea level (RHB 70). The data set on stream discharge, surface-water temperature and electrical conductivity includes data from 9 discharge-gauging stations in 7 streams. Based on the discharge data, the site-average specific discharge for the years 2005-2007 can be estimated to 165 mm/y, which is within the interval of the estimated long-term average. Overall, discharge-data errors are likely to be small. The hydrogeological time

  12. Meteorological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec, Taeby (Sweden)); Oehman, Johan (Golder Associates AB, Stockholm (Sweden)); Holgersson, Bjoern (SWECO VIAK, Stockholm (Sweden)); Roennback, Kristoffer (Aqualog AB, Goeteborg (Sweden)); Marelius, Fredrick (WSP Sverige, Stockholm (Sweden))

    2008-12-15

    This report presents and analyses meteorological, hydrological and hydrogeological time-series data and near-surface hydrogeological properties data from the Laxemar-Simpevarp area, available in SKB's Sicada database at time of the Laxemar 2.3 data freeze (Aug. 31, 2007). The meteorological data set includes data from two local stations, located on the island of Aespoe and at Plittorp, located further inland. In addition, the data evaluation uses a longer-term data set from 7 surrounding stations, operated by SMHI. As part of this study, a time series is constructed of the water content of snow. According to the data evaluation, the site-average annual precipitation and potential evapotranspiration can be estimated to be on the order of 600 and 535 mm, respectively. In particular, precipitation demonstrates a near-coastal gradient, with less precipitation at the coast compared to areas further inland. The surface-water level data set includes data from 4 lake-level gauging stations and 3 sea-level gauging stations. All lakes are located above sea level, including the near-coastal Lake Soeraa. Hence, no intrusion of sea water to lakes takes place. There is a strong co-variation among the monitored lake-water levels, typically with maxima during spring and minima during late summer and early autumn. Concerning the sea as a hydraulic boundary, the maximum and minimum sea levels (daily averages) during the site-investigation period were -0.52 and 0.71 metres above sea level, respectively, whereas the average sea level was 0.03 metres above sea level (RHB 70). The data set on stream discharge, surface-water temperature and electrical conductivity includes data from 9 discharge-gauging stations in 7 streams. Based on the discharge data, the site-average specific discharge for the years 2005-2007 can be estimated to 165 mm/y, which is within the interval of the estimated long-term average. Overall, discharge-data errors are likely to be small. The hydrogeological

  13. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    Science.gov (United States)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on

  14. A marine meteorological data acquisition system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.; Vithayathil, G.

    A marine meteorological data acquisition system has been developed for long term unattended measurements at remote coastal sites, ocean surface platforms and for use on board research vessels. The system has an open and modular configuration...

  15. Large area window on vacuum chamber surface for neutron scattering instruments

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao

    2012-01-01

    The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.

  16. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    Science.gov (United States)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  17. Comparison of sea surface flux measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments

    Science.gov (United States)

    Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain

    1998-10-01

    Two major campaigns (Surface of the Oceans, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent flux of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface fluxes from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the flux profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship fluxes were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft fluxes were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum flux agrees quite well, aircraft estimations of sensible and latent heat flux are lower than those of the ship. This result is surprising, since aircraft momentum flux estimates are often considered as much less accurate than scalar flux estimates. The various sources of errors on the aircraft and ship flux estimates are discussed. For sensible and latent heat flux, random errors on aircraft estimates, as well as variability of ship flux estimates, are lower than the discrepancy between the two platforms, whereas the momentum flux estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the flux values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes

  18. Meteorological Monitoring Program

    International Nuclear Information System (INIS)

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-01-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program

  19. Meteorological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, H.A. Jr. [ed.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  20. Lectures in Micro Meteorology

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    This report contains the notes from my lectures on Micro scale meteorology at the Geophysics Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, I was responsible for this course at the University. At the start of the course, I decided that the text books...... available in meteorology at that time did not include enough of the special flavor of micro meteorology that characterized the work of the meteorology group at Risø (presently of the Institute of wind energy of the Danish Technical University). This work was focused on Boundary layer flows and turbulence...

  1. Comparative evaluation of surface changes in four Ni-Ti instruments with successive uses - An SEM study.

    Science.gov (United States)

    Subha, N; Sikri, Vimal K

    2011-07-01

    To evaluate the surface alterations seen in four kinds of Nickel-Titanium (Ni-Ti) instruments using a scanning electron microscope (SEM) for five successive uses in preparing root canals of extracted human molars and also to determine whether the design of the instrument influenced the appearance of defects on the instrument surface. Four different types of instruments namely; ProFile, ProTaper Rotary, ProTaper Hand and K3 Endo were used in 300 mesio-buccal canals. The instruments were examined under the SEM, after every use, to assess the progress of changes on their surfaces for a maximum of five uses. Chi-square test. The most prevalent defects observed were pitting, followed by metal strips. Signs of discontinuity, microfractures and disruption of cutting edge were also evident. Number of defects increased with successive uses. ProTaper Hand showed significantly more microfractures and metal strips than other instruments from third use onwards. ProTaper Rotary and K3 Endo also showed significant changes.

  2. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aubrey E. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); U.S. Bureau of Reclamation, Albuquerque, NM (United States); Hopkinson, Leslie [West Virginia Univ., Morgantown, WV (United States); Soeder, Daniel [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  3. Calibrate the aerial surveying instrument by the limited surface source and the single point source that replace the unlimited surface source

    International Nuclear Information System (INIS)

    Lu Cunheng

    1999-01-01

    It is described that the calculating formula and surveying result is found on the basis of the stacking principle of gamma ray and the feature of hexagonal surface source when the limited surface source replaces the unlimited surface source to calibrate the aerial survey instrument on the ground, and that it is found in the light of the exchanged principle of the gamma ray when the single point source replaces the unlimited surface source to calibrate aerial surveying instrument in the air. Meanwhile through the theoretical analysis, the receiving rate of the crystal bottom and side surfaces is calculated when aerial surveying instrument receives gamma ray. The mathematical expression of the gamma ray decaying following height according to the Jinge function regularity is got. According to this regularity, the absorbing coefficient that air absorbs the gamma ray and the detective efficiency coefficient of the crystal is calculated based on the ground and air measuring value of the bottom surface receiving count rate (derived from total receiving count rate of the bottom and side surface). Finally, according to the measuring value, it is proved that imitating the change of total receiving gamma ray exposure rate of the bottom and side surfaces with this regularity in a certain high area is feasible

  4. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e

  5. Mars Geochemical Instrument (MarGI): An instrument for the analysis of the Martian surface and the search for evidence of life

    Science.gov (United States)

    Kojiro, Daniel R.; Mancinelli, Rocco; Martin, Joe; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.

    2005-01-01

    The Mars Geochemical Instrument, MarGI, was developed to provide a comprehensive analysis of the rocks and surface material on Mars. The instrument combines Differential Thermal Analysis (DTA) with miniature Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) to identify minerals, the presence and state of water, and organic compounds. Miniature pyrolysis ovens are used to both, conduct DTA analysis of soil or crushed rocks samples, and pyrolyze the samples at temperatures up to 1000 degrees C for GC-IMS analysis of the released gases. This combination of analytical processes and techniques, which can characterize the mineralogy of the rocks and soil, and identify and quantify volatiles released during pyrolysis, has applications across a wide range of target sites including comets, planets, asteroids, and moons such as Titan and Europa. The MarGI analytical approach evolved from the Cometary Ice and Dust Experiment (CIDEX) selected to fly on the Comet Rendezvous Asteroid Flyby Mission (CRAF).

  6. Fire and forest meteorology

    Science.gov (United States)

    SA Ferguson; T.J. Brown; M. Flannigan

    2005-01-01

    The American Meteorological Society symposia series on Fire and Forest Meteorology provides biennial forums for atmospheric and fire scientists to introduce and discuss the latest and most relevant research on weather, climate and fire. This special issue highlights significant work that was presented at the Fifth Symposium in Orlando, Florida during 16-20 November...

  7. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity and dire...

  8. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  9. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  10. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C Data

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-02-01

    Full Text Available On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m , using the Generalized Split-Window (GSWalgorithm proposed by Wan and Dozier (1996. The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC, and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities(LSEs are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006; and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.’ method (2003. The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give

  11. Oceanographic and surface meteorological data collected from station shp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118791 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  12. Oceanographic and surface meteorological data collected from station fhp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118789)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118789 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  13. Oceanographic and surface meteorological data collected from station ilm3 by Coastal Ocean Research and Monitoring Program (CORMP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2016-02-01 (NODC Accession 0118742)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Accession 0118742 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention (CF)...

  14. Oceanographic and surface meteorological data collected from station tarponbay by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118785)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118785 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  15. Oceanographic and surface meteorological data collected from U-GLOS Station 45026, Near Cook Nuclear Plant, by LimnoTech and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123647 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  16. Oceanographic and surface meteorological data collected from Toledo Low Service Pump Station by LimnoTech and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-05-12 to 2017-08-31 (NCEI Accession 0130072)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130072 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  17. Oceanographic and surface meteorological data collected from station 45165, Monroe, MI, by LimnoTech and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-08-07 to 2017-08-31 (NODC Accession 0123661)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123661 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic and surface meteorological data collected from station bgsusd2, Sandusky Bay 2, by Bowling Green State University and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2017-06-10 to 2017-08-31 (NCEI Accession 0163831)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163831 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. Oceanographic and surface meteorological data collected from Gibraltar Island Station by Ohio State University; Stone Laboratory and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-05-26 to 2017-08-31 (NCEI Accession 0130545)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130545 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  20. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  1. Oceanographic and surface meteorological data collected from Avon Lake Pump Station by Avon Lake Regional Water and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-06-28 to 2017-08-31 (NCEI Accession 0130546)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130546 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  2. Oceanographic and surface meteorological data collected from station Sandusky Bay by Bowling Green State University and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-07-04 to 2017-08-31 (NCEI Accession 0155656)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155656 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  3. Oceanographic and surface meteorological data collected from station racypoint by Florida Department of Environmental Protection (FLDEP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-03-07 to 2016-04-28 (NODC Accession 0118777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118777 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  4. Oceanographic and surface meteorological data collected from station melbourne by Florida Department of Environmental Protection (FLDEP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-04-29 (NODC Accession 0118773)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118773 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  5. Oceanographic and surface meteorological data collected from station c21 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2014-12-14 (NODC Accession 0118788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118788 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  6. Oceanographic and surface meteorological data collected from station ATW20 by University of Wisconsin-Milwaukee and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123639)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123639 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  7. Oceanographic and surface meteorological data collected from station Sodus Bay South (ESF2) by State University of New York College of Environmental Science and Forestry and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123654)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123654 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  8. Oceanographic and surface meteorological data collected from station redbaypoint by Florida Department of Environmental Protection (FLDEP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-04-28 (NODC Accession 0118778)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118778 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  9. Oceanographic and surface meteorological data collected from station Middle Bay Light, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2008-01-01 to 2017-05-03 (NCEI Accession 0163754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163754 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  10. Oceanographic and surface meteorological data collected from station apachepier by Long Bay Hypoxia Monitoring Consortium (LBHMC) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2015-07-09 (NODC Accession 0118794)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Accession 0118794 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention (CF)...

  11. Oceanographic and surface meteorological data collected from station Perdido Pass, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-11-07 to 2017-04-30 (NCEI Accession 0163767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  12. Oceanographic and surface meteorological data collected from station Bon Secour, LA by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-01-01 to 2017-05-02 (NCEI Accession 0163204)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163204 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  13. Oceanographic and surface meteorological data collected from station c12 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-11 (NODC Accession 0118787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118787 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  14. Oceanographic and surface meteorological data collected from station redfishpass by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118783 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  15. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  16. Oceanographic and surface meteorological data collected from station gulfofmexico by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118782 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  17. Oceanographic and surface meteorological data collected from station RECON Erie, Cleveland (CLV), by Great Lakes Environmental Research Laboratory and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-24 to 2017-08-31 (NODC Accession 0123652)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123652 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic and surface meteorological data collected from 45171, Granite Island Buoy, by Northern Michigan University and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-07-09 to 2017-08-31 (NCEI Accession 0130588)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130588 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. Oceanographic and surface meteorological data collected from station Sodus Bay Center (ESF5) by State University of New York College of Environmental Science and Forestry and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123657)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123657 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  20. Oceanographic and surface meteorological data collected from Sodus Bay Weather Station (ESF4) by State University of New York College of Environmental Science and Forestry and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-15 to 2017-08-31 (NODC Accession 0123656)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123656 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  1. Oceanographic and surface meteorological data collected from U-GLOS Station 004, Little Traverse Bay, by University of Michigan and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123643)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123643 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  2. Oceanographic and surface meteorological data collected from RECON Alpena, Thunder Bay Buoy, by Great Lakes Environmental Research Laboratory and assembled by Great Lakes Observing System (GLOS) in the Great Lakes and Thunder Bay National Marine Sanctuary region from 2016-05-19 to 2017-08-31 (NCEI Accession 0137891)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0137891 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  3. Oceanographic and surface meteorological data collected from station Katrina Cut, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-04-15 to 2017-05-04 (NCEI Accession 0163673)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163673 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  4. Oceanographic and surface meteorological data collected from station 2ndave by Long Bay Hypoxia Monitoring Consortium (LBHMC) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2015-06-01 (NODC Accession 0118793)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118793 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  5. Oceanographic and surface meteorological data collected from station gbtf1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118752 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  6. Oceanographic and surface meteorological data collected from station lobo by Florida Atlantic University (FAU) Land/Ocean Biogeochemical Observatory (LOBO) (FAU) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-21 to 2014-11-04 (NODC Accession 0118768)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118768 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  7. Oceanographic and surface meteorological data collected from station wiwf1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118765 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  8. Oceanographic and surface meteorological data collected from station wwef1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  9. Oceanographic and surface meteorological data collected from Ottawa County Pump Station by Ottawa County Regional Water Treatment Plant and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-06-28 to 2017-08-31 (NCEI Accession 0130587)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130587 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  10. Oceanographic and surface meteorological data collected from station City of Toledo Water Intake Crib by LimnoTech and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-05-20 to 2017-08-31 (NCEI Accession 0130548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130548 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  11. Oceanographic and surface meteorological data collected from University of Michigan Marine Hydrodynamics Laboratories Bio Buoy by University of Michigan and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123645)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123645 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  12. Oceanographic and surface meteorological data collected from University of Michigan Marine Hydrodynamics Laboratories Bio Buoy by University of Michigan and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NCEI Accession 0123660)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123660 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  13. Oceanographic and surface meteorological data collected from station Little Cedar Point by University of Toledo and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2015-07-03 to 2017-08-31 (NCEI Accession 0155545)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155545 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  14. Oceanographic and surface meteorological data collected from station shellpoint by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118784)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118784 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  15. Oceanographic and surface meteorological data collected from Dunkirk Buoy, Lake Erie, by State University of New York College of Environmental Science and Forestry and assembled by Great Lakes Observing System (GLOS) in the Great Lakes region from 2014-07-01 to 2017-08-31 (NODC Accession 0123655)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123655 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  16. Oceanographic and surface meteorological data collected from station fortmyers by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118739 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  17. Oceanographic and surface meteorological data collected from station PR1: South of Caja de Muertos Island by University of Maine and assembled by the Caribbean Coastal Ocean Observing System (CariCOOS) in the Caribbean Sea from 2009-06-09 to 2011-04-06 (NCEI Accession 0163740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163740 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic and surface meteorological data collected from station Dauphin Island, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2008-01-01 to 2017-04-30 (NCEI Accession 0163672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163672 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. Sea-air boundary meteorological sensor

    Science.gov (United States)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  20. CAMEX-3 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 Meteorological Measurement System (MMS) dataset consists of atmospheric parameters measured by the MMS instruments aboard NASA DC-8 aircraft. The MMS...

  1. US Marine Meteorological Journals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This series consists of volumes entitled 'Meteorological Journal' (a regulation Navy-issue publication) which were to be completed by masters of merchant vessels...

  2. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  3. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  4. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2009-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak x2122 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  5. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite, INRS, Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire, IRSN, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette Cedex (France); Thomas, Dominique [Laboratoire des Sciences du Genie Chimique, LSGC/CNRS, Nancy Universite, BP 2041, 54001 Nancy Cedex (France)], E-mail: sebastien.bau@inrs.fr

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak{sup x2122} 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  6. Climate and meteorology

    International Nuclear Information System (INIS)

    Hoitink, D.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations

  7. Climate and meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  8. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  9. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials

    Science.gov (United States)

    Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.

    2014-02-01

    A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.

  10. Reconstructing the Surface Permittivity Distribution from Data Measured by the CONSERT Instrument aboard Rosetta: Method and Simulations

    Science.gov (United States)

    Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.

    2014-12-01

    One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.

  11. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  12. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  13. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2011-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak T M 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  14. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite (INRS), Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette (France); Thomas, Dominique, E-mail: sebastien.bau@inrs.fr [Laboratoire Reactions et Genie des Procedes (LRGP), groupe SAFE, 1 rue Grandville, BP 20041, 54001 Nancy Cedex (France)

    2011-07-06

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak{sup TM} 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  15. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  16. Meteorology and lidar data from the URAHFREP field trials

    DEFF Research Database (Denmark)

    Ott, Søren; Ejsing Jørgensen, Hans

    2002-01-01

    to the HF release. The instrumentation included various types of HF sensors, thermocouple arrays, a fully instrumented release rig, a passive smokemachine, a meteorological mast and a lidar backscatter system. This report deals exclusively with the meteorological data and the lidar data. The trials cover...... a range meteorological conditions. These include neutral conditions with relatively highwindspeed and low humidity as well as unstable conditions with low windspeed and high humidity, the most favorable conditions for lift-off to occur. The lidar was used to scan vertical cross-plume slices 100 meter...

  17. [The influence of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 nickel-titanium rotary instruments].

    Science.gov (United States)

    Li, Xiang-fen; Zheng, Ping; Xu, Li; Su, Qin

    2015-12-01

    To investigate the effects of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 types of nickel-titanium rotary instruments (K3, Mtwo, ProTaper). Three brands of NiTi rotary endodontic instruments of the same size (tip diameter 0.25 mm and constant 0.06 taper) were selected: K3, Mtwo and Protaper (F2). 24 instruments for each brand were used to evaluate the effects of autoclave sterilization on inner character in the as-received condition and after subjection to 0, 1, 5, and 10 sterilization cycles (6 for each group). Time to fracture (TtF) from the start of the test to the moment of file breakage and the length of the fractured fragment were recorded. Means and standard deviations of TtF and fragment length were calculated. The data was analyzed with SPSS13.0 software package. Another 12 NiTi rotary instruments for each brand were used, 6 subjected to 10 autoclave sterilization cycles and the other as control. Scanning electron microscope was used to observe the changes in surface topography and inner character. For cyclic fatigue resistance, when sterilization was not performed, K3 showed the highest value of TtF means and ProTaper the lowest. The differences between each brand were statistically significant (Pinstruments were intensified greatly after 10 cycles of sterilization. Cycle fatigue resistance is different among instruments of different brands. Autoclave sterilization may increase fatigue resistance of the 3 brands. Autoclave sterilization may increase the surface roughness and inner defects in cross section.

  18. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  19. A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN) v1.0

    Science.gov (United States)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-10-01

    While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.

  20. A new time-of-flight instrument for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Moore, Jerry F.; Pellin, Michael J.; Burnett, Donald S.

    2004-01-01

    A new generation of time-of-flight mass spectrometers that implement ion sputtering and laser desorption for probing solid samples and can operate in regimes of laser post-ionization secondary neutral mass spectrometry and secondary ion mass spectrometry is being developed at Argonne National Laboratory. These new instruments feature novel ion optical systems for efficient extraction of ions from large laser post-ionization volumes and for lossless transport of these ions to detectors. Another feature of this design is a new in-vacuum all-reflecting optical microscope with 0.5-μm resolution. Advanced ion and light optics and three ion sources, including a liquid metal ion gun (focusable to 50 nm) and a low energy ion gun, give rise to an instrument capable of quantitative analyses of samples for the most challenging applications, such as determining elemental concentrations in shallow implants at ultra-trace levels (for example, solar wind samples delivered by NASA Genesis mission) and analyzing individual sub-micrometer particles on a sample stage (such as, interstellar dust delivered by NASA Stardust mission). Construction of a prototype instrument has been completed and testing is underway. A more advanced instrument of similar design is under construction. The overall design of the new instrument and the innovations that make it unique are outlined. Results of the first tests to characterize its analytical capabilities are presented also

  1. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    Science.gov (United States)

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  2. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  3. Rapid characterisation of surface modifications and treatments using a benchtop SIMS instrument

    Science.gov (United States)

    McPhail, D. S.; Sokhan, M.; Rees, E. E.; Cliff, B.; Eccles, A. J.; Chater, R. J.

    2004-06-01

    The development of a novel benchtop SIMS instrument (Millbrook MiniSIMS) [Appl. Surf. Sci. 144 (1999) 106] has brought routine SIMS analysis to many new users, for example museum conservators. This is a result of the simple operation and the relatively low capital cost of the instrument. We report here on the continued development of the system in terms of increasing performance and functionality and its use in museum conservation based applications where a mobile instrument for high throughput, rapid SIMS analysis has proven to be of great benefit to the user. The example we describe here is the application of the MiniSIMS to the analysis of silver thread woven into a silk dress before and after laser cleaning.

  4. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  5. Calibration and Industrial Application of Instrument for Surface Mapping based on AFM

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Kofod, Niels; De Chiffre, Leonardo

    2002-01-01

    The paper describes the calibration and application of an integrated system for topographic characterisation of fine surfaces on large workpieces. The system, consisting of an atomic force microscope mounted on a coordinate measuring machine, was especially designed for surface mapping, i.e., mea...... consisting of a steel sphere with a polished surface having 3 nm roughness....

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in 2008 (NODC Accession 0109930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109930 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North...

  7. Jesuits' Contribution to Meteorology.

    Science.gov (United States)

    Udías, Agustín

    1996-10-01

    Starting in the middle of the nineteenth century, as part of their scientific tradition, Jesuits founded a considerable number of meteorological observatories throughout the world. In many countries, Jesuits established and maintained the first meteorological stations during the period from 1860 to 1950. The Jesuits' most important contribution to atmospheric science was their pioneer work related to the study and forecast of tropical hurricanes. That research was carried out at observatories of Belén (Cuba), Manila (Philippines), and Zikawei (China). B. Viñes, M. Decheyrens, J. Aigué, and C.E. Deppermann stood out in this movement.

  8. Meteorology in site operations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    During the site selection and design phases of a plant, meteorological assistance must be based on past records, usually accumulated at stations not actually on the site. These preliminary atadvices will be averages and extremes that might be expected. After a location has been chosen and work has begun, current and forecast weather conditions become of immediate concern. On-site meteorological observations and forecasts have many applications to the operating program of an atomic energy site. Requirements may range from observations of the daily minimum temperatures to forecasts of radiation dosages from airborne clouds

  9. Applied Meteorology Unit (AMU)

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  10. Effect of irrigation on surface roughness and fatigue resistance of controlled memory wire nickel-titanium instruments.

    Science.gov (United States)

    Cai, J-J; Tang, X-N; Ge, J-Y

    2017-07-01

    To investigate the effect of irrigation on the surface roughness and fatigue resistance of HyFlex and M3 controlled memory (CM) wire nickel-titanium instruments. Two new files of each brand were analysed by atomic force microscopy (AFM). Then, the instruments were dynamically immersed in either 5.25% sodium hypochlorite (NaOCl) or 17% ethylene diamine tetraacetic acid (EDTA) solution for 10 min, followed by AFM analysis. The roughness average (Ra) and root mean square (RMS) values were analysed statistically using an independent sample t-test. Then, 36 files of each brand were randomly assigned to three groups (n = 12). Group 1 (the control group) was composed of new instruments. Groups 2 and 3 were dynamically immersed in 5.25% NaOCl and 17% EDTA solutions for 10 min, respectively. The number of rotations to failure for various groups was analysed using the one-way analysis of variance software. For M3 files, the Ra and RMS values significantly increased (P  0.05) NaOCl. The resistance to cyclic fatigue of both HyFlex and M3 files did not significantly decrease (P > 0.05) by immersing in 5.25% NaOCl and 17% EDTA solutions. Except the HyFlex files immersed in NaOCl, the surface roughness of other files exposed to irrigants increased. However, a change in the surface tomography of CM wire instruments caused by contact with irrigants for 10 min did not trigger a decrease in cyclic fatigue resistance. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Reducing surface tension in endodontic chelator solutions has no effect on their ability to remove calcium from instrumented root canals.

    Science.gov (United States)

    Zehnder, Matthias; Schicht, Olivier; Sener, Beatrice; Schmidlin, Patrick

    2005-08-01

    The aim of this study was to evaluate the effect of reducing surface tension in endodontic chelator solutions on their ability to remove calcium from instrumented root canals. Aqueous solutions containing 15.5% EDTA, 10% citric acid, or 18% 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP) were prepared with and without 1% (wt/wt) polysorbate (Tween) 80 and 9% propylene glycol. Surface tension in these solutions was measured using the Wilhelmy method. Sixty-four extracted, single-rooted human teeth of similar length were instrumented and irrigated with a 1% sodium hypochlorite solution and then randomly assigned (n = 8 per group) to receive a final one-minute rinse with 5 ml of test solutions, water, or the pure aqueous Tween/propylene glycol solution. Calcium concentration in eluates was measured using atomic absorption spectrometry. Incorporation of wetting agents resulted in a reduction of surface tension values by approximately 50% in all tested solutions. However, none of the solutions with reduced surface tension chelated more calcium from canals than their pure counterparts (p > 0.05).

  12. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments.

    Science.gov (United States)

    Vigolo, Paolo; Buzzo, Ottavia; Buzzo, Maurizio; Mutinelli, Sabrina

    2017-02-01

    Plaque control is crucial for the prevention of inflammatory periodontal disease. Hand scaling instruments have been shown to be efficient for the removal of plaque; however, routine periodontal prophylactic procedures may modify the surface profile of restorative materials. The purpose of this study was to assess in vitro the changes in roughness of alumina, zirconia, and lithium disilicate surfaces treated by two hand scaling instruments. Forty-eight alumina specimens, 48 zirconia specimens, and 48 lithium disilicate specimens, were selected. All specimens were divided into three groups of 16 each; one group for each material was considered the control group and no scaling procedures were performed; the second group of each material was exposed to scaling with steel curettes simulating standard clinical conditions; the third group of each material was exposed to scaling with titanium curettes. After scaling, the surface roughness of the specimens was evaluated with a profilometer. First, a statistical test was carried out to evaluate the difference in surface roughness before the scaling procedure of the three materials was effected (Kruskal-Wallis test). Subsequently, the effect of curette material (steel and titanium) on roughness difference and roughness ratio was analyzed throughout the entire sample and within each material group, and a nonparametric test for dependent values was conducted (Wilcoxon signed-rank test). Finally, the roughness ratios of the three material groups were compared by means of a Kruskal-Wallis test and a Wilcoxon signed-rank test. Upon completion of profilometric evaluation, representative specimens from each group were prepared for SEM evaluation to evaluate the effects of the two scaling systems on the different surfaces qualitatively. After scaling procedure, the roughness profile value increased in all disks. Classifying the full sample according to curette used, the roughness of the disks treated with a steel curette reached a

  13. Computer Exercises in Meteorology.

    Science.gov (United States)

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  14. The maintenance of inserted titanium implants: in-vitro evaluation of exposed surfaces cleaned with three different instruments.

    Science.gov (United States)

    Bertoldi, Carlo; Lusuardi, Donatella; Battarra, Francesca; Sassatelli, Paolo; Spinato, Sergio; Zaffe, Davide

    2017-01-01

    Changes to titanium implants smooth-surfaces after instrumentation were comparatively analyzed using low-vacuum scanning electron microscopy (LV-SEM) and white-light confocal (WLC) profilometry, to accurately evaluate curved surfaces. Sixty titanium implants screwed to their abutments were randomly split into three groups for cleaning treatment with (S) stainless-steel Gracey-curettes, (T) titanium Langer-curettes, and (P) an ultrasonic-device with the probe covered with a plastic-tip. One sector of each implant was left unprocessed (U). The other sectors were cleaned for either 60 s, to simulate a single cleaning session, or 180 s to simulate a series of sessions. Surface morphology was analyzed by LV-SEM, without metal sputtering. Quantitative evaluations of the roughness of surfaces were performed using a WLC-profilometer. The Wilcoxon and the Mann-Whitney tests were used in statistical comparisons. U-surfaces showed that thin transverse ridges and grooves, i.e. a polarized surface roughness was substantially compromised after S-instrumentation. Small surface alterations, increasing with time, were also recorded after T-·and·P-instrumentation, although to a lesser degree. The gap of the fixture-abutment connection appeared almost completely clean after T-, clotted with titanium debris after S-, and clotted with plastic debris after P-treatment. The mean roughness (Ra) was unchanged after P-, significantly increased after S- and decreased after T-treatment, when compared with U. The Rz roughness-parameter, calculated along the fixture Y-axis, of S, T, and P resulted similar and significantly lower than that of U. Rz (X-axis) resulted unchanged after P-, slightly increased (+40%) after T-, and greatly increased (+260%) after S-treatment, this latter being statistically significant when compared with U. The careful use of titanium-curettes could produce only minimal smooth surface alteration particularly over prolonged treatments, and avoid debris production

  15. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  16. Analysis of Surface Characteristics of ProTaper Universal and ProTaper Next Instruments by Scanning Electron Microscopy.

    Science.gov (United States)

    Bennett, Jeffery; Chung, Kwok-Hung; Fong, Hanson; Johnson, James; Paranjpe, Avina

    2017-07-01

    Many new rotary files systems have been introduced, however, limited research has been conducted related to the surface irregularities of these files and if these have any effects on the files themselves. Hence, the aim of the present study was to analyze surface irregularities of the ProTaper® Universal rotary files (PTU) and the ProTaper Next™ rotary files (PTN) before and after instrumentation in curved canals. The main objective was to investigate the nature of these irregularities and how they might influence the use and fracture of rotary files during root-canal treatments. The files were examined pre-operatively using a stereomicroscope and scanning electron microscopy(SEM) to analyze surface imperfections and the presence of particles. Mesial roots of forty extracted mandibular molars were selected. Each instrument was used to prepare one of the mesial canals. The files were then rinsed with alcohol, and autoclaved and analyzed again. Of the 80 files used in this study, five files fractured, five files unwound and seven files were curved or bent and they all belonged to the PTU group. Irregularities and debris could be visualized with the SEM on both unused PTU and PTN files. Most of the debris was found associated with deeper milling grooves and defects on the surface of the metal. Surface analysis of the files that were used and sterilized were performed and the SEM images demonstrated organic debris, metal flash, and crack formation and initiation of fractures for both file types. All files showed machining grooves, metal flash, debris, and defects on cutting edges. These irregularities appear to be critical in the accumulation of debris and initiation of fatigue and crack propagation within the NiTi alloy. The accumulation of debris could be a concern due to the potential exchange of organic debris between patients. Key words: ProTaper® Universal, ProTaper Next™, surface characteristics, SEM.

  17. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results

    International Nuclear Information System (INIS)

    Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K.

    2014-01-01

    An integrated environmental cell has been designed and developed for the latest generation of Atom Probe Tomography LEAP™ instruments, allowing controlled exposure of samples to gases at high temperatures. Following treatment, samples can be transferred through the LEAP vacuum system for subsequent APT analysis, which provides detailed information on changes to chemical microstructures following the reactions with near-atomic resolution. A full description of the cell is presented, along with some sample results on the oxidation of aluminum and two platinum-group alloys, demonstrating the capability of combining exposure/characterization functionality in a single instrument. - Highlights: • Designed and built atom probe environmental cell for in situ reactions. • Investigated Al oxidation, and demonstrated improvement with new cell. • in situ APT analysis of Pt-alloys showed surface segregation of Rh and Ir

  18. TextureCam Field Test Results from the Mojave Desert, California: Autonomous Instrument Classification of Sediment and Rock Surfaces

    Science.gov (United States)

    Castano, R.; Abbey, W. J.; Bekker, D. L.; Cabrol, N. A.; Francis, R.; Manatt, K.; Ortega, K.; Thompson, D. R.; Wagstaff, K.

    2013-12-01

    TextureCam is an intelligent camera that uses integrated image analysis to classify sediment and rock surfaces into basic visual categories. This onboard image understanding can improve the autonomy of exploration spacecraft during the long periods when they are out of contact with operators. This could increase the number of science activities performed in each command cycle by, for example, autonomously targeting science features of opportunity with narrow field of view remote sensing, identifying clean surfaces for autonomous placement of arm-mounted instruments, or by detecting high value images for prioritized downlink. TextureCam incorporates image understanding directly into embedded hardware with a Field Programmable Gate Array (FPGA). This allows the instrument to perform the classification in real time without taxing the primary spacecraft computing resources. We use a machine learning approach in which operators train a statistical model of surface appearance using examples from previously acquired images. A random forest model extrapolates from these training cases, using the statistics of small image patches to characterize the texture of each pixel independently. Applying this model to each pixel in a new image yields a map of surface units. We deployed a prototype instrument in the Cima Volcanic Fields during a series of experiments in May 2013. We imaged each environment with a tripod-mounted RGB camera connected directly to the FPGA board for real time processing. Our first scenario assessed ground surface cover on open terrain atop a weathered volcanic flow. We performed a transect consisting of 16 forward-facing images collected at 1m intervals. We trained the system to categorize terrain into four classes: sediment, basalt cobbles, basalt pebbles, and basalt with iron oxide weathering. Accuracy rates with regards to the fraction of the actual feature that was labeled correctly by the automated system were calculated. Lower accuracy rates were

  19. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  20. Overall analysis of meteorological information in the Daeduk nuclear complex

    International Nuclear Information System (INIS)

    Kim, Eun Han; Lee, Yung Bok; Han, Moon Heui; Suh, Kyung Suk; Hwang Won Tae

    1995-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity, at 67 m, 27 m, and 10 m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, N and NW in autumn and winter season. The calm distributed 13.6% at 67 m, 24.5% at 27 m, 40.8% at 10 m height. 4 figs, 9 tabs, 6 refs. (Author)

  1. Overall analysis of meteorological information in the Daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Seo, Kyung Seok; Hwang, Wan Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, NNW in winter season. The calm distributed 28.6% at 67m, 20.5% at 27m, 39.2% at 10m height. 9 tabs., 4 figs., 6 refs. (Author).

  2. Overall analysis of meteorological information in the Daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Han; Lee, Yung Bok; Han, Moon Heui; Suh, Kyung Suk; Tae, Hwang Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity, at 67 m, 27 m, and 10 m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, N and NW in autumn and winter season. The calm distributed 13.6% at 67 m, 24.5% at 27 m, 40.8% at 10 m height. 4 figs, 9 tabs, 6 refs. (Author).

  3. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  4. French Frigate Shoals, NWHI, 2005 Sea Surface Temperature and Meteorological Enhanced (Iridium) Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site - French Frigate Shoals, NWHI (23.85678, -166.27183 ) ARGOS ID 261-003 Time series data from this mooring provide high resolution sea surface temperature, and...

  5. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  6. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  7. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  8. Analysis and initialisation of starting meteorologic information and parameters of effluents of sources of harmful substances of Karachaganak petroleum condensate deposit

    International Nuclear Information System (INIS)

    Ajdosov, A.; Zaurbekova, N.D.

    1999-01-01

    Initial meteorologic information for mathematical simulation conducting is presented in form of standard meteorologic tables for district of the gas condensate deposit. Analysis of meteorologic data confirms the hypothesis about horizontal heterogeneity of meteorologic regime above near Earth surface in the region and allows to carry out typification of principal meteorologic situation by year seasons

  9. Analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

    International Nuclear Information System (INIS)

    Kutnik, P.

    2004-01-01

    In this presentation author deals with the analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

  10. Women in Meteorology.

    Science.gov (United States)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  11. Temperature, salinity and other variables collected from underway - surface observations using PAR Sensor and other instruments from the AURORA AUSTRALIS, NOAA Ship DISCOVERER and others in the Bering Sea, Caribbean Sea and others from 1994-01-28 to 2004-07-02 (NODC Accession 0109923)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109923 includes biological, chemical, meteorological, physical and underway - surface data collected from AURORA AUSTRALIS, NOAA Ship DISCOVERER,...

  12. Instrumental studies on silicone oil adsorption to the surface of intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Ho [Lab. of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Joo, Choun-Ki [Department of Ophthalmology and Visual Science, Medical College of Catholic University, Seoul 137-701 (Korea, Republic of); Chun, Heung Jae, E-mail: chunhj@catholic.ac.kr [Institute of Cell and Tissue Engineering, Medical College of Catholic University, Seoul 137-701 (Korea, Republic of); Yoo, Bok Ryul [Organosilicone Chemistry Laboratory, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Noh, Dong Il; Shim, Young Bock [Research Institute of Biomedical Engineering, Korea Bone Bank Co. Ltd., Seoul 153-782 (Korea, Republic of)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer It was found that PHEMA and Acrysof IOLs possess silicone oil repellant ability. Black-Right-Pointing-Pointer The residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. Black-Right-Pointing-Pointer XPS studies showed that silicone oil coverage of PMMA lenses was 12%. Black-Right-Pointing-Pointer Silicone oil covered the entire surface of the silicone IOLs. - Abstract: The purpose of this study was to examine the degree of adherence of silicone oil to various intraocular lenses (IOLs) through comparison of the physico-chemical properties of the oil and IOLs. Four kinds of IOLs comprising various biomaterials were examined: PMMA (720A Trade-Mark-Sign ), PHEMA (IOGEL 1103 Trade-Mark-Sign ), Acrysof (MA60BM Trade-Mark-Sign ), and silicone (SI30NB Trade-Mark-Sign ). Each lens was immersed in silicone oil or carboxylated silicone (CS-PDMS) oil for 72 h. For determination of the changes in chemical and elemental compositions on the surfaces of IOLs caused by the contact with silicone oil, IOLs were washed and rinsed with n-pentane to remove as much of the adsorbed silicone oil as possible, then subjected to Fourier transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) analyses. The results of FTIR studies strongly indicate that washing with n-pentane completely removed the adhered silicone oil on the surfaces of PHEMA and Acrysof IOLs, whereas the residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. XPS studies showed that silicone oil coverage of PMMA lenses was 12%, even after washing with n-pentane. In the case of silicone IOLs, the relative O1s peak area of carboxyl group in the residual CS-PDMS oil was found to be {approx}2.7%. Considering that 2.8% carboxyl group-substituted silicone oil was used in the present study, CS-PDMS oil covered the entire surface of the silicone IOLs.

  13. Internal variability of fine-scale components of meteorological fields in extended-range limited-area model simulations with atmospheric and surface nudging

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei

    2015-09-01

    Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.

  14. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  15. Meteorological experiments for emergency preparedness. part 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Nicolli, D.

    1993-12-01

    Since the preliminary studies for the Angra dos Reis Nuclear Power Plant (NPP) siting, by an American consultant company, it was verified that the micro scale and mesoscale meteorological conditions in the region show a unique complex pattern, so that no similar nuclear installation site could be found for reference. Therefore, it was recommended to install onsite a correspondingly complex meteorological data acquisition system which comprises a 100-meter tower with instruments at three different levels and three 15-meter satellite towers on the hills around. In this report, are described the equipment and instruments sent by the IAEA to CNEN as well as the procedures and particular computer programming developed by the staff. It is also reported on the bureaucratic problems and meager budget allocation for the Project which delayed the installation of the two meteorological stations and hindered the implementation of the Project. The equipment for the atmospheric boundary layer sounding were used for the first time in September 1993, when CNEN provided some resource for the purchase of gas and batteries. The first atmospheric sounding campaign showed the occurrence of strong night winds and intense thermal inversion at the higher level of the boundary layer, until now unknown by the Brazilian meteorologists. By way of this report, the staff of meteorologists tries to show the status of Project BRA/09/031 and the know-how gained with it. (author)

  16. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields During Boreal Summer: A Comprehensive Analysis over North America

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.

    2016-01-01

    We perform a series of stationary wave model (SWM) experiments in which the boreal summer atmosphere is forced, over a number of locations in the continental U.S., with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-mb eddy streamfunction) is largely the same: a high anomaly forms over west central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, we find similar results; imposing soil moisture dryness in the AGCM in different locations within the US interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi Valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the US-Canada border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.

  17. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure using a laser sensor

    Science.gov (United States)

    Van Berkel, Gary J [Clinton, TN; Kertesz, Vilmos [Knoxville, TN

    2012-02-21

    A system and method utilizes distance-measuring equipment including a laser sensor for controlling the collection instrument-to-surface distance during a sample collection process for use, for example, with mass spectrometric detection. The laser sensor is arranged in a fixed positional relationship with the collection instrument, and a signal is generated by way of the laser sensor which corresponds to the actual distance between the laser sensor and the surface. The actual distance between the laser sensor and the surface is compared to a target distance between the laser sensor and the surface when the collection instrument is arranged at a desired distance from the surface for sample collecting purposes, and adjustments are made, if necessary, so that the actual distance approaches the target distance.

  18. GADEP Continuous PM2.5 mass concentration data, VIIRS Day Night Band SDR (SVDNB), MODIS Terra Level 2 water vapor profiles (infrared algorithm for atmospheric profiles for both day and night, NWS surface meteorological data

    Science.gov (United States)

    Data descriptions are provided at the following urls:GADEP Continuous PM2.5 mass concentration data - https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.htmlhttps://www3.epa.gov/ttn/amtic/files/ambient/pm25/qa/QA-Handbook-Vol-II.pdfVIIRS Day Night Band SDR (SVDNB) http://www.class.ngdc.noaa.gov/saa/products/search?datatype_family=VIIRS_SDRMODIS Terra Level 2 water vapor profiles (infrared algorithm for atmospheric profiles for both day and night -MOD0&_L2; http://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html NWS surface meteorological data - https://www.ncdc.noaa.gov/isdThis dataset is associated with the following publication:Wang, J., C. Aegerter, and J. Szykman. Potential Application of VIIRS Day/Night Band for Monitoring Nighttime Surface PM2.5 Air Quality From Space. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 124(0): 55-63, (2016).

  19. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  20. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Henry B. Bigelow in the North Atlantic Ocean, US North-East coast in 2017 (NCEI Accession 0162290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2011, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an instrument to measure CO2 levels in...

  1. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Equinox in the Caribbean Sea and North Atlantic Ocean in 2017 (NCEI Accession 0161868)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2015, the Ocean Carbon Group at NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an autonomous instrument to measure CO2 levels in...

  2. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP C/S Allure of the Seas in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean in 2017 (NCEI Accession 0161619)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2015, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an autonomous instrument to measure CO2 levels in...

  3. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Henry B. Bigelow in the North Atlantic Ocean, US North East coast from 2014-03-29 to 2014-11-13 (NCEI Accession 0162228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2011, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an instrument to measure CO2 levels in...

  4. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Henry B. Bigelow in the North Atlantic Ocean, US North East coast from 2013-03-14 to 2013-11-19 (NCEI Accession 0162209)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2011, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an instrument to measure CO2 levels in...

  5. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  6. Meteorology ans solar physics

    Science.gov (United States)

    Schwarz, Oliver

    When in the second half of the 19th century both solar physics and astrophysics came into existence, various solar phenomena were described by analogies encountered in the terrestrial atmosphere. For a certain time, meteorology played a central role in research on solar processes. At first glance, this may appear as a curious and old-fashioned specialty. However, solar physics owes its first insights into solar structure to various analogies in terrestrial atmospheric studies. The present investigation intends to elucidate this fact, to present details of the historical development, and to demonstrate how our present knowledge in certain fields is based on considerations which were originally taken from the description of the terrestrial atmosphere.

  7. Meteorology as an infratechnology

    Science.gov (United States)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  8. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  9. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam.

    Science.gov (United States)

    Amato, A; Luetkens, H; Sedlak, K; Stoykov, A; Scheuermann, R; Elender, M; Raselli, A; Graf, D

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  10. Development of a Novel Multispectral Instrument for Handheld and UAS Measurements of Surface Albedo; First Applications for Glaciers in the Peruvian Andes and for Nevada's Black Rock Desert

    Science.gov (United States)

    Boehmler, J. M.; Stevens, C.; Arnott, W. P.; Watts, A.; All, J.; Schmitt, C. G.

    2017-12-01

    Accurate atmospheric aerosol characteristics derived from satellite measurements are needed over a variety of land surfaces. Nonhomogeneous and bright surface reflectance across California and Nevada may be a contributing factor in the discrepancies observed between ground based and satellite-retrieved atmospheric aerosol optical depth (AOD). We developed and deployed a compact and portable instrument to measure albedo to evaluate a major factor that influences the accuracy of AOD retrievals. The instrument will be operated on an unmanned aircraft system (UAS) to control areal averaging for comparison with satellite derived albedo from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS). A handheld version of the instrument was mounted on a trekking pole and used for obtaining in situ glacier albedo measurements in the Cordillera Blanca of Peru during the summer of 2017. The instrument weighs approximately 433 g and consists of two parts, a mountable, payload portion (300 g) which houses the sensors, and a handheld screen (133 g) to display real-time data from the payload portion. Both parts are powered by a 9V battery and run on a Teensy 3.6/3.2 microcontroller. To retrieve albedo, two micro-spectrometers manufactured by Hamamatsu Photonics, each with a spectral range of 340 -780 nm, are utilized; one for obtaining the downwelling solar radiation and the other for measuring the solar radiation reflected from the surface. Additional components on the instrument include temperature, pressure and humidity sensors with a one second time response; a GPS for position and altitude; an infrared sensor to measure ground temperature; a digital level and compass for orienting the instrument; a camera for taking photos of the sky and surface; a radio for two-way communication between the screen display and sensor payload; and a micro SD card for recording data. We will present the instrument design along with surface albedo measurements for glaciers of the Peruvian

  11. design, construction and evaluation of a meteorological mobile mast

    African Journals Online (AJOL)

    Vincent

    gathering meteorological information through the use of radiosondes [3]. Earlier measurements of wind and air pressure were done by launching balloons which climb through the denser air close to the earth to the thinner air in the upper atmosphere and the instruments carried collect data about wind in the different layers ...

  12. Communicating meteorology through popular music

    Science.gov (United States)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  13. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  14. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  15. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  16. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment

    DEFF Research Database (Denmark)

    Schofield, J.T.; Barnes, J.R.; Crisp, D.

    1997-01-01

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24...

  17. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  18. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  19. urf e meteorologi l instrument tion for fyfwi

    Indian Academy of Sciences (India)

    g uge on o rd the shipAF prom t les P nd Q we see th t y nd l rgeD the slow sensors sele ted for fyfwi re the s me s those used in the swi system ex ept the humidity sensorF sn the swi. systemD otroni s humidity sensor is used long with w oung r di tion shield where s in the fyfwi set upD w oung humidity sensor with w oung.

  20. Meteorological tracers in regional planning

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1974-11-01

    Atmospheric tracers can be used as indicators to study both the ventilation of an urban region and its dispersion meteorology for air pollutants. A correlation analysis applied to the space-time dependent tracer concentrations is able to give transfer functions, the structure and characteristic parameters of which describe the meteorological and topographical situation of the urban region and its surroundings in an integral manner. To reduce the number of persons usually involved in a tracer experiment an automatic air sampling system had to be developed

  1. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  2. Polarimetry of light scattered by surface roughness and textured films and periodic structures in nanotechnologies: a new challenge in instrumentation and modeling

    Directory of Open Access Journals (Sweden)

    Ferrieu. F.

    2010-06-01

    Full Text Available Exhaustive studies in the literature detail the Mueller matrices properties through decomposition, optical entropy and depolarization formalism. It has been applied for many years in rather different fields. In radar polarimetry, mathematical basis of depolarizing systems, have been first developed. In the visible range optics, standard diattenuation and retardance, decomposition is currently used in turbid organic media. The optical entropy concept, developed by S.R. Cloude, provides a very powerful analysis technique yielding important surface parameters such as depolarization, correlation and roughness. Complementary applications exist in scatterometry, for thin periodic grating films. With high capability polarimeters, such as the next generation of angle resolved polarimeters instruments, Polarimetry opens new fields of investigation for nanotechnologies materials as well as for gratings and photonics structures analysis: a program presently developed through a national consortium ANR08-NANO-020-03. With this instrumentation progress, simulation remains a key point to overpass as a challenge between future instruments. The theories for surfaces spectral power density (PSD and the random coupled wave approximation (RCWA in periodic structures are widely described in the literature. The implementation of some of these codes is described here for surface analysis and lithography scatterometry structures: grating overlay or double patterning.

  3. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  4. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters of Florida and North Atlantic Ocean from 2012-01-27 to 2012-11-24 (NODC Accession 0108232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108232 includes Surface underway, chemical, meteorological and physical data collected from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2011-01-04 to 2011-11-22 (NCEI Accession 0157263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157263 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and South Pacific Ocean from 2010-01-06 to 2010-09-17 (NODC Accession 0115170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115170 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-06-02 to 2013-06-05 (NCEI Accession 0157234)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157234 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-06-02 to...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-08-03 to 2013-08-21 (NCEI Accession 0157420)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157420 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-08-03 to...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-13 to 2012-09-25 (NCEI Accession 0157385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157385 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-11-13 to 2012-11-15 (NCEI Accession 0157309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157309 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-11-13 to...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-10-19 to 2012-10-20 (NCEI Accession 0157401)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157401 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-10-19 to...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea and South Atlantic Ocean from 2013-07-28 to 2013-07-31 (NCEI Accession 0157362)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157362 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea and South Atlantic Ocean...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-11-17 to 2012-12-01 (NCEI Accession 0157330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157330 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-11-17 to...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-06-08 to 2013-06-17 (NCEI Accession 0157288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157288 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-06-08 to...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-04-09 to 2012-04-14 (NCEI Accession 0157299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157299 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-04-09 to...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-10-06 to 2013-10-08 (NCEI Accession 0157364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157364 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-10-06 to...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel and North Atlantic Ocean from 2012-03-24 to 2012-04-07 (NCEI Accession 0157273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157273 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel and North Atlantic...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-10-07 to 2012-10-17 (NCEI Accession 0157324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157324 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-10-07 to...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-09-10 to 2013-10-02 (NCEI Accession 0157366)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157366 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-03-10 to 2012-03-14 (NCEI Accession 0157343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157343 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-03-10 to...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-04-24 to 2012-04-25 (NCEI Accession 0157270)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157270 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-04-24 to...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-09-10 to 2012-09-12 (NCEI Accession 0157400)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157400 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-09-10 to...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-05-28 to 2012-05-30 (NCEI Accession 0157384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157384 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-05-28 to...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-12-01 to 2012-12-04 (NCEI Accession 0157318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157318 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-12-01 to...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2009-01-04 to 2009-02-09 (NODC Accession 0108227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108227 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1968-11-16 to 2007-12-31 (NODC Accession 0101726)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0101726 includes Surface underway, chemical, meteorological and physical data collected from unknown platforms in the world-wide oceans from...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1996-10-21 to 1996-11-23 (NCEI Accession 0157233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157233 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the Alboran Sea, Balearic Sea and others from 2015-02-26 to 2016-01-05 (NCEI Accession 0157253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157253 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the Alboran Sea, Balearic (or Iberian) Sea,...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1997-02-02 to 1997-02-17 (NCEI Accession 0157416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157416 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Santa Cruz in the English Channel, North Atlantic Ocean and others from 2014-01-17 to 2014-02-28 (NCEI Accession 0157404)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157404 includes Surface underway, chemical, meteorological and physical data collected from Santa Cruz in the English Channel, North Atlantic Ocean,...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2011-01-15 to 2011-02-18 (NODC Accession 0114448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114448 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the KEIFU MARU in the East China Sea (Tung Hai), North Pacific Ocean and others from 2001-01-20 to 2011-03-22 (NODC Accession 0081044)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0081044 includes chemical, meteorological, physical and underway - surface data collected from KEIFU MARU in the East China Sea (Tung Hai), North...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Atlantic Ocean, North Pacific Ocean and South Atlantic Ocean from 2011-06-10 to 2011-12-06 (NCEI Accession 0157428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157428 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Atlantic Ocean, North Pacific...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Pacific Ocean from 2012-06-25 to 2012-10-21 (NCEI Accession 0157435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157435 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Pacific Ocean from 2012-06-25...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from SOYO-MARU in the North Pacific Ocean, Philippine Sea and South Atlantic Ocean from 2012-04-10 to 2012-11-30 (NCEI Accession 0157371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157371 includes Surface underway, chemical, meteorological and physical data collected from SOYO-MARU in the North Pacific Ocean, Philippine Sea and...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the USS BOLD in the Gulf of Mexico from 2006-06-06 to 2006-09-11 (NODC Accession 0117493)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117493 includes Surface underway, chemical, meteorological and physical data collected from USS BOLD in the Gulf of Mexico from 2006-06-06 to...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the CAPE HATTERAS in the Gulf of Mexico from 2009-01-09 to 2010-03-21 (NODC Accession 0115765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115765 includes chemical, meteorological, physical and underway - surface data collected from CAPE HATTERAS in the Gulf of Mexico from 2009-01-09 to...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the JAMES CLARK ROSS in the Arctic Ocean, Barents Sea and others from 2012-11-15 to 2013-08-16 (NODC Accession 0115256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115256 includes chemical, meteorological, physical and underway - surface data collected from JAMES CLARK ROSS in the Arctic Ocean, Barents Sea,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2006-12-31 (NCEI Accession 0157276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157276 includes Surface underway, chemical, meteorological and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2010-01-06 to 2010-12-08 (NCEI Accession 0157308)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157308 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of Florida and others from 2006-02-16 to 2006-12-02 (NODC Accession 0081021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081021 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea,...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from CONTSHIP WASHINGTON in the North Pacific Ocean and South Pacific Ocean from 2007-09-22 to 2007-11-10 (NODC Accession 0080968)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080968 includes Surface underway, chemical, meteorological and physical data collected from CONTSHIP WASHINGTON in the North Pacific Ocean and South...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship McARTHUR II in the Coastal Waters of SE Alaska, Cordell Bank National Marine Sanctuary and others from 2007-06-05 to 2007-07-26 (NODC Accession 0109934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109934 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship McARTHUR II in the Coastal Waters of SE...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Arabian Sea, Gulf of Aden and others from 1999-10-18 to 1999-11-01 (NCEI Accession 0157283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157283 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Arabian Sea, Gulf of...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Atlantic Companion in the Inner Sea - West Coast Scotland, Irish Sea and St. George's Channel and North Atlantic Ocean from 2006-06-11 to 2007-11-05 (NODC Accession 0115226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115226 includes chemical, meteorological, physical and underway - surface data collected from Atlantic Companion in the Inner Sea - West Coast...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 1998-01-21 to 1998-12-28 (NODC Accession 0081003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081003 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean and Southern...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean from 2008-01-05 to 2008-02-05 (NODC Accession 0081001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081001 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NODC Accession 0108084)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108084 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from MIRAI in the Coral Sea, North...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the Hawaiian Islands Humpback Whale National Marine Sanctuary, North Pacific Ocean and South Pacific Ocean from 2008-02-02 to 2008-11-16 (NODC Accession 0081043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081043 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the Hawaiian Islands Humpback...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1968-11-16 to 2011-12-31 (NCEI Accession 0157631)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157631 includes Surface underway, chemical, meteorological, navigational and physical data collected from unknown platforms in the world-wide oceans...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the Alboran Sea, English Channel and others from 2010-03-30 to 2011-01-02 (NCEI Accession 0157320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157320 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the Alboran Sea, English Channel, Ligurian...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the English Channel and North Atlantic Ocean from 2011-01-07 to 2011-01-17 (NCEI Accession 0157367)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157367 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the English Channel and North Atlantic...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel and North Sea from 2013-07-11 to 2013-07-23 (NCEI Accession 0157281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157281 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel and North Sea from...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the English Channel and North Atlantic Ocean from 2016-01-07 to 2016-05-30 (NCEI Accession 0160554)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160554 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the English Channel and North Atlantic...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel, North Atlantic Ocean and North Sea from 2013-10-12 to 2013-10-22 (NCEI Accession 0157304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157304 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel, North Atlantic...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Cap San Lorenzo in the English Channel, North Atlantic Ocean and South Atlantic Ocean from 2016-01-29 to 2016-07-27 (NCEI Accession 0160551)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160551 includes Surface underway, chemical, meteorological and physical data collected from Cap San Lorenzo in the English Channel, North Atlantic...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-05-08 to 2013-05-28 (NCEI Accession 0157373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157373 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-04-19 to 2013-05-08 (NCEI Accession 0157305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157305 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-27 to 2012-10-04 (NCEI Accession 0157267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157267 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Cap San Lorenzo in the English Channel, Mediterranean Sea and others from 2015-02-28 to 2015-12-16 (NCEI Accession 0157377)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157377 includes Surface underway, chemical, meteorological and physical data collected from Cap San Lorenzo in the English Channel, Mediterranean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel, North Atlantic Ocean and North Sea from 2012-02-18 to 2012-02-29 (NCEI Accession 0157300)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157300 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel, North Atlantic...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-02-03 to 2013-02-13 (NCEI Accession 0157382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157382 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-10-23 to 2012-11-09 (NCEI Accession 0157241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157241 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  5. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the METEOR in the English Channel, Indian Ocean and others from 1994-10-12 to 1994-11-12 (NODC Accession 0115605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115605 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the English Channel, Indian Ocean, North...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the XUE LONG in the Bali Sea, Celebes Sea and others from 2007-11-12 to 2008-04-12 (NODC Accession 0108235)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108235 includes chemical, meteorological, physical and underway - surface data collected from XUE LONG in the Bali Sea, Celebes Sea, East China Sea...

  7. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the Adriatic Sea, Aegean Sea and others from 2012-01-01 to 2012-12-31 (NODC Accession 0059946)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0059946 includes Surface underway, chemical, meteorological and physical data collected from unknown platforms in the Adriatic Sea, Aegean Sea,...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Andaman Sea or Burma Sea, Bali Sea and others from 2016-02-08 to 2016-09-22 (NCEI Accession 0160548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160548 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Andaman Sea or Burma Sea, Bali Sea,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship DAVID STARR JORDAN in the Gulf of California and North Pacific Ocean from 2006-08-06 to 2006-12-07 (NODC Accession 0084176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0084176 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship DAVID STARR JORDAN in the Gulf of California...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of Florida and others from 2003-02-06 to 2003-11-21 (NODC Accession 0081017)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081017 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea,...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the XUE LONG in the Arctic Ocean, Beaufort Sea and Bering Sea from 2008-07-30 to 2008-09-11 (NODC Accession 0109932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109932 includes chemical, meteorological, physical and underway - surface data collected from XUE LONG in the Arctic Ocean, Beaufort Sea and Bering...

  12. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from AEGAEO in the Aegean Sea and Mediterranean Sea from 2006-02-08 to 2006-02-13 (NODC Accession 0084543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0084543 includes Surface underway, chemical, meteorological and physical data collected from AEGAEO in the Aegean Sea and Mediterranean Sea from...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the ROGER REVELLE in the Bay of Bengal and Indian Ocean from 2007-03-22 to 2007-04-28 (NODC Accession 0108120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108120 includes biological, chemical, meteorological, physical and underway - surface data collected from ROGER REVELLE in the Bay of Bengal and...

  14. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from SKOGAFOSS in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2007-01-07 to 2007-06-04 (NODC Accession 0112887)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112887 includes Surface underway, chemical, meteorological and physical data collected from SKOGAFOSS in the North Atlantic Ocean and Stellwagen Bank...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RYOFU MARU in the Bismarck Sea, North Pacific Ocean and others from 1983-01-19 to 1989-02-06 (NODC Accession 0080988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080988 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, North Pacific Ocean,...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from S.A. AGULHAS II in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2012-12-06 to 2014-02-11 (NCEI Accession 0160546)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160546 includes Surface underway, chemical, meteorological and physical data collected from S.A. AGULHAS II in the Gulf of Guinea, North Atlantic...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from COLUMBUS WAIKATO in the Bass Strait, North Pacific Ocean and others from 2004-03-03 to 2006-01-15 (NODC Accession 0080979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080979 includes Surface underway, chemical, meteorological and physical data collected from COLUMBUS WAIKATO in the Bass Strait, North Pacific Ocean,...

  18. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2003-11-20 to 2003-12-21 (NODC Accession 0112929)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112929 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the North Atlantic Ocean and Stellwagen...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean and others from 2012-04-11 to 2012-07-25 (NODC Accession 0115295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115295 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean, South...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from WECOMA in the Cordell Bank National Marine Sanctuary, Gulf of the Farallones National Marine Sanctuary and others from 2011-08-12 to 2011-08-30 (NCEI Accession 0157448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157448 includes Surface underway, chemical, meteorological and physical data collected from WECOMA in the Cordell Bank National Marine Sanctuary,...

  1. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from METEOR in the North Atlantic Ocean from 1996-06-06 to 1996-06-19 (NCEI Accession 0157375)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157375 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the North Atlantic Ocean from 1996-06-06 to...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Atlantic Cartier in the Inner Sea - West Coast Scotland, Irish Sea and St. George's Channel and North Atlantic Ocean from 2015-09-12 to 2015-12-22 (NCEI Accession 0157236)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157236 includes Surface underway, chemical, meteorological and physical data collected from Atlantic Cartier in the Inner Sea - West Coast Scotland,...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2003-02-08 to 2004-01-03 (NODC Accession 0081032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0081032 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-09-23 to 1994-10-30 (NCEI Accession 0157463)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157463 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2005-01-02 to 2005-12-18 (NODC Accession 0109924)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109924 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Atlantic Ocean and others from 2009-01-18 to 2009-07-17 (NCEI Accession 0157383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157383 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Atlantic Ocean, North...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2015-01-10 to 2015-11-01 (NCEI Accession 0157329)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157329 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2012-12-18 to 2014-01-02 (NCEI Accession 0157271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157271 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Bass Strait, Coral Sea and others from 2008011 to 2010-10-31 (NODC Accession 0115181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115181 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Bass Strait, Coral Sea, Great...

  10. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RYOFU MARU in the Bismarck Sea, East China Sea and others from 1989-11-17 to 1992-03-09 (NCEI Accession 0157056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157056 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, East China Sea (Tung...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Atlantic Companion in the Inner Sea - West Coast Scotland, Irish Sea and St. George's Channel and others from 2012-03-17 to 2012-12-06 (NCEI Accession 0157280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157280 includes Surface underway, chemical, meteorological and physical data collected from Atlantic Companion in the Inner Sea - West Coast...

  12. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from unknown platforms in the Andaman Sea or Burma Sea, Arabian Sea and others from 1957-10-21 to 1963-08-15 (NCEI Accession 0157734)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157734 includes Surface underway, chemical, meteorological and physical data collected from unknown platforms in the Andaman Sea or Burma Sea,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2013-02-10 to 2013-03-09 (NODC Accession 0116410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116410 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2012-01-25 to 2012-03-07 (NODC Accession 0116411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116411 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  15. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HUDSON, KNORR and others in the Alboran Sea, Arabian Sea and others from 1977-11-07 to 1990-04-16 (NODC Accession 9400165)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 9400165 includes Surface underway, chemical, meteorological and physical data collected from HUDSON, KNORR, NOAA Ship MALCOLM BALDRIGE, MELVILLE,...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2009-12-24 to 2010-01-22 (NODC Accession 0108228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108228 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  17. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the POLARSTERN in the North Atlantic Ocean and South Atlantic Ocean from 1995-11-09 to 1995-12-01 (NODC Accession 0112941)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112941 includes chemical, meteorological, physical and underway - surface data collected from POLARSTERN in the North Atlantic Ocean and South...

  18. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from POLARSTERN in the North Atlantic Ocean, South Atlantic Ocean and others from 2016-02-20 to 2016-05-08 (NCEI Accession 0160572)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160572 includes Surface underway, chemical and meteorological data collected from POLARSTERN in the North Atlantic Ocean, South Atlantic Ocean, South...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the North Atlantic Ocean, North Greenland Sea and Stellwagen Bank National Marine Sanctuary from 2006-03-15 to 2007-01-04 (NODC Accession 0112932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112932 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the North Atlantic Ocean, North Greenland...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the Gulf of St. Lawrence, Labrador Sea and others from 2005-01-07 to 2005-12-06 (NODC Accession 0112931)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112931 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the Gulf of St. Lawrence, Labrador Sea,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from SOGEN MARU in the North Pacific Ocean and Philippine Sea from 1991-10-08 to 1991-12-31 (NODC Accession 0080991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080991 includes Surface underway, chemical, meteorological and physical data collected from SOGEN MARU in the North Pacific Ocean and Philippine Sea...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from RYOFU MARU in the Bismarck Sea, North Pacific Ocean and others from 1983-01-19 to 1989-02-06 (NCEI Accession 0157286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157286 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, North Pacific Ocean,...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Hakuho Maru in the Bali Sea, Bismarck Sea and others from 1968-11-16 to 1988-03-23 (NODC Accession 0080981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080981 includes Surface underway, chemical, meteorological and physical data collected from Hakuho Maru in the Bali Sea, Bismarck Sea, Celebes Sea...

  4. Dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC) and other instruments from SHIRASE in the Bali Sea, Celebes Sea and others from 1992-11-15 to 1993-03-20 (NODC Accession 0080990)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080990 includes Surface underway, chemical, meteorological and physical data collected from SHIRASE in the Bali Sea, Celebes Sea (Sulawesi Sea and...

  5. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from Hakuho Maru in the Bismarck Sea, Coral Sea and others from 1990-09-03 to 2002-01-21 (NODC Accession 0080982)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080982 includes Surface underway, chemical, meteorological and physical data collected from Hakuho Maru in the Bismarck Sea, Coral Sea, Indian Ocean,...

  6. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from THOMAS G. THOMPSON in the Bismarck Sea, Coral Sea and others from 1993-10-05 to 1993-11-10 (NODC Accession 0115019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115019 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from THOMAS G. THOMPSON in the...

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the KNORR in the North Atlantic Ocean and South Atlantic Ocean from 1994-04-03 to 1994-05-21 (NODC Accession 0115002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115002 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from KNORR in the North Atlantic...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using gas chromatograph and other instruments from the LILLOOET in the Coastal Waters of SE Alaska, Coral Sea and others from 1988-02-04 to 1988-02-20 (NODC Accession 0000439)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0000439 includes chemical, meteorological, physical and underway - surface data collected from LILLOOET in the Coastal Waters of SE Alaska, Coral Sea,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-11-05 to 1994-11-29 (NCEI Accession 0157470)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157470 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Arabian Sea, Bali Sea and others from 1991-01-05 to 1993-08-08 (NCEI Accession 0157100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157100 includes Surface underway, chemical, meteorological and physical data collected from MARION DUFRESNE in the Arabian Sea, Bali Sea, Gulf of...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2014-01-02 to 2015-07-15 (NCEI Accession 0157240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157240 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2011-06-17 to 2012-01-04 (NCEI Accession 0157242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157242 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, Barents Sea, Kara Sea,...

  13. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Adriatic Sea, Aegean Sea and others from 2014-03-09 to 2015-01-31 (NCEI Accession 0160489)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160489 includes Surface underway, chemical and meteorological data collected from POLARSTERN in the Adriatic Sea, Aegean Sea, Alboran Sea, Arabian...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship MALCOLM BALDRIGE in the Arabian Sea, Arafura Sea and others from 1995-02-13 to 1996-01-29 (NCEI Accession 0157103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157103 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship MALCOLM BALDRIGE in the Arabian Sea,...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from METEOR in the Arabian Sea, Gulf of Oman and Indian Ocean from 1995-07-14 to 1995-08-14 (NCEI Accession 0157410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157410 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the Arabian Sea, Gulf of Oman and Indian Ocean...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the KNORR in the Andaman Sea or Burma Sea, Arabian Sea and others from 1994-12-01 to 1996-01-21 (NODC Accession 0115589)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115589 includes chemical, meteorological, physical and underway - surface data collected from KNORR in the Andaman Sea or Burma Sea, Arabian Sea, Bay...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from THALASSA in the North Atlantic Ocean from 2012-08-19 to 2012-09-10 (NODC Accession 0117712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117712 includes Surface underway, chemical, meteorological and physical data collected from THALASSA in the North Atlantic Ocean from 2012-08-19 to...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the KNORR in the North Atlantic Ocean from 2011-06-28 to 2011-07-13 (NODC Accession 0117690)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117690 includes Surface underway, chemical, meteorological and physical data collected from KNORR in the North Atlantic Ocean from 2011-06-28 to...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Natalie Schulte in the Bass Strait, North Pacific Ocean and others from 2010-10-01 to 2012-06-21 (NODC Accession 0108233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108233 includes Surface underway, chemical, meteorological and physical data collected from Natalie Schulte in the Bass Strait, North Pacific Ocean,...

  1. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from unknown platforms in the North Atlantic Ocean and South Atlantic Ocean from 1997-06-19 to 1997-09-16 (NCEI Accession 0157739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157739 includes Surface underway, chemical, meteorological, optical and physical data collected from unknown platforms in the North Atlantic Ocean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POSEIDON in the North Atlantic Ocean from 2010-05-31 to 2015-04-07 (NCEI Accession 0157471)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157471 includes Surface underway, chemical, meteorological and physical data collected from POSEIDON in the North Atlantic Ocean from 2010-05-31 to...

  3. Partial pressure (or fugacity) of carbon dioxide, temperature, and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean from 2008-01-08 to 2009-01-07 (NCEI Accession 0162251)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162251 includes Surface underway, chemical, meteorological and physical data collected from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean...

  4. Partial pressure (or fugacity) of carbon dioxide, temperature, and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean in 2016 (NCEI Accession 0165355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165355 includes surface underway, chemical, meteorological and physical data collected from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean...

  5. Partial pressure (or fugacity) of carbon dioxide, temperature, and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean in 2015 (NCEI Accession 0165353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165353 includes surface underway, chemical, meteorological and physical data collected from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2015-01-08 to 2015-08-27 (NCEI Accession 0160490)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160490 includes Surface underway, chemical, meteorological and physical data collected from Benguela Stream in the Caribbean Sea, English Channel and...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2016-01-08 to 2016-01-21 (NCEI Accession 0160553)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160553 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from Kaiyo in the Bismarck Sea, Celebes Sea and others from 1994-01-06 to 1999-11-21 (NODC Accession 0080984)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080984 includes Surface underway, chemical, meteorological and physical data collected from Kaiyo in the Bismarck Sea, Celebes Sea (Sulawesi Sea and...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from BARCELONA EXPRESS in the Alboran Sea, Balearic Sea and others from 2010-03-02 to 2011-01-05 (NCEI Accession 0157298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157298 includes Surface underway, chemical, meteorological and physical data collected from BARCELONA EXPRESS in the Alboran Sea, Balearic (or...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Pyxis in the Bering Sea, Caribbean Sea and others from 2001-11-06 to 2013-04-25 (NODC Accession 0081041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081041 includes Surface underway, chemical, meteorological and physical data collected from Pyxis in the Bering Sea, Caribbean Sea, Coastal Waters of...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from S.A. AGULHAS II in the Gulf of Guinea, Indian Ocean and others from 2014-12-05 to 2016-02-10 (NCEI Accession 0160549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160549 includes Surface underway, chemical, meteorological and physical data collected from S.A. AGULHAS II in the Gulf of Guinea, Indian Ocean,...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the METEOR in the South Atlantic Ocean from 1992-12-27 to 1993-01-31 (NODC Accession 0115173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115173 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from METEOR in the South Atlantic...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Norwegian Sea from 2008-11-13 to 2008-12-10 (NCEI Accession 0157353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157353 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Norwegian Sea from 2008-11-13 to...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Greenland Sea and others from 2007-02-12 to 2007-10-28 (NCEI Accession 0157392)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157392 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Greenland Sea, North...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Pacific Ocean and others from 1995-03-17 to 1995-04-27 (NCEI Accession 0157358)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157358 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Pacific...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean from 2015-12-06 to 2016-01-02 (NCEI Accession 0157474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157474 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean from...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2001-01-30 to 2002-01-13 (NCEI Accession 0157365)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157365 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2015-08-09 to 2015-10-12 (NCEI Accession 0157049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157049 includes Surface underway, chemical, meteorological and physical data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea,...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2004-01-20 to 2005-01-25 (NCEI Accession 0157327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157327 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean, Southern Oceans and Tasman Sea from 1997-01-12 to 1998-01-09 (NCEI Accession 0157323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157323 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean, Southern...

  1. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from PRINCE OF SEAS in the Caribbean Sea, English Channel and others from 1994-06-03 to 1995-08-04 (NCEI Accession 0157050)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157050 includes Surface underway, chemical, meteorological and physical data collected from PRINCE OF SEAS in the Caribbean Sea, English Channel,...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2009-12-29 to 2010-12-20 (NCEI Accession 0156926)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156926 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea and others from 2003-01-05 to 2004-01-15 (NCEI Accession 0157387)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157387 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, North Pacific Ocean and others from 2000-02-15 to 2001-01-25 (NCEI Accession 0157250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157250 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, North Pacific...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans from 2016-02-21 to 2016-08-04 (NCEI Accession 0160570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160570 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean and...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Sikuliaq in the Arctic Ocean, Beaufort Sea and Bering Sea from 2015-08-13 to 2015-09-02 (NCEI Accession 0157261)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157261 includes Surface underway, chemical, meteorological and physical data collected from Sikuliaq in the Arctic Ocean, Beaufort Sea and Bering Sea...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2013-11-18 to 2014-12-25 (NCEI Accession 0157374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157374 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 1996-05-04 to 1997-01-08 (NCEI Accession 0157413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157413 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1968-11-16 to 2013-12-31 (NCEI Accession 0160918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160918 includes Surface underway, chemical, meteorological, navigational and physical data collected from unknown platforms in the world-wide oceans...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the North Pacific Ocean, South Atlantic Ocean and others from 2002-01-18 to 2003-01-01 (NCEI Accession 0157376)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157376 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the North Pacific Ocean, South...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 2000-01-15 to 2000-08-14 (NODC Accession 0081005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081005 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean and Southern...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2014-01-06 to 2014-02-19 (NCEI Accession 0157272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157272 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2015-01-07 to 2015-02-06 (NCEI Accession 0157289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157289 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2011-10-11 to 2011-11-21 (NODC Accession 0115604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115604 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  15. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from METEOR in the North Atlantic Ocean and North Sea from 1996-06-22 to 1996-07-17 (NCEI Accession 0157292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157292 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the North Atlantic Ocean and North Sea from...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, North Atlantic Ocean and others from 2007-12-03 to 2008-08-05 (NCEI Accession 0157407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157407 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, North Atlantic Ocean,...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ANTARES in the North Atlantic Ocean and South Atlantic Ocean from 2009-03-20 to 2010-08-06 (NODC Accession 0114477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114477 includes Surface underway, chemical, meteorological and physical data collected from ANTARES in the North Atlantic Ocean and South Atlantic...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2015-01-04 to 2015-10-18 (NCEI Accession 0157344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157344 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and others from 2006-01-15 to 2006-12-24 (NODC Accession 0109925)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109925 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Bay of Biscay, English Channel and others from 2010-01-31 to 2010-11-25 (NCEI Accession 0157388)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157388 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Bay of Biscay, English Channel, North...

  1. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from PELICAN in the Coastal Waters of Louisiana, Coastal Waters of Texas and Gulf of Mexico from 2013-09-09 to 2013-09-22 (NCEI Accession 0157461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157461 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from PELICAN in the Coastal Waters...

  2. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the North Atlantic Ocean, North Greenland Sea and Stellwagen Bank National Marine Sanctuary from 2004-02-17 to 2005-01-06 (NODC Accession 0112930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112930 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the North Atlantic Ocean, North Greenland...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the AURORA AUSTRALIS in the Great Australian Bight, Indian Ocean and others from 1992-10-19 to 2001-12-12 (NODC Accession 0115153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115153 includes chemical, meteorological, physical and underway - surface data collected from AURORA AUSTRALIS in the Great Australian Bight, Indian...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Celebrity Equinox in the Adriatic Sea, Aegean Sea and others from 2016-01-02 to 2017-01-02 (NCEI Accession 0157264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157264 includes Surface underway, chemical, meteorological and physical data collected from Celebrity Equinox in the Adriatic Sea, Aegean Sea,...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Skogafoss in the North Atlantic Ocean, North Greenland Sea and others from 2016-01-28 to 2016-03-30 (NCEI Accession 0157391)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157391 includes Surface underway, chemical, meteorological and physical data collected from Skogafoss in the North Atlantic Ocean, North Greenland...

  6. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Ronald H. Brown cruises RB1301 and RB1302 in the North Atlantic Ocean from 2013-01-08 to 2013-03-04 (NCEI Accession 0162200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162200 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship Ronald H. Brown Cruises RB1301 and RB1302 in...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Philippine Sea from 2016-05-19 to 2016-05-28 (NCEI Accession 0157249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157249 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Philippine Sea from 2016-05-19 to...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2013-07-18 to 2013-10-02 (NODC Accession 0117699)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117699 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North Atlantic Ocean and South Atlantic Ocean from 2013-04-30 to 2013-12-07 (NODC Accession 0117689)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117689 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from TANGAROA in the Arafura Sea, Coral Sea and others from 2014-02-03 to 2014-12-23 (NCEI Accession 0157248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157248 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the Arafura Sea, Coral Sea, South Pacific...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean from 2013-12-23 to 2014-02-04 (NODC Accession 0116979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116979 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2012-07-21 to 2012-08-13 (NCEI Accession 0157303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157303 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters of...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2016-01-04 to 2016-12-13 (NCEI Accession 0157454)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157454 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from BARCELONA EXPRESS in the Alboran Sea, Balearic Sea and others from 2011-07-26 to 2011-12-28 (NCEI Accession 0157414)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157414 includes Surface underway, chemical, meteorological and physical data collected from BARCELONA EXPRESS in the Alboran Sea, Balearic (or...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from EXPLORER OF THE SEAS in the Caribbean Sea and North Atlantic Ocean from 2013-03-31 to 2013-12-24 (NCEI Accession 0157260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157260 includes Surface underway, chemical, meteorological and physical data collected from EXPLORER OF THE SEAS in the Caribbean Sea and North...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2016-02-08 to 2016-03-15 (NCEI Accession 0157333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157333 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from TANGAROA in the South Pacific Ocean, Southern Oceans and Tasman Sea from 2015-01-05 to 2015-12-23 (NCEI Accession 0157326)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157326 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the South Pacific Ocean, Southern Oceans...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Arctic Ocean, Beaufort Sea and others from 2015-01-15 to 2015-12-18 (NCEI Accession 0157252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157252 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Arctic Ocean, Beaufort...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from RYOFU MARU in the Bismarck Sea, East China Sea and others from 1989-11-17 to 1995-03-07 (NCEI Accession 0156927)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156927 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, East China Sea (Tung...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Coral Sea, South Pacific Ocean and Tasman Sea from 2003-08-03 to 2003-10-16 (NCEI Accession 0160573)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160573 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the Coral Sea, South Pacific Ocean and Tasman...