WorldWideScience

Sample records for surface impedance measurements

  1. Measurements and removal of substrate effects on the microwave surface impedance of YBCO films on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pompeo, N [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Muzzi, L [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Galluzzi, V [ENEA-Frascati, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Marcon, R [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Silva, E [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy)

    2007-10-15

    We reconsider the problem of the measurements of the microwave complex surface impedance in thin superconducting films deposited on SrTiO{sub 3} substrates. We perform measurements of the complex surface impedance Z{sub s}' = R{sub s}'+i{delta}X{sub s}' of thin YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films deposited by laser ablation on SrTiO{sub 3} substrates. The typical oscillations due to the strong temperature variation of the SrTiO{sub 3} permittivity are confirmed in R{sub s}' and observed in {delta}X{sub s}'. The effects of the SrTiO{sub 3} substrate are evident even well below the superconducting transition temperature of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}. Similarly to previous works, we describe the overall response in terms of impedance transformations. We extend the known results by (i) considering the measurements of the imaginary part (ii) comparing the measurements to the absolute dc resistivity measured on the same sample, and (iii) suggesting a method for measuring the intrinsic thin film surface impedance by adjusting the substrate impedance. To demonstrate the feasibility of microwave measurements of intrinsic properties of films grown onto SrTiO{sub 3} substrates, we check the proposed method by measuring the field dependent surface impedance before and after removal of the substrate resonance.

  2. Nonlinear surface impedance of YBCO thin films: Measurements, modeling, and effects in devices

    International Nuclear Information System (INIS)

    Oates, D.E.; Koren, G.; Polturak, E.

    1995-01-01

    High-T c thin films continue to be of interest for passive device applications at microwave frequencies, but nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear surface impedance Z s in a number of YBa 2 Cu 3 O 7-x thin films as a function of frequency from 1 to 18 GHz, rf surface magnetic field H rf to 1500 Oe, and temperature from 4 K to T c . The results at low H rf are shown to agree quantitatively with a modified coupled-grain model and at high H rf with hysteresis-loss calculations using the Bean critical-state model applied to a thin strip. The loss mechanisms are extrinsic properties resulting from defects in the films. We also report preliminary measurements of the nonlinear impedance of Josephson junctions, and the results are related to the models of nonlinear Z s . The implications of nonlinear Z s for devices are discussed using the example of a five-pole bandpass filter

  3. Impedance deduction for vegetated roof surfaces : multiple geometry strategy

    NARCIS (Netherlands)

    Liu, C.; Hornikx, M.

    2016-01-01

    The transfer function method is an efficient procedure to deduce the ground surface impedance from short-range propagation measurements using one point source. It is able to provide a reasonable prediction of the surface impedance of a vegetated roof as well, and the characteristics of the vegetated

  4. Estimating surface acoustic impedance with the inverse method.

    Science.gov (United States)

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  5. Concentric artificial impedance surface for directional sound beamforming

    Directory of Open Access Journals (Sweden)

    Kyungjun Song

    2017-03-01

    Full Text Available Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.

  6. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  7. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.

    Science.gov (United States)

    Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample.

  8. Estimation of surface impedance using different types of microphone arrays

    DEFF Research Database (Denmark)

    Richard, Antoine Philippe André; Fernandez Grande, Efren; Brunskog, Jonas

    2017-01-01

    This study investigates microphone array methods to measure the angle dependent surface impedance of acoustic materials. The methods are based on the reconstruction of the sound field on the surface of the material, using a wave expansion formulation. The reconstruction of both the pressure...... and the particle velocity leads to an estimation of the surface impedance for a given angle of incidence. A porous type absorber sample is tested experimentally in anechoic conditions for different array geometries, sample sizes, incidence angles, and distances between the array and sample. In particular......, the performances of a rigid spherical array and a double layer planar array are examined. The use of sparse array processing methods and conventional regulariation approaches are studied. In addition, the influence of the size of the sample on the surface impedance estimation is investigated using both...

  9. Surface impedance of travelling--Wave antenna in magnetized plasma

    International Nuclear Information System (INIS)

    Denisenko, I.B.; Ostrikov, K.N.

    1993-01-01

    Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results

  10. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  11. VLF surface-impedance modelling techniques for coal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.; Thiel, D.; O' Keefe, S. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Engineering and Physical Systems

    2000-10-01

    New and efficient computational techniques are required for geophysical investigations of coal. This will allow automated inverse analysis procedures to be used for interpretation of field data. In this paper, a number of methods of modelling electromagnetic surface impedance measurements are reviewed, particularly as applied to typical coal seam geology found in the Bowen Basin. At present, the Impedance method and the finite-difference time-domain (FDTD) method appear to offer viable solutions although both have problems. The Impedance method is currently slightly inaccurate, and the FDTD method has large computational demands. In this paper both methods are described and results are presented for a number of geological targets. 17 refs., 14 figs.

  12. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  13. Measurements of the surface impedance and the ac critical field of superconducting thin tin films at 10 GHz

    International Nuclear Information System (INIS)

    Spencer, G.L.

    1976-01-01

    The surface impedances and ac critical fields of superconducting thin tin films were studied. These experiments were performed using a superconducting frequency stabilized microwave cavity of high Q. Measurements of the power losses in the cavity and the center frequency of the cavity were used to determine the surface impedance and the critical field of a thin film sample placed in the cavity. In this case a theoretical treatment based on a model proposed by I.O. Kulik was used to fit the data. The general agreement between the modified Kulik treatment and the data, obtained in this experiment, was substantial. The second method was to modify the thin film data to correspond to a bulk situation. This modification was accomplished by taking into account the measuring techniques used and the geometric consideration inherent in the experiment. The comparison between the modified experimental data and calculations obtained from the Mattis-Bardeen bulk model was generally very good. One aspect of the results which was not explained was the presence of a slight increase in the surface resistance in the vicinity of the transition temperature. The critical field measurements were compared to the (1 - (T/T/sub c/)/sup 1/2) dependence predicted by Bardeen. If it is assumed that substantial microwave heating took place in the sample near T/sub c/, then remarkable agreement with the Bardeen model can be reached

  14. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2008-01-01

    is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related...

  15. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related...

  16. Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Fernandez Grande, Efren

    2017-01-01

    The ear-canal acoustic impedance and reflectance are useful for assessing conductive hearing disorders and calibrating stimulus levels in situ. However, such probe-based measurements are affected by errors due to the presence of evanescent modes and incorrect estimates or assumptions regarding...... characteristic impedance. This paper proposes a method to compensate for evanescent modes in measurements of acoustic impedance, reflectance, and sound pressure in waveguides, as well as estimating the characteristic impedance immediately in front of the probe. This is achieved by adjusting the characteristic...... impedance and subtracting an acoustic inertance from the measured impedance such that the non-causality in the reflectance is minimized in the frequency domain using the Hilbert transform. The method is thus capable of estimating plane-wave quantities of the sought-for parameters by supplying only...

  17. Reconstruction of surface impedance of an object located over a planar PEC surface

    International Nuclear Information System (INIS)

    Uenal, Guel Seda; Cayoeren, Mehmet; Tetik, Evrim

    2008-01-01

    A method for the determination of inhomogeneous surface impedance of an arbitrary shaped cylindrical object located over a perfectly conducting (PEC) plane is presented. The problem is reduced to the solution of an ill-posed integral equation by the use of single layer representation which is handled by Truncated Singular Value Decomposition (TSVD). The total field and its normal derivative on the boundary of the object which are required for the evaluation of the surface impedance are obtained through Nystroem method. The method can also be used in shape reconstruction by using the relation between the shape of a PEC object and its equivalent one in terms of the surface impedance. The numerical implementations yield quite satisfactory results.

  18. Beam measurements of the LHC impedance and validation of the impedance model

    CERN Document Server

    Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H

    2014-01-01

    Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.

  19. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  20. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch

    International Nuclear Information System (INIS)

    Bogónez-Franco, P; Nescolarde, L; Bragós, R; Rosell-Ferrer, J; Yandiola, I

    2009-01-01

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground

  1. MVAC Submarine cable, impedance measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Expethit, Adrian; Pedersen, Morten Virklund

    2017-01-01

    influence the losses. Secondly, cable parameters such as component impedances, positive-, zero-sequence impedances and losses are measured for varying currents and frequencies. Zero sequence is measured for two setups, one with armour grounded, and with armour open to match CIGREs formula assumption......-sequence impedance is found between the measurements and the CIGRÉ formulas. It is concluded that the formulas are not accurate for the specific cable under test....

  2. Meandered-line antenna with integrated high-impedance surface.

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  3. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.

    Science.gov (United States)

    Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel

    2013-12-01

    This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.

  4. Transverse impedance measurement in RHIC and the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  5. Experimental test of proximity effect theories by surface impedance measurements on the Pb-Sn system

    International Nuclear Information System (INIS)

    Hook, J.R.; Battilana, J.A.

    1976-01-01

    The proximity effect in the Pb-Sn system in zero magnetic field has been studied by measuring the surface impedance at 3 GHz of a thin film of tin evaporated on to a bulk lead substrate. The results are compared with the predictions of theories of the proximity effect. It is found that good agreement can be obtained by using a theory due to Hook and Waldram of the spatial variation of the superconducting order parameter Δ inside each metal together with suitable boundary conditions on Δ at the interface between the metals. The required boundary conditions are a generalization to the case of non-zero electron reflection at the interface of the boundary conditions given by Zaitsev for the Ginsburg-Landau equation. (author)

  6. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  7. Detection of irradiated potatoes by impedance measurement

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Otobe, K.; Sugiyama, J.

    1996-01-01

    Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)

  8. Passivation of mechanically polished, chemically etched and anodized zirconium in various aqueous solutions: Impedance measurements

    International Nuclear Information System (INIS)

    Abo-Elenien, G.M.; Abdel-Salam, O.E.

    1987-01-01

    Zirconium and its alloys are finding increasing applications especially in water-cooled nuclear reactors. Because of the fact that zirconium is electronegative (E 0 = -1.529V) its corrosion resistance in aqueous solutions is largely determined by the existence of a thin oxide film on its surface. The structure and properties of this film depend in the first place on the method of surface pre-treatment. This paper presents an experimental study of the nature of the oxide film on mechanically polished, chemically etched and anodized zirconium. Ac impedance measurements carried out in various acidic, neutral and alkaline solutions show that the film thickness depends on the method of surface pre-treatment and the type of electrolyte solution. The variation of the potential and impedance during anodization of zirconium at low current density indicates that the initial stages of polarization consist of oxide build-up at a rate dependent on the nature of the electrode surface and the electrolyte. Oxygen evolution commences at a stage where oxide thickening starts to decline. The effect of frequency on the measured impedance indicates that the surface reactivity, and hence the corrosion rate, decreases in the following order: mechanically polished > chemically etched > anodized

  9. Electrochemical impedance measurement of a carbon nanotube probe electrode

    International Nuclear Information System (INIS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Shimoyama, Isao; Matsumoto, Kiyoshi

    2012-01-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1–10 nm in CNT diameter, 80–300 nm in insulator diameter, 0.5–4 μm in exposed CNT length and 1–10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. (paper)

  10. Surface impedance of superconductors in wide frequency ranges for wake field calculations

    International Nuclear Information System (INIS)

    Davidovskii, V.G.

    2006-01-01

    The problem of the surface impedance of superconductors in wide frequency ranges for calculations of wake fields, generated by bunches of charged particles moving axially inside a metallic vacuum chambers, is solved. The case of specular electron reflection at the superconductor surface is considered. The expression for the surface impedance of superconductors suitable for numerical computation is derived [ru

  11. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    International Nuclear Information System (INIS)

    Nguyen, D T; Kosobrodov, R; Jin, C; McEwan, A; Barry, M A; Chik, W; Thiagalingam, A; Oh, T I

    2013-01-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  12. Impedance Localization Measurements using AC Dipoles in the LHC

    CERN Document Server

    Biancacci, Nicolo; Papotti, Giulia; Persson, Tobias; Salvant, Benoit; Tomás, Rogelio

    2016-01-01

    The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.

  13. Impedance measurements of nanoporosity in electrodeposited ZnO films for DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, L.; Haller, S.; Rousset, J.; Donsanti, F.; Guillemoles, J.-F.; Lincot, D. [Institute of R and D on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie Paristech, 6 quai Watier, 78400 Chatou (France); Decker, F. [Chemistry Department, ' ' Sapienza' ' Universita di Roma, 00185 Roma (Italy)

    2010-05-15

    Porous ZnO/dye hybrid films have been deposited by cathodic electrodeposition, and their active surface area after dye desorption was evaluated by impedance measurements with the semiconducting electrode polarized in accumulation. Surface area ratios have been deduced for a large number of films from imaginary part Z' vs. frequency measurements, having a constant rate over the frequency range from 0.5 Hz to > 50 Hz. The active surface increased by a factor of roughly 150 per every micron of film with respect to the area of a flat ZnO electrode: this linear relationship held from less than 1 {mu}m up to 9 {mu}m thick films. (author)

  14. Polymer microchip impedance spectroscopy through two parallel planar embedded microelectrodes: Understanding the impedance contribution of the surrounding polymer on the measurement accuracy

    International Nuclear Information System (INIS)

    Kechadi, Mohammed; Gamby, Jean; Chaal, Lila; Girault, Hubert; Saidani, Boualem; Tribollet, Bernard

    2013-01-01

    The present work describes a new methodology for contact free impedance of a solution in a polymer microchip taking into account the role played by the surrounding polymer on the impedance accuracy. Measurements were carried out using a photoablated polyethylene terephthalate (PET) microchannel above two embedded microband electrodes. The impedance diagrams exhibit a loop from high frequencies to medium frequencies (1 MHz–100 Hz) and a capacitive behavior at low frequencies (100–1 Hz). The impedance diagrams were corrected by eliminating from the global microchip response the contribution of the impedance of the PET layer between the two microband electrodes. This operation enables a clear observation of the impedance in the microchannel solution, including the bulk solution contribution and the interfacial capacitance related to the surface roughness of the photoablated microchannel. Models for the impedance of solutions of varying conductivity showed that the capacitance of the polymer–solution interface can be modeled by a constant phase element (CPE) with an exponent of 0.5. The loop diameter was found to be proportional to the microchannel resistivity, allowing a cell constant around 4.93 × 10 5 m −1 in contactless microelectrodes configuration

  15. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    Science.gov (United States)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  16. Rf Discharge Impedance Measurements Using a New Method to Determine the Stray Impedances

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, de F.J.

    1999-01-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine

  17. Reliability of impedance cardiography in measuring central haemodynamics

    DEFF Research Database (Denmark)

    Mehlsen, J; Bonde, J; Stadeager, C

    1991-01-01

    The purpose of the study described here was to investigate the reliability of impedance cardiography (IC) in measuring cardiac output (CO) and central blood volume. Absolute values and changes in these variables obtained by impedance cardiography and by isotope- or thermodilution techniques were...... suitable for repeated measurements in studies on the haemodynamic effects of physiological or pharmacological intervention. Impedance cardiography is sufficiently reliable for comparison of absolute values of CO between different groups of patients. We cannot recommend impedance cardiography...... healthy subjects and in 25 unmedicated patients with ischaemic heart disease. We obtained significant correlations between absolute values (y = 0.68x + 1.48) and changes (y = 1.00x + 0.0003) in CO measured by IC and isotope- or thermodilution. IC significantly overestimated absolute values of CO (P less...

  18. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  19. Skin Impedance Measurements for Acupuncture Research: Development of a Continuous Recording System

    Directory of Open Access Journals (Sweden)

    Agatha P. Colbert

    2008-01-01

    Full Text Available Skin impedance at acupuncture points (APs has been used as a diagnostic/therapeutic aid for more than 50 years. Currently, researchers are evaluating the electrophysiologic properties of APs as a possible means of understanding acupuncture's mechanism. To comprehensively assess the diagnostic, therapeutic and mechanistic implications of acupuncture point skin impedance, a device capable of reliably recording impedances from 100 kΩ to 50 MΩ at multiple APs over extended time periods is needed. This article describes design considerations, development and testing of a single channel skin impedance system (hardware, control software and customized electrodes. The system was tested for accuracy against known resistors and capacitors. Two electrodes (the AMI and the ORI were compared for reliability of recording over 30 min. Two APs (LU 9 and PC 6 and a nearby non-AP site were measured simultaneously in four individuals for 60 min. Our measurement system performed accurately (within 5% against known resistors (580 kΩ–10 MΩ and capacitors (10 nF–150 nF. Both the AMI electrode and the modified ORI electrode recorded skin impedance reliably on the volar surface of the forearm (r = 0.87 and r = 0.79, respectively. In four of four volunteers tested, skin impedance at LU 9 was less than at the nearby non-AP site. In three of four volunteers skin impedance was less at PC 6 than at the nearby non-AP site. We conclude that our system is a suitable device upon which we can develop a fully automated multi-channel device capable of recording skin impedance at multiple APs simultaneously over 24 h.

  20. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  1. Quantification of coating aging using impedance measurements

    NARCIS (Netherlands)

    Westing, E.P.M. van; Weijde, D.H. van der; Vreijling, M.P.W.; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    This chapter shows the application results of a novel approach to quantify the ageing of organic coatings using impedance measurements. The ageing quantification is based on the typical impedance behaviour of barrier coatings in immersion. This immersion behaviour is used to determine the limiting

  2. Impedance measurements of components for the ALS

    International Nuclear Information System (INIS)

    Corlett, J.N.; Rimmer, R.A.

    1993-05-01

    The high current and short bunch length of the ALS beam make the machine susceptible to beam instabilities over a frequency range extending to 13 GHz and beyond. All components of the storage ring have been carefully designed to minimize the impedance presented to the beam, and assemblies have been laid out to avoid resonant enclosures between components. Novel bellows shields allowing considerable mechanical movement while maintaining a low impedance are described. Results are presented of impedance measurements of ALS components and assemblies of components, using a precision coaxial wire technique in frequency domain, extending to frequencies beyond cut-off. All measurements were performed at the Lambertson Beam Electrodynamics Laboratory of the Center for Beam Physics at LBL

  3. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  4. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  5. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  6. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  7. Microfluidic device for cell capture and impedance measurement.

    Science.gov (United States)

    Jang, Ling-Sheng; Wang, Min-How

    2007-10-01

    This work presents a microfluidic device to capture physically single cells within microstructures inside a channel and to measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) using impedance spectroscopy. The device includes a glass substrate with electrodes and a PDMS channel with micro pillars. The commercial software CFD-ACE+ is used to study the flow of the microstructures in the channel. According to simulation results, the probability of cell capture by three micro pillars is about 10%. An equivalent circuit model of the device is established and fits closely to the experimental results. The circuit can be modeled electrically as cell impedance in parallel with dielectric capacitance and in series with a pair of electrode resistors. The system is operated at low frequency between 1 and 100 kHz. In this study, experiments show that the HeLa cell is successfully captured by the micro pillars and its impedance is measured by impedance spectroscopy. The magnitude of the HeLa cell impedance declines at all operation voltages with frequency because the HeLa cell is capacitive. Additionally, increasing the operation voltage reduces the magnitude of the HeLa cell because a strong electric field may promote the exchange of ions between the cytoplasm and the isotonic solution. Below an operating voltage of 0.9 V, the system impedance response is characteristic of a parallel circuit at under 30 kHz and of a series circuit at between 30 and 100 kHz. The phase of the HeLa cell impedance is characteristic of a series circuit when the operation voltage exceeds 0.8 V because the cell impedance becomes significant.

  8. Impedance computations and beam-based measurements: A problem of discrepancy

    Science.gov (United States)

    Smaluk, Victor

    2018-04-01

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.

  9. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled; Bera, Tushar Kanti; Lubineau, Gilles

    2017-01-01

    impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface

  10. Design methodology to enhance high impedance surfaces performances

    Directory of Open Access Journals (Sweden)

    M. Grelier

    2014-04-01

    Full Text Available A methodology is introduced for designing wideband, compact and ultra-thin high impedance surfaces (HIS. A parametric study is carried out to examine the effect of the periodicity on the electromagnetic properties of an HIS. This approach allows designers to reach the best trade-off for HIS performances.

  11. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  12. Transverse impedance measurement using response matrix fit method at APS

    International Nuclear Information System (INIS)

    Sajaev, V.

    2007-01-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source based on a 7-GeV electron storage ring. In third-generation light sources the synchrotron radiation is mainly produced in undulators. In order to achieve high photon flux and tunability, the magnet gap in undulators has to be as small as possible. Therefore, the undulators are installed on dedicated small-gap insertion device (ID) vacuum chambers. APS has thirty-five 5-m-long straight sections available for undulators. At the time of the measurements, there were 31 straight sections occupied with various insertion devices, and 4 straight sections were still empty. Most of the ID vacuum chambers have a 8-mm in-vacuum gap, and two chambers have a 5-mm gap. These narrow-gap vacuum chambers are believed to be the main source of the transverse impedance of the machine. One can measure the combined impedance by measuring the transverse tune slope with single-bunch current. Comparing this slope before and after installation of the narrow-gap vacuum chamber, one can deduce the impedance of the chamber. It is difficult to accurately measure the change in the tune slope after one or a few new ID chambers are installed. If several identical ID vacuum chambers are installed over a period of time, then one can estimate the contribution of one ID chamber. Over the last few years there have been a number of attempts to measure the impedance of separate components of accelerators. Phase-advance measurements from beam position monitor (BPM) turn-by-turn histories were used at LEP to measure the impedance distribution around the ring. Researches at LEP were able to fit average impedance in the long sections of the LEP arc and determine the impedance of the rf sections. The method was tried at APS; however, the accuracy of the measurements was not enough to determine the small impedance of a single ID vacuum chamber. There is also a different approach that uses local orbit bumps to probe different parts

  13. The microwave surface impedance of MgB2 thin films

    International Nuclear Information System (INIS)

    Purnell, A J; Zhukov, A A; Nurgaliev, T; Lamura, G; Bugoslavsky, Y; Lockman, Z; MacManus-Driscoll, J L; Zhai, H Y; Christen, H M; Paranthaman, M P; Lowndes, D H; Jo, M H; Blamire, M G; Hao, Ling; Gallop, J C; Cohen, L F

    2003-01-01

    In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB 2 . The powder sample has a T c = 39 K and the films have T c = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with T c = 38 K degraded to a T c of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage

  14. Above-cutoff impedance measurements of pumping holes for the Collider Liner

    International Nuclear Information System (INIS)

    Walling, L.; Barts, T.; Ruiz, E.; Turner, W.; Spayd, N.

    1994-04-01

    A holed liner was considered for the Superconducting Super Collider (SSC) Collider Ring because of vacuum problems caused by photon-induced desorption. The liner would serve to shield the cold surface of the beam tube from the synchrotron radiation and the holes (or slots) would allow distributed pumping by gas-absorption material that could be placed between the liner and the beam tube. The impedance of holes and slots in a liner were studied by means of simulations using both MAFIA and HFSS, analytical modelling, wire measurements and electron beam measurements

  15. Bunch length and impedance measurements in SPEAR

    International Nuclear Information System (INIS)

    Bane, K.; Donald, M.; Hofmann, A.; Jowett, J.; Lockman, W.; Morton, P.; Stege, R.; Spence, W.; Wilson, P.

    1988-05-01

    Subsequent to an extensive smoothing of the vacuum chamber a comprehensive study of the SPEAR impedance was undertaken. Bunch length, synchrotron quadrupole mode frequency, and parasitic mode loss were measured as functions of beam current. The results showed that, although the gross longitudinal impedance had indeed been reduced, the 'capacitive' component had also decreased relative to the 'inductive'--to the extent that previously compensated potential well distortion now induced bunch lengthening at low currents, and the turbulent threshold had actually been lowered. A specially designed multi-cell disc-loaded 'capacitor' cavity was shown to be capable of removing this effect by restoring the original compensation. A model of the new SPEAR impedance is also obtained. 7 refs., 6 figs

  16. Bunch length and impedance measurements in SPEAR

    International Nuclear Information System (INIS)

    Bane, K.; Donald, M.; Morton, P.; Stege, R.; Spence, W.; Wilson, P.; Hofmann, A.; Jowett, J.; Lockman, W.

    1988-01-01

    Subsequent to an extensive smoothing of the vacuum chamber a comprehensive study of the SPEAR impedance was undertaken. Bunch length, synchrotron quadrupole mode frequency, and parasitic mode loss were measured as functions of beam current. This paper shows that although the gross longitudinal impedance had indeed been reduced, the capacitive component had also decreased relative to the inductive - to the extent that previously compensated potential well distortion now induced bunch lengthening at low currents, and the turbulent threshold had actually been lowered. A specially designed multi-cell disc-loaded capacitor cavity was shown to be capable of removing this effect by restoring the original compensation. A model of the new SPEAR impedance is also obtained

  17. Measurement scheme of kicker impedances via beam-induced voltages of coaxial cables

    Energy Technology Data Exchange (ETDEWEB)

    Shobuda, Yoshihiro, E-mail: yoshihiro.shobuda@j-parc.jp [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Irie, Yoshiro [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Toyama, Takeshi; Kamiya, Junichiro [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Watanabe, Masao [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda, Tokyo 100-8959 (Japan)

    2013-06-11

    A new theory, which satisfies the causality condition, is developed to describe impedances of kicker magnets with coaxial cables. The theoretical results well describe measurement results, which are obtained by standard wire methods. On the other hand, when beams pass through the kicker, voltages are induced at the terminals of coaxial cables. In other words, by analyzing the voltages, the kicker impedance for the beams can be obtained. The observed impedances are consistent with the theoretical results. The theory describes the impedance for non-relativistic beams, as well. The theoretical, simulation and measurement results indicate that the horizontal kicker impedance is drastically reduced by the non-relativistic effect. -- Highlights: ► We develop an innovative method to measure kicker impedance including power cable. ► By analyzing voltages at the ends of coaxial cables, the impedance is derived. ► The horizontal impedance is reduced as the beam becomes non-relativistic.

  18. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  19. Beam measurements of the SPS longitudinal impedance

    CERN Document Server

    Lasheen, A

    2017-01-01

    Longitudinal instabilities are one of the main limitationsin the CERN SPS to reach the beam parameters requiredfor the High Luminosity LHC project. In preparation tothe SPS upgrade, possible remedies are studied by perform-ing macroparticle simulations using the machine impedancemodel obtained from electromagnetic simulations and mea-surements. To benchmark the impedance model, the resultsof simulations are compared with various beam measure-ments. In this study, the reactive part of the impedance wasprobed by measuring the quadrupole frequency shift withintensity, obtained from bunch length oscillations at mis-matched injection into the SPS. This method was appliedover many last years to follow up the evolution of the SPSimpedance, injecting bunches with the same bunch length.A novel approach, giving significantly more information,consists in varying the injected bunch length. The compari-son of these measurements with macroparticle simulationsallowed to test the existing model and identify some missingSPS i...

  20. A potpourri of impedance measurements at the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Sereno, N.S.; Chae, Y.C.; Harkay, K.C.; Lumpkin, A.H.; Milton, S.V.; Yang, B.X.

    1997-01-01

    Machine coupling impedances were determined in the APS storage ring from measurements of the bunch length, synchronous phase, and synchrotron and betatron tunes vs single-bunch current. The transverse measurements were performed for various numbers of small gap insertion device (ID) chambers installed in the ring. The transverse impedance is determined from measurements of the transverse tunes and bunch length as a function of single-bunch current. The shift in the synchrotron tune was measured as a function of bunch current from which the total cavity impedance was extracted. The loss factor was determined by measuring the relative synchronous phase as a function of bunch current. The longitudinal resistive impedance is calculated using the loss factor dependence on the bunch length. From these results, the authors can estimate what the impedance would be for a full set of ID chambers

  1. Shunt impedance measurement of the APS BBC injector

    International Nuclear Information System (INIS)

    Sun, Y.E.; Lewellen, J.W.

    2006-01-01

    The injector test stand (ITS) at Advanced Photon Source (APS) presently incorporates a ballistic bunch compression (BBC) gun, and it is used as a beam source for a number of experiments, including THz generation, beam position monitor testing for the Linac Coherent Light Source (LCLS), novel cathode testing, and radiation therapy source development. The BBC gun uses three independently powered and phased rf cavities, one cathode cell, and two full cells to provide beam energies from 2 to 10 MeV with variable energy spread, energy chirp, and, to an extent, bunch duration. The shunt impedance of an rf accelerator determines how effectively the accelerator can convert supplied rf power to accelerating gradient. The calculation of the shunt impedance can be complicated if the beam energy changes substantially during its transit through a cavity, such as in a cathode cell. We present the results of direct measurements of the shunt impedance of the APS BBC gun on an individual cavity basis, including the cathode cell, and report on achieved gradients. We also present a comparison of the measured shunt impedance with theoretical values calculated from the rf models of the cavities.

  2. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: niedermayer@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Eidam, L. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); GSI Helmholzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-03-11

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  3. Low diagnostic value of respiratory impedance measurements in children

    NARCIS (Netherlands)

    Cuijpers, CEJ; Wesseling, GJ; Kessels, AGH; Swaen, GMH; Mertens, PLJM; deKok, ME; Broer, J; Sturmans, F; Wouters, EFM

    The aim of this study was to determine whether impedance values in children with various chronic respiratory complaints differed from those observed in symptom-free children. Respiratory impedance was measured using the forced oscillation technique in 1,776 Dutch children aged 6-12 yrs. In addition

  4. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoharu; Yamada, Hirofumi, E-mail: h-yamada@kuee.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Kobayashi, Kei [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8520 (Japan)

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  5. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Science.gov (United States)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  6. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2018-05-01

    Full Text Available The transfer impedance is a very important parameter of a beam position monitor (BPM which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables. This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  7. Review of Stratum Corneum Impedance Measurement in Non-Invasive Penetration Application

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2018-03-01

    Full Text Available Due to advances in telemedicine, mobile medical care, wearable health monitoring, and electronic skin, great efforts have been directed to non-invasive monitoring and treatment of disease. These processes generally involve disease detection from interstitial fluid (ISF instead of blood, and transdermal drug delivery. However, the quantitative extraction of ISF and the level of drug absorption are greatly affected by the individual’s skin permeability, which is closely related to the properties of the stratum corneum (SC. Therefore, measurement of SC impedance has been proposed as an appropriate way for assessing individual skin differences. In order to figure out the current status and research direction of human SC impedance detection, investigations regarding skin impedance measurement have been reviewed in this paper. Future directions are concluded after a review of impedance models, electrodes, measurement methods and systems, and their applications in treatment. It is believed that a well-matched skin impedance model and measurement method will be established for clinical and point-of care applications in the near future.

  8. Assessment of chest impedance in relation to phonocardiography

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Møller, Henrik; Hammershøi, Dorte

    2010-01-01

    the surface of the skin to the transducer. If the impedance of the skin is known, it may be possible to optimize the transducer to achieve an improved signal for a certain frequency range, while attenuating disturbing noise. Further, from a classical stethoscope it is known, that the sound picked up...... by the stethoscope can be influenced by changing the pressure on the chest piece of the stethoscope. A high pressure will stretch the skin similar to a drum skin, and attenuate lower frequencies, while lighter pressure will broaden the frequency range. By using an impedance tube (also known as standing wave tube......), it is possible to measure the impedance of the surface of the skin and at the same time investigate the influence of different pressures and diameters of a transducer. The impedance tube is made specifically with the purpose of measuring chest impedances in the frequency range from 50 Hz to 5 kHz. An MLS...

  9. Wideband impedance measurements and modeling of DC motors for EMI predictions

    NARCIS (Netherlands)

    Diouf, F.; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2015-01-01

    In electromagnetic interference prediction, dc motors are usually modeled as a source and a series impedance. Previous researches only include the impedance of the armature, while neglecting the effect of the motor's rotation. This paper aims at measuring and modeling the wideband impedance of a dc

  10. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    Directory of Open Access Journals (Sweden)

    Yangkyu Park

    2016-01-01

    Full Text Available Purpose. To distinguish between normal (SV-HUC-1 and cancerous (TCCSUP human urothelial cell lines using microelectrical impedance spectroscopy (μEIS. Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p<0.001, was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p<0.001. Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF.

  11. Rock properties influencing impedance spectra (IS) studied by lab measurements on porous model systems

    Energy Technology Data Exchange (ETDEWEB)

    Volkmann, J.; Klitzsch, N.; Mohnke, O. [RWTH Aachen Univ. (Germany). Applied Geophysics and Geothermal Energy; Schleifer, N. [Wintershall Holding GmbH, Barnstorf (Germany)

    2013-08-01

    The wetting condition of reservoir rocks is a crucial parameter for the estimation of reservoir characteristics like permeability and saturation with residual oil or water. Since standard methods are often costly, at least in terms of time, we aim at assessing wettability of reservoir rocks using impedance spectroscopy (IS), a frequency dependent measurement of complex electric resistivity. This approach is promising, because IS is sensitive to the electrochemical properties of the inner surface of rocks which, on the other hand, are decisively influencing wettability. Unfortunately, there is large number of rock parameters - besides wettability - influencing the impedance spectra often not exactly known for natural rock samples. Therefore, we study model systems to improve the understanding of the underlying mechanisms and to quantify the influencing parameters. The model systems consist of sintered porous silica beads of different sizes leading to samples with different pore sizes. The main advantage of these samples compared to natural rocks is their well-defined and uniform mineralogical composition and thus their uniform electrochemical surface property. In order to distinguish pore geometry and fluid electrochemistry effects on the IS properties we measured the IS response of the fully water saturated model systems in a wide frequency range - from 1 mHz to 35 MHz - to capture different often overlapping polarization processes. With these measurements we study the influence of pore or grain size, fluid conductivity, and wettability (contact angle) on the impedance spectra. The influence of wettability was studied by modifying the originally hydrophilic inner surface into a hydrophobic state. The wettability change was verified by contact angle measurements. As results, we find pore size dependent relaxation times and salinity dependent chargeabilities for the hydrophilic samples in the low frequency range (< 10 kHz), whereas for the hydrophobic samples

  12. Impedance Based Vitamin D Measurement Sensor and Algorithm for Human Wellness

    Directory of Open Access Journals (Sweden)

    Hyung Jin KIM

    2017-10-01

    Full Text Available While entering the modern society, medical technology has been able to cure almost all kinds of diseases. However, autoimmune diseases are increasing rapidly due to environment, food, and indoor life. In particular, vitamin D is lacking in about 90 % of Koreans. As a result of this, many middle-aged and older women are taking calcium, but most of them do not know their vitamin D levels. Based on this background, the goal of this paper is to develop a vitamin D measurement technique using a quantum analyzer that is capable of measuring various kinds of vitamins and minerals, and to prepare a plan to easily measure vitamin D by attaching it to a UVB device that is currently used in the hospital. The quantum analyzer was designed based on the impedance principle, and the impedance change according to vitamin D concentration was able to confirm a significant proportional relationship between vitamin D and impedance. In addition, the correlation between vitamin D and impedance was confirmed by in vitro experiment using lab mice, and the measurement error of the impedance meter for vitamin D concentration in the blood was confirmed to be about 12.7 %.

  13. Optimization of impedance spectroscopy techniques for measuring cutaneous micropore formation after microneedle treatment in an elderly population.

    Science.gov (United States)

    Kelchen, Megan N; Holdren, Grant O; Farley, Matthew J; Zimmerman, M Bridget; Fairley, Janet A; Brogden, Nicole K

    2014-12-01

    The objective of this study was to optimize a reproducible impedance spectroscopy method in elderly subjects as a means to evaluate the effects of microneedles on aging skin. Human volunteers were treated with microneedles at six sites on the upper arm. Repeated impedance measurements were taken pre- and post-microneedle insertion. Two electrode types were evaluated (dry vs. gel), using either light or direct pressure to maintain contact between the electrode and skin surface. Transepidermal water loss (TEWL) was measured as a complementary technique. Five control subjects and nine elderly subjects completed the study. Microneedle insertion produced a significant decrease in impedance from baseline in all subjects (p micropore formation. This was supported by a complementary significant increase in TEWL (p micropore formation in elderly subjects, which will be essential for future studies describing microneedle-assisted transdermal delivery in aging populations.

  14. Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging

    OpenAIRE

    Curioni, M.; Scenini, F.; Monetta, T.; Bellucci, F.

    2015-01-01

    The corrosion behaviour of magnesium in chloride-containing aqueous environment was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) performed simultaneously with real-time hydrogen evolution measurements and optical imaging of the corroding surface. The potentiodynamic investigation revealed substantial deviations from linearity in close proximity of the corrosion potential. In particular, differences in the slope of the current/potential curves w...

  15. Transvers Impedance Measurements of the Modified DARHT-2 Accelerator Cell Design

    International Nuclear Information System (INIS)

    Briggs, Dick; Waldron, Will

    2005-01-01

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at ∼300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program

  16. arXiv Bench Measurements and Simulations of Beam Coupling Impedance

    CERN Document Server

    Niedermayer, Uwe

    After a general introduction, the basic principles of wake-field and beamcoupling- impedance computations are explained. This includes time domain, frequency domain, and methods that do not include excitations by means of a particle beam. The second part of this paper deals with radio frequency bench measurements of beam coupling impedances. The general procedure of the wire measurement is explained, and its features and limitations are discussed.

  17. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  18. Microwave surface impedance of MgB2 thin film

    International Nuclear Information System (INIS)

    Jin, B B; Klein, N; Kang, W N; Kim, Hyeong-Jin; Choi, Eun-Mi; Lee, Sung-I K; Dahm, T; Maki, K

    2003-01-01

    The microwave surface impedance Z s = R s + jωμ 0 λ was measured with dielectric resonator techniques for two c-axis-oriented MgB 2 thin films. The temperature dependence of the penetration depth λ measured with a sapphire resonator at 17.93 GHz can be well fitted from 5 K close to T c by the standard BCS integral expression assuming the reduced energy gap Δ(0)/kT c to be as low as 1.13 and 1.03 for the two samples. From these fits the penetration depth at zero temperatures was determined to be 102 nm and 107 nm, respectively. The results clearly indicate the s-wave nature of the order parameter. The temperature dependence of surface resistance R s , measured with a rutile dielectric resonator, shows an exponential behaviour below about T c /2 with a reduced energy gap being consistent with the one determined from the λ data. The R s value at 4.2 K was found to be as low as 19 μΩ at 7.2 GHz, which is comparable with that of a high-quality high-temperature thin film of YBa 2 Cu 3 O 7 . A higher-order mode at 17.9 GHz was employed to determine the frequency f dependence of R s ∝ f n(T) . Our results revealed a decrease of n with increasing temperature ranging from n = 2 below 8 K to n 1 from 13 to 34 K

  19. Signal Processing for the Impedance Measurement on an Electrochemical Generator

    Directory of Open Access Journals (Sweden)

    El-Hassane AGLZIM

    2008-04-01

    Full Text Available Improving the life time of batteries or fuel cells requires the optimization of components such as membranes and electrodes and enhancement of the flow of gases [1], [2]. These goals could be reached by using a real time measurement on loaded generator. The impedance spectroscopy is a new way that was recently investigated. In this paper, we present an electronic measurement instrumentation developed in our laboratory to measure and plot the impedance of a loaded electrochemical generator like batteries and fuel cells. Impedance measures were done according to variations of the frequency in a larger band than what is usually used. The electronic instrumentation is controlled by Hpvee® software which allows us to plot the Nyquist graph of the electrochemical generator impedance. The theoretical results obtained in simulation under Pspice® confirm the choice of the method and its advantage. For safety reasons, the experimental preliminary tests were done on a 12 V vehicle battery, having an input current of 330 A and a capacity of 40 Ah and are now extended to a fuel cell. The results were plotted at various nominal voltages of the battery (12.7 V, 10 V, 8 V and 5 V and with two imposed currents (0.6 A and 4 A. The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical enables us to validate our electronic measurement instrumentation. Different sensors (temperature, pressure were placed around the device under test (DUT. These influence parameters were permanently recorded. Results presented here concern a classic loaded 12 V vehicle battery. The Nyquist diagram resulting from the experimental data confirms the influence of the load of the DUT on its internal impedance.

  20. Energy storage cell impedance measuring apparatus, methods and related systems

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  1. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled

    2017-02-16

    Techniques that monitor the change in the electrical properties of materials are promising for both non-destructive testing and structural health monitoring of carbon-fiber-reinforced polymers (CFRPs). However, achieving reliable monitoring using these techniques requires an in-depth understanding of the impedance response of these materials when subjected to an alternating electrical excitation, information that is only partially available in the literature. In this work, we investigate the electrical impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface ply and the probing depth for different CFRP configurations for more efficient electrical signal-based inspections. We also investigate the effect of the amplitude of the input signal.

  2. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  3. Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-10-01

    Full Text Available Measurement by impedance spectroscopy of the changes in intrazeolitic cation motion of pressed pellets of zeolite particles upon adsorption of dimethylmethylphosphonate (DMMP provides a strategy for sensing DMMP, a commonly used simulant for highly toxic organophosphate nerve agents. In this work, two strategies for improving the impedance spectroscopy based sensing of DMMP on zeolites were investigated. The first one is the use of cerium oxide (CeO2 coated on the zeolite surface to neutralize acidic groups that may cause the decomposition of DMMP, and results in better sensor recovery. The second strategy was to explore the use of zeolite Y membrane. Compared to pressed pellets, the membranes have connected supercages of much longer length scales. The zeolite membranes resulted in higher sensitivity to DMMP, but recovery of the device was significantly slower as compared to pressed zeolite pellets.

  4. Simulations and measurements of coupling impedance for modern particle accelerator devices

    CERN Document Server

    AUTHOR|(CDS)2158523; Biancacci, Nicolò; Mostacci, Andrea

    In this document it has been treated the study of the coupling impedance in modern devices, already installed or not, in different particle accelerators. In the specific case: • For a device in-phase of project, several simulations for impedance calculation have been done. • For a component already realized and used, measurements of coupling impedance value have been done. Simulations are used to determine the impact of the interconnect between to magnets, designed for the future particle accelerator FCC, on the overall impedance of the machine which is about 100 km long. In particular has been done a check between theory, simulations and measurements of components already built, allowing a better and deeper study of the component we have analysed. Controls that probably will be helpful to have a clear guideline in future works. The measurements instead concern in an existing component that was already used in LHC, the longest particle accelerator ever realised on the planet, 27 km long. The coupling impe...

  5. Wireless guided wave and impedance measurement using laser and piezoelectric transducers

    International Nuclear Information System (INIS)

    Park, Hyun-Jun; Sohn, Hoon; Yun, Chung-Bang; Chung, Joseph; Lee, Michael M S

    2012-01-01

    Guided-wave- and impedance-based structural health monitoring (SHM) techniques have gained much attention due to their high sensitivity to small defects. One of the popular devices commonly used for guided wave and impedance measurements is a lead zirconate titanate (PZT) transducer. This study proposes a new wireless scheme where the power and data required for PZT excitation and sensing are transmitted via laser. First, a modulated laser beam is wirelessly transmitted to the photodiode connected to a PZT on a structure. Then, the photodiode converts the laser light into an electric signal, and it is applied to the PZT for excitation. The corresponding responses, impedance at the same PZT or guided waves at another PZT, are measured, re-converted into laser light, and wirelessly transmitted back to the other photodiode located in the data interrogator for signal processing. The feasibility of the proposed wireless guided wave and impedance measurement schemes has been examined through circuit analyses and experimentally investigated in a laboratory setup. (paper)

  6. Measured longitudinal beam impedance of booster gradient magnets; TOPICAL

    International Nuclear Information System (INIS)

    James L Crisp and Brian J. Fellenz

    2001-01-01

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K(center d ot) in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations

  7. The measurement of skin impedance for the diagnosis of skin cancer

    International Nuclear Information System (INIS)

    Menzies, S.; Crook, B.; McCarthy, W.

    1996-01-01

    Full text: In vivo skin impedance measurements have been reported to be diagnostic in differentiating benign from malignant skin tumours (Kiss G et al. Borgyogy Vener Szle 45: 164,1969; Melczer N. In: Cancer of the Skin. Saunders Co. Philadelphia, 1976, pp293-313). However, in contrast to non-melanoma skin cancer, only, a small sample of malignant melanomas were reported in these previous studies. We performed skin impedance measurements on a larger sample of melanomas in order to assess the potential use of such instrumentation for clinical diagnosis. The diagnostic method described by Kiss and Horvath was reproduced with only minor modifications. Low voltage impedance measurements at 1600 Hz were taken over each lesion and on nearby surrounding normal skin. Filter paper (4mm diameter) soaked in 0.1 M KCl was used at the skin-probe interface. A minimum of 2 skin and 1 lesion measurements were taken. All lesions were taken from relatively hairless sites and were non abraded or ulcerated. With the exception of 6 seborrhoeic keratoses all lesions were excised for histological diagnosis. The lesions tested were 27 invasive melanomas, 3 in situ melanomas, 27 basal cell carcinomas (BCC), 70 benign melanocytic lesions, 19 seborrhoeic keratoses, 5 Bowens disease (in situ SCC), 1 squamous cell carcinoma (SCC) and 25 other benign lesions. Results were interpreted as previously (Melczer) by the quotient of skin impedance / lesion impedance > 1.5 indicating malignancy. Analysis of total melanocytic lesions gave a sensitivity of 44% and specificity of 83% for the diagnosis of invasive melanoma (p < 0.05). Fifty two percent of BCCs were positively diagnosed. Analysis of all benign versus all invasive malignancy gave a sensitivity of 47% and specificity of 77% for the diagnosis of invasive malignancy (p < 0.01). While impedance measurements at 1600 Hz provide a statistically significant differentiation of melanoma versus non-melanoma and invasive malignancy versus benign lesions

  8. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.

    Science.gov (United States)

    Ferreira, J; Seoane, F; Lindecrantz, K

    2013-01-01

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  9. Electrode-less measurement of cell layers impedance

    Czech Academy of Sciences Publication Activity Database

    Krůšek, Jan; Ďaďo, S.

    2014-01-01

    Roč. 63, č. 6 (2014), s. 705-711 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : cell impedance measurement * transepithelial resistance Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  10. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.

    Science.gov (United States)

    Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L

    2018-01-01

    We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

  11. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  12. Evaluation of different methods for measuring the impedance of Lithium-ion batteries during ageing

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    The impedance represents one of the most important performance parameters of the Lithium-ion batteries since it used for power capability calculations, battery pack and system design, cooling system design and also for state-of-health estimation. In the literature, different approaches...... are presented for measuring the impedance of Lithium-ion batteries and electrochemical impedance spectroscopy and dc current pulses are the most used ones; each of these approaches has its own advantages and drawbacks. The goal of this paper is to investigate which of the most encountered impedance measurement...... approaches is the most suitable for measuring the impedance of Lithium-ion batteries during ageing....

  13. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.

    Science.gov (United States)

    Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon

    2015-05-01

    The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  14. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  15. Development of in vivo impedance spectroscopy techniques for measurement of micropore formation following microneedle insertion.

    Science.gov (United States)

    Brogden, Nicole K; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L

    2013-06-01

    Microneedles (MNs) provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of the current work was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 MN insertions per site following an overnight prehydration period. Repeated measurements were made pre- and post-MN treatment using dry and gel Ag/AgCl electrodes applied with light verses direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-MN application at all sites (p micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %relative standard deviation), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor the formation of new micropores that will allow for drug delivery through the impermeable skin layers. Copyright © 2013 Wiley Periodicals, Inc.

  16. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Science.gov (United States)

    Smaluk, Victor; Fielder, Richard; Blednykh, Alexei; Rehm, Guenther; Bartolini, Riccardo

    2014-07-01

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  17. Bench measurements of coupling impedance of AGS Booster components

    International Nuclear Information System (INIS)

    Ratti, A.; Shea, T.J.

    1991-01-01

    Quantifying instability thresholds for modern synchrotrons and storage rings requires some knowledge of the accelerator's coupling impedance. To this end, the wire technique has been implemented to measure the longitudinal coupling impedance of AGS Booster devices. The techniques are being refined to allow measurement of RHIC devices at higher frequencies. All the measurements are performed using an HP 8753 Network Analyzer controlled via GPIB by a Macintosh computer. The computer provides an environment for automated data acquisition, data analysis, and report generation. Resistive matches between the 50ω analyzer cables and the 300ω pipe-and-wire structure allow the use of a simple response calibration in the measurement of S21 to 400MHz. Results from ferrite loaded rf cavities, position monitors and kickers are presented. 4 refs., 4 figs

  18. Method and device for bio-impedance measurement with hard-tissue applications

    International Nuclear Information System (INIS)

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-01-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kΩ to 10 MΩ across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kΩ to 10 MΩ and from 20 pF to 100 pF, are discussed

  19. Method and device for bio-impedance measurement with hard-tissue applications.

    Science.gov (United States)

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-06-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.

  20. Evaluation method for corrosion level of rebar in RC with electrical impedance measurement

    Science.gov (United States)

    Sasamoto, Akira

    2018-04-01

    The author reported that the impedance measurement using the 4-terminal method on the RC surface for diagnosing corrosion of internal rebar. The difference between the maximum value at 0.01 Hz and the minimum value around 10 Hz indicates the corrosion level of rebar in that report. This is successive report on a signal processing method for estimating the corrosion level by the measured impedance data to obtain more high accuracy. In the dielectric, a graph of frequency and dielectric constant (Cole-Cole plot diagram by KS Cole and RH Cole article of 1941) draws a shape of circle if the dielectric is independent of frequency but it draws a shape of ellipse in reality due to frequency dependency. Havriliak and Negami have also presented Havriliak-Negami model which introduced parameter into dielectric constant equation which deforms Cole-Cole plot diagram and showed that acquired dielectric data of polymer materials fit to this model with proper parameters. In this report, we first consider electric model connected with resistance and capacitance as a rough model of RC concrete. If the capacitance in this model circuit has some loss of dielectric, it is stated that graph in impedance plot is expected to take as similar deformation in the dielectric Cole-Cole plot. Then a numerical optimization computer code for obtaining parameters in the Cole-Cole plot diagram and Havriliak-Negami model is constructed, and the correlation between the deformation parameter of each model and corrosion is shown by this code. These results are feasibility study for diagnosis of corrosion level of rebar by associated parameters to a shape of impedance graph.

  1. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

    Directory of Open Access Journals (Sweden)

    Pil-Jong Kim

    2015-05-01

    Full Text Available Objectives The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL. Materials and Methods The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  2. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    Science.gov (United States)

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  3. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2014-07-01

    Full Text Available One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  4. A contribution to the study of high Tc superconducting coatings and multi-layer coatings electromagnetic properties: surface impedance measurement with a tunnel diode oscillator

    International Nuclear Information System (INIS)

    Omari, A.

    1993-01-01

    A surface impedance measurement system for conducting or superconducting thin films have been developed through the electromagnetic coupling of these films to a tunnel diode oscillator. The electromagnetic response of YBa 2 Cu 3 O 7-δ superconducting films and of id/La 2-x Sr x Cu O 4 multilayers, is studied, showing the 'granular' type of these materials. The intergranular coupling is of the SIS type for the films and of the SNS type for the multilayers. A resistance increase is observed when the temperature decreases in the superconducting phase. 120 p., 45 fig., 60 ref

  5. Nuclear EMP: stripline test method for measuring transfer impedance

    International Nuclear Information System (INIS)

    Miller, J.S.

    1975-11-01

    A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents

  6. Portable audio electronics for impedance-based measurements in microfluidics

    International Nuclear Information System (INIS)

    Wood, Paul; Sinton, David

    2010-01-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1–50 mM), flow rate (2–120 µL min −1 ) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ∼10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems. (technical note)

  7. Operators manual for a computer controlled impedance measurement system

    Science.gov (United States)

    Gordon, J.

    1987-02-01

    Operating instructions of a computer controlled impedance measurement system based in Hewlett Packard instrumentation are given. Hardware details, program listings, flowcharts and a practical application are included.

  8. Surface impedance and optimum surface resistance of a superconductor with an imperfect surface

    Science.gov (United States)

    Gurevich, Alex; Kubo, Takayuki

    2017-11-01

    We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.

  9. A Harmonic Impedance Measurement System for Reduction of Harmonics in the Electricity Grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  10. A harmonic impedance measurement system for reduction of harmonics in the electricity grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  11. Software development with two port calibration techniques for RHIC impedance measurements

    International Nuclear Information System (INIS)

    Mane, V.; Shea, T.

    1993-01-01

    The coupling impedance of accelerator devices is measured by simulating the beam with a central wire and measuring the scattering parameters of the system. The wire pipe system forms a mismatch with the 50 ohm transmission line. An integrated software environment has been developed in LabVIEW, for the Macintosh. The program measures the scattering parameters of some known standards, determines the connect scattering parameters of a device using TRL calibration technique and gives the impedance of the device. Its performance has been tested for some known microwave devices

  12. Graphene as a high impedance surface for ultra-wideband electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Aldrigo, Martino; Costanzo, Alessandra [Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEI, University of Bologna, Viale del Risorgimento, 2, 40132 Bologna (Italy); Dragoman, Mircea [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Department of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)

    2013-11-14

    The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.

  13. Measurements of Electric Performance and Impedance of a 75 Ah NMC Lithium Battery Module

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Engelbrecht, Kurt

    2012-01-01

    and the Laplace transformed excitation signal technique which each have pros and cons. By combining the two impedance measurement techniques we are able to reduce the measurement time by a factor of 20 relative to ordinary single-sine measurements. Further we use the impedance measurements to calculate...

  14. Assessment of bolus transit with intraluminal impedance measurement in patients with esophageal motility disorders.

    Science.gov (United States)

    Bogte, A; Bredenoord, A J; Oors, J; Siersema, P D; Smout, A J P M

    2015-10-01

    The clinical management of patients with non-obstructive dysphagia is notoriously difficult. Esophageal impedance measurement can be used to measure esophageal bolus transit without the use of radiation exposure to patients. However, validation of measurement of bolus transit with impedance monitoring has only been performed in healthy subjects with normal motility and not in patients with dysphagia and esophageal motility disorders. The aim was, therefore, to investigate the relationship between transit of swallowed liquid boluses in healthy controls and in patients with dysphagia. Twenty healthy volunteers and 20 patients with dysphagia underwent concurrent impedance measurement and videofluoroscopy. Each subject swallowed five liquid barium boluses. The ability of detecting complete or incomplete bolus transit by means of impedance measurement was assessed, using radiographic bolus transit as the gold standard. Impedance monitoring recognized stasis and transit in 80.5% of the events correctly, with 83.9% of bolus transit being recognized and 77.2% of stasis being recognized correctly. In controls 79.8% of all swallows were scored correctly, whereas in patients 81.3% of all swallows were scored correctly. Depending on the contractility pattern, between 77.0% and 94.3% of the swallows were scored correctly. Impedance measurement can be used to assess bolus clearance patterns in healthy subjects, but can also be used to reliably assess bolus transit in patients with dysphagia and motility disorders. © 2015 John Wiley & Sons Ltd.

  15. Coaxial wire impedance measurements of BPM buttons for the PEP-II B- factory

    International Nuclear Information System (INIS)

    Corlett, J.N.

    1995-09-01

    The coaxial wire impedance measurement uses a conducting rod placed along the beam axis in the vacuum chamber, forming the center conductor in a coaxial line system. Tapers at either end of this section allow for smooth impedance transformation from the 50Ω lines used in common microwave measurement equipment, to the characteristic impedance of the vacuum chamber and center conductor, typically around 200Ω. RF and microwave absorptive material placed in the ends of the vacuum chamber and in the impedance matching tapers minimizes reflections which cause trapped modes within the apparatus, allowing measurements to be made above the traveling-wave cut-off frequency of the vacuum vessel (typically 2.5 - 3.0 GHz for PEP-II). A smooth vessel of the same cross-section as that containing the device under test is used in a reference measurement Resonances within the apparatus are difficult to avoid completely and require careful placing of absorptive material, manufacture of test and reference chambers, and assembly of apparatus

  16. Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study

    Science.gov (United States)

    Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.

    2010-04-01

    Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.

  17. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  18. Evaluation of impedance on biological Tissues using automatic control measurement system

    International Nuclear Information System (INIS)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  19. Surface impedance of BaFe2-xNixAs2 in the radio frequency range

    Directory of Open Access Journals (Sweden)

    A. Abbassi

    2012-08-01

    Full Text Available We report measurements of the temperature dependence of the surface impedance in superconducting BaFe1.93Ni0.07As2 crystals using the radiofrequency reflection technique in the 5measurement assembly with point contacts was used at 30MHz. The recent discovery of iron based arsenide superconductors BaFe2-xNixAs2 has attracted much interest. For a Ni doping level of 7% the superconducting phase transition is found around 20K. The temperature dependence of the superconducting penetration depth was determined.

  20. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  1. In-Plane Impedance Spectroscopy measurements in Vanadium Dioxide thin films

    Science.gov (United States)

    Ramirez, Juan; Patino, Edgar; Schmidt, Rainer; Sharoni, Amos; Gomez, Maria; Schuller, Ivan

    2012-02-01

    In plane Impedance Spectroscopy measurements have been done in Vanadium Dioxide thin films in the range of 100 Hz to 1 MHz. Our measurements allows distinguishing between the resistive and capacitive response of the Vanadium Dioxide films across the metal-insulator transition. A non ideal RC behavior was found in our thin films from room temperature up to 334 K. Around the MIT, an increase of the total capacitance is observed. A capacitor-network model is able to reproduce the capacitance changes across the MIT. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately.

  2. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments.

    Science.gov (United States)

    Harth, Yoram; Lischinsky, Daniel

    2011-03-01

    The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.

  3. FLEXIBLE PH SENSOR WITH POLYANILINE LAYER BASED ON IMPEDANCE MEASUREMENT

    OpenAIRE

    Chuang, Cheng-Hsin; Wu, Hsun-Pei; Chen, Cheng-Ho; Wu, Peng-Rong

    2012-01-01

    A flexible sensor with conducting polyaniline layer for detecting pH value based on the impedance measurement is fabricated and demonstrated in this study. The pH sensor consists of an interdigital electrode array on a flexible printed circuit and a thin-film polyaniline as the sensing layer. As the conductivity of polyaniline depends on the redox state, the impedance change of the polyaniline after it has reacted with different pH value solutions works as the sensing mechanism. In order to o...

  4. [Abdomen specific bioelectrical impedance analysis (BIA) methods for evaluation of abdominal fat distribution].

    Science.gov (United States)

    Ida, Midori; Hirata, Masakazu; Hosoda, Kiminori; Nakao, Kazuwa

    2013-02-01

    Two novel bioelectrical impedance analysis (BIA) methods have been developed recently for evaluation of intra-abdominal fat accumulation. Both methods use electrodes that are placed on abdominal wall and allow evaluation of intra-abdominal fat area (IAFA) easily without radiation exposure. Of these, "abdominal BIA" method measures impedance distribution along abdominal anterior-posterior axis, and IAFA by BIA method(BIA-IAFA) is calculated from waist circumference and the voltage occurring at the flank. Dual BIA method measures impedance of trunk and body surface at the abdominal level and calculates BIA-IAFA from transverse and antero-posterior diameters of the abdomen and the impedance of trunk and abdominal surface. BIA-IAFA by these two BIA methods correlated well with IAFA measured by abdominal CT (CT-IAFA) with correlatipn coefficient of 0.88 (n = 91, p abdominal adiposity in clinical study and routine clinical practice of metabolic syndrome and obesity.

  5. Validation of Standing Wave Liner Impedance Measurement Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hersh Acoustical Engineering, Inc. proposes to establish the feasibility and practicality of using the Standing Wave Method (SWM) to measure the impedance of...

  6. Mechanism transition of cell-impedance-controlled lithium transport through Li1-δMn2O4 composite electrode caused by surface-modification and temperature variation

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2007-01-01

    The mechanism transition of lithium transport through a Li 1-δ Mn 2 O 4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li 1-δ Mn 2 O 4 and surface-modified Li 1-δ Mn 2 O 4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li 1-δ Mn 2 O 4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li 1-δ Mn 2 O 4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li 1-δ Mn 2 O 4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li 1-δ Mn 2 O 4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance

  7. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved

  8. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Tao Wen

    2017-08-01

    Full Text Available Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM, a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit (50 μL−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD of 102 CFU (50 μL−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium

  9. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    International Nuclear Information System (INIS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-01-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor. (paper)

  10. Inductance analyzer based on auto-balanced circuit for precision measurement of fluxgate impedance

    Science.gov (United States)

    Setiadi, Rahmondia N.; Schilling, Meinhard

    2018-05-01

    An instrument for fluxgate sensor impedance measurement based on an auto-balanced circuit has been designed and characterized. The circuit design is adjusted to comply with the fluxgate sensor characteristics which are low impedance and highly saturable core with very high permeability. The system utilizes a NI-DAQ card and LabVIEW to process the signal acquisition and evaluation. Some fixed reference resistances are employed for system calibration using linear regression. A multimeter HP 34401A and impedance analyzer Agilent 4294A are used as calibrator and validator for the resistance and inductance measurements. Here, we realized a fluxgate analyzer instrument based on auto-balanced circuit, which measures the resistance and inductance of the device under test with a small error and much lower excitation current to avoid core saturation compared to the used calibrator.

  11. Impedance analysis on organic ultrathin layers

    Energy Technology Data Exchange (ETDEWEB)

    Bom, Sidhant; Wagner, Veit [Jacobs University Bremen, School of Engineering and Science, Campus Ring 8, 28759 Bremen (Germany)

    2008-07-01

    Impedance spectroscopy is a standard technique for thin film analysis to obtain important information as thicknesses, diffusion properties of mobile ions and leakage currents. The measured electrical impedance of a sample is modeled by a physical equivalent circuit of resistors and capacitors. In the present work this information is obtained as a function of frequency also for ultrathin organic layers in the monolayer regime. A series of semiconducting and insulating polymers (regioregular poly-3-hexylthiophene (rr-P3HT), polymethylmethacrylate (PMMA)) and self assembled monolayers (octadecyltrichlorosilane (OTS), hexamethyldisilazane (HMDS), thiolated phospholipids) were deposited either on highly n-doped silicon wafers or on gold surfaces. E.g. ultrathin layers were obtained by dip coating a silicon wafer in rr-P3HT solution in chloroform. The thickness of 2 nm determined for this system by impedance measurement agrees well with the atomic force microscopy analysis and corresponds to a single layer of polymer chains. The leakage current is seen as an ohmic contribution at low frequencies and allows a systematic optimization of process parameters. In summary, impedance spectroscopy allows very fast and convenient analysis of thin organic layers even down to the monolayer regime.

  12. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    Directory of Open Access Journals (Sweden)

    Wolf Mirela

    2017-01-01

    Full Text Available The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion. The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary. The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  13. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    Science.gov (United States)

    Wolf, Mirela; Traczewska, Teodora; Grzebyk, Tomasz

    2017-11-01

    The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion). The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary). The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  14. Determination of complex microcalorimeter parameters with impedance measurements

    International Nuclear Information System (INIS)

    Saab, T.; Bandler, S.R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Porter, F.S.; Sadleir, J.

    2006-01-01

    The proper understanding and modeling of a microcalorimeter's response requires accurate knowledge of a handful of parameters, such as C, G, α. While a few of these parameters are directly determined from the IV characteristics, some others, notoriously the heat capacity (C) and α, appear in degenerate combinations in most measurable quantities. The consideration of a complex microcalorimeter leads to an added ambiguity in the determination of the parameters. In general, the dependence of the microcalorimeter's complex impedance on these various parameters varies with frequency. This dependence allows us to determine individual parameters by fitting the prediction of the microcalorimeter model to impedance data. In this paper we describe efforts at characterizing the Goddard X-ray microcalorimeters. With the parameters determined by this method, we compare the pulse shape and noise spectra predictions to data taken with the same devices

  15. Evaluation of the CERN Super Proton Synchrotron longitudinal impedance from measurements of the quadrupole frequency shift

    Directory of Open Access Journals (Sweden)

    A. Lasheen

    2017-06-01

    Full Text Available Longitudinal instabilities are one of the main limitations in the CERN Super Proton Synchrotron (SPS to reach the beam parameters required for the High Luminosity LHC project. In preparation to the SPS upgrade, possible remedies are studied by performing macroparticle simulations using the machine impedance model obtained from electromagnetic simulations and measurements. To benchmark the impedance model, the results of simulations are compared with various beam measurements. In this study, the reactive part of the impedance was probed by measuring the quadrupole frequency shift with intensity, obtained from bunch length oscillations at mismatched injection into the SPS. This method was applied over many last years to follow up the evolution of the SPS impedance, injecting bunches with the same bunch length. A novel approach, giving significantly more information, consists in varying the injected bunch length. The comparison of these measurements with macroparticle simulations allowed us to test the existing model, identify some missing SPS impedance and to obtain its possible dependence on frequency.

  16. Polynomial Collocation for Handling an Inaccurately Known Measurement Configuration in Electrical Impedance Tomography

    DEFF Research Database (Denmark)

    Hyvönen, Niina; Kaarnioja, V.; Mustonen, L.

    2017-01-01

    The objective of electrical impedance tomography is to reconstruct the internal conductivity of a physical body based on measurements of current and potential at a finite number of electrodes attached to its boundary. Although the conductivity is the quantity of main interest in impedance...... tomography, a real-world measurement configuration includes other unknown parameters as well: The information on the contact resistances, electrode positions, and body shape is almost always incomplete. In this work, the dependence of the electrode measurements on all aforementioned model properties...

  17. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    International Nuclear Information System (INIS)

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-01-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor cflx var-sigma in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor cflx var-sigma involving three different components is found by measuring the S 21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H ex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of cflx var-sigma (longitudinal var-sigma zz and circular var-sigma v ar-phi v ar-phi) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component var-sigma zv ar-phi (var-sigma v ar-phi z ) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. [copyright] 2001 American Institute of Physics

  18. Electrical impedance measured changes in thoracic fluid content during thoracentesis

    DEFF Research Database (Denmark)

    Petersen, J R; Jensen, B V; Drabaek, H

    1994-01-01

    In patients (seven females and 11 males) with pleural effusion due to pulmonary (n = 13) or cardiac disease (n = 5) the change in baseline transthoracic impedance (Z0) was measured by electrical impedance (BoMed's NCCOM-3, 70 kHz) during thoracentesis. Data were obtained before and after withdrawal...... of each 500 ml, and at the end of the thoracentesis. We found a close linear correlation (r = 0.97) between changes in Z0 and the volume of aspirated pleural effusion (y = 0.415.x+0.093). The variability of the estimated thoracic fluid volumes was analysed with a plot of the residuals from the regression...... line, and we found that changes in thoracic fluid volume estimated by impedance technique would be within +/- 302 ml (= 2 SD). However, the absolute value of Z0 before thoracentesis could not differentiate the group of patients with pleural effusion from normal subjects (n = 28)....

  19. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    Science.gov (United States)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  20. Impedance measurement of irradiated potatoes: a method to identify radiation processing

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.H.

    1992-01-01

    The potato is firmly established in many parts of the world as a major staple food. Then, radiation processing of potato is approved in many countries for sprouting inhibition and extension of shelf life in a dose range from about 0.01 to 0.15 kGy of 60 Co. The use of electrical conductance methods for the detection of Salmonella, some virus or the action of herbicides on plant has been reported and differences have been observed between instruments in respect of the magnitude of conductance change or rates of change in conductance response. A reliable technique to identify potatoes or other food products has not been established so far, though several methods have been reported. Electrical impedance might thus serve for characterization of unirradiated and irradiated tissues and cells. In this work, potato tubers from an European variety, named Bintje, grown in Sao Paulo State were employed. Potatoes were punctured with steel electrodes and impedance measured at different frequencies (1 k Hz-100 k Hz) by passing 3-5 m A alternating current through it. The impedance ratio of 50 k Hz/5 k Hz calculated from ten replicate samples decreases with the increment of the dose when doses of O 0.75 and 0.15 kGy from a Gamma Cell 220 were utilized. The impedance measurement were slightly affected by the place of puncture. (author)

  1. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  2. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.

    Science.gov (United States)

    Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D

    2001-10-01

    The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.

  3. TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics

    Science.gov (United States)

    Wood, Paul; Sinton, David

    2010-08-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.

  4. Gravity-dependent ventilation distribution in rats measured with electrical impedance tomography

    International Nuclear Information System (INIS)

    Rooney, Daniel; Fraser, John F; R Dunster, Kimble; Schibler, Andreas; Friese, Marlies

    2009-01-01

    Ventilation in larger animals and humans is gravity dependent and mainly distributed to the dependent lung. Little is known of the effect of gravity on ventilation distribution in small animals such as rodents. The aim of this study was to investigate gravity-dependent ventilation distribution and regional filling characteristics in rats. Ventilation distribution and regional lung filling were measured in six rats using electrical impedance tomography (EIT). Measurements were performed in four body positions (supine, prone, left and right lateral), and all animals were ventilated with increasing tidal volumes from 3 to 8 mL kg −1 . The effect of gravity on regional ventilation distribution was assessed with profiles of relative impedance change and calculation of the geometric centre. Regional filling was measured by calculating the slope of the plot of regional versus global relative impedance change on a breath-by-breath basis. Ventilation was significantly distributed to the non-dependent lung regardless of body position and tidal volume used. The geometric centre was located in the dependent lung in all but prone position. The regional filling characteristics followed an anatomical pattern with the posterior and the right lung generally filling faster. Gravity had little impact on regional filling. Ventilation distribution in rats is gravity dependent, whereas regional filling characteristics are dependent on anatomy

  5. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    Science.gov (United States)

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  6. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  7. Effective wave tilt and surface impedance over a laterally inhomogeneous two-layer earth

    International Nuclear Information System (INIS)

    Hughes, W.J.; Wait, J.R.

    1975-01-01

    Using a perturbation method, the effect of a simple two-dimensional model on the electromagnetic fields at the surface of the Earth is considered for a postulated downcoming plane wave. The calculated change in the surface impedance and wave tilt due to lateral inhomogeneities is examined. It is found that the magnetic wave tilt (H/sub z//H/sub x/) is most seriously affected by such anomalies. This may have important consequences on electromagnetic probing of nonuniform portions of the Earth's crust

  8. Determination of beam coupling impedance in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, Uwe

    2016-07-01

    The concept of beam coupling impedance describes the electromagnetic interaction of uniformly moving charged particles with their surrounding structures in the Frequency Domain (FD). In synchrotron accelerators, beam coupling impedances can lead to beam induced component heating and coherent beam instabilities. Thus, in order to ensure the stable operation of a synchrotron, its impedances have to be quantified and their effects have to be controlled. Nowadays, beam coupling impedances are mostly obtained by Fourier transform of wake potentials, which are the results of Time Domain (TD) simulations. However, at low frequencies, low beam velocity, or for dispersive materials, TD simulations become unhandy. In this area, analytical calculations of beam coupling impedance in the FD, combined with geometry approximations, are still widely used. This thesis describes the development of two electromagnetic field solvers to obtain the beam coupling impedance directly in the FD, where the beam velocity is only a parameter and dispersive materials can be included easily. One solver is based on the Finite Integration Technique (FIT) on a staircase mesh. It is implemented both in 2D and 3D. However, the staircase mesh is inefficient on curved structures, which is particularly problematic for the modeling of a dipole source, that is required for the computation of the transverse beam coupling impedance. This issue is overcome by the second solver developed in this thesis, which is based on the Finite Element Method (FEM) on an unstructured triangular mesh. It is implemented in 2D and includes an optional Surface Impedance Boundary Condition (SIBC). Thus, it is well suited for the computation of longitudinal and transverse impedances of long beam pipe structures of arbitrary cross-section. Besides arbitrary frequency and beam velocity, also dispersive materials can be chosen, which is crucial for the computation of the impedance of ferrite kicker magnets. Numerical impedance

  9. Positive phase error from parallel conductance in tetrapolar bio-impedance measurements and its compensation

    Directory of Open Access Journals (Sweden)

    Ivan M Roitt

    2010-01-01

    Full Text Available Bioimpedance measurements are of great use and can provide considerable insight into biological processes.  However, there are a number of possible sources of measurement error that must be considered.  The most dominant source of error is found in bipolar measurements where electrode polarisation effects are superimposed on the true impedance of the sample.  Even with the tetrapolar approach that is commonly used to circumvent this issue, other errors can persist. Here we characterise the positive phase and rise in impedance magnitude with frequency that can result from the presence of any parallel conductive pathways in the measurement set-up.  It is shown that fitting experimental data to an equivalent electrical circuit model allows for accurate determination of the true sample impedance as validated through finite element modelling (FEM of the measurement chamber.  Finally, the model is used to extract dispersion information from cell cultures to characterise their growth.

  10. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    Science.gov (United States)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  11. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    International Nuclear Information System (INIS)

    O'Toole, M D; Marsh, L A; Davidson, J L; Tan, Y M; Armitage, D W; Peyton, A J

    2015-01-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz–2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes. (paper)

  12. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  13. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  14. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Lasheen

    2018-03-01

    Full Text Available Microwave instability in the Super Proton Synchrotron (SPS at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2. To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  15. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    Science.gov (United States)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  16. Measurement of Phase Dependent Impedance for 3-phase Diode Rectifier

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2016-01-01

    This paper presents a new method to measure the phase dependent impedance from an experimental set up. Though most of power electronics based system is gradually migrating to IGBT based voltage source converter due to their controllability, the rectifier composed of diode or thyristor components...

  17. A cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    are represented in terms of spherical wave expansions (SWEs), and the propagation is accounted for by a transmission formula. In this paper the measurement results by the proposed technique will be presented for several AUTs, including a standard gain horn antenna, a monopole antenna, and an electrically small......Impedance and gain measurements for electrically small antennas represent a great challenge due to influences of the feeding cable. The leaking current along the cable and scattering effects are two main issues caused by the feed line. In this paper, a novel cable-free antenna impedance and gain...... measurement technique for electrically small antennas is proposed. The antenna properties are extracted by measuring the signal scattered by the antenna under test (AUT), when it is loaded with three known loads. The technique is based on a rigorous electromagnetic model where the probe and AUT...

  18. Surface impedance of epitaxial films Y-Ba-Cu-O in short wave region of range millimetric

    International Nuclear Information System (INIS)

    Vojnovskij, I.V.; Pustyl'nik, O.D.; Boguslavskij, Yu.M.; Shapovalov, A.P.

    1992-01-01

    Epitaxial Y-Ba-Cu-O films on MgO substrate with perfect crystal structure are obtained due to nonaxial magnetron HF-spraying. Temperature dependence of the surface impedance of the films within 66 and 134 GHz frequency is studied. The obtained value of residual surface resistance within 134 GHz frequency (60 mohm) confirms high quality of the films

  19. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  20. Techniques for beam impedance measurements above cutoff

    International Nuclear Information System (INIS)

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz

  1. An electrochemical impedance model for integrated bacterial biofilms

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Freeman, Amihay; Sternheim, Marek; Shacham-Diamand, Yosi

    2011-01-01

    Bacterial cells attachment onto solid surfaces and the following growth into mature microbial biofilms may result in highly antibiotic resistant biofilms. Such biofilms may be incidentally formed on tissues or implanted devices, or intentionally formed by directed deposition of microbial sensors on whole-cell bio-chip surface. A new method for electrical characterization of the later on-chip microbial biofilm buildup is presented in this paper. Measurement of impedance vs. frequency in the range of 100 mHz to 400 kHz of Escherichia coli cells attachment to indium-tin-oxide-coated electrodes was carried out while using optical microscopy estimating the electrode area coverage. We show that impedance spectroscopy measurements can be interpreted by a simple electrical equivalent model characterizing both attachment and growth of the biofilm. The correlation of extracted equivalent electrical lumped components with the visual biofilm parameters and their dependence on the attachment and growth phases is confirmed.

  2. Modelling a coal subcrop using the impedance method

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.A.; Thiel, D.V.; O' Keefe, S.G. [Griffith University, Nathan, Qld. (Australia). School of Microelectronic Engineering

    2000-07-01

    An impedance model was generated for two coal subcrops in the Biloela and Middlemount areas (Queensland, Australia). The model results were compared with actual surface impedance data. It was concluded that the impedance method satisfactorily modelled the surface response of the coal subcrops in two dimensions. There were some discrepancies between the field data and the model results, due to factors such as the method of discretization of the solution space in the impedance model and the lack of consideration of the three-dimensional nature of the coal outcrops. 10 refs., 8 figs.

  3. Characterization of lithium-thionyl chloride cells by impedance techniques

    Science.gov (United States)

    Walsh, F.; Pozin, M.; Cherniy, A.; Tikhonov, K.

    The main contributor to voltage drop observed on initial discharge of lithium-thionyl chloride cells is the resistance of the passive layer on the lithium anode, as can be determined from the Nyquist plot of a lithium-thionyl chloride cell. At extremely low discharge currents, initial voltage drop corresponds to the value found from the impedance measurements; at higher current, an empirical correction based on the experimental results is required. The dispersion in the values of the impedance parameters and thus in initial voltage drop of individual cells was analyzed. The condition of the lithium surface after assembly was shown not to be the only reason for high dispersion in impedance parameter values.

  4. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Cools, Jan; Leroux, Paul

    2013-06-01

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  5. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo

    2009-07-02

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.

  6. Application of a phenomenological model for the surface impedance in high temperature superconducting films

    International Nuclear Information System (INIS)

    Mosquera, A.S.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter γ. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth λ L (T) including λ L (0). The relaxation time model also uses the γ parameter in combination with the residual resistance parameter α. The parameter δ 1 1 , γ, α, and δ 2 . The parameter δ 2 n (T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB 2 , YBa 2 Cu 3 O 7-δ and GdBa 2 Cu 3 O 7-δ superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Impedance measurements and simulations for the LHC and HL-LHC injection protection collimator

    CERN Document Server

    AUTHOR|(CDS)2125995; Biancacci, Nicolò

    This thesis focuses on the study and the data analysis of the Injection Protection Collimator (also Injection Protection Target Dump or TDI), one of the Large Hadron Collider (LHC) collimators at CERN, in Geneva. The last chapters also deal with the Segmented TDI (TDIS), the TDI upgrade for High Luminosity-LHC (HL-LHC). Going more into details, measurements on the TDI - hexagonal Boron Nitride (TDI - hBN, installed in the LHC during run 2015) were carried out. Using the obtained results as an input, two derivations followed: one evaluating the layer resistivity and the other one for its thickness, in order to consider all the possible coating degradations that could occur. The whole range of data obtained from both the derivations was then fed to Impedance Wake 2D (IW2D), a code performing numerical simulations, to attain impedances. Finally, the resulting longitudinal impedance was compared to some measurements performed on the real TDIs, immediately after they were removed from the LHC. The TDI - Graphite, ...

  8. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanlin [Department of Thermal Energy Engineering, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, 102249 (China); Wang, Mi [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (China); Yao, Jun [School of Energy Research, Xiamen University, Xiamen 361005 (China)

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  9. Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy

    International Nuclear Information System (INIS)

    Takebe, H; Sakamoto, D; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T

    2002-01-01

    We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO 2 (Y 2 O 3 -ZrO 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure

  10. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    Science.gov (United States)

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  11. Amplifier spurious input current components in electrode-electrolyte interface impedance measurements

    Directory of Open Access Journals (Sweden)

    Madrid Rossana E

    2005-03-01

    Full Text Available Abstract Background In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 101 to 107 [CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. Methods Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a ultra-low bias current amplifiers, (b isolating relays for the selection of cells, and (c a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. Results It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of ± 0.2 [°C]. Frequency did not influence either. Conclusion The drift originated either at the dc input bias offset current (Ios of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure.

  12. Creating low-impedance tetrodes by electroplating with additives

    Science.gov (United States)

    Ferguson, John E.; Boldt, Chris; Redish, A. David

    2011-01-01

    A tetrode is a bundle of four microwires that can record from multiple neurons simultaneously in the brain of a freely moving animal. Tetrodes are usually electroplated to reduce impedances from 2-3 MΩ to 200-500 kΩ (measured at 1 kHz), which increases the signal-to-noise ratio and allows for the recording of small amplitude signals. Tetrodes with even lower impedances could improve neural recordings but cannot be made using standard electroplating methods without shorting. We were able to electroplate tetrodes to 30-70 kΩ by adding polyethylene glycol (PEG) or multi-walled carbon nanotube (MWCNT) solutions to a commercial gold-plating solution. The MWCNTs and PEG acted as inhibitors in the electroplating process and created large-surface-area, low-impedance coatings on the tetrode tips. PMID:21379404

  13. Applicability of impedance measuring method to the detection of irradiation treatment of potatoes

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Otobe, Kazunori; Sugiyama, Junnichi

    1993-01-01

    The incubation condition of potato tubers prior to impedance measurement greatly influenced the reliability of detection of irradiated potatoes; the impedance ratio at 5 kHz to 50 kHz (Z 5k /Z 50k ) determined at 22degC at an apical region of tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radiation treatment of potatoes. The impedance ratio was dependent upon dose applied to potato tubers. Potatoes irradiated at 100 Gy could be distinguished from unirradiated potatoes for 10 cultivars of potatoes. The impedance ratio of potatoes irradiated at the same dose was little influenced by the planting locality if the cultivar was the same, although the ratio varied with potato cultivars. These results indicate that irradiated potatoes can be detected if the potato cultivar is known. Potatoes 'Danshaku' commercially irradiated at the Shihiro Potato Irradiation Center could be differentiated from unirradiated 'Danshaku' at different planting localities; the impedance ratio was lower than 2.75 for the unirradiated potatoes and higher than 2.75 for the irradiated ones. (author)

  14. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  15. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in [Beam Diagnostics Section (BDS), Indus Operations, Beam Dynamics and Diagnostics Division (IOBDD), Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India); Homi Bhabha National Institute (HBNI) at Raja Ramanna Centre for Advanced Technology, Indore (India); Yadav, S.; Kumar, Mukesh; Shrivastava, B.B.; Karnewar, A.K.; Ojha, A.; Puntambekar, T.A. [Beam Diagnostics Section (BDS), Indus Operations, Beam Dynamics and Diagnostics Division (IOBDD), Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India)

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  16. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis

    Science.gov (United States)

    Cao, Pei; Qi, Shuai; Tang, J.

    2018-03-01

    The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.

  17. Passivation of laser-treated nickel aluminum bronze as measured by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Klassen, R.D.; Hyatt, C.V.; Roberge, P.R.

    2000-01-01

    Electrochemical impedance spectroscopy was used to assess the corrosion behavior of the weld zones and surface conditions of a laser-clad nickel aluminum bronze immersed in a 3.5% neutral saline solution. The zones and conditions examined included: (i) as-cast base material; (ii) laser-clad material with the high temperature oxide from welding intact; (iii) polished laser-clad material and (iv) specimens representative of just the as-deposited and reheated zones of the laser-clad surface. A pseudo steady-state level of passivation was reached in all the samples within 40 hours. The reheated zone passivated more slowly than the as-deposited region and both weld zones passivated more quickly than the base material. Electrochemical impedance data illustrated a transition during the passivation process of the polished specimens that is consistent with the development of a film layer that restricted mass transfer. The welding oxide from the laser treatment immediately behaved as a passivation film that was indistinguishable from that which eventually develops on polished specimens. (author)

  18. Surface degradation of Li{sub 1–x}Ni{sub 0.80}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes: Correlating charge transfer impedance with surface phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Pereira, N.; Faenza, N.; Amatucci, G. G. [Energy Storage Research Group, Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902 (United States); Mukherjee, P.; Cosandey, F. [Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902 (United States); Quackenbush, N. F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Schlueter, C.; Lee, T.-L. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Yang, W. L. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Piper, L. F. J., E-mail: lpiper@binghamton.edu [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States)

    2016-06-27

    The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1 V (versus Li/Li{sup +}) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li{sub 1–x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} binder-free powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1 V, 4.5 V, and 4.75 V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li{sub 2}CO{sub 3} and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li{sup +} extraction is driving the rise in impedance.

  19. Biomedical engineering meets acupuncture - development of a miniaturized 48-channel skin impedance measurement system for needle and laser acupuncture

    Science.gov (United States)

    2010-01-01

    Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296

  20. Biomedical engineering meets acupuncture - development of a miniaturized 48-channel skin impedance measurement system for needle and laser acupuncture

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2010-11-01

    Full Text Available Abstract Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm acupuncture at the acupoint Kongzui (LU6. The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser at an acupoint causes direct electrical biosignal changes.

  1. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    Science.gov (United States)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  2. Impedance method for measuring shear elasticity of liquids

    Science.gov (United States)

    Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.

    2017-11-01

    Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.

  3. Nonsynchronous Noncommensurate Impedance Transformers

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, K

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of two types of transmission lines: transmission lines with a characteristic impedance equal to the impedance of the source, and transmission lines with a characteristic impedance equal to the load. The practical...... advantage of such transformers is that they can be constructed using sections of transmission lines with a limited variety of characteristic impedances. These transformers also provide comparatively compact size in applications where a wide transformation ratio is required. This paper presents the data...... matrix approach and experimentally verified by synthesizing a 12-section nonsynchronous noncommensurate impedance transformer. The measured characteristics of the transformer are compared to the characteristics of a conventional tapered line transformer....

  4. Impact of eating and drinking on body composition measurements by bioelectrical impedance.

    Science.gov (United States)

    Androutsos, O; Gerasimidis, K; Karanikolou, A; Reilly, J J; Edwards, C A

    2015-04-01

    Bioelectrical impedance analysis would be a more practical tool to measure body composition in clinical settings, dietetic practice and epidemiological studies if patients/subjects did not have to fast before measurements. The present study assessed whether the ingestion of food or drink had any biologically significant effect on bioimpedance measurements and body composition by the foot-to-foot method. Fifty-five healthy adults [30 males and 25 females; mean (SD) age 27.7 (7.1) years; mean (SD)body mass index 24 (3.8) kg m(-2)] were randomly assigned to a 2-day food trial (high-fat meal or high-carbohydrate meal) or a 2-day drink trial (water or high electrolyte drink). Body composition measurements were carried out in the fasting state, immediately after meal consumption and every 30 min for 2 h by the foot-to-foot single frequency bioimpedance technique. Bioimpedance increased significantly after the ingestion of food and fluid, although the changes were small. The electrolyte drink, high-fat and high-carbohydrate meals significantly increased the percentage body fat and fat mass. In all cases, the median percentage changes from baseline were approximately 1% in body fat percentage units. Although there were statistically significant changes in body composition estimates after food or drink consumption, these were small and within the imprecision of the impedance technique, and so are unlikely to be of clinical significance. The present study suggests that impedance measures of body fatness in clinical settings do not require strict adherence to fasting, and this should increase the opportunities for clinical application. © 2014 The British Dietetic Association Ltd.

  5. Identification of Critical Transmission Limits in Injection Impedance Plane

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde

    2012-01-01

    In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...

  6. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography

    International Nuclear Information System (INIS)

    Dowrick, T; Blochet, C; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5–10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0–3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. (paper)

  7. Electrochemical Impedance Response of the surface treated FMS in Liquid Sodium Environment

    International Nuclear Information System (INIS)

    Lee, Jeong Hyeon; Shin, Sang Hun; Kim, Ji Hyun

    2014-01-01

    HT9 and Gr.92 are known as compatible in sodium environment because the usual refueling time of SFRs is designed about 54 months. It is very important to investigate the corrosion-related behavior such as surface corrosion rate, carburization, decarburization and mechanical properties for its operation time. SiC and Si 3 N 4 CVD coating for decarburization barrier on the surface of FMS is considered in this study. The decarburization process where dissolved carbon near the specimen surface disused in to the liquid sodium. This process can originate from the difference between dissolved carbon in the material and liquid sodium. A compatibility test the cladding tube revealed that a decrease of the mechanical property instigated by the aging proves governed the whole mechanical property. To monitor the corrosion behavior of these candidate materials in sodium environment, Electrochemical Impedance Spectroscopy (EIS) method is first introduced and investigated in this study. The compatibility of cladding and structural materials with sodium has to be carefully investigated, as sodium could promote corrosion of cladding and structural materials in two ways. One is produced by the dissolution of alloy constituents into the sodium, and the other is produced through a chemical reaction with impurities (especially oxygen and carbon) in the sodium environment. EIS test with pre-oxidized Gr. 92 specimen in 200 .deg. C liquid sodium environment was carried out in this study. A clear Nyquist and Bode plots were obtained in liquid metal environment and the resistance of sodium and the oxide, and the capacitance of the oxide were measured from this result

  8. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  9. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Hiroyuki, E-mail: hiroyuki.ao@j-parc.jp [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Asano, Hiroyuki [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Naito, Fujio [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ouchi, Nobuo; Tamura, Jun [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Takata, Koji [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-11

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al{sub 2}O{sub 3}. The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density.

  10. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    International Nuclear Information System (INIS)

    Ao, Hiroyuki; Asano, Hiroyuki; Naito, Fujio; Ouchi, Nobuo; Tamura, Jun; Takata, Koji

    2014-01-01

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al 2 O 3 . The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density

  11. Development of high impedance measurement system for water leakage detection in implantable neuroprosthetic devices.

    Science.gov (United States)

    Yousif, Aziz; Kelly, Shawn K

    2016-08-01

    There has been a push for a greater number of channels in implantable neuroprosthetic devices; but, that number has largely been limited by current hermetic packaging technology. Microfabricated packaging is becoming reality, but a standard testing system is needed to prepare these devices for clinical trials. Impedance measurements of electrodes built into the packaging layers may give an early warning of device failure and predict device lifetime. Because the impedance magnitudes of such devices can be on the order of gigaohms, a versatile system was designed to accommodate ultra-high impedances and allow future integrated circuit implementation in current neural prosthetic technologies. Here we present the circuitry, control software, and preliminary testing results of our designed system.

  12. Impedance measurements and high-resolution manometry help to better define rumination episodes

    NARCIS (Netherlands)

    Kessing, Boudewijn F.; Govaert, Frank; Masclee, Ad A. M.; Conchillo, José M.

    2011-01-01

    Rumination syndrome is a disorder of unknown etiology characterized by regurgitation of recently ingested food. We aimed to improve the diagnosis of rumination syndrome by classification of separate rumination symptoms using (1) an ambulatory manometry/impedance (AMIM) measurement and (2) a

  13. Determination of time delay between ventricles contraction using impedance measurements

    International Nuclear Information System (INIS)

    Lewandowska, M; Poliński, A; Wtorek, J

    2013-01-01

    The paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on healthy 28 year's old woman. The nonlinear least squares method was applied to obtain a time difference between heart chambers contraction. The obtained value was in a good agreement with theoretical values found in literature.

  14. Measurement of thin liquid film drainage using a novel high-speed impedance analyzer

    Science.gov (United States)

    Hool, Kevin O.; Saunders, Robert C.; Ploehn, Harry J.

    1998-09-01

    This work describes the design and implementation of a new instrument, called the thin film impedance analyzer, which measures the rate of drainage of thin oil films. The instrument forms an oil film by elevating a planar oil-water interface into a water drop hanging from a stainless steel capillary tube immersed in the oil. The instrument measures the magnitude of the impedance of the matter between the capillary tube and a screen electrode immersed in the lower water phase. Under appropriate conditions, the capacitance of the oil film dominates the impedance. The instrument records the increase in the magnitude of the admittance associated with the draining and thinning of the oil film. The features of the drainage curves vary considerably with the type, amount, and location of surfactants in the oil and water phases, as well as with user-specified values of drop volume, drop equilibration time, and extent of drop compression. For this reason, the instrument has utility as a screening tool for selecting surfactants for emulsion formulations. Potential future uses include accelerated prediction of emulsion stability and extraction of oil-water interfacial rheological parameters.

  15. Intraesophageal impedance monitoring: clinical studies

    NARCIS (Netherlands)

    Conchillo Armendáriz, J.M.

    2007-01-01

    Electrical impedance (Z) between two electrodes is the ratio between applied voltage (U) and resulting current (I). In electrical impedance monitoring the resistance to electrical flow in an alternating current circuit is measured. Multichannel esophageal monitoring can be measured by using an

  16. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2015-06-01

    The goal of this paper is to perform end-point impedance measurements across dominant and nondominant hands while doing airbrush painting and to use the results for developing a robotic assistance scheme. We study airbrush painting because it resembles in many ways manual welding, a standard industrial task. The experiments are performed with the 7 degrees of freedom KUKA lightweight robot arm. The robot is controlled in admittance using a force sensor attached at the end-point, so as to act as a free-mass and be passively guided by the human. For impedance measurements, a set of nine subjects perform 12 repetitions of airbrush painting, drawing a straight-line on a cartoon horizontally placed on a table, while passively moving the airbrush mounted on the robot's end-point. We measure hand impedance during the painting task by generating sudden and brief external forces with the robot. The results show that on average the dominant hand displays larger impedance than the nondominant in the directions perpendicular to the painting line. We find the most significant difference in the damping values in these directions. Based on this observation, we develop a "directional damping" scheme for robotic assistance and conduct a pilot study with 12 subjects to contrast airbrush painting with and without robotic assistance. Results show significant improvement in precision with both dominant and nondominant hands when using robotic assistance.

  17. Structural characterization and impedance studies of PbO nanofibers synthesized by electrospinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Hari Prasad, Kamatam [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Vinoth, S. [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Centre for Nanoscience, Pondicherry University, Puducherry, 605014 (India); Jena, Paramananda [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); School of Materials Science and Technology, Indian Institute of Technology(BHU), Varanasi, 221 005 (India); Venkateswarlu, M. [R & D, Amara Raja Batteries Ltd, Karakambadi, 517 520, A.P (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Puducherry, 605 014 (India)

    2017-06-15

    One-dimensional electrospun lead oxide nanofibers synthesized by a simple electrospinning technique. The prepared lead oxide nanofibers investigated by using TG/DTA, FTIR, Raman, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analyzer, scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), Transmission electron microscopy (TEM), and impedance spectroscopy techniques. TG/DTA results confirmed the thermal behavior of the as-spun nanofibers. XRD, FTIR, and Raman spectra results, respectively, confirm the formation of pure orthorhombic crystalline phase and structural coordination of the lead oxide (β-PbO) nanofibers. The BET specific surface area of β-PbO nanofibers sample is found to be 51.23 m{sup 2} g{sup -1}. SEM and AFM micrographs showed the formation of β-PbO nanofibers with a diameter of 85–300 nm. The impedance measurements of lead oxide nanofibers as a function of temperature, 25–150 °C, was evaluated by analyzing the measured impedance data using the winfit software. The electrical conductivity of the lead oxide (β-PbO) nanofibers evaluated by analyzing the measured impedance data using the winfit software is found to be 5.68 × 10{sup -6} S cm{sup -1} at 150 °C. Also, an activation energy (E{sub a}) for the migration of the charge carrier evaluated from the temperature dependence of conductivity plot is found to be 0.27 eV. The temperature dependence AC conductivity of β-PbO nanofibers was evaluated using the measured impedance data and sample dimension. The observed variation of high-frequency AC conductivity attributed to the hopping electrons between the adjacent sites. - Highlights: • First time, β-PbO nanofibers were successfully prepared by electrospinning technique. • Structural, morphological, roughness and electrical properties are studied. • TG/DTA, XRD, FTIR, Raman, SEM/AFM, TEM-EDX, and impedance measurements were made.

  18. SPATIAL VARIABILITY OF PEDOZEMS MECHANICAL IMPEDANCE

    Directory of Open Access Journals (Sweden)

    Zhukov A.V.

    2013-04-01

    Full Text Available We studied the spatial variability of pedozem mechanical impedance in ResearchRemediation Center of the Dnipropetrovsk State Agrarian University in Ordzhonikidze. Thestatistical distribution of the soil mechanical impedance within the studied area is characterized by deviation from the normal law in 0–10 and 30–50 cm layers from the surface. 2D and 3D modeling shows the structural design of the soil as locations of high mechanical impedance which found in the soils with less hardness.

  19. The influence of core material on transient thermal impedances in transformers

    International Nuclear Information System (INIS)

    Górecki, K; Górski, K

    2016-01-01

    In the paper the results of measurements of thermal parameters of impulse-transformers containing cores made of different ferromagnetic materials are presented. Investigations were performed with the use of methods worked out in Gdynia Maritime University. The obtained results of measurements prove that the material of the core does not influence transient thermal impedance of the winding, whereas this parameter visibly changes with the change of spatial orientation of the transformer. In turn, the material of the core decides about transient thermal impedance of the core. Additionally, the influence of the core material on temperature distribution on the surface of the transformer was analysed. (paper)

  20. Plasma diagnosis of RF discharge by using impedance measurement

    International Nuclear Information System (INIS)

    Huang Jianjun; Teuner, D.

    2001-01-01

    It is presented that the method known from network analysis with home-made probe and experimental setup to measure current, voltage and phase angle of RF discharge in He gas more accurately. The sheath thickness and the real and imaginary parts of the plasma impedance were obtained by using the equivalent circuit model and taking account stray capacitances of the set-up. In addition, making use of Godyak's RF discharge simple model, the electron density in the discharge was calculated at different pressure and current density

  1. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    Science.gov (United States)

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs. Copyright © 2016. Published by Elsevier Ltd.

  2. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  3. Inverse Relation between Condition of Heart Failure and Intrathoracic Impedance Measured by Implantable Cardioverter Defibrillator—A case report—

    Directory of Open Access Journals (Sweden)

    Kohei Matsushita, MD

    2005-01-01

    Full Text Available The patient was a 78-year-old man with dilated cardiomyopathy. His cardio-thoracic ratio was 60.4% and left ventricular ejection fraction (LVEF was 33%. He had been repeatedly admitted for congestive heart failure. He underwent implantation of an implantable cardioverter-defibrillator (ICD for ventricular fibrillation. We compared the values of BNP and shock impedance stored by the ICD. The correlation coefficient (p-value between BNP and shock impedance was −0.700 (p < 0.0005, increase of BNP and shock impedance was −0.778 (p < 0.0001, percent increase of BNP and shock impedance was −0.767 (p < 0.0005. In conclusion, there is an inverse relation between BNP and shock impedance, and measurements of shock impedance may be useful in the management of congestive heart failure.

  4. Impedance spectroscopy in biodynamics: Detection of specific cells (pathogens using immune coated electrodes

    Directory of Open Access Journals (Sweden)

    Eugen Gheorghiu

    2002-11-01

    Full Text Available We describe the theoretical and experimental approaches for monitoring the interfacial biomolecular reaction between immobilized antibody and the antigen binding partner (the analyte, or the targeted cell using Impedance Spectroscopy, IS. The key idea is to reveal the presence of the analyte by investigating the dynamics of the impedance changes at the interface between transducer and bulk during the process of antibody-antigen binding (coupling of specific compounds to sensor surface. In this work, antibody-antigen (Ab-Ag reaction was directly monitored using an impedance analyzer capable of ~ 1 measurement/second and covalent immobilization chemistry and modified electrodes in the absence of a redox probe. The proposed approach may be applicable to monitoring other surface interfacial reactions such as protein-protein interactions, DNA-DNA interactions, DNA-protein interactions and DNA-small molecule interactions.

  5. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  6. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    Science.gov (United States)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  7. The LEP impedance model

    Energy Technology Data Exchange (ETDEWEB)

    Zotter, B [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)

  8. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  9. Electron Density Measurement on JUICE Mission by Mutual Impedance Technique: MIME Instrument as a Part of RPWI Consortium

    Science.gov (United States)

    Rauch, J. L.; Henri, P.; Wahlund, J. E.; Le Duff, O.; Sene, O.; Colin, F.; Lagoutte, D.; Gilet, N.; Ahlen, L.; Bergman, J.; Gill, R.; Puccio, W.

    2017-09-01

    Mutual Impedance MEasurements (MIME) instrument is a part of the Radio Wave Plasma Investigation (RPWI) consortium which has been selected by European Space Agency (ESA) on the nest planetary mission JJUpiter ICy moons Exploer (JUICE) for a launch in 2022. The goals are to explore Jupiter and its potentially habitable icy moons and to study its plasma environment. Impedance probes, which are well known in geophysical prospection, in particular for ground permittivity investigations, have been successfully transposed to space plasmas diagnostic. Transmitting and receiving electrodes are used for measuring on open circuit the dynamic impedance of the system at several fixed frequencies over a range that includes characteristic frequencies of the ambient plasma. The measurements are then interpreted using a suitable theory and the values of plasma parameters, such as the electron density and possibly the temperature of the plasma can be deduced. To show how powerful this technique is, results obtained in the Earth's plasmasphere by the mutual impedance probe onboard ROSETTA are presented as example. MIME instrument proposal is then described and its ability to make valuable measurements in the Jupiter space environment and in particular around Europe, Callisto and Ganymede is investigated..

  10. Predicting burst pressure of radiofrequency-induced colorectal anastomosis by bio-impedance measurement.

    Science.gov (United States)

    Zhao, Lingxi; Zhou, Yu; Song, Chengli; Wang, Zhigang; Cuschieri, Alfred

    2017-03-01

    The present study investigates the relationship between bio-impedance and burst pressure of colorectal anastomosis created by radiofrequency (RF)-induced tissue fusion. Colorectal anastomosis were created with ex vivo porcine colorectal segments, during which 5 levels of compression pressure were applied by a custom-made bipolar prototype, with 5 replicate experiments at each compression pressure. Instant anastomotic tensile strength was assessed by burst pressure. Bio-impedance of fused tissue was measured by Impedance Analyzer across frequency that 100 Hz to 3 MHz. Statistical analysis shows only a weak correlation between bio-impedance modulus and burst pressures at frequency of 445 kHz ([Formula: see text]  =  -0.426, P  =  0.099  >  0.05). In contrast, results demonstrated a highly significant negative correlation between reactance modulus and burst pressures ([Formula: see text]  =  -0.812, P  =  0.000  <  0.05). The decrease in mean reactance modulus with increasing burst pressures was highly significant (P  =  0.019  <  0.05). The observed strong negative correlation between reactance modulus and burst pressures at frequency of 445 kHz indicates that reactance is likely to be a good index for tensile strength of RF-induced colorectal anastomosis, and should be considered for inclusion in a feedback loops in devices design.

  11. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  12. Studies of Corrosion of Cladding Materials in Simulated BWR-environment Using Impedance Measurements. Part I: Measurements in the Pre-transition Region

    International Nuclear Information System (INIS)

    Forsberg, Stefan; Ahlberg, Elisabet; Andersson, Ulf

    2004-09-01

    The corrosion of three Zircaloy 2 cladding materials, LK2, LK2+ and LK3, have been studied in-situ in an autoclave using electrochemical impedance spectroscopy. Measurements were performed in simulated BWR water at temperatures up to 288 deg C. The impedance spectra were successfully modelled using equivalent circuits. When the oxide grew thicker during the experiments, a change-over from one to two time constants was seen, showing that a layered structure was formed. Oxide thickness, oxide conductivity and effective donor density were evaluated from the impedance data. The calculated oxide thickness at the end of the experiments was consistent with the value obtained from SEM. It was shown that the difference in oxide growth rate between the investigated materials is small in the pre-transition region. The effective donor density, which is a measure of electronic conductivity, was found to be lower for the LK3 material compared to the other two materials

  13. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    Directory of Open Access Journals (Sweden)

    Elin Ericsson

    Full Text Available Ventilator-induced or ventilator-associated lung injury (VILI/VALI is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.

  14. Impedance Scaling and Impedance Control

    International Nuclear Information System (INIS)

    Chou, W.; Griffin, J.

    1997-06-01

    When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ''normal'' way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane

  15. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Measurements on the SPS 200 MHz Travelling Wave Cavity towards an Impedance Model

    CERN Document Server

    Roggen, Toon; Caspers, Fritz; Vollinger, Christine; CERN. Geneva. ATS Department

    2016-01-01

    This note discusses the contribution of the SPS 200 MHz TWC (Travelling Wave Cavity) to the SPS longitudinal impedance model. The measurement method and setup is briefly explained and a comparison with simulations is discussed for both the fundamental pass band (FPB) as well as the Higher Order Modes (HOMs). In addition a number of improvements to the measurement setup are discussed.

  17. Textrode-enabled transthoracic electrical bioimpedance measurements - towards wearable applications of impedance cardiography

    Directory of Open Access Journals (Sweden)

    Juan Carlos Márquez Ruiz

    2013-10-01

    Full Text Available During the last decades the use of Electrical Bioimpedance (EBI in the medical field has been subject of extensive research, especially since it is an affordable, harmless and non-invasive technology. In some specific applications such as body composition assessment where EBI has proven a good degree of effectiveness and reliability, the use of textile electrodes and measurement garments have shown a good performance and reproducible results. Impedance Cardiography (ICG is another modality of EBI that can benefit from the implementation and use of wearable sensors. ICG technique is based on continuous impedance measurements of a longitudinal segment across the thorax taken at a single frequency. The need for specific electrode placement on the thorax and neck can be easily ensured with the use of a garment with embedded textile electrodes, textrodes. The first step towards the implementation of ICG technology into a garment is to find out if ICG measurements with textile sensors give a good enough quality of the signal to allow the estimation of the fundamental ICG parameters. In this work, the measurement performance of a 2-belt set with incorporated textrodes for thorax and neck was compared against ICG measurements obtained with Ag/AgCl electrodes. The analysis was based on the quality of the fundamental ICG signals (∆Z, dZ/dt and ECG, systolic time intervals and other ICG parameters. The obtained results indicate the feasibility of using textrodes for ICG measurements with consistent measurements and relatively low data dispersion. Thus, enabling the development of measuring garments for ICG measurements.

  18. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  19. Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults

    Directory of Open Access Journals (Sweden)

    Valencia Mauro E

    2007-08-01

    Full Text Available Abstract Background The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP as standard method to measure body composition in Mexican adult men and women. Methods This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg and height (Ht, cm were obtained by standard anthropometric techniques. Resistance, R (ohms and reactance, Xc (ohms were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM. Results and Discussion The final model was: FFM (kg = 0.7374 * (Ht2 /R + 0.1763 * (BW - 0.1773 * (Age + 0.1198 * (Xc - 2.4658. R2 was 0.97; the square root of the mean square error (SRMSE was 1.99 kg, and the pure error (PE was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg and that measured by ADP (48.43 ± 11.3 kg. The new equation did not differ from the line of identity, had a high R2 and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg. Conclusion The new bioelectrical impedance equation based on the two-compartment model (2C was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample.

  20. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    International Nuclear Information System (INIS)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-01-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected. (papers)

  1. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    Science.gov (United States)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-06-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.

  2. Study of colored anodized aluminum with calcon in sulfuric acidic solution using cyclic voltammetry and impedance measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, P.; Ganjali, M.R.; Golmohamaddi, M.; Mousavi, S. [Department of Chemistry, Faculty of Science, University of Tehran, Tehran (Iran); Vatankhah, G. [Iranian Organization for Science and Technology (IROST), Isfahan Center, A5 Ghezelbash Avenue, Tohid Street, Isfahan 8173954541 (Iran)

    2003-04-01

    The effect of coloring condition of Al with Calcon (sodium 2,2'-dihydroxy-azonaphthalene-4-sulfonate), on the corrosion resistance of Al in 0.1 M sulfuric acid solution was studied, using cyclic voltammetry and measurement of impedance noise methods. The changes in the corrosion resistance of colored aluminum electrodes were evaluated by measuring the magnitude of impedance and cyclic voltammetric responses of anodized and colored electrodes. An irreversible corrosion response was observed at the cyclic voltammogram of the colored aluminum electrode. The current and threshold potential of corrosion responses strongly depends on the applied conditions during anodizing, coloring and sealing stages. In addition, significant changes in impedance at the ac voltammogram and noise level at some ac frequencies were observed, when the electrodes were colored under various conditions. In this regard, the surface of the electrode was studied by Scanning Electron Microscopy (SEM). Comparison of SEM images of the colored and uncolored aluminum specimens showed that the colored surface contained a significant numbers of pits. The results indicated that coloring aluminum with Calcon could reduce corrosion resistance of aluminum and increase roughness of the oxide film. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Mit Hilfe zyklischer Voltammetrie und Messungen mit Impedanzrauschmethoden wurde der Einfluss der Faerbungsbedingungen von Aluminium mit Calcon (Natrium 2,2'-Dihydroxyazonaphthalen-4-Sulfonat) auf den Korrosionswiderstand von Aluminium in 0,1 M Schwefelsaeure untersucht. Die Veraenderungen des Korrosionswiderstandes von gefaerbten Aluminiumelektroden wurden durch Messungen der Hoehe der Impedanzreaktion bzw. der Reaktion bei der zyklischen Voltammetrie von anodisierten und gefaerbten Elektroden beurteilt. Eine irreversible Korrosionsreaktion wurde beim zyklischen Voltammogramm der gefaerbten Aluminiumelektrode beobachtet. Der Strom und das

  3. Measurements of impedances for determinating the minimum short-circuit current in main systems 500 V of underground mining establishments

    Energy Technology Data Exchange (ETDEWEB)

    Rittinghaus, D

    1981-09-01

    The complex short-circuit impedances of energized low-voltage main systems were measured with a double-bridge in underground mining operation. The magnitude of the short-circuit currents depends on these impedances. Customary calculations of such currents depend on empirical approximations. To verify the accuracy of these approximations, the measured impedances of 61 nodes in three different main systems were compared with the results of the calculations. The comparison made between the short-circuit currents determined by measurable quantities and the values calculated according to VDE 0118 shows that the stipulated coefficients for calculating the minimum short-circuit currents lie very far on the safe side. An amendment for calculating the short-circuit in accordance with VDE 0118 is therefore suggested.

  4. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  5. Automated AC Electrical Impedance Measurement of Ceramic Oxides by means of a Lock-in Amplifier

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Al-Sous, M. B.; Nasrallah, F.

    2009-06-01

    In this study, the electrical impedance of some ceramic oxides has been investigated employing the Perkin Elmer DSP 7280 Lock-in amplifier, while recording the electric response versus frequency and temperature at constant amplitude. Via integral automation of this lock-in with other delicate electrical measuring devices, a control program has been developed to accurately and swiftly acquire the frequency response of the sample, in order to lately infer the resulting samples' impedance in volt and ampere. Two maxima peaks characterising the impedance, in the curve of the doped molybdenum oxide have been observed discerning two phases in the sample (doped with 40% of niobium oxide), which shows a remarkable relaxation related to improvement in its ionic conductivity within the solid phase, with respect to increasing frequency. (author)

  6. A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors

    Directory of Open Access Journals (Sweden)

    H. Haddad

    2018-02-01

    Full Text Available This study proposes a new approach to flatten retrodirective corner reflectors. The proposed method enables compact reflectors via Transformation Optics (TO combined with Surface Impedance Modulation (SIM. This combination permits to relax the constraints on the anisotropic material resulting from the TO. Phase gradient approach is generalized to be used within anisotropic media and is implemented with SIM. Different reflector setups are designed, simulated and compared for fop = 8GHz using ANSYS® HFSS® in order to validate the use of such a combination.

  7. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations

    Science.gov (United States)

    Nicholls, David P.

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  8. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations.

    Science.gov (United States)

    Nicholls, David P

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  9. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  10. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery.

    Science.gov (United States)

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-10-17

    In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee ® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice ® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper).The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V)and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical) enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  11. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    Directory of Open Access Journals (Sweden)

    Reddad El-Moznine

    2007-10-01

    Full Text Available In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper.The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5Vand with two imposed currents (0.6A and 4A. The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  12. Measurements of the dynamic input impedance of a dc SQUID

    International Nuclear Information System (INIS)

    Hilbert, C.; Clarke, J.

    1985-01-01

    The impedance of a circuit coupled magnetically via a mutual inductance M/sub i/ to a dc SQUID of geometric inductance L is modified by the dynamic input impedance of the SQUID, which can be characterized by the flux-to-current transfer function J/sub Phi/approx. =partialJ/partialPhi; J is the current circulating in the SQUID loop and ∫ is the flux applied to the loop. At the same time, the SQUID is modified by the presence of the input circuit in the lumped circuit approximation, one expects its inductance to be reduced to L'(1-α/sub e/ 2 )L, where α/sub e/ is an effective coupling coefficient. Calculations of J/sub Phi/ using an analog simulator are described and presented in the form of a dynamic inductance L and a dynamic resistance R versus bias current I and Phi. Experimental measurements of L and R were made on a planar, thin-film SQUID tightly coupled to a spiral input coil that was connected in series with a capacitor C/sub i/ to form a resonant circuit. Thus, J/sub Phi/ was determined from the change in the resonant frequency and quality factor of this circuit as a function of I and Phi. At low bias currents (low Josephson frequencies) the measured values of L were in reasonable agreement with values simulated for the reduced SQUID, while at higher bias currents (higher Josephson frequencies) the measured values were in better agreement with values simulated for the unscreened SQUID. Similar conclusions were reached in the comparison of the experimental and simulated values of the flux-to-voltage transfer function V/sub Phi/

  13. Comparison between laboratory measurements, simulations, and analytical predictions of the transverse wall impedance at low frequencies

    CERN Document Server

    Roncarolo, F; Kroyer, T; Metral, E; Mounet, N; Salvant, B; Zotter, B

    2009-01-01

    The prediction of the transverse wall beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instabilities. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to cross-check the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of (i) sample graphite plates, (ii) stand-alone LHC collimator jaws, and (iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.

  14. Gastric motility measurement and evaluation of functional dyspepsia by a bio-impedance method

    International Nuclear Information System (INIS)

    Li, Zhangyong; Ren, Chaoshi

    2008-01-01

    In order to investigate the complex course of the electrical and mechanical processes of functional dyspepsia (FD), it is necessary to extract gastric motility information on both electricity and mechanism. According to the clinical standardization, 36 volunteers with functional dyspepsia were selected. The signal processing device has been designed by Chongqing University of Posts and Telecommunications. Multi-resolution analysis (MRA) decomposed the two signals of impedance gastric motility (IGM) and electrogastrogram (EGG) collected from the body surface. The wavelet transform is addressed to separate the IGM and EGG signals from impedance signals due to breathing and blood flow. By means of the energy and frequency spectrum analysis technique, the signals can be classified according to the dominant power and dominant frequency. Some indices, such as frequencies of EGG and IGM, signal power spectrum and dynamic spectrum, the rates of rhythm and power for the normal EGG and IGM and so on, can also be calculated. The primary experiments of gastric motility measurement and evaluation are executed by including healthy humans (control group: CG) and patients with FD (pathologic group: PG). There are significant differences in the temporal-domain and frequency-domain properties between the two groups. The main frequency of the CG belongs to 2–4 CPM and is clear and very regular, while the main frequency of the PG is much disordered. The peak of the maximal power of the CG belongs to 2–4 CPM and 1–2 CPM for the PG. The percentage of normal frequency (PNF) for the CG is 0.704 ± 0.255 and 0.402 ± 1.145 for the PG. The frequency instability coefficient (FIC) for the CG is 0.182 ± 0.059 and 0.374 ± 0.086 for the PG. The percentage of normal power (PNP) for the CG is 0.592 ± 0.044 and 0.468 ± 0.142 for the PG. The power instability coefficient (PIC) for the CG is 1.576 ± 0.481 and 4.006 ± 0.711 for the PG. The results of the experiments show that the proposed

  15. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  16. Corrosion monitoring of iron, protected by an organic coating, with the aid of impedance measurements

    International Nuclear Information System (INIS)

    Hubrecht, J.; Piens, M.; Vereecken, J.

    1984-01-01

    The ac impedance measurement has proved to be a useful electrochemical technique for mainly qualitative studies of electrochemical and corrosion systems. Even for complicated systems such as coated metals in corrosive environments this technique has been used with success. The system chosen for the present study is an ARMCO iron plate, coated with a SrCrO 4 -pigmented styrene acrylic polymer, and immersed for several weeks in an aqueous NaCl solution. Impedance measurements analyze a system under test into its constituting phenomena. The dependence of system parameters on coating layer thickness, NaCl concentration, and pigmentation of the coating during the immersion time provides insight into the corrosion and protection mechanisms at the coating/metal interface, besides the behavior of the coating itself

  17. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.

    Science.gov (United States)

    Rodriguez, Saul; Ollmar, Stig; Waqar, Muhammad; Rusu, Ana

    2016-06-01

    The measurement of the biological tissue's electrical impedance is an active research field that has attracted a lot of attention during the last decades. Bio-impedances are closely related to a large variety of physiological conditions; therefore, they are useful for diagnosis and monitoring in many medical applications. Measuring living tissues, however, is a challenging task that poses countless technical and practical problems, in particular if the tissues need to be measured under the skin. This paper presents a bio-impedance sensor ASIC targeting a battery-free, miniature size, implantable device, which performs accurate 4-point complex impedance extraction in the frequency range from 2 kHz to 2 MHz. The ASIC is fabricated in 150 nm CMOS, has a size of 1.22 mm × 1.22 mm and consumes 165 μA from a 1.8 V power supply. The ASIC is embedded in a prototype which communicates with, and is powered by an external reader device through inductive coupling. The prototype is validated by measuring the impedances of different combinations of discrete components, measuring the electrochemical impedance of physiological solution, and performing ex vivo measurements on animal organs. The proposed ASIC is able to extract complex impedances with around 1 Ω resolution; therefore enabling accurate wireless tissue measurements.

  18. Bench measurement of vacuum chamber impedances with wires

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1979-01-01

    Particle beams travelling in an accelerator or storage ring vacuum chamber produce electric and magnetic fields which interact with the walls of the chamber. The induced wall currents in turn generate secondary fields which can interact with the beam, giving rise to both energy loss and other effects which can cause beam instability. In many simple geometries these effects can be calculated. In more complex geometries the calculations are difficult and very approximate. For this reason it is important that the effects be measured if possible prior to installation. As accelerators become larger and the number of vacuum chamber components more numerous, and as more severe beam intensity and stability requirements are placing lower limits on the longitudinal and transverse impedances, a less than adequate component will be more likely to limit machine performance

  19. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    Science.gov (United States)

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  20. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Science.gov (United States)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  1. Impedance response characteristics of iron oxide interface in the EDTA solutions

    International Nuclear Information System (INIS)

    Sawa, Tosio; Higuchi, Shigeo; Kataoka, Ichiro; Ito, Hisao.

    1986-01-01

    The relationship between the dissolution and the surface conditions of Fe 3 O 4 were studied in the various conditions of EDTA solutions by means of the A · C impedance measurement. From the experimental results obtained, surface layer of Fe 3 O 4 electrode can be expressed with electrical equivalent circuit that have capacitance and reaction resistance in the electrical double layer. In the Na 2 SO 4 solution without occuring dissolution, reaction resistance was estimated as 314 kΩ · cm 2 and capacitance was 203 μF/cm 2 . In the EDTA solutions, reaction resistance decreases along with dissolution of Fe 3 O 4 . The factors to make decrease reaction resistance are EDTA concentration, pH and temperature of the solutions. In contrast with this, the factor to increase it is dissolved oxygen in the solutions. The reciprocal value of reaction resistance agrees well with the rate of dissolution. On the other hand, when the electrode potential was maintained under the cathodic polarization in the EDTA solutions, impedances of electrode surface showed the lower value than that in the immersion condition. And apparent resistance came near to 0 at the potential of -2.0 V in all the range of frequency. Fe 3 O 4 electrodes pretreated with the cathodic polarization exhibited the characteristic impedance response that were caused by the change of electrode surface and the deposites such as iron hydroxide. (author)

  2. Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions

    Directory of Open Access Journals (Sweden)

    Jiangong Zhu

    2017-01-01

    Full Text Available An impedance-based temperature estimation method is investigated considering the electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium before the impedance measurement. A detailed experiment is performed to investigate the regularity of the battery impedance in short-term relaxation time after switch-off current excitation, which indicates that the impedance can be measured and also has systematical decrement with the relaxation time growth. Based on the discussion of impedance variation in electrochemical perspective, as well as the monotonic relationship between impedance phase shift and battery internal temperature in the electrochemical equilibrium state, an exponential equation that accounts for both measured phase shift and relaxation time is established to correct the measuring deviation caused by electrochemical non-equilibrium. Then, a multivariate linear equation coupled with ambient temperature is derived considering the temperature gradients between the active part and battery surface. Equations stated above are all identified with the embedded thermocouple experimentally. In conclusion, the temperature estimation method can be a valuable alternative for temperature monitoring during cell operating, and serve the functionality as an efficient implementation in battery thermal management system for electric vehicles (EVs and hybrid electric vehicles (HEVs.

  3. Compressed sampling for boundary measurements in three-dimensional electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Soleimani, Manuchehr

    2013-01-01

    Electrical impedance tomography (EIT) utilizes electrodes on a medium's surface to produce measured data from which the conductivity distribution inside the medium is estimated. For the cases that relocation of electrodes is impractical or no a priori assumptions can be made to optimize the electrodes placement, a large number of electrodes may be needed to cover all possible imaging volume. This may occur in dynamically varying conductivity distribution in 3D EIT. Three-dimensional EIT then requires inverting very large linear systems to calculate the conductivity field, which causes significant problems regarding storage space and reconstruction time in addition to that data acquisition for a large number of electrodes will reduce the achievable frame rate, which is considered as major advantage of EIT imaging. This study proposes an idea to reduce the reconstruction complexity based on the well-known compressed sampling theory. By applying the so-called model-based CoSaMP algorithm to large size data collected by a 256 channel system, the size of forward operator and data acquisition time is reduced to those of a 32 channel system, while accuracy of reconstruction is significantly improved. The results demonstrate great capability of compressed sampling for overriding the challenges arising in 3D EIT. (paper)

  4. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2014-05-01

    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  5. Mechanical Impedance Modeling of Human Arm: A survey

    Science.gov (United States)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  6. Complex numbers in chemometrics: examples from multivariate impedance measurements on lipid monolayers.

    Science.gov (United States)

    Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta

    2007-07-09

    Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.

  7. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  8. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjelm, Johan

    2014-01-01

    It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustr......It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore......, it was illustrated through a literature review on SOFC electrodes that porous electrode theory not only describes the classic LSM:YSZ SOFC cathode well, but SOFC electrodes in general. The extensive impedance spectroscopy study of LSM:YSZ cathodes consisted of measurements on cathodes with three different sintering...... temperatures and hence different microstructures and varying degrees of LSM/YSZ solid state interactions. LSM based composite cathodes, where YSZ was replaced with CGO was also studied in order to acquire further knowledge on the chemical compatibility between LSM and YSZ. All impedance measurements were...

  9. The measurement of water transport in porous materials using impedance spectroscopy

    International Nuclear Information System (INIS)

    Ball, R J; Allen, G C

    2010-01-01

    This paper describes the application of electrical measurements to monitor the extraction (movement of water from the mortar) of water from calcium lime, natural hydraulic lime and Portland cement mortars placed on an adsorbent brick substrate. Impedance measurements were used to identify the changes in bulk resistance of the mortar. A model has been developed combining sharp front theory and Boltzmann's distribution law of statistical thermodynamics to identify the point at which no further absorption of water into the brick occurs. A linear relationship was found between the exponential of bulk resistance and the square root of time during dewatering. A change in gradient was attributed to the end of dewatering.

  10. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu [School of MechatronicEngineering, Korea University of Technology and Education, Chunan (Korea, Republic of); Nah, Hwan Seon [Structural Engineering Lab., Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  11. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    International Nuclear Information System (INIS)

    Kim, No Hyu; Nah, Hwan Seon

    2014-01-01

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  12. Kinetic mechanism of steel corrosion in clay soils by impedance measurements

    International Nuclear Information System (INIS)

    Arpaia, M.; Pernice, P.; Costantini, A.

    1990-01-01

    The corrosion of steel in clay soil at m.c. 15% has been studied for a long exposure time by electrochemical methods. A.c. impedance measurements results show that at a short exposure time the corrosion process is controlled by the diffusion of H + coupled with a rate determining homogeneous reaction, whereas at a long exposure time the process is controlled by pure diffusion. We have hypothesized that the rate determining homogeneous reaction might be the clay particles cations exchange. (orig.)

  13. Automated bead-positioning system for measuring impedances of R-F cavity modes

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Rimmer, R.A.

    1993-05-01

    We describe a fully automated bead puller system which uses stepping motors to position the bead, and an HP-8510 network analyzer to measure the resulting frequency shifts, both devices being under computer control. Longitudinal motion of the bead is used for measurement of cavity shunt impedance. In addition, azimuthal scans at fixed longitudinal position aid in determining the multipole character of higher-order modes. High sensitivity/accuracy is made possible by measuring phase shifts at the unperturbed resonant frequencies (rather than frequency shifts themselves), thereby permitting averaging factors of > 500 with only modest increases in data acquisition time. Sample measurements will be presented. A comprehensive analysis of the experimental results is presented in an accompanying paper

  14. Determination of SoH of Lead-Acid Batteries by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Kwiecien

    2018-05-01

    Full Text Available The aging mechanisms of lead-acid batteries change the electrochemical characteristics. For example, sulfation influences the active surface area, and corrosion increases the resistance. Therefore, it is expected that the state of health (SoH can be reflected through differentiable changes in the impedance of a lead-acid battery. However, for lead-acid batteries, no reliable SoH algorithm is available based on single impedance values or the spectrum. Additionally, the characteristic changes of the spectrum during aging are unknown. In this work, lead-acid test cells were aged under specific cycle regimes known as AK3.4, and periodic electrochemical impedance spectroscopy (EIS measurements and capacity tests were conducted. It was examined that single impedance values increased linearly with capacity decay, but with varying slopes depending on the pre-history of the cell and measurement frequency of impedance. Thereby, possible reasons for ineffective SoH estimation were found. The spectra were fitted to an equivalent electrical circuit containing, besides other elements, an ohmic and a charge-transfer resistance of the negative electrode. The linear increase of the ohmic resistance and the charge-transfer resistance were characterized for the performed cyclic aging test. Results from chemical analysis confirmed the expected aging process and the correlation between capacity decay and impedance change. Furthermore, the positive influence of charging on the SoH could be detected via EIS. The results presented here show that SoH estimation using EIS can be a viable technique for lead-acid batteries.

  15. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  16. Impedance spectroscopy studies of surface engineered TiO2 ...

    Indian Academy of Sciences (India)

    Administrator

    Impedance; nanoTiO2; self-assembled monolayers; electrical resistivity; permittivity. 1. Introduction ... search studies showed that nanostructured TiO2 ceramics possess ..... tion handbook (ed) J Cazes (New York: Marcel Dekker). 3rd ed, p ...

  17. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    OpenAIRE

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M...

  18. Wearable impedance monitoring system for dialysis patients.

    Science.gov (United States)

    Bonnet, S; Bourgerette, A; Gharbi, S; Rubeck, C; Arkouche, W; Massot, B; McAdams, E; Montalibet, A; Jallon, P

    2016-08-01

    This paper describes the development and the validation of a prototype wearable miniaturized impedance monitoring system for remote monitoring in home-based dialysis patients. This device is intended to assess the hydration status of dialysis patients using calf impedance measurements. The system is based on the low-power AD8302 component. The impedance calibration procedure is described together with the Cole parameter estimation and the hydric volume estimation. Results are given on a test cell to validate the design and on preliminary calf measurements showing Cole parameter variations during hemodialysis.

  19. Direct correlation between potentiometric and impedance biosensing of antibody-antigen interactions using an integrated system

    Science.gov (United States)

    Tsai, Meng-Yen; Creedon, Niamh; Brightbill, Eleanor; Pavlidis, Spyridon; Brown, Billyde; Gray, Darren W.; Shields, Niall; Sayers, Ríona; Mooney, Mark H.; O'Riordan, Alan; Vogel, Eric M.

    2017-08-01

    A fully integrated system that combines extended gate field-effect transistor (EGFET)-based potentiometric biosensors and electrochemical impedance spectroscopy (EIS)-based biosensors has been demonstrated. This integrated configuration enables the sequential measurement of the same immunological binding event on the same sensing surface and consequently sheds light on the fundamental origins of sensing signals produced by FET and EIS biosensors, as well as the correlation between the two. Detection of both the bovine serum albumin (BSA)/anti-BSA model system in buffer solution and bovine parainfluenza antibodies in complex blood plasma samples was demonstrated using the integrated biosensors. Comparison of the EGFET and EIS sensor responses reveals similar dynamic ranges, while equivalent circuit modeling of the EIS response shows that the commonly reported total impedance change (ΔZtotal) is dominated by the change in charge transfer resistance (Rct) rather than surface capacitance (Csurface). Using electrochemical kinetics and the Butler-Volmer equation, we unveil that the surface potential and charge transfer resistance, measured by potentiometric and impedance biosensors, respectively, are, in fact, intrinsically linked. This observation suggests that there is no significant gain in using the FET/EIS integrated system and leads to the demonstration that low-cost EGFET biosensors are sufficient as a detection tool to resolve the charge information of biomolecules for practical sensing applications.

  20. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  1. Effect of impedance and higher order chromaticity on the measurement of linear chromaticity

    OpenAIRE

    V. H. Ranjbar; C. Y. Tan

    2011-01-01

    The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the “on momentum” particle (Δp/p). Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of Δp/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used ...

  2. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Chenglong Yu

    2014-01-01

    Full Text Available As an advanced process detection technology, electrical impedance tomography (EIT has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.

  3. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    Science.gov (United States)

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (frequency

  4. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    Science.gov (United States)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  5. Gemstone Grinding Process Improvement by using Impedance Force Control

    Directory of Open Access Journals (Sweden)

    Hamprommarat Chumpol

    2015-01-01

    Full Text Available Chula Automatic Faceting Machine has been developed by The Advance Manufacturing Research Lab, Chulalongkorn University to support Thailand Gems-Industry. The machine has high precision motion control by using position and force control. A contact stiffness model is used to estimate grinding force. Although polished gems from the Faceting Machine have uniform size and acceptable shape, the force of the grinding and polishing process cannot be maintain constant and has some fluctuation due to indirect force control. Therefor this research work propose a new controller for this process based on an impedance direct force control to improve the gemstone grinding performance during polishing process. The grinding force can be measured through motor current. The results show that the polished gems by using impedance direct force control can maintain uniform size as well as good shape and high quality surface.

  6. Identification of irradiated potatoes by impedance

    International Nuclear Information System (INIS)

    Singh, Rita; Singh, Antaryami; Wadhawan, A.K.

    1997-01-01

    The electrical impedance of potatoes irradiated at 60, 90, 150 and 1000 Gy was measured using various frequencies of alternating current. The impedance of the irradiated potatoes was higher than the unirradiated potatoes particularly in the frequency range of 100 Hz to 10 kHz. The ratio of the impedance at 5 kHz to that at 50 Hz (Z5k/Z50) was found to be the best indicator for detection of radiation treatment. (author). 4 refs., 2 figs

  7. Impedance of thin film cathodes: thickness and current collector dependence

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Hildenbrand, N.; Bouwmeester, Henricus J.M.; Blank, David H.A.

    2015-01-01

    The influence of the layer thickness of mixed ionic–electronic conducting (MIEC) cathodes and the type of noble metal current collector on the apparent surface exchange resistance is studied with impedance spectroscopy. The impedance data is analyzed with the ‘General Finite Length Diffusion’

  8. Geometric beam coupling impedance of LHC secondary collimators

    Science.gov (United States)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  9. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  10. Epigastric electrical impedance for the quantitative determination of the gastric acidity

    International Nuclear Information System (INIS)

    Giouvanoudi, A C; Spyrou, N M

    2008-01-01

    Electrical impedance measurements have been used by scientists since the 1980s to investigate the gastric function. In this work, these measurements were carried out using the epigastrograph, a device generating alternating current of 32 kHz and injecting it in the gastric area of the human body with surface electrodes, located around the abdominal area. Although the method has been used for about three decades the physiological interpretation of these measurements is still under research. This work states that the electrical impedance measurements from the gastric area depend on the conductivity of the gastric lumen, due mainly to gastric acid secretions and to the conductivity and chemical form of the ingested meal. By choosing the proper test meal the gastric acidity in the empty, healthy stomach was also estimated. The estimated value is in accordance with the literature. The method is non-invasive, relatively inexpensive, simple to medical technologists and subjects, and involves no radiation risk. The method may form the basis for the development of a non-invasive gastric pH meter

  11. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  12. Effect of impedance and higher order chromaticity on the measurement of linear chromaticity

    Directory of Open Access Journals (Sweden)

    V. H. Ranjbar

    2011-08-01

    Full Text Available The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the “on momentum” particle (Δp/p. Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of Δp/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used to support the theory.

  13. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  14. Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better than PVR Alone in Pediatric Patients with Pulmonary Hypertension

    Science.gov (United States)

    Hunter, Kendall S.; Lee, Po-Feng; Lanning, Craig J.; Ivy, D. Dunbar; Kirby, K. Scott; Claussen, Lori R.; Chan, K. Chen; Shandas, Robin

    2011-01-01

    Background Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated an method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero-harmonic impedance value and PVR, and suggested a correlation between higher harmonic impedance values and pulmonary vascular stiffness (PVS). Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and PVS from a single measurement, and that impedance is a better predictor of disease outcomes compared to PVR. Methods Pressure and velocity waveforms within the main PA were measured during right-heart catheterization of patients with normal PA hemodynamics (n=14) and those with PAH undergoing reactivity evaluation (49 subjects; 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Results Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y=1.095·x+1.381, R2=0.9620). Additionally, the modulus sum of the first two harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (PP/SV) (y=13.39·x-0.8058, R2=0.7962). Amongst a subset of PAH patients (n=25), cumulative logistic regression between outcomes to total indexed impedance was better (RL2=0.4012) than between outcomes and indexed PVR (RL2=0.3131). Conclusions Input impedance can be consistently and easily obtained from PW Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient

  15. Evaluation of the usefulness of visceral fat area measurement by the bioelectrical impedance method during workplace health screening

    International Nuclear Information System (INIS)

    Igarashi, Chiyo

    2008-01-01

    In the field of occupational health, health guidance concerning obesity is often conducted in order to prevent lifestyle-related diseases. With recent awareness of the concept of metabolic syndrome, measurement of the visceral fat area (VFA) by CT has been useful for health guidance, but it is difficult in workplace health screening. Presently, the BMI (Body Mass Index), body fat percentage measured by the bioelectrical impedance method, and waist girth at the umbilical level (abdominal girth) are practical indices of obesity used in such health screening. In this study, VAF was measured in 590 clerical or sales workers in the manufacturing industry using a body fat meter capable of a visceral fat measurement by the bioelectrical impedance method. The relationship of this value to the results of biochemical tests and lifestyle was then evaluated using analysis of covariance structures. Analysis indicated that the risk of lifestyle-related disease was closely related to the degree of obesity. Among indices of the degree of obesity, VFA was more closely related than BMI or body fat percentage, and only slightly less closely related than abdominal girth to the risk of lifestyle-related diseases. Since VFA is effective in screening for latent obesity, health guidance based on digital data, and the subjects' body imaging, its measurement by the bioelectrical impedance method is considered useful for workplace health management. (author)

  16. Control of the Radiation Patterns Using Homogeneous and Isotropic Impedance Metasurface

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-01-01

    Full Text Available We propose to control the radiation patterns of a two-dimensional (2D point source by using impedance metasurfaces. We show that the radiation patterns can be manipulated by altering the surface impedance of the metasurface. Full-wave simulation results are provided to validate the theoretical derivations. The proposed design enjoys novel properties of isotropy, homogeneity, low profile, and high selectivity of frequency, making it potentially applicable in many applications. We also point out that this design can be implemented with active metasurfaces and the surface impedance can be tuned by modulating the value of loaded elements, like resistors, inductors, and capacitors.

  17. Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems

    International Nuclear Information System (INIS)

    Hsu, C.T.; Keshock, E.G.; McGill, R.N.

    1983-01-01

    A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations

  18. Wire measurement of impedance of an X-band accelerating structure

    CERN Document Server

    Baboi, N; Dolgashev, V A; Jones, R M; Lewandowski, J R; Tantawi, S G; Wang, J W

    2004-01-01

    Several tens of thousands of accelerator structures will be needed for the next generation of linear collders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break Up) mode or at the very least, the emittance being signifcantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measurable and compared with predictions. We develop a circuit model of wire-loaded X-band accelerator structures. This enables the wakefield (the inverse transform of the beam impedance) to be readily computed and compared with the wire measurement. We apply this circuit model to the latest series of accelerating for the GLC/NLC. This circuit model is based upon the single-cell model developed in [1] extended here to complete, multi-cell structures.

  19. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  20. An ac impedance study of the corrosion behaviour of mild steel coated with electrochemically synthesized polyoxyphenylenes

    Energy Technology Data Exchange (ETDEWEB)

    Musiani, M.M.; Mengoli, G.; Pagura, C.

    1985-04-01

    Electrochemically synthesized polyoxphenylene coatings on mild steel exposed to NaCl or H2SO4 solutions were investigated by ac impedance measurements. The influence of coating cohesion, adhesion to substrate, and surface pretreatment on the corrosion behaviour of the samples is clarified.

  1. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    The impedance of technological relevant LSCF:CGO composite IT-SOFC cathodes was studied over a very wide performance range. This was experimentally achieved by impedance measurements on symmetrical cells with three different microstructures in the temperature range 550–850 °C. In order to account...... for the impedance spectra of the poor performing cathodes the Finite-Length-Gerischer (FLG) impedance was derived and applied to the impedance data. The FLG impedance describes for a given microstructure the situation where the cathode is made too thin from a cathode development point of view. The moderate...... performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  2. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    Science.gov (United States)

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.

  3. Detection of irradiated potatoes by impedance measurements

    International Nuclear Information System (INIS)

    Hayashi, Toru; Sugiyama, Junnichi; Otobe, Kazuki; Todoriki, Setsuko

    1993-01-01

    The impedance ratio at 5kHz to 50kHz (Z 6K /Z 50K ) determined at 22degC at an apical region of potato tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radian treatment. Irradiated potatoes of 10 cultivars could be detected with this method, and potatoes 'Danshaku' commercially irradiated at Shihoro could be distinguished from unirradiated 'Danshaku'. (author)

  4. Impedance measures in analysis and characterization of multistable structures subjected to harmonic excitation

    Science.gov (United States)

    Harne, Ryan L.; Goodpaster, Benjamin A.

    2018-01-01

    Structural components susceptible to adverse, post-buckled dynamic behaviors have long challenged the success of applications requiring lightweight, slender curved structures, while researchers have begun to leverage such bistable systems in emerging applications for novel energy attenuation and shape-changing properties. To expedite development and deployment of these built-up platforms containing post-buckled constituents, efficient approaches are required to complement time-consuming full-field models in the prediction of the near- and far-from-equilibrium dynamics. This research meets the need by introducing a semi-analytical model framework to enable the characterization of steady-state responses in multi degree-of-freedom (DOF) and multistable structural systems subjected to harmonic excitation. In so doing, the pathway for assessing impedance measures is created here so as to identify how energy travels and returns within built-up multistable structures. Verified by simulations and qualitatively validated by experiments, the analysis is shown to accurately reproduce both near- and far-from-equilibrium responses including different classes of energetic snap-through dynamics that only exist in such multistable structures. A first look at the impedance measures of different dynamic regimes reveals a connection between damping in multistable structures and the sustainability of far-from-equilibrium oscillations.

  5. Bioelectrical impedance analysis of bovine milk fat

    Science.gov (United States)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  6. Bioelectrical impedance analysis of bovine milk fat

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, E A; Bertemes-Filho, P [Department of Electrical Eng., State University of Santa Catarina, Joinville (Brazil)

    2012-12-20

    Three samples of 250ml at home temperature of 20 Degree-Sign C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  7. Bioelectrical impedance analysis of bovine milk fat

    International Nuclear Information System (INIS)

    Veiga, E A; Bertemes-Filho, P

    2012-01-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  8. Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.

    Science.gov (United States)

    Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta

    2017-01-01

    Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the

  9. Impedance of accelerator components

    International Nuclear Information System (INIS)

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed

  10. Electrochemical impedance spectroscopy and Surface Studies of Steel Corrosion by Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Zaharah Ibrahim; Madzlan Aziz; Adibah Yahya

    2009-01-01

    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity. (author)

  11. Small Signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2014-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterized by the mechanical resonance between the mass of the diaphragm and the compliance of its suspension which vary...... from driver to driver. Therefore, a loudspeaker emulator capable of adjusting its impedance to that of a given driver is desired for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible...... to emulate the loudspeaker impedance with an electric circuit and that its resonance frequency can be changed by tuning two resistors....

  12. Small-signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Knott, Arnold; Iversen, Niels Elkjær

    2014-01-01

    Specifying the performance of audio ampliers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterised by the mechanical resonance between the mass of the diaphragm and the compliance of its' suspension which vary from...... driver to driver. Therefore a loudspeaker emulator capable of adjusting its' impedance to a given driver is in need for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible to emulate...... the loudspeaker impedance with an electric circuit and that its' resonance frequency can be changed by tuning two resistors....

  13. Evaluation of electrical broad bandwidth impedance spectroscopy as a tool for body composition measurement in cows in comparison with body measurements and the deuterium oxide dilution method.

    Science.gov (United States)

    Schäff, C T; Pliquett, U; Tuchscherer, A; Pfuhl, R; Görs, S; Metges, C C; Hammon, H M; Kröger-Koch, C

    2017-05-01

    Body fatness and degree of body fat mobilization in cows vary enormously during their reproduction cycle and influence energy partitioning and metabolic adaptation. The objective of the study was to test bioelectrical impedance spectroscopy (BIS) as a method for predicting fat depot mass (FDM), in living cows. The FDM is defined as the sum of subcutaneous, omental, mesenteric, retroperitoneal, and carcass fat mass. Bioelectrical impedance spectroscopy is compared with the prediction of FDM from the deuterium oxide (DO) dilution method and from body conformation measurements. Charolais × Holstein Friesian (HF; = 18; 30 d in milk) crossbred cows and 2 HF (lactating and nonlactating) cows were assessed by body conformation measurements, BIS, and the DO dilution method. The BCS of cows was a mean of 3.68 (SE 0.64). For the DO dilution method, a bolus of 0.23 g/kg BW DO (60 atom%) was intravenously injected and deuterium (D) enrichment was analyzed in plasma and whey by stabile isotope mass spectrometry, and total body water content was calculated. Impedance measurement was performed using a 4-electrode interface and time domain-based measurement system consisting of a voltage/current converter for applying current stimulus and an amplifier for monitoring voltage across the sensor electrodes. For the BIS, we used complex impedances over three frequency decades that delivers information on intra- and extracellular water and capacity of cell membranes. Impedance data (resistance of extra- and intracellular space, cell membrane capacity, and phase angle) were extracted 1) by simple curve fit to extract the resistance at direct current and high frequency and 2) by using an electrical equivalent circuit. Cows were slaughtered 7 d after BIS and D enrichment measurements and dissected for the measurement of FDM. Multiple linear regression analyses were performed to predict FDM based on data obtained from body conformation measurements, BIS, and D enrichment, and applied

  14. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    International Nuclear Information System (INIS)

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  15. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  16. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  17. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  18. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    Science.gov (United States)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  19. Bioelectrical impedance analysis for bovine milk: Preliminary results

    Science.gov (United States)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  20. Distance Protection Impedance Measurement for Inhomogeneous Multiple-Circuit 400/150 kV Transmission Lines with Shared Towers

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Sigurbjörnsson, Ragnar; Bukh, Bjarne

    2016-01-01

    are interconnected in a simple way but via transformers and infeed from remaining parts of the network. Distance relay measured fault loop impedance shows wide ranges of variations for both phase-phase loops as well as phase-earth loops. No simple relations exist. Simulation models can be used to study fault loop...... impedance for combined faults and thereby shed light on relay trips. This study uses actual fault records, analytical method and PSCAD simulation studies to analyse combined faults in an existing 400 and 150 kV transmission line owned by Danish TSO Energinet.dk. The results clearly show that an accurate...

  1. Wave impedance selection for passivity-based bilateral teleoperation

    Science.gov (United States)

    D'Amore, Nicholas John

    When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the

  2. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Maciej Sowa

    2018-04-01

    Full Text Available Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC plasma electrolytic oxidation (PEO. Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO22, Ca(HCOO2 and Mg(CH3COO2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR] and R(Q[R(Q[RW

  3. Impact of SSSC on Measured Impedance in Single Phase to Ground Fault Condition on 220 kV Transmission Line

    Directory of Open Access Journals (Sweden)

    Mohamed ZELLAGUI

    2012-08-01

    Full Text Available This paper presents and compares the impact of SSSC on measured impedance for single phase to ground fault condition. The presence of Static Synchronous SSSC on a transmission line has a great influence on the ZRelay in distance protection. The protection of the high voltage 220 kV single circuit transmission line in eastern Algerian electrical transmission networks is affected in the case with resistance fault RF. The paper investigate the effect of Static Synchronous Series Compensator (SSSC on the measured impedance (Relay taking into account the distance fault point (n and fault resistance (RF. The resultants simulation is performed in MATLAB software environment.

  4. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation

    International Nuclear Information System (INIS)

    Kranjc, M; Miklavčič, D; Bajd, F; Serša, I

    2014-01-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage–current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage–current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes. (paper)

  5. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension.

    Science.gov (United States)

    Hunter, Kendall S; Lee, Po-Feng; Lanning, Craig J; Ivy, D Dunbar; Kirby, K Scott; Claussen, Lori R; Chan, K Chen; Shandas, Robin

    2008-01-01

    Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated a method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero harmonic impedance value and PVR and suggested a correlation between higher-harmonic impedance values and pulmonary vascular stiffness. Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and pulmonary vascular stiffness from a single measurement, and that impedance is a better predictor of disease outcomes compared with PVR. Pressure and velocity waveforms within the main pulmonary artery were measured during right heart catheterization of patients with normal pulmonary artery hemodynamics (n = 14) and those with PAH undergoing reactivity evaluation (49 subjects, 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y = 1.095x + 1.381, R2 = 0.9620). In addition, the modulus sum of the first 2 harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (y = 13.39x - 0.8058, R2 = 0.7962). Among a subset of patients with PAH (n = 25), cumulative logistic regression between outcomes to total indexed impedance was better (R(L)2 = 0.4012) than between outcomes and indexed PVR (R(L)2 = 0.3131). Input impedance can be consistently and easily obtained from pulse-wave Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and

  6. A cell impedance measurement device for the cytotoxicity assay dependent on the velocity of supplied toxic fluid

    Science.gov (United States)

    Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho

    2018-04-01

    We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.

  7. INVESTIGATION OF CEMENT CONCRETE CONGLOMERATE SOLIDIFICATION PROCESS BY IMPEDANCE SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    S. N. Bandarenka

    2015-01-01

    Full Text Available One of the most prospective directions in preservation  and increase of service live of  road pavements is a construction of  automobile roads with cement concrete surface. Modern tendencies for provision of road construction quality presuppose a necessity to control processes of solidification and subsequent destruction of the material while forming and using cement concrete conglomerate being considered as a basic element of the road surface.  Multiyear practical experience of  automobile road operation using cement concrete pavements reveals an importance for monitoring  such processes as formation and destruction of cement concrete materials. An impedance spectroscopy method has been tried out and proposed as a tool for solution of the given problem.Experimental samples of cement concrete have been prepared for execution of tests, graded silica sand and granite chippings with particle size from 0.63 to 2.5 mm have been used as a fine aggregate in the samples. Dependencies of resistance (impedance on AC-current frequency  have been studied for samples of various nature and granulometric composition. The Gamry  G300 potentiostat has been used for measurement of complex impedance value. A spectrum analysis and calculation of equivalent circuit parameters calculation have been carried out while using EIS Spectrum Analyzer program.Comparison of impedance spectra for the prepared cement concrete samples have made it possible to reveal tendencies in changing spectrum parameters during solidification and subsequent contact with moisture in respect of every type of the sample. An equivalent electrical circuit has been developed that  characterizes physical and chemical processes which are accompanied by charge transfer in cement concrete conglomerate. The paper demonstrates a possibility to use an impedance spectroscopy for solution of a number of actual problems in the field of cement concrete technology problems. Particularly, the problems

  8. Respiratory impedance is correlated with airway narrowing in asthma using three-dimensional computed tomography.

    Science.gov (United States)

    Karayama, M; Inui, N; Mori, K; Kono, M; Hozumi, H; Suzuki, Y; Furuhashi, K; Hashimoto, D; Enomoto, N; Fujisawa, T; Nakamura, Y; Watanabe, H; Suda, T

    2018-03-01

    Respiratory impedance comprises the resistance and reactance of the respiratory system and can provide detailed information on respiratory function. However, details of the relationship between impedance and morphological airway changes in asthma are unknown. We aimed to evaluate the correlation between imaging-based airway changes and respiratory impedance in patients with asthma. Respiratory impedance and spirometric data were evaluated in 72 patients with asthma and 29 reference subjects. We measured the intraluminal area (Ai) and wall thickness (WT) of third- to sixth-generation bronchi using three-dimensional computed tomographic analyses, and values were adjusted by body surface area (BSA, Ai/BSA, and WT/the square root (√) of BSA). Asthma patients had significantly increased respiratory impedance, decreased Ai/BSA, and increased WT/√BSA, as was the case in those without airflow limitation as assessed by spirometry. Ai/BSA was inversely correlated with respiratory resistance at 5 Hz (R5) and 20 Hz (R20). R20 had a stronger correlation with Ai/BSA than did R5. Ai/BSA was positively correlated with forced expiratory volume in 1 second/forced vital capacity ratio, percentage predicted forced expiratory volume in 1 second, and percentage predicted mid-expiratory flow. WT/√BSA had no significant correlation with spirometry or respiratory impedance. Respiratory resistance is associated with airway narrowing. © 2018 John Wiley & Sons Ltd.

  9. A comparison study of electrodes for neonate electrical impedance tomography

    International Nuclear Information System (INIS)

    Rahal, Mohamad; Demosthenous, Andreas; Khor, Joo Moy; Tizzard, Andrew; Bayford, Richard

    2009-01-01

    Electrical impedance tomography (EIT) is an imaging technique that has the potential to be used for studying neonate lung function. The properties of the electrodes are very important in multi-frequency EIT (MFEIT) systems, particularly for neonates, as the skin cannot be abraded to reduce contact impedance. In this work, the impedance of various clinical electrodes as a function of frequency is investigated to identify the optimum electrode type for this application. Six different types of self-adhesive electrodes commonly used in general and neonatal cardiology have been investigated. These electrodes are Ag/AgCl electrodes from the Ambu® Cardiology Blue sensors range (BR, NF and BRS), Kendall (KittyCat(TM) and ARBO®) and Philips 13953D electrodes. In addition, a textile electrode without gel from Textronics was tested on two subjects to allow comparison with the hydrogel-based electrodes. Two- and four-electrode measurements were made to determine the electrode-interface and tissue impedances, respectively. The measurements were made on the back of the forearm of six healthy adult volunteers without skin preparation with 2.5 cm electrode spacing. Impedance measurements were carried out using a Solartron SI 1260 impedance/gain-phase analyser with a frequency range from 10 Hz to 1 MHz. For the electrode-interface impedance, the average magnitude decreased with frequency, with an average value of 5 kΩ at 10 kHz and 337 Ω at 1 MHz; for the tissue impedance, the respective values were 987 Ω and 29 Ω. Overall, the Ambu BRS, Kendall ARBO® and Textronics textile electrodes gave the lowest electrode contact impedance at 1 MHz. Based on the results of the two-electrode measurements, simple RC models for the Ambu BRS and Kendall-ARBO and Textronics textile electrodes have been derived for MFEIT applications

  10. Modeling degradation in SOEC impedance spectra

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Knibbe, Ruth

    2013-01-01

    Solid oxide cell (SOC) performance is limited by various processes. One way to investigate these processes is by electrochemical impedance spectroscopy. In order to quantify and characterize the processes, an equivalent circuit can be used to model the SOC impedance spectra (IS). Unfortunately......, the optimal equivalent circuit is often unknown and to complicate matters further, several processes contribute to the SOC impedance - making detailed process characterization difficult. In this work we analyze and model a series of IS measured during steam electrolysis operation of an SOC. During testing......, degradation is only observed in the Ni/YSZ electrode and not in the electrolyte or the LSM/YSZ electrode. A batch fit of the differences between the IS shows that a modified Gerischer element provides a better fit to the Ni/YSZ electrode impedance than the frequently used RQ element - albeit neither...

  11. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  12. Validity of bioelectrical impedance measurement in predicting fat-free mass of Chinese children and adolescents.

    Science.gov (United States)

    Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang

    2014-11-15

    The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45 kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents.

  13. Impedance pattern of vaginal and vestibular mucosa in cyclic goats

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The changes of vaginal and vestibular impedance during the oestrous cycle in goats were examined. The onset of oestrus was teased with a buck once a day during the experiment. Impedance was mea­sured by a four-terminal method. The vaginal impedance was recorded under slight pressure of electrodes to the vaginal dorsal wall at the cervix. The vestibular impedance was recorded under slight pressure of electrodes to the vestibular dorsal wall 5 cm from the vulva and at the vulva. The im­pe­dan­ce was measured once a day from 4 days before the expected oestrus to 6 days after onset of oestrus. The vaginal impedance at the cervix decreased during pro-oestrus (P < 0.01 and increased du­ring oestrus (P < 0.01. The vestibular impedance 5 cm from the vulva decreased during pro-oestrus (P < 0.01 and increased after oestrus (P < 0.01. The decrease of vaginal impedance during peri-oestrus was nearly twofold in comparison with the vestibular impedance 5 cm from the vulva. No sig­ni­fi­cant decrease of the vestibular impedance at the vulva was found during the oestrous cycle. The results indicate that the vaginal impedance at the cervix and vestibular impedance 5 cm from the vulva measured by means of a four-terminal method during the oestrous cycle display cyclic changes that are closely related to the oestrous behaviour of goats.

  14. Organic electrochemical transistors for cell-based impedance sensing

    International Nuclear Information System (INIS)

    Rivnay, Jonathan; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M.; Leleux, Pierre

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal

  15. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  16. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  17. Sub-Surface Windscreen for Outdoor Measurement of Infrasound

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Shams, Qamar A. (Inventor)

    2014-01-01

    A windscreen is configured for measuring outdoor infrasonic sound. The windscreen includes a container and a microphone. The container defines a chamber. The microphone is disposed in the chamber and can be operatively supported by the floor. The microphone is configured for detecting infrasonic sound. The container is advantageously formed from material that exhibits an acoustic impedance of between 0 and approximately 3150 times the acoustic impedance of air. A reflector plate may be disposed in the container. The reflector plate operatively can support the microphone and provides a doubling effect of infrasonic pressure at the microphone.

  18. Calculation of Impedance from Multibunch Synchronous Phases: Theory and Experimental Results

    International Nuclear Information System (INIS)

    Prabhakar, Shyam

    1998-01-01

    A novel beam-based method for measuring the longitudinal impedance spectrum is demonstrated using experimental data from the PEP-II High Energy Ring (HER). The method uses a digital longitudinal feedback system from which the charge and synchronous phase are measured for every bucket. Calculation of the transfer function from fill shape to synchronous phase yields the impedance seen by the beam at revolution harmonics. The experimentally-derived longitudinal impedance function and lab measurements of the impedance of parked RF cavities are compared to suggest a mechanism for the occasional instability of low-order coupled bunch modes observed in the HER during commissioning in October 1997

  19. Effect of rib-cage structure on acoustic chest impedance

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Møller, Henrik; Hansen, John

    2011-01-01

    When a stethoscope is placed on the surface of the chest, the coupler picks up sound from heart and lungs transmitted through the tissues of the ribcage and from the surface of the skin. If the acoustic impedance of the chest surface is known, it is possible to optimize the coupler for picking up...

  20. Gastric emptying patterns of a liquid meal in newborn infants, measured by epigastric impedance

    DEFF Research Database (Denmark)

    Lange, Aksel; Funch-Jensen, Peter; Thommesen, Peter

    1997-01-01

    time (T50) was calculated. For mature infants it was found to be 6.9 mins. For a second meal given within an hour after the first meal the half emptying time was 5.5 mins (p times were not significant different from mature infants, but the number examined was small......  Epigastric impedance was used to measure patterns of the gastric emptying of a liquid non-caloric meal (5 ml water/kg) in newborn infants. The emptying patterns consisted of two components, theemptying signal - the DC component - and a phasic 3 cycle per minutes (CPM) signal - the AC component.......A periodic change of the impedance signal, the phasic 3 CPM signal, was observed after a meal in 24 of the infants. The median frequency was 3.03 CPM in 20 mature and 2.93 CPM in 4 preterminfants. In 9 infants a phasic 3 CPM signal was observed during fasting state. The median frequency was 2.9 CPM...

  1. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    International Nuclear Information System (INIS)

    Grasland-Mongrain, Pol; Destrempes, François; Cloutier, Guy; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging. (paper)

  2. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Science.gov (United States)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  3. Impedance Characterisation of the SPS Wire Scanner

    CERN Document Server

    AUTHOR|(CDS)2091911; Prof. Sillanpää, Mika

    As a beam diagnostic tool, the SPS wire scanner interacts with the proton bunches traversing the vacuum pipes of the Super Proton Synchrotron particle accelerator. Following the interaction, the bunches decelerate or experience momentum kicks off-axis and couple energy to the cavity walls, resonances and to the diagnostic tool, the scanning wire. The beam coupling impedance and, in particular, the beam induced heating of the wire motivate the characterisation and redesign of the SPS wire scanner. In this thesis, we characterise RF-wise the low frequency modes of the SPS wire scanner. These have the highest contribution to the impedance. We measure the cavity modes in terms of resonance frequency and quality factor by traditional measurement techniques and data analysis. We carry out a 4-port measurement to evaluate the beam coupling to the scanning wire, that yields the spectral heating power. If combined with the simulations, one is able to extract the beam coupling impedance and deduce the spectral dissipa...

  4. Characterizing aging effects of lithium ion batteries by impedance spectroscopy

    International Nuclear Information System (INIS)

    Troeltzsch, Uwe; Kanoun, Olfa; Traenkler, Hans-Rolf

    2006-01-01

    Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects

  5. Characterizing aging effects of lithium ion batteries by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Troeltzsch, Uwe [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany)]. E-mail: uwe.troeltzsch@unibw-muenchen.de; Kanoun, Olfa [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany); Traenkler, Hans-Rolf [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany)

    2006-01-20

    Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects.

  6. IMPEDANCE METHOD OF MEASURING OF THE TITRATABLE ACIDITY OF YOGURT

    Directory of Open Access Journals (Sweden)

    Miroslav Vasilev

    2016-10-01

    Full Text Available In the present work are analyzed studies related to changes in the active impedance component of the dairy environment caused by the flow of lactic fermentation and coagulation of casein in milk. The aim of this work was to determine the relationship between the relative change of titratable acidity and the relative change of active impedance component of the dairy environment with lactic fermentation, causing coagulation of the casein in milk. . The data were interpolated with cubic spline, visualizing how when the fat content increases, the electrical resistance increases too. All data, collected during the tests would complement and be used for solving the optimization problem to determine the time of completion of the coagulation in future work.

  7. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    Science.gov (United States)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  8. Finger impedance evaluation by means of hand exoskeleton.

    Science.gov (United States)

    Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio

    2011-12-01

    Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.

  9. Shunt impedance of spiral loaded resonant rf cavities

    International Nuclear Information System (INIS)

    Peebles, P.Z. Jr.; Parvarandeh, M.

    1975-01-01

    Based upon a treatment of the spiral loaded resonant radio frequency cavity as a shorted quarter-wave transmission line, a model for shunt impedance is developed. The model is applicable to loosely wound spirals in large diameter containers. Theoretical shunt impedance is given for spirals wound from tubing of circular or rectangular cross section. The former produces higher shunt impedance. Measurements made at Oak Ridge National Laboratory on 17 copper cavities are described which support the theoretical results. Theoretical results are also compared to data from twenty-three additional cavities measured at Los Alamos Scientific Laboratory. It is shown that the theoretical function forms a useful means of interpreting the quality of constructed cavities. (author)

  10. Impact of hemodialysis on dual X-ray absorptiometry, bioelectrical impedance measurements, and anthropometry

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Hansen, T B; Høgsberg, I M

    1996-01-01

    ), bioelectrical impedance analysis (BIA), and simple anthropometry in 19 patients (9 women and 10 men, mean age 46 y) before and after hemodialysis, removing 0.9-4.3 L (x: 2.8L) of ultrafiltrate. The reduction in fat-free mass (FFM) measured by DXA was highly correlated with the ultrafiltrate, as determined...... by the reduction in gravimetric weight (r = 0.975, P FFM reductions (r = 0.66, P ..., was estimated to be 0.6% lower after dialysis. None of the simple anthropometric measurements correlated significantly with the reduction in FFM. In an unmodified clinical setting, DXA appears to be superior to other simple noninvasive methods for determining body composition, particularly when the emphasis...

  11. Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance

    NARCIS (Netherlands)

    Raaijmakers, E.; Faes, T. J.; Meijer, J. M.; Kunst, P. W.; Bakker, J.; Goovaerts, H. G.; Heethaar, R. M.

    1998-01-01

    The study investigates the effects of non-cardiogenic oedema, especially the accumulation of protein in extracellular fluid, on thoracic impedance and proposes a new method of oedema measurement based on an impedance ratio from a dual-frequency measurement. In vitro measurements in a cell containing

  12. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps

    International Nuclear Information System (INIS)

    Raum, Kay; Cleveland, Robin O; Peyrin, Francoise; Laugier, Pascal

    2006-01-01

    200 MHz acoustic impedance maps and site-matched synchrotron radiation micro computed tomography (SR-μCT) maps of tissue degree of mineralization of bone (DMB) were used to derive the elastic coefficient c 33 in cross sections of human cortical bone. To accomplish this goal, a model was developed to relate the DMB accessible with SR-μCT to mass density. The formulation incorporates the volume fractions and densities of the major bone tissue components (collagen, mineral and water), and accounts for tissue porosity. We found that the mass density can be well modelled by a second-order polynomial fit to DMB (R 2 = 0.999) and appears to be consistent with measurements of many different types of mineralized tissues. The derived elastic coefficient c 33 correlated more strongly with the acoustic impedance (R 2 = 0.996) than with mass density (R 2 = 0.310). This finding suggests that estimates of c 33 made from measurements of the acoustic impedance are more reliable than those made from density measurements. Mass density and elastic coefficient were in the range between 1.66 and 2.00 g cm -3 and 14.8 and 75.4 GPa, respectively. Although SAM inspection is limited to the evaluation of carefully prepared sample surfaces, it provides a two-dimensional quantitative estimate of elastic tissue properties at the tissue level

  13. Study of Body Composition by Impedance Analysis

    Science.gov (United States)

    González-Solís, J. L.; Vargas-Luna, M.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Sanchis-Sabater, A.

    2002-08-01

    This work presents a set of impedance measurements and preliminary results on the analysis of body composition using impedance spectroscopy. This study is made using a pork meat sample and spectra from fat and flesh region were independently obtained using the same electrodes array. From these measurements, and theoretical considerations, it is possible to explain the behavior of the composite sample flesh-fat-flesh and, fitting the electrical parameters of the model, it shows the plausibility of a physical and quantitative application to human corporal composition.

  14. Correlation of Gastroesophageal reflux disease Assessment Symptom Questionnaire to impedance-pH measurements in children.

    Science.gov (United States)

    Prachuapthunyachart, Sittichoke; Jarasvaraparn, Chaowapong; Gremse, David A

    2017-01-01

    Esophageal multichannel intraluminal impedance-pH monitoring has become one of the preferred tests to correlate observed reflux-like behaviors with esophageal reflux events. The Gastroesophageal reflux disease Assessment Symptom Questionnaire is a validated tool used to distinguish infants with gastroesophageal reflux disease from healthy children. The aim of this study was to determine whether the Gastroesophageal reflux disease Assessment Symptom Questionnaire composite symptom scores and individual symptom scores correlate with outcomes in esophageal multichannel intraluminal impedance-pH monitoring. A total of 26 patients with gastroesophageal reflux disease-associated symptoms, aged 0-2 years, for whom both esophageal multichannel intraluminal impedance-pH monitoring and Gastroesophageal reflux disease Assessment Symptom Questionnaire survey results were available were included in the study. Gastroesophageal reflux disease Assessment Symptom Questionnaire score data were collected from a 7-day recall of parent's responses about the frequency and severity of gastroesophageal reflux disease symptoms, which determined the individual symptom scores. The composite symptom scores is the sum of all individual symptom scores. Multichannel intraluminal impedance-pH study results were compared to Gastroesophageal reflux disease Assessment Symptom Questionnaire data using Pearson correlation. Among 26 patients, a total number of 2817 (1700 acid and 1117 non-acid) reflux episodes and 845 clinical reflux behaviors were recorded. There were significant correlations between the reflux index and the individual symptom scores for coughing/gagging/choking (r 2 = 0.2842, p = 0.005), the impedance score and individual symptom scores for coughing/gagging/choking (r 2 = 0.2482, p = 0.009), the reflux symptom index for acid reflux-related coughing/gagging/choking and the individual symptom scores for coughing/gagging/choking (r 2 = 0.1900, p = 0.026), the impedance score and

  15. Loudspeaker impedance emulator for multi resonant systems

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2015-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterised by its electrical, mechanical and acoustical properties. Therefore a loudspeaker emulator capable of adjusting...... its impedance to that of a given loudspeaker is desired for measurement purposes. An adjustable RLC based emulator is implemented with switch controlled capacitors, air gap controlled inductors and potentiometers. Calculations and experimental results are compared and show that it is possible...... to emulate the loudspeaker impedance infinite baffle-, closed box- and the multi resonant vented box-loudspeaker by tuning the component values in the proposed circuit. Future work is outlined and encourage that the proposed impedance emulator is used as part of a control circuit in a switch-mode based...

  16. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  17. Calculation of effective impedance of polycrystals in weak magnetic fields

    International Nuclear Information System (INIS)

    Kaganova, I.M.

    2006-01-01

    We present results for the effective surface impedance tensor (EIT) of polycrystals of metals in a weak uniform magnetic field H. The frequency region corresponds to the region in which the local impedance boundary conditions are applicable. We suppose that the resistivity tensor ρ ik (H) of the single crystal grains out of which the polycrystal is composed, is known up to the terms of O(H 2 ). For polycrystals of metals of arbitrary symmetry, the elements of the EIT can be calculated to the same order in H, even if the tensor ρ ik (H) is strongly anisotropic. As examples, we write down the EIT of polycrystals of (i) cubic metals (ii) metals with ellipsoidal Fermi surfaces, and (iii) metals of tetragonal symmetry whose tensor ρ ik (0) is strongly anisotropic. Although polycrystals are metals that are isotropic on average, in the presence of a uniform magnetic field the structure of the EIT is not the same as the structure of the impedance tensor of an isotropic metal with a spherical Fermi surface. The results cannot be improved either by taking into account higher powers of H, or with respect to the anisotropy of the single crystal grains

  18. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  19. Fatigue Life Assessment of Structures Using Electro-Mechanical Impedance Technique

    International Nuclear Information System (INIS)

    Bhalla, S

    2012-01-01

    This paper describes a new experimental approach for fatigue life assessment of structures based on the equivalent stiffness determined by surface bonded piezo-impedance transducers through the electro-mechanical impedance (EMI) technique. The remaining life of the component (in terms of the cycles of loading that can be sustained) is non-dimensionally correlated with the equivalent identified stiffness. The proposed approach circumvents the determination of the absolute stiffness of the joint and employs the admittance signature of the surface-bonded piezo-transducers directly. The second part of the paper briefly describes the recent advances made in the field of impedance based structural health monitoring (SHM) in terms of low-cost hardware system and improved damage diagnosis through the integration of global dynamic and EMI techniques using the same set of piezo-sensors. Other recent applications such as bio-sensors and traffic sensors pioneered at the Smart Structures and Dynamics Laboratory (SSDL) are also briefly covered.

  20. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp

    2017-01-01

    Purpose: Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (DBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo...... (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods: Considering T1, T2, and T 2 relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence...

  1. Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection

    Directory of Open Access Journals (Sweden)

    Maria Mallén-Alberdi

    2016-03-01

    Full Text Available Impedance-based biosensors for bacterial detection offer a rapid and cost-effective alternative to conventional techniques that are time-consuming and require specialized equipment and trained users. In this work, a new bacteria detection scheme is presented based on impedance measurements with antibody-modified polysilicon interdigitated electrodes (3 μm pitch, IDEs. The detection approach was carried out taking advantage of the E. coli structure which, in electrical terms, is constituted by two insulating cell membranes that separate a conductive cytoplasmatic medium and a more conductive periplasm. Impedance detection of bacteria is usually analyzed using electrical equivalent circuit models that show limitations for the interpretation of such complex cell structure. Here, a differential impedance spectrum representation is used to study the unique fingerprint that arises when bacteria attach to the surface of IDEs. That fingerprint shows the dual electrical behavior, insulating and conductive, at different frequency ranges. In parallel, finite-element simulations of this system using a three-shell bacteria model are performed to explain such phenomena. Overall, a new approach to detect bacteria is proposed that also enables to differentiate viable bacteria from other components non-specifically attached to the IDE surface by just detecting their spectral fingerprints. Keywords: Impedance spectroscopy, Bacterial detection, Interdigitated electrodes, Label-free detection, Immuno-detection, E. coli O157:H7

  2. On the Usage of Cyclic Voltammetry and Impedance Spectroscopy for Measuring the Concentration of Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Manuel Fiedler

    2015-02-01

    Full Text Available This article describes sensors for concentration measurement based on the electro- chemical properties of the liquid being measured. Herein two electrical methods, namely cyclic voltammetry and impedance spectroscopy, are being presented. The measurement can be performed quasi simultaneously using the same measurement medium. Further optimization of the combined methods is possible by adapting the geometric design of the electrode structure, the electrode material, the optional passivation and the electric coupling (galvanically or capacitively. In summary, by combining multiple sensory principles on a device it becomes possible to analyze mixtures of substances contained in a solution with respect to their composition.

  3. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques

    Science.gov (United States)

    Assiongbon, K. A.; Roy, D.

    2005-12-01

    Electro-catalytic oxidation of methanol is the anode reaction in direct methanol fuel cells. We have studied the adsorption characteristics of the intermediate reactants of this multistep reaction on a gold film electrode in alkaline solutions by combining surface plasmon resonance (SPR) measurements with Fourier transform electro-chemical impedance spectroscopy (FT-EIS). Methanol oxidation in this system shows no significant effects of "site poisoning" by chemisorbed CO. Our results suggest that OH - chemisorbed onto Au acts as a stabilizing agent for the surface species of electro-active methanol. Double layer charging/discharging and adsorption/desorption of OH - show more pronounced effects than adsorption/oxidation of methanol in controlling the surface charge density of the Au substrate. These effects are manifested in both the EIS and the SPR data, and serve as key indicators of the surface reaction kinetics. The data presented here describe the important role of adsorbed OH - in electro-catalysis of methanol on Au, and demonstrate how SPR and FT-EIS can be combined for quantitative probing of catalytically active metal-solution interfaces.

  4. Advances In Impedance Theory

    International Nuclear Information System (INIS)

    Stupakov, G.

    2009-01-01

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  5. Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another

  6. Electrical impedance spectroscopy and diagnosis of tendinitis

    International Nuclear Information System (INIS)

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Lee, Jong Hwa; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook

    2010-01-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment

  7. Structural identification and damage diagnosis using self-sensing piezo-impedance transducers

    Science.gov (United States)

    Lim, Yee Yan; Bhalla, Suresh; Kiong Soh, Chee

    2006-08-01

    The use of smart materials, such as lead zirconate titanate (PZT), has accelerated developments in the fields of structural identification and automated structural health monitoring (SHM). One such technique that has made much progress is the electro-mechanical impedance (EMI) technique, which employs self-sensing piezo-impedance transducers. In this technique, a PZT patch is surface bonded to the structure to be monitored and its corresponding electro-mechanical admittance signature is used for damage detection. This paper introduces a new method for identifying structures from the measured admittance signatures in terms of equivalent structural parameters, whereby the identified parameters are used for damage characterization. The new method has been applied to a truss, a beam and a concrete cube, and found to be able to successfully perform structural identification and damage diagnosis. In addition, several advantages have been ascertained in comparison with the conventional, non-parametric statistical methods.

  8. Electromagnetic model of a near-field cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    the signal scattered by it when it is loaded in turn with three known loads. The determination of the antenna impedance and gain is formulated by using the spherical wave expansion technique. The advantages of this measurement technique are summarized as follows. First, the limited dynamic range problem...

  9. Validity of a new abdominal bioelectrical impedance device to measure abdominal and visceral fat: comparison with MRI

    OpenAIRE

    Browning, Lucy M; Mugridge, Owen; Chatfield, Mark; Dixon, Adrian; Aitken, Sri; Joubert, Ilse; Prentice, Andrew M.; Jebb, Susan A

    2010-01-01

    Abdominal fat, and in particular, visceral adipose tissue (VAT), is the critical fat depot associated with metabolic aberrations. At present VAT can only be accurately measured by computed tomography (CT) or magnetic resonance imaging (MRI). This study was designed to compare a new abdominal bioelectrical impedance device against total abdominal adipose tissue (TAAT) and VAT area measurements made from an abdominal MRI scan, and to assess it’s reliability and accuracy.

  10. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    Science.gov (United States)

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  11. Improved system for identifying biological tissue temperature using electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Korolyuk Evgeniy

    2018-01-01

    Full Text Available This paper proposes a cheap and compact medical system that determines the temperature of an object using broadband impedance tomography. This system can be used in medicine to visualize ice structure in tissue during cryosurgical operations, as well as for fault diagnosis and location in studied industrial objects. These effects are achieved by measuring electrical impedance between electrode pairs in the measuring chamber. The assembled prototype is compact, consumes little power, and allows to non-invasively determine the impedance of a target object in real time. The research included experimental studies to determine the dependence of the impedance spectrum of saline water and muscle tissue on temperature in broad band spectrum, which allowed to obtain the dependence of total electrical impedance of target objects on temperature.

  12. Theoretical approach to cell-impedance-controlled lithium transport through Li1-δMn2O4 film electrode with partially inactive fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2007-01-01

    Lithium transport through the partially inactive fractal Li 1-δ Mn 2 O 4 film electrode under the cell-impedance-controlled constraint was theoretically investigated by using the kinetic Monte Carlo method based upon random walk approach. Under the cell-impedance-controlled constraint, all the potentiostatic current transients calculated from the totally active and partially inactive fractal electrodes hardly exhibited the generalised Cottrell behaviour and they were significantly affected in shape by the interfacial charge-transfer kinetics. In the case of the linear sweep voltammogram determined from the totally active and partially inactive fractal electrodes, all the power dependence of the peak current on the scan rate above the characteristic scan rate deviated from the generalised Randles-Sevcik behaviour. From the analyses of the current transients and the linear sweep voltammograms simulated with various values of the simulation parameters, it was further recognised that the cell-impedance-controlled lithium transport through the partially inactive fractal Li 1-δ Mn 2 O 4 film electrode strongly deviates from the generalised diffusion-controlled transport behaviour of the electrode with the totally active surface, which is attributed to the impeded interfacial charge-transfer kinetics governed by the surface inhomogeneities including the fractal dimension of the surface and the surface coverage by active sites and by the kinetic parameters including the internal cell resistance

  13. Effect of Intravenous Infusion Solutions on Bioelectrical Impedance Spectroscopy.

    Science.gov (United States)

    Yap, Jason; Rafii, Mahroukh; Azcue, Maria; Pencharz, Paul

    2017-05-01

    Bioelectrical impedance (BIA) is often used to measure body fluid spaces and thereby body composition. However, in acute animal studies, we found that impedance was driven by the saline content of intravenous (IV) fluids and not by the volume. The aim of the study was to investigate the effect of 3 different fluids acutely administered on the change in impedance, specifically resistance (R). Nine healthy adults participated in 3 treatment (0.9% saline, 5% dextrose, and a mixture of 0.3% saline + 3.3% dextrose) experiments on nonconsecutive days. They all received 1 L of one of the treatments intravenously over a 1-hour period. Repeated BIA measurements were performed prior to IV infusion and then every 5 minutes for the 1-hour infusion period, plus 3 more measurements up to 15 minutes after the completion of the infusion. The change in R in the 0.9% saline infusion experiment was significantly lower than that of the glucose and mixture treatment ( P < .001). Bioelectrical impedance spectroscopy and BIA measure salt rather than the volume changes over the infusion period. Hence, in patients receiving IV fluids, BIA of any kind (single frequency or multifrequency) cannot be used to measure body fluid spaces or body composition.

  14. Beam Measurements of the Longitudinal impedance of the CERN Super Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2090034; Petrache, Costel

    One of the main challenges of future physics projects based on particle accelerators is the need for high intensity beams. However, collective effects are a major limitation which can deteriorate the beam quality or limit the maximum intensity due to losses. The CERN SPS, which is the last injector for the LHC, is currently unable to deliver the beams required for future projects due to longitudinal instabilities. The numerous devices in the machine (accelerating RF cavities, injection and extraction magnets, vacuum flanges. etc.) lead to variations in the geometry and material of the chamber through which the beam is travelling. The electromagnetic interaction within the beam (space charge) and of the beam with its environment are described by a coupling impedance which affects the motion of the particles and leads to instabilities for high beam intensities. Consequently, the critical impedance sources should be identified and solutions assessed. To have a reliable impedance model of an accelerator, the...

  15. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    Science.gov (United States)

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  16. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  17. Acute evaluation of transthoracic impedance vectors using ICD leads.

    Science.gov (United States)

    Gottfridsson, Christer; Daum, Douglas; Kennergren, Charles; Ramuzat, Agnès; Willems, Roger; Edvardsson, Nils

    2009-06-01

    Minute ventilation (MV) has been proven to be very useful in rate responsive pacing. The aim of this study was to evaluate the feasibility of using implantable cardioverter-defibrillator (ICD) leads as part of the MV detection system. At implant in 10 patients, the transthoracic impedance was measured from tripolar ICD, tetrapolar ICD, and atrial lead vectors during normal, deep, and shallow voluntary respiration. MV and respiration rate (RespR) were simultaneously measured through a facemask with a pneumotachometer (Korr), and the correlations with impedance-based measurements were calculated. Air sensitivity was the change in impedance per change in respiratory tidal volume, ohms (Omega)/liter (L), and the signal-to-noise ratio (SNR) was the ratio of the respiratory and cardiac contraction components. The air sensitivity and SNR in tripolar ICD vector were 2.70 +/- 2.73 ohm/L and 2.19 +/- 1.31, respectively, and were not different from tetrapolar. The difference in RespR between tripolar ICD and Korr was 0.2 +/- 1.91 breaths/minute. The regressed correlation coefficient between impedance MV and Korr MV was 0.86 +/- 0.07 in tripolar ICD. The air sensitivity and SNR in tripolar and tetrapolar ICD lead vectors did not differ significantly and were in the range of the values in pacemaker leads currently used as MV sensors. The good correlations between impedance-based and Korr-based RespR and MV measurements imply that ICD leads may be used in MV sensor systems.

  18. Broadband impedance of the NESTOR storage ring

    International Nuclear Information System (INIS)

    Androsov, V.P.; Gladkikh, P.I.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.

    2011-01-01

    The contributions from lossy and inductive vacuum chamber components to the broadband impedance of the NESTOR storage ring are obtained by using both low-frequency analytical approaches and computer simulations. As was expected considering the small ring circumference (15.44m), the main contributions both to the longitudinal impedance Z || /n and the loss factor k loss come from the RF-cavity. Cavity impedance was also estimated with CST Microwave Studio (CST Studio Suite TM 2006) by simulating coaxial wire method commonly used for impedance measurements. Both estimates agree well. Finally, we performed the simulations of a number of inductive elements with CST Particle Studio 2010 by using wake field solver. We have also evaluated the bunch length in NESTOR taking the conservative estimate of 3 Ohm for the ring broadband impedance and have found that the bunch length s z = 0.5 cm could be obtained in steady state operation mode for the designed bunch current of 10 mA and RF-voltage of 250 kV.

  19. Development of an Algorithm for Automatic Analysis of the Impedance Spectrum Based on a Measurement Model

    Science.gov (United States)

    Kobayashi, Kiyoshi; Suzuki, Tohru S.

    2018-03-01

    A new algorithm for the automatic estimation of an equivalent circuit and the subsequent parameter optimization is developed by combining the data-mining concept and complex least-squares method. In this algorithm, the program generates an initial equivalent-circuit model based on the sampling data and then attempts to optimize the parameters. The basic hypothesis is that the measured impedance spectrum can be reproduced by the sum of the partial-impedance spectra presented by the resistor, inductor, resistor connected in parallel to a capacitor, and resistor connected in parallel to an inductor. The adequacy of the model is determined by using a simple artificial-intelligence function, which is applied to the output function of the Levenberg-Marquardt module. From the iteration of model modifications, the program finds an adequate equivalent-circuit model without any user input to the equivalent-circuit model.

  20. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  1. Ventilation distribution in rats: Part I - The effect of gas composition as measured with electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Dunster Kimble R

    2012-09-01

    Full Text Available Abstract The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air. The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.

  2. Monitoring voltage-sensitive membrane impedance change using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2010-01-01

    Here we present a new technique to monitor dynamic conformational changes in voltage-sensitive membrane-bound proteins using radio frequency (RF) impedance measurements. Xenopus oocytes were transfected to express ShakerB-IR K(+) ion channels, and step changes in membrane potential were applied using two-electrode voltage clamp (TEVC). Simultaneously, bipolar extracellular electrodes were used to measure the RF electrical impedance across the cell (300 kHz - 1 MHz). RF current will either pass through the media, around the cell, or displace charge across the cell membrane. The change in displacement current in the cell membrane during voltage clamp resulted in measurable RF impedance change. RF impedance change during DC membrane depolarization was significantly greater in ShakerB-IR expressing oocytes than in endogenous controls at 300 kHz, 500 kHz and, to a lesser extent, 1 MHz. Since the RF were too high to modulate ShakerB-IR protein conformational state (e.g. open channel probability), impedance changes are interpreted as reflections of voltage-dependent protein conformation and associated biophysics such as ion-channel dipole interactions, fluctuations in bound water, or charged lipid head-group rotations.

  3. Impedance spectra of patch clamp scenarios for single cells immobilized on a lab-on-a-chip

    DEFF Research Database (Denmark)

    Alberti, Massimo; Snakenborg, Detlef; Lopacinska, Joanna M.

    2014-01-01

    and simulated impedance spectra proved that the presented method could distinguish between a cell-attached mode and a whole-cell mode even with low-quality seals. In physiological conditions, the capacitance of HeLa cells was measured to *38 pF. The first gigaseal was recorded and maintained for 40 min. Once...... membrane. After incubating the chip for 24 h, HeLa cells adhered and grew on the chip surface but did not survive when trapped on the microapertures. The microfluidic system proved to work as a micro electrophysiological analysis system, and the IS-based method can be used for further studies on the post......A simple method based on impedance spectroscopy (IS) was developed to distinguish between different patch clamp modes for single cells trapped on microapertures in a patch clamp microchannel array designed for patch clamping on cultured cells. The method allows detecting via impedance analysis...

  4. 10 GHz surface impedance measurements of (Y9Er)BaCuO films produced by MOCVD, laser ablation, and sputtering

    International Nuclear Information System (INIS)

    Luine, J.; Daly, K.; Hu, R.; Kain, A.; Lee, A.; Manasevit, H.; Pettiette-Hall, C.; Simon, R.; St John, D.; Wagner, M.

    1991-01-01

    This paper reports on a parallel-plate resonator technique previously used to measure microwave surface resistance R s (T) extended to also measure absolute penetration depth λ(T). Measurements of both quantities near 10 GHz from 4.2 K to Tc are reported for ErBaCuO thin films produced by metal-organic chemical vapor deposition (MOCVD) and YBaCuO think films produced by laser ablation and single-target off-axis sputtering. All the films were made at TRW. Each production method gives rise to films whose surface resistance is below 1 milliohm at temperatures below 40K. The low temperature penetration depths range from 250 nm for the laser ablation and sputtered films to 800 nm for the MOCVD films. The penetration depths in all cases increase with temperature according to the Gorter-Casimir temperature dependence

  5. Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements

    Science.gov (United States)

    Nelatury, Sudarshan Rao; Singh, Pritpal

    In a recent communication, a method for extracting the equivalent circuit parameters of a lead acid battery from sparse (only three) impedance spectroscopy observations at three different frequencies was proposed. It was based on an equivalent circuit consisting of a bulk resistance, a reaction resistance and a constant phase element (CPE). Such a circuit is a very appropriate model of a lead-acid cell at high state of charge (SOC). This paper is a sequel to it and presents an application of it in case of nickel/metal hydride (Ni/MH) batteries, which also at high SOC are represented by the same circuit configuration. But when the SOC of a Ni/MH battery under interrogation goes low, The EIS curve has a positive slope at the low frequency end and our technique yields complex values for the otherwise real circuit parameters, suggesting the need for additional elements in the equivalent circuit and a definite relationship between parameter consistency and SOC. To improvise the previous algorithm, in order that it works reasonably well at both high and low SOCs, we propose three more measurements—two at very low frequencies to include the Warburg response and one at a high frequency to model the series inductance, in addition to the three in the mid frequency band—totally six measurements. In most of the today's instrumentation, it is the user who should choose the circuit configuration and the number of frequencies where impedance should be measured and the accompanying software performs data fitting by complex nonlinear least squares. The proposed method has built into it an SOC-based decision-making capability—both to choose the circuit configuration and to estimate the values of the circuit elements.

  6. Differences in body composition measured using the bioelectrical impedance analysis with steel and gel electrodes – on an example of professional fencers

    Directory of Open Access Journals (Sweden)

    Olga Mizera

    2018-03-01

    Full Text Available Introduction: Regular assessment of body composition in athletes is a key element of their nutritional status and general condition monitoring. Purpose: Analysis of differences in the impedance (I and body composition measurements performed by the use of analyzers with a constant current frequency of 50 kHz with steel and gel electrodes. Material and methods: Analysis were performed in experienced fencers by the use of analyzers: Tanita BC418MA (aT with steel electrodes (eT and Akern BIA101ASE (aA with gel electrodes (eA, eL, eT. During the first stage of the study in 48 athletes I, fat mass (FM and fat free mass (FFM were measured using aA with eB in a supine position and after 3 min using aT with eT in a standing position. Then 10 fencers were randomly selected. For them measurements were performed after 10, 13 and 16 min in a supine position using eA, eL, eB and then after 3 min in a standing one using eT. Intrinsic impedance of the 3 types of gel electrodes (eA, eL, eB were measured using aA. Results: The first stage. Differences in I, FM and FFM between eT and aA were observed (women: 101.4±52.2Ω, 1.2±2.1kg, -1.2±2.1kg, men: 98.8±27.5Ω, 1.1±1.5kg, -1.1±1.5kg, respectively. The second stage. In the subsequent measurements, differences in I were observed (women: eL-eA 3.8±1.8Ω, eB-eA 26.1±8.0Ω, eT-eA 154.4±40.6Ω;, men: of -0.7±9.4Ω, 11.1±9.2Ω, 107±36.3Ω, respectively. In both subgroups along with the increase in I, FM also increased, while  FFM decreased. Intrinsic impedance of the applied gel electrodes was measured and the differences between the results were reported (eL-eA 41.1±22.0Ω, eB-eL 138.4±20.7Ω, eB-eA 179.5Ω. As the intrinsic impedance of gel electrodes increased, an increase in the whole body I was observed. Conclusion: It seems that the observed differences in the whole body impedance were not only a simple effect of changes in a body position but they might have also been related to the intrinsic

  7. Simulation of the LHC injection kicker impedance test bench

    CERN Document Server

    Tsutsui, H

    2003-01-01

    The coupling impedance measurements of the LHC injection kicker test bench are simulated by HFSS code. The simulation gives qualitatively good agreement with the measurement. In order to damp the resonances, some ferrite rings are tested in the simulation. Longitudinal resonances are damped by a ferrite ring of large tan$\\delta_{\\mu}$. The effect of the ferrite ring is small for damping the transverse impedance resonance around 30 MHz.

  8. Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: a simulation study.

    Science.gov (United States)

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Jörres, R A; Mueller-Lisse, U; Moeller, K

    2017-10-10

    Electrical impedance tomography (EIT) has mostly been used in the Intensive Care Unit (ICU) to monitor ventilation distribution but is also promising for the diagnosis in spontaneously breathing patients with obstructive lung diseases. Beside tomographic images, several numerical measures have been proposed to quantitatively assess the lung state. In this study two common measures, the 'Global Inhomogeneity Index' and the 'Coefficient of Variation' were compared regarding their capability to reflect the severity of lung obstruction. A three-dimensional simulation model was used to simulate obstructed lungs, whereby images were reconstructed on a two-dimensional domain. Simulations revealed that minor obstructions are not adequately recognized in the reconstructed images and that obstruction above and below the electrode plane may result in misleading values of inhomogeneity measures. EIT measurements on several electrode planes are necessary to apply these measures in patients with obstructive lung diseases in a promising manner.

  9. Electrical impedance tomography: topology optimization

    International Nuclear Information System (INIS)

    Miranda, Lenine Campos

    2013-01-01

    The Electrical Impedance Tomography (EIT) is a study of body parts who use electric current. Is studied through computers resistance or conductivity of these parts, producing an image used for medical diagnosis. A body is wrapped in a blanket placed with small electrodes and receivers of electric current, potential difference. Based on data obtained from a series of measurements at the electrodes, one by one, sending and receiving, you can perform a numerical phantom, where each 'voxel' of the image formed computationally represents the impedance of biological tissue. In Brazil, studies on electrical impedance tomography (EIT) has not yet started. Such equipment are measured tensions - potential difference - between each electrode / sensor one by one, as a way to Simple Combinatorial Analysis. The sequence and the way it is measured strains are in the final image quality. Finite Element Method Interactive, whose algorithm is based on Dialectical Method. We use an initial function with the objective of maximizing the data quantitatively, for better qualitative analysis. Topology Optimization methods are used to improve the image reconstruction. Currently the study is quite primitive related to the theory that shows how to power the new science studied. The high quality images requires a difficulty in obtaining. This work is not intended for detailed for analysis in any tissue or organ specific, but in general terms. And the formation of the 2D image. 3D need a reconstructor to part. (author)

  10. A New Method of On-line Grid Impedance Estimation for PV Inverter

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede

    2004-01-01

    for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...

  11. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  12. Wideband impedance measurements of DC motors under dynamic load conditions

    NARCIS (Netherlands)

    Diouf, F.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2013-01-01

    One of the principal conducted EMI(electromagnetic interferences) sources of low voltage DC (direct current) motors is the commutation occurring during rotation. In this paper the small-signal impedance of low voltage DC motors under different functioning modes, including the dynamic one is studied

  13. Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V; Vasquez, F Guevara

    2010-01-01

    We introduce an inversion algorithm for electrical impedance tomography (EIT) with partial boundary measurements in two dimensions. It gives stable and fast reconstructions using sparse parameterizations of the unknown conductivity on optimal grids that are computed as part of the inversion. We follow the approach in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD thesis Rice University, Houston, TX, USA) that connects inverse discrete problems for resistor networks to continuum EIT problems, using optimal grids. The algorithm in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) is based on circular resistor networks, and solves the EIT problem with full boundary measurements. It is extended in Borcea et al (2010 Inverse Problems 26 045010) to EIT with partial boundary measurements, using extremal quasi-conformal mappings that transform the problem to one with full boundary measurements. Here we introduce a different class of optimal grids, based on resistor networks with pyramidal topology, that is better suited for the partial measurements setup. We prove the unique solvability of the discrete inverse problem for these networks and develop an algorithm for finding them from the measurements of the Dirichlet to Neumann map. Then, we show how to use the networks to define the optimal grids and to approximate the unknown conductivity. We assess the performance of our approach with numerical simulations and compare the results with those in Borcea et al (2010)

  14. Circular resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V

    2010-01-01

    We introduce an algorithm for the numerical solution of electrical impedance tomography (EIT) in two dimensions, with partial boundary measurements. The algorithm is an extension of the one in Borcea et al (2008 Inverse Problems 24 035013 (31pp)) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) for EIT with full boundary measurements. It is based on resistor networks that arise in finite volume discretizations of the elliptic partial differential equation for the potential on so-called optimal grids that are computed as part of the problem. The grids are adaptively refined near the boundary, where we measure and expect better resolution of the images. They can be used very efficiently in inversion, by defining a reconstruction mapping that is an approximate inverse of the forward map, and acts therefore as a preconditioner in any iterative scheme that solves the inverse problem via optimization. The main result in this paper is the construction of optimal grids for EIT with partial measurements by extremal quasiconformal (Teichmüller) transformations of the optimal grids for EIT with full boundary measurements. We present the algorithm for computing the reconstruction mapping on such grids, and we illustrate its performance with numerical simulations. The results show an interesting trade-off between the resolution of the reconstruction in the domain of the solution and distortions due to artificial anisotropy induced by the distribution of the measurement points on the accessible boundary

  15. Using cell-substrate impedance and live cell imaging to measure real-time changes in cellular adhesion and de-adhesion induced by matrix modification.

    Science.gov (United States)

    Rees, Martin D; Thomas, Shane R

    2015-02-19

    Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).

  16. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage

    Science.gov (United States)

    Huynh, Thanh-Canh; Kim, Jeong-Tae

    2017-12-01

    In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.

  17. Development on electromagnetic impedance function modeling and its estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  18. Tidal breathing flow measurement in awake young children by using impedance pneumography.

    Science.gov (United States)

    Seppä, Ville-Pekka; Pelkonen, Anna S; Kotaniemi-Syrjänen, Anne; Mäkelä, Mika J; Viik, Jari; Malmberg, L Pekka

    2013-12-01

    Characteristics of tidal breathing (TB) relate to lung function and may be assessed even in young children. Thus far, the accuracy of impedance pneumography (IP) in recording TB flows in young children with or without bronchial obstruction has not been evaluated. The aim of this study was to evaluate the agreement between IP and direct flow measurement with pneumotachograph (PNT) in assessing TB flow and flow-derived indices relating to airway obstruction in young children. Tidal flow was recorded for 1 min simultaneously with IP and PNT during different phases of a bronchial challenge test with methacholine in 21 wheezy children aged 3 to 7 years. The agreement of IP with PNT was found to be excellent in direct flow signal comparison, the mean deviation from linearity ranging from 2.4 to 3.1% of tidal peak inspiratory flow. Methacholine-induced bronchoconstriction or consecutive bronchodilation induced only minor changes in the agreement. Between IP and PNT, the obstruction-related tidal flow indices were equally repeatable, and agreement was found to be high, with intraclass correlation coefficients for T PTEF/T E, V PTEF/V E, and parameter S being 0.94, 0.91, and 0.68, respectively. Methacholine-induced changes in tidal flow indices showed significant associations with changes in mechanical impedance of the respiratory system assessed by the oscillometric technique, with the highest correlation found in V PTEF/V E (r = -0.54; P tidal airflow profiles in young children with wheezing disorders.

  19. Investigating the low-temperature impedance increase of lithium-ion cells

    International Nuclear Information System (INIS)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  20. Characterization of the mechanical behavior of human skin by means of impedance spectroscopy

    Science.gov (United States)

    Pavšelj, N.; Mitar, M.; Hart, F. X.; Miklavčič, D.

    2010-04-01

    There is increased interest for the use of impedance spectroscopy to measure skin dielectric properties in vivo. The aim of such measurements can be either to evaluate the hydration state of the skin, to detect diseased states such as skin cancer, to follow the progress of transdermal drug delivery, or simply to gather data on skin tissue impedance to be used in theoretical studies. However, obtaining reliable data can be difficult. Namely, skin is a highly nonhomogeneous multi-layered structure whose composition and dimensions differ depending on the location on the body and interindividual variations. Also, impedance measurements on skin are accompanied by a number of artefacts. We performed a series of impedance measurements using an Agilent/HP 4284A precision LCR meter with parallel plate electrodes pressed on the skin, at different locations on the body. We observed substantial impedance changes over the course of the measurement. These changes can be mainly attributed to skin deformation caused by the electrodes pressing against skin. The analysis showed that skin mechanical properties and layer thicknesses can be inferred from these temporal changes. Such data on mechanical properties of skin tissue give valuable extra information, crucial for successful estimation of the impedance of different skin layers.

  1. Extraordinary Magnetic Field Enhancement with Metallic Nanowire: Role of Surface Impedance in Babinet's Principle for Sub-Skin-Depth Regime

    Science.gov (United States)

    Koo, Sukmo; Kumar, M. Sathish; Shin, Jonghwa; Kim, Daisik; Park, Namkyoo

    2009-12-01

    We propose and analyze the “complementary” structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.

  2. Bridge Network for Measuring Very Small Impedances from 4.2 to 300 degrees K with a Null-Detector Sensitivity of 10-11 Volt

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Dalsgaard, Erik

    1967-01-01

    An ac measuring technique devised primarily for measuring galvanomagnetic effects in metals is presented. The instrument may, however, be useful whenever it is desired to measure and record continuously impedances in the range 10−3 to 10−8 Omega. The sample assembly is disscussed in some detail....... Measurements with the bridge show that in the temperature range 300°K to 4.2°K the noise level changes from 30×10−11 V to 10−11 V without any zero shift, and as a result the lower limit for the impedance range changes from 10−6 Omega to less than 5×10−8 Omega. ©1967 The American Institute of Physics...

  3. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-06-01

    Full Text Available When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS. We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.

  4. MD 349: Impedance Localization with AC-dipole

    CERN Document Server

    Biancacci, Nicolo; Metral, Elias; Salvant, Benoit; Papotti, Giulia; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the distribution of the transverse impedance of the LHC by observing the phase advance variation with intensity between the machine BPMs. Four injected bunches with different intensities are excited with an AC dipole and the turn by turn data is acquired from the BPM system. Through post-processing analysis the phase variation along the machine is depicted and, from this information, first conclusions of the impedance distribution can be drawn.

  5. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Medale

    2012-10-01

    Full Text Available The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  6. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-10-11

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  7. Development of a real-time, semi-capacitive impedance phlebography device

    Directory of Open Access Journals (Sweden)

    Sören Niklas Weyer

    2015-04-01

    Full Text Available Chronic venous insufficiency of the lower limbs is a disease which is caused by an increased blood pressure inside the veins of the leg and the resulting increase of the contained blood volume.This work focuses on developing a device which uses impedance plethysmography to obtain information about the blood volume in the lower leg and provides the possibility to measure the impedance semi contact-less, e.g. through compression stockings. Furthermore a real-time beat-to-beat interval detection algorithm was implemented. Finally, the function of the developed impedance measuring system and the whole system was verified by comparing it with a gold standard.In comparison to the conductive coupling, the system performed similarly. The analysis showed that the developed system is suitable for semi-capacitive IPG. The algorithm was implemented conservatively since it provided a good false-positive rate of 0%, but only a moderate sensitivity of about 68%.Reliable and continuous measurement of the pulse signal was only possible in periods of immobility.Chronic venous insufficiency of the lower limbs is a disease which is caused by an increased blood pressure inside the veins of the leg and the resulting increase of the contained blood volume.\\\\ This work focuses on developing a device which uses impedance plethysmography to obtain information about the blood volume in the lower leg and provides the possibility to measure the impedance semi contact-less, e.g. through compression stockings. Furthermore a real-time beat-to-beat interval detection algorithm was implemented. Finally, the function of the developed impedance measuring system and the whole system was verified by comparing it with a gold standard.\\\\ In comparison to the conductive coupling, the system performed similarly. The analysis showed that the developed system is suitable for semi-capacitive IPG. The algorithm was implemented conservatively since it provided a good false-positive rate

  8. Coupling Impedance of the CERN SPS beam position monitors

    CERN Document Server

    Salvant, B; Boccard, C; Caspers, Friedhelm; Grudiev, A; Jones, R; Métral, E; Rumolo, G; Zannini, C; Spataro, B; Alesini, D; Migliorati, M; Roncarolo, F; Calaga, R

    2010-01-01

    A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPMs) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic (EM) simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine.

  9. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  10. Effects of tissue impedance on heat generation during RF delivery with the Thermage system

    Science.gov (United States)

    Tomkoria, Sara; Pope, Karl

    2005-04-01

    The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.

  11. Design of current source for multi-frequency simultaneous electrical impedance tomography

    Science.gov (United States)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  12. Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Lorraine Ortiz-Candelaria; Donald S. Stone; Douglas R. Rammer

    2009-01-01

    Currently, many of the polymer-coated fasteners on the market are designed for improved corrosion performance in treated wood; yet, there is no way to evaluate their corrosion performance. In this study, a common technique for measuring the corrosion performance of polymer-coated metals, electrochemical impedance spectroscopy (EIS), was used to evaluate commercial...

  13. Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2014-01-01

    An analytical, 1-dimensional impedance model for a composite solid oxide fuel cell cathode is derived. It includes geometrical parameters of the cathode, e.g., the internal surface area and the electrode thickness, and also material parameters, e.g., the surface reaction rate and the vacancy...... diffusion coefficient. The model is successfully applied to a total of 42 impedance spectra, obtained in the temperature range 555°C–852°C and in the oxygen partial pressure range 0.028 atm–1.00 atm for a cathode consisting of a 50/50 wt% mixture of (La0.6Sr0.4)0.99CoO3 − δ and Ce0.9Gd0.1O1.95 − δ...... and providing both qualitative and quantitative information on the evolution of the impedance spectra of cathodes with changing parameters....

  14. Multi-Electrode Impedance Method for Detection of Regional Ventilation

    International Nuclear Information System (INIS)

    Furuya, Norio; Sakamoto, Katsuyuki

    2013-01-01

    By means of computer simulation and experiment, we investigated the feasibility of simultaneously measuring the transfer impedance changes in the right apex, left apex, right base and left base of the lungs using the multi-electrode impedance method. To obtain the transfer impedance in each region, while suppressing the effects of other regions, changing the amplitude and polarity of the applied current must localize the high sensitivity areas in the interest region. Twelve current and eight voltage electrodes were equidistantly arranged on the anterior and posterior chest walls. The amplitudes and polarities of the currents that were simultaneously applied to the current electrodes, and which provided the appropriate sensitivity distribution, were theoretically obtained. The effects of the localized sensitivity distribution were verified by comparing the simulation results of the investigated method with the results of the conventional four-electrode method. From the results of the computer simulation, we developed a multi-electrode impedance pneumography and applied it to healthy adult volunteers who were both in sitting position and in left decubitus. We found that the measurement results were physiologically reasonable.

  15. Process modeling of the impedance characteristics of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Rezaei Niya, Seyed Mohammad; Phillips, Ryan K.; Hoorfar, Mina

    2016-01-01

    Highlights: • The impedance of the PEM fuel cell is analytically calculated. • The measured impedances are presented for different operating conditions. • The high frequency arc in the measured Nyquist plot is related to the anode. • The intermediate frequency arc is related to the cathode. • The low frequency arc and high frequency resistance are related to the membrane. - Abstract: A complete process modeling of the impedance characteristics of the proton exchange membrane fuel cells is presented. The impedance of the cell is determined analytically and the resultant equivalent circuit is calculated. The model predictions are then compared against the measured impedances in different current densities, operating temperatures and anode and cathode relative humidities. It is shown that the model predicts the Nyquist plots in all different operating conditions extremely well. Next, the trends observed in the Nyquist plots reported in the literature are compared against the model predictions. The result of this comparison confirms the accuracy of the model. Using the verified model, various arcs in the Nyquist plots are separated and related to the fuel cell physical parameters.

  16. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Science.gov (United States)

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  17. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    International Nuclear Information System (INIS)

    Tawie, R; Lee, H K

    2011-01-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials

  18. [Impedance between modiolus and different walls of scala tympani].

    Science.gov (United States)

    Du, Qiang; Wang, Zhengmin

    2008-10-01

    To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.

  19. Design and test of voltage and current probes for EAST ICRF antenna impedance measurement

    Science.gov (United States)

    Jianhua, WANG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Shuai, YUAN; Xinjun, ZHANG; Hua, YANG; Chengming, QIN; Yan, CHENG; Yuqing, YANG; Guillaume, URBANCZYK; Lunan, LIU; Jian, CHENG

    2018-04-01

    On the experimental advanced superconducting tokamak (EAST), a pair of voltage and current probes (V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads R L > 2.5 Ω, while the resistance deviations appear large for loads R L phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.

  20. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...

  1. Current phase control test based on real-time measurement of impedance matrix of ICRF antennas

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kumazawa, R.; Seki, T.; Kasahara, H.; Yokota, M.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    New ion cyclotron range of frequencies (ICRF) antennas have just been installed in the large helical device (LHD). These side-by-side ICRF antennas are symmetrical and designed to launch fast waves with various wave numbers parallel to the magnetic field line. The wave number can be controlled by changing the current phase on the straps; however, the mutual coupling between antennas changes antenna impedances, even if the plasma parameters are constant, leading to an increase in the reflected power. In addition to the current phase control, impedance matching devices must be tuned for the protection of tetrode tubes and efficient power injection. For this purpose, the impedance matrix of ICRF antennas must be determined, and it can be deduced from the forward and reflected waves at the outlet of the power amplifier by assuming geometric symmetry and reciprocity of the antennas. Using half-scale antennas, we successfully demonstrated simultaneous impedance matching and current phase control.

  2. Application of Vertical Electrodes in Microfluidic Channels for Impedance Analysis

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-05-01

    Full Text Available This paper presents a microfluidic device with electroplated vertical electrodes in the side walls for impedance measurement. Based on the proposed device, the impedance of NaCl solutions with different concentrations and polystyrene microspheres with different sizes was measured and analyzed. The electroplating and SU-8-PDMS (SU-8-poly(dimethylsiloxane bonding technologies were firstly integrated for the fabrication of the proposed microfluidic device, resulting in a tightly three-dimensional structure for practical application. The magnitude of impedance of the tested solutions in the frequency range of 1 Hz to 100 kHz was analyzed by the Zennium electrochemical workstation. The results show that the newly designed microfluidic device has potential for impedance analysis with the advantages of ease of fabrication and the integration of 3D electrodes in the side walls. The newly designed impedance sensor can distinguish different concentrations of polystyrene microspheres and may have potential for cell counting in biological areas. By integrating with other techniques such as dielectrophoresis (DEP and biological recognition technology, the proposed device may have potential for the assay to identify foodborne pathogen bacteria.

  3. Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity

    International Nuclear Information System (INIS)

    Kushner, R.F.; Kunigk, A.; Alspaugh, M.; Andronis, P.T.; Leitch, C.A.; Schoeller, D.A.

    1990-01-01

    The bioelectrical-impedance-analysis (BIA) method accurately measures body composition in weight-stable subjects. This study validates the use of BIA to measure change in body composition. Twelve obese females underwent weight loss at a mean rate of 1.16 kg/wk. Body composition was measured by deuterium oxide dilution (D2O), BIA, and skinfold anthropometry (SFA) at baseline and at 5% decrements in weight. Highly significant correlations were obtained between D2O and BIA (r = 0.971) and between D2O and SFA (r = 0.932). Overall, BIA predicted change in fat-free mass with greater accuracy (to 0.4 kg) and precision (+/- 1.28 kg) than did anthropometry (to 0.8 kg and +/- 2.58 kg, respectively). We conclude that BIA is a useful clinical method for measuring change in body composition

  4. Optical and impedance characteristics of passive films on pure aluminium

    International Nuclear Information System (INIS)

    Krishnakumar, R.; Szklarska-Smialowska, Z.

    1992-01-01

    Optical and Impedance behavior of pure bulk aluminum and pure sputtered aluminum film were studied in order to gain a better understanding of their fundamental passivation and pitting characteristics. Constant potential experiments at the passivation and pitting potentials, and potentiostatic anodic polarization were conducted while simultaneously monitoring the current, impedance and optical behavior, in-situ. Noise characteristics in the current data during the pit incubation period indicate that Cl - ions migrate with little impediment to the metal surface through defects in the passive film. Impedance experiments indicate that the polarization resistance fluctuates continuously with time during the pit incubation period, suggesting that impedance spectroscopy is sensitive to localized processes. The interfacial capacitance increases continuously during this time. The smallest pits observed on the sample surface (less than 10μ) are clearly crystallographic, indicating activation controlled dissolution at pits. The film capacitance increases with exposure time at the passivation potential, while the polarization resistance decreases continuously. The decrease in the film resistance is thought to be due to chloride incorporation at defects in the passive film. The increase in film capacitance at the passivation and pitting potential is due to an increase in the film dielectric constant caused by either a compositional change or anion incorporation. Ellipsometry results indicate growth of a dual layered film on the pure aluminum surface, with the outer layer probably containing varying amounts of incorporated chloride depending on the applied potential. Preliminary experiments indicate that in the case of sputtered aluminum film, the passive film resistance is at least an order of magnitude higher than that of bulk aluminum. This is due to the fine grain structure of sputtered Al and hence a more defect free passive film than that formed on bulk aluminum. There is

  5. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  6. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  7. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    Science.gov (United States)

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  8. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    OpenAIRE

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-01-01

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclos...

  9. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  10. Relationship between moisture content and electrical impedance of carrot slices during drying

    Science.gov (United States)

    Kertész, Ákos; Hlaváčová, Zuzana; Vozáry, Eszter; Staroňová, Lenka

    2015-01-01

    Electrical properties of food materials can give information about the inner structure and physiological state of biological tissues. Generally, the process of drying of fruits and vegetables is followed by weight loss. The aim of this study was to measure the impedance spectra of carrot slices during drying and to correlate impedance parameters to moisture content in different drying periods. Cylindrical slices were cut out from the carrot root along the axis. The slices were dried in a Venticell 111 air oven at 50°C. The weight of the slices was measured with a Denver SI-603 electronic analytical and precision balance. The weighing of the samples was performed every 30 min at the beginning of drying and every 60 min after the process. The moisture content of the samples was calculated on wet basis. The magnitude and phase angle of electrical impedance of the slices were measured with HP 4284A and 4285A precision LCR meters in the frequency range from 30 Hz to 1 MHz and from 75 kHz to 30 MHz, respectively, at voltage 1 V. The impedance measurement was performed after weighting. The change in the magnitude of impedance during drying showed a good correlation with the change in the moisture content.

  11. Percentiles of body fat measured by bioelectrical impedance in children and adolescents from Bogotá (Colombia): the FUPRECOL study.

    Science.gov (United States)

    Escobar-Cardozo, Germán D; Correa-Bautista, Jorge E; González-Jiménez, Emilio; Schmidt-RioValle, Jacqueline; Ramírez-Vélez, Robinson

    2016-04-01

    The analysis of body composition is a fundamental part of nutritional status assessment. The objective of this study was to establish body fat percentiles by bioelectrical impedance in children and adolescents from Bogotá (Colombia) who were part of the FUPRECOL study (Asociación de la Fuerza Prensil con Manifestaciones Tempranas de Riesgo Cardiovascular en Niños y Adolescentes Colombianos - Association between prehensile force and early signs of cardiovascular risk in Colombian children and adolescents). This was a cross-sectional study conducted among 5850 students aged 9-17.9 years old from Bogotá (Colombia). Body fat percentage was measured using foot-to-foot bioelectrical impedance (Tanita®, BF-689), by age and gender. Weight, height, waist circumference, and hip circumference were measured, and sexual maturity was self-staged. Percentiles (P3, P10, P25, P50, P75, P90 and P97) and centile curves were estimated using the LMS method (L [BoxCox curve], M [median curve] and S [variation coefficient curve]), by age and gender. Subjects included were 2526 children and 3324 adolescents. Body fat percentages and centile curves by age and gender were established. For most age groups, values resulted higher among girls than boys. Participants with values above P90 were considered to have a high cardiovascular risk due to excess fat (boys > 23.428.3, girls > 31.0-34.1). Body fat percentage percentiles measured using bioelectrical impedance by age and gender are presented here and may be used as reference to assess nutritional status and to predict cardiovascular risk due to excess fat at an early age. Sociedad Argentina de Pediatría.

  12. Correlation between muscle electrical impedance data and standard neurophysiologic parameters after experimental neurogenic injury

    International Nuclear Information System (INIS)

    Ahad, M; Rutkove, S B

    2010-01-01

    Previous work has shown that electrical impedance measurements of muscle can assist in quantifying the degree of muscle atrophy resulting from neuronal injury, with impedance values correlating strongly with standard clinical parameters. However, the relationship between such data and neurophysiologic measurements is unexplored. In this study, 24 Wistar rats underwent sciatic crush, with measurement of the 2–1000 kHz impedance spectrum, standard electrophysiological measures, including nerve conduction studies, needle electromyography, and motor unit number estimation (MUNE) before and after sciatic crush, with animals assessed weekly for 4 weeks post-injury. All electrical impedance values, including a group of 'collapsed' variables, in which the spectral characteristics were reduced to single values, showed reductions as high as 47.2% after sciatic crush, paralleling and correlating with changes in compound motor action potential amplitude, conduction velocity and most closely to MUNE, but not to the presence of fibrillation potentials observed on needle electromyography. These results support the concept that localized impedance measurements can serve as surrogate makers of nerve injury; these measurements may be especially useful in assessing nerve injury impacting proximal or axial muscles where standard quantitative neurophysiologic methods such as nerve conduction or MUNE cannot be readily performed

  13. Characterization of high impedance connecting links for Bolometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A. [INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Università di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy); Gotti, C. [INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Università di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy); Università di Firenze, Dipartimento di Elettronica e Telecomunicazioni, Via S. Marta 3, I-50139 Firenze (Italy); Maino, M. [INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Università di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy); Pessina, G., E-mail: pessina@mib.infn.it [INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Università di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy)

    2013-08-01

    High impedance connecting links and cables are tested at low frequency in terms of their parasitic impedance to ground and to neighboring connecting links. These parameters must be well characterized with detectors operated at low temperature, especially when the very front-end is at room temperature, which results in a long link. This is the case of the LUCIFER experiment, an array of crystals where every event of interest produces two signals, one composed of phonons, the other of photons. The parasitic impedance is usually considered to be the parallel combination of a resistance and a capacitance. We characterized both and found that from the static measurements the capacitance of the cable resulted much larger. On the basis of this result we optimized the measurement set-up and developed a model to account for this behavior.

  14. Ferromagnetic resonance in gigahertz magneto-impedance of multilayer systems

    International Nuclear Information System (INIS)

    Cos, D. de; Garcia-Arribas, A.; Barandiaran, J.M.

    2006-01-01

    The effect of ferromagnetic resonance (FMR) on magneto-impedance (MI) of multilayer thin films is investigated. We present impedance measurements of an insulated multilayer film as a function of the applied magnetic field both in the plane of the sample and perpendicular to it, for frequencies from 300 kHz to 3 GHz. These measurements have been made using RF techniques, and the data have been treated using high-frequency models in order to minimize the contribution to the impedance of the test fixture. The results confirm that the FMR dominates the MI behavior at high frequency, allowing to reach higher MI ratios than those achieved at the quasistatic regime. However, the broad resonance lines cause a considerable drop of the sensitivity of the curves, and therefore the optimum operation frequency of GMI devices lays in the sub-GHz range

  15. Harmonic current prediction by impedance modeling of grid-tied inverters

    DEFF Research Database (Denmark)

    Pereira, Heverton A.; Freijedo, Francisco D.; Silva, M. M.

    2017-01-01

    and harmonic voltage profiles. Results reinforce that impedance models can represent with relatively accuracy the harmonic current emitted by the PV plants at the point of common coupling (PCC). Lastly, a stress test is performed to show how a variation in the harmonic voltage phase angle impacts the PV plant...... impedance models when used in harmonic integration studies. It is aimed to estimate the harmonic current contribution as a function of the background harmonic voltages components. Time domain simulations based on detailed and average models are compared with the impedance model developed in frequency domain....... In grids with harmonic voltages, impedance models can predict the current distortion for all active power injection scenarios. Furthermore, measurements in a 1.4 MW PV plant connected in a distributed grid are used to validate the simulation based on impedance models during different power injections...

  16. SOFC-anodes, proof for a finite-lenght type Gerischer impedance?

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Verbraeken, M.; Blank, David H.A.; Holtappels, P.

    2006-01-01

    The impedance of a symmetric cell with Ni/Ti-doped YSZ cermet anodes was measured as function of ambient (PH2, PH2O) and temperature. The impedances showed identical shapes with a minor dispersive contribution in the high frequency region and a dominating dispersion down to 0.01 Hz. The

  17. Lanthanum doped strontium titanate - ceria anodes: deconvolution of impedance spectra and relationship with composition and microstructure

    Science.gov (United States)

    Burnat, Dariusz; Nasdaurk, Gunnar; Holzer, Lorenz; Kopecki, Michal; Heel, Andre

    2018-05-01

    Electrochemical performance of ceramic (Ni-free) SOFC anodes based on La0.2Sr0.7TiO3-δ (LST) and Gd0.1Ce0.9O1.95-δ (CGO) is thoroughly investigated. Microstructures and compositions are systematically varied around the percolation thresholds of both phases by modification of phase volume fractions, particle size distributions and firing temperature. Differential impedance spectroscopy was performed while varying gas composition, electrical potential and operating temperature, which allows determining four distinct electrode processes. Significant anode impedances are measured at low frequencies, which in contrast to the literature cannot be linked with gas concentration impedance. The dominant low frequency process (∼1 Hz) is attributed to the chemical capacitance. Combined EIS and microstructure investigations show that the chemical capacitance correlates inversely with the available surface area of CGO, indicating CGO surface reactions as the kinetic limitation for the dominant anode process and for the associated chemical capacitance. In anodes with a fine-grained microstructure this limitation is significantly smaller, which results in an impressive power output as high as 0.34 Wcm-2. The anodes show high redox stability by not only withstanding 30 isothermal redox cycles, but even improving the performance. Hence, compared to conventional Ni-cermet anodes the new LST-CGO material represents an interesting alternative with much improved redox-stability.

  18. Impedance de surface dans les supraconducteurs quasi-bidimensionnels

    Science.gov (United States)

    Achkir, Driss Brice

    Ce travail a caractere experimental et theorique vise l'etude de l'etat supraconducteur de trois familles de composes: les supraconducteurs conventionnels, les organiques et les cuprates YBCO. Pour ce faire, nous avons utilise une technique hyperfrequence, a savoir la mesure d'impedance de surface en fonction de la temperature et du champ magnetique. Dans les supraconducteurs conventionnels, nous avons mesure pour la premiere fois le pic de "coherence" dans la partie reelle de la conductivite. Bien que predit par la theorie BCS, ce pic n'avait pas ete clairement observe en raison de difficultes techniques liees a ce type d'experience. D'autre part, la theorie d'Eliashberg appliquee a la partie reelle de la conductivite du niobium nous a revele l'importance des mesures hyperfrequences pour mieux extraire la partie basse frequence de la densite spectrale alphasp2F(omega). Cette possibilite est attrayante puisque c'est precisement la region de frequences de alphasp2F(omega) ou les donnees d'effet tunnel sont imprecises. Les resultats obtenus sur la longueur de penetration dans les organiques et les cuprates ont permis de montrer que le gap presente des lignes de zeros au niveau de Fermi ou qu'il est, a tout le moins, fortement anisotrope. En effet, la dependance en temperature de la longueur de penetration dans les cristaux purs est lineaire a basse temperature et elle devient quadratique dans les cristaux dopes. Pour le cas des supraconducteurs organiques quasi-bidimensionnels (Et)sb2X, nous avons aussi observe un maximum sur la partie reelle de la conductivite qui n'a rien a voir avec un pic de coherence. Pour ces composes, nous avons effectue une des toutes premieres etudes des fluctuations supraconductrices en temperature et en champ magnetique. Nous montrons que la paraconductivite sigmasp' due aux fluctuations presente un comportement de type Aslamazov-Larkin de nature tridimensionnelle. Ces mesures sont appuyees par les resultats theoriques d'un modele Ginzburg

  19. Electrical Impedance Tomography Reconstruction Through Simulated Annealing using a New Outside-in Heuristic and GPU Parallelization

    International Nuclear Information System (INIS)

    Tavares, R S; Tsuzuki, M S G; Martins, T C

    2012-01-01

    Electrical Impedance Tomography (EIT) is an imaging technique that attempts to reconstruct the conductivity distribution inside an object from electrical currents and potentials applied and measured at its surface. The EIT reconstruction problem is approached as an optimization problem, where the difference between the simulated and measured distributions must be minimized. This optimization problem can be solved using Simulated Annealing (SA), but at a high computational cost. To reduce the computational load, it is possible to use an incomplete evaluation of the objective function. This algorithm showed to present an outside-in behavior, determining the impedance of the external elements first, similar to a layer striping algorithm. A new outside-in heuristic to make use of this property is proposed. It also presents the impact of using GPU for parallelizing matrix-vector multiplication and triangular solvers. Results with experimental data are presented. The outside-in heuristic showed to be faster when compared to the conventional SA algorithm.

  20. Subnanosecond-rise-time, low-impedance pulse generator

    International Nuclear Information System (INIS)

    Druce, R.; Vogtlin, G.

    1983-01-01

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform

  1. Subnanosecond-rise-time, low-impedance pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  2. Subnanosecond-rise-time, low-impedance pulse generator

    Science.gov (United States)

    Druce, R.; Vigtlin, G.

    1983-06-01

    A fast rise, low impedance pulse generator developed at the Lawrence Livermore National Laboratory is described. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  3. Impedance Measurements as a Tool for the Detection of Endocrine Disrupting Chemicals

    National Research Council Canada - National Science Library

    Sacks, V

    2001-01-01

    ... that mimic estrogenic actions and are assumed to decrease mail fertility and induce hormone related cancers in females, Here we describe a novel, class- selective detector that uses fast impedance...

  4. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  5. Impedance function study for cylindrical tanks surrounded by an earthen embankment

    International Nuclear Information System (INIS)

    Houston, T.W.; Mertz, G.E.

    1995-01-01

    The Department of Energy (DOE) operates many which are used to store radioactive waste material. The original design of the tanks was often based on criteria which did not meet current seismic codes. As a result DOE is undertaking a comprehensive review of the adequacy of these structures to meet current seismic standards. This comprehensive review includes an evaluation of soil-structure interaction. One method available for performing soil structure interaction analyses of structures couples a discrete model of the structure to a lumped parameter model of the soil. This method requires the knowledge of the expected dynamic stiffness and damping functions of the rigid, massless structure resting on the soil. These are commonly referred to as the impedance functions. Lumped parameter analysis is cost effective for the surface and embedded structure cases where impedance functions are available in the literature. For a complex case with the structure located on the surface surrounded by an embankment, the impedance functions must be established prior to using a lumped parameter model approach. The present paper describes the development of horizontal impedance functions for the structure surrounded by an embankment which are developed using a finite element approach as implemented by SASSI. Impedance functions for vertical, torsional, and rocking degrees of freedom can be developed in a similar manner. These functions are easily incorporated into simple models which provide conceptual and physical insight to the response of structures. These models provide both a check of more sophisticated methods, and, due to their simplicity, permit assessment of a wide range of site and structural parameters that my affect the dynamic response of structural systems

  6. Impedances of nickel electrodes cycled in various KOH concentrations

    Science.gov (United States)

    Reid, Margaret A.; Loyselle, Patricia L.

    1991-01-01

    Recent tests at Hughes have shown that Ni/H2 cells cycled in 26 percent KOH have much longer lives than those cycled in other concentrations. As part of an ongoing program to try to correlate the impedances of nickel electrodes with their life and performance, impedances were measured of a number of electrodes from these tests that had been cycled in concentrations from 21 to 36 percent KOH. These had ranged from about 1000 to 40,000 cycles. After cycling ten times to reduce possible changes due to storage, impedances were measured at five voltages corresponding to low states of charge. The results were analyzed using a standard circuit model including Warburg impedance term. Lower kinetic resistances and Warburg slopes were found for several electrodes which had been cycled in 26 percent KOH even though they had been cycled for a much longer time than the others. Interpretation of the data is complicated by the fact that the cycle lives, storage times, and failure mechanisms varied. Several other circuit models have also been examined, but the best correlations with life were found with parameters obtained from the simple model.

  7. An Electrochemical Impedance Spectroscopy Study on a Lithium Sulfur Pouch Cell

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2016-01-01

    The impedance behavior of a 3.4 Ah pouch Lithium-Sulfur cell was extensively characterized using the electrochemical impedance spectroscopy (EIS) technique. EIS measurements were performed at various temperatures and over the entire state-of-charge (SOC) interval without applying a superimposed DC...

  8. Electrical impedance along connective tissue planes associated with acupuncture meridians

    Directory of Open Access Journals (Sweden)

    Hammerschlag Richard

    2005-05-01

    Full Text Available Abstract Background Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone visible by ultrasound have greater electrical conductance (less electrical impedance than non-meridian, parallel control segments. Methods We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity. Results At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω compared with control segments (75.0 ± 5.9 Ω (p = 0.0003. At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω and control segments (68.5 ± 7.5 Ω were not significantly different (p = 0.70. Conclusion Tissue impedance was on average lower along the Pericardium meridian, but not

  9. AC impedance behavior of a practical-size single-cell SOFC under DC current

    Energy Technology Data Exchange (ETDEWEB)

    Momma, Akihiko; Kaga, Yasuo; Takano, Kiyonami; Nozaki, Ken; Negishi, Akira; Kato, Ken; Kato, Tohru [Fuel Cell Group, Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology, Umezono Tsukuba-shi, Ibaraki 305-8568 (Japan); Inagaki, Toru; Yoshida, Hiroyuki [Energy Use R and D Center, The Kansai Electric Power Company, Inc., 11-20 Nakoji, 3-Chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei; Hoshino, Koji; Akbay, Taner; Akikusa, Jun; Yamada, Masaharu; Chitose, Norihisa [Central Research Institute, Naka Research Center, Mitsubishi Materials Corp. 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2004-10-29

    AC impedance measurements were carried out using practical-size planar disc-type SOFC which employs lanthanum gallate as a solid electrolyte. The data were obtained under practical conditions of gas flow rate and DC current. Under these conditions, the gas conversion impedance (GCI), which originates from the change of the electromotive force (EMF) caused by the change in anodic gaseous concentrations along the flow direction, was observed in the low-frequency range of the data obtained. The overlapping impedance together with GCI on the low-frequency arc was also estimated. Experimentally obtained GCI was in good agreement with that calculated. It was concluded that GCI was predominant in the impedance data obtained under practical conditions. The shift of the high-frequency intercept in the complex impedance diagrams was shown to appear as a result of the change in the distribution of gaseous composition in the anode. The dependency of the low-frequency arc on temperature was also shown, and it was assumed that the overlapped impedance varies as the temperature changes. The validity of the impedance measurement, as a diagnostic means to evaluate the gas flow in SOFC stack, was suggested.

  10. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    Science.gov (United States)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  11. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    International Nuclear Information System (INIS)

    Li, J; Rutkove, S B

    2013-01-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  12. Improved electrode positions for local impedance measurements in the lung-a simulation study.

    Science.gov (United States)

    Orschulik, Jakob; Petkau, Rudolf; Wartzek, Tobias; Hochhausen, Nadine; Czaplik, Michael; Leonhardt, Steffen; Teichmann, Daniel

    2016-12-01

    Impedance spectroscopy can be used to analyze the dielectric properties of various materials. In the biomedical domain, it is used as bioimpedance spectroscopy (BIS) to analyze the composition of body tissue. Being a non-invasive, real-time capable technique, it is a promising modality, especially in the field of lung monitoring. Unfortunately, up to now, BIS does not provide any regional lung information as the electrodes are usually placed in hand-to-hand or transthoracic configurations. Even though transthoracic electrode configurations are in general capable of monitoring the lung, no focusing to specific regions is achieved. In order to resolve this issue, we use a finite element model (FEM) of the human body to study the effect of different electrode configurations on measured BIS data. We present evaluation results and show suitable electrode configurations for eight lung regions. We show that, using these optimized configurations, BIS measurements can be focused to desired regions allowing local lung analysis.

  13. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  14. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  15. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  16. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  17. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS......) technique for the entire state-of-charge (SOC) interval and considering five temperatures between 5oC and 45oC. By analyzing the measured impedance spectra of the LTO-based battery cell, it was found out that the cell’s impedance is extremely dependent on the operating conditions. By further processing...

  18. Impulse response measurements as dependent on crack depth. Delamination

    International Nuclear Information System (INIS)

    Ulriksen, Peter

    2011-02-01

    The purpose of the project is to investigate the impulse-response method's ability to detect delamination at different depths. This method is of particular interest, since some of it's realizations strongly resembles established methods like 'bomknackning' . Since the personnel that will be responsible for future measurements with new technology, should feel confidence in new methods, it is an advantage if the new methods connect to older, accepted methods. The project consists of three parts and a fourth is planned. The first part of the investigation is made with a vibrator connected to an impedance head which in turn is connected to the surface of the concrete test specimen with internal delaminations at different depths. The vibrator is controlled by a dynamic signal analyze, which also measures the force- and acceleration signals from the impedance head and convert them to impedance. Since the impedance head must be glued to the surface of the concrete this method is only of laboratory interest. This method gives a complete description of the behavior of the concrete for the frequencies investigated. Thus in following investigations the frequencies of interest are known. From the experiment it follows that delamination down to a depth of 80-100 mm can be detected through a clear and solitary resonance peak. This resonance frequency is a function of concrete slab thickness and extension, so if the extension can be measured it may be possible to calculate depth. The second part of the investigation is about using an instrumented hammer to hit the different delamination specimens. The hammer is equipped with a force transducer giving an opportunity to measure the force exerted by the strike against the concrete surface. When a hammer is struck against a concrete surface a spectrum of vibrations is created, dependent on the weight of the hammer and the elasticity of the concrete. A light hammer generates higher frequencies than a heavy one. Three different hammer

  19. The effect of vocal tract impedance on the vocal folds

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Selamtzis, Andreas

    2011-01-01

    frontend is used to measure the electroglottograph signal which reflects the opening and closing pattern of the vocal folds. The measurements were carried out for all four modes (Neutral, Curbing, Overdrive and Edge) for the vowel [a] in three different pitches: C3(131 Hz), G3 (196 Hz) and C4 (262Hz......The importance of the interaction between the acoustic impedance of the vocal tract with the flow across the vocal cords is well established. In this paper we are investigating the changes in vocal tract impedance when using the different modes of phonation according to Sadolin [1], going from...... the soft levels of the Neutral mode to the high levels of the fully ‘metallic’ Edge mode. The acoustic impedance of vocal tract as seen from the mouth opening is measured via a microphone placed close to the mouth when exciting the system with a volume velocity source [2]. At the same time a Laryngograph...

  20. Method, system and computer-readable media for measuring impedance of an energy storage device

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2016-01-26

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  1. Impedance of curved rectangular spiral coils around a conductive cylinder

    Science.gov (United States)

    Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.

    2008-07-01

    Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.

  2. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  3. Impedance analysis of subwoofer systems

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    The electrical impedance of four low-frequency loudspeaker systems is analyzed. The expression for this impedance is obtained directly from the acoustical analogous circuit. Formulas are derived for calculating the small-signal parameters from the frequencies of impedance minima and maxima of two

  4. Assessing regional lung mechanics by combining electrical impedance tomography and forced oscillation technique.

    Science.gov (United States)

    Ngo, Chuong; Spagnesi, Sarah; Munoz, Carlos; Lehmann, Sylvia; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2017-08-29

    There is a lack of noninvasive pulmonary function tests which can assess regional information of the lungs. Electrical impedance tomography (EIT) is a radiation-free, non-invasive real-time imaging that provides regional information of ventilation volume regarding the measurement of electrical impedance distribution. Forced oscillation technique (FOT) is a pulmonary function test which is based on the measurement of respiratory mechanical impedance over a frequency range. In this article, we introduce a new measurement approach by combining FOT and EIT, named the oscillatory electrical impedance tomography (oEIT). Our oEIT measurement system consists of a valve-based FOT device, an EIT device, pressure and flow sensors, and a computer fusing the data streams. Measurements were performed on five healthy volunteers at the frequencies 3, 4, 5, 6, 7, 8, 10, 15, and 20 Hz. The measurements suggest that the combination of FOT and EIT is a promising approach. High frequency responses are visible in the derivative of the global impedance index ΔZeit(t,fos). $\\Delta {Z_{{\\text{eit}}}}(t,{f_{{\\text{os}}}}).$ The oEIT signals consist of three main components: forced oscillation, spontaneous breathing, and heart activity. The amplitude of the oscillation component decreases with increasing frequency. The band-pass filtered oEIT signal might be a new tool in regional lung function diagnostics, since local responses to high frequency perturbation could be distinguished between different lung regions.

  5. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Chabowski Konrad

    2015-03-01

    Full Text Available As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.

  6. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  7. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems......, a precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...... fed with air whose temperature and relative humidity were controlled, and its complex impedance was measured at different frequencies and for different values of relative humidity. After showing that the experiment was repeatable, the fuel cell stack was characterized, a power regression model...

  8. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  9. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yair Granot

    2007-01-01

    Full Text Available Electrical impedance tomography (EIT produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM. At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system.

  10. Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interface

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection

  11. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling

    International Nuclear Information System (INIS)

    Xie, Yuanyuan; Li, Jianyang; Yuan, Chris

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) has been widely utilized as an experimental method for understanding the internal mechanisms and aging effect of lithium ion battery. However, the impedance interpretation still has a lot of difficulties. In this study, a multi-physics based EIS simulation approach is developed to study the cycling effect on the battery impedance responses. The SEI film growth during cycling is coherently coupled with the complicated charge, mass and energy transport processes. The EIS simulation is carried out by applying a perturbation voltage on the electrode surface, and the numerical results on cycled cells are compared with the corresponding experimental data. The effect of electrical double layer, electrode open circuit potential as well as the diffusivity of binary electrolyte are simulated on battery impedance responses. The influence of different SEI growth rate, thermal conditions and charging-discharging rate during cycling are also studied. This developed method can be potentially utilized for interpretation and analysis of experimental EIS results

  12. A comparison of systolic time intervals measured by impedance cardiography and carotid pulse tracing

    DEFF Research Database (Denmark)

    Mehlsen, J; Bonde, J; Rehling, Michael

    1990-01-01

    The purpose of this study was to compare the systolic time intervals (STI) obtained by impedance cardiography and by the conventional carotid technique. This comparison was done with respect to: 1) correlations between variables obtained by the two methods, 2) ability to reflect drug-induced chan......The purpose of this study was to compare the systolic time intervals (STI) obtained by impedance cardiography and by the conventional carotid technique. This comparison was done with respect to: 1) correlations between variables obtained by the two methods, 2) ability to reflect drug...

  13. Radiation impedance of condenser microphones and their diffuse-field responses

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2010-01-01

    and (b) measuring the pressure on the membrane of the microphone. The first measurement is carried out by means of laser vibrometry. The second measurement cannot be implemented in practice. However, the pressure on the membrane can be calculated numerically by means of the boundary element method......The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone...... at frequencies below the resonance frequency of the microphone. Although the method may not be of great practical utility, it provides a useful validation of the estimates obtained by other means....

  14. Implementation and Test of On-line Embedded Grid Impedance Estimation for PV-inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    to evaluate the grid impedance directly by the PV-inverter, providing a fast and low cost implementation. This principle theoretically provides a correct result of the grid impedance but when using it into the context of PV integration, different implementation issues strongly affect the quality...... of the results. This paper presents a new impedance estimation method including typical implementation problems encountered and it also presents adopted solutions for on-line grid impedance measurement. Practical tests on an existing PV-inverter validate the chosen solutions....

  15. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    Science.gov (United States)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  16. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants

    NARCIS (Netherlands)

    van der Burg, Pauline S.; Miedema, Martijn; de Jongh, Franciscus H.C.; Frerichs, Inez; van Kaam, Anton H.

    2014-01-01

    Objective: Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and

  17. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants

    NARCIS (Netherlands)

    van der Burg, Pauline S.; Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Kaam, Anton H.

    2014-01-01

    Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung

  18. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  19. Two-Dimensional Magnetotelluric Modelling of Ore Deposits: Improvements in Model Constraints by Inclusion of Borehole Measurements

    Science.gov (United States)

    Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri

    2017-12-01

    A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer

  20. A Study on the Optimal Receiver Impedance for SNR Maximization in Broadband PLC

    Directory of Open Access Journals (Sweden)

    Massimo Antoniali

    2013-01-01

    Full Text Available We consider the design of the front-end receiver for broadband power line communications. We focus on the design of the input impedance that maximizes the signal-to-noise ratio (SNR at the receiver. We show that the amplitude, rather than the power, of the received signal is important for communication purposes. Furthermore, we show that the receiver impedance impacts the amplitude of the noise term. We focus on the background noise, and we propose a novel description of the noise experienced at the receiver port of a PLC network. We model the noise as the sum of four uncorrelated contributions, that is, the active, resistive, receiver, and coupled noise components. We study the optimal impedance design problem for real in-home grids that we assessed with experimental measurements. We describe the results of the measurement campaign, and we report the statistics of the optimal impedance. Hence, we study the best attainable performance when the optimal receiver impedance is deployed. We focus on the SNR and the maximum achievable rate, and we show that power matching is suboptimal with respect to the proposed impedance design approach.

  1. Impedances of electrochemically impregnated nickel electrodes as functions of potential, KOH concentration, and impregnation method

    Science.gov (United States)

    Reid, Margaret A.

    1989-01-01

    Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.

  2. Moisture distribution computed from electrical impedance tomographic data of a bentonite clay/sand material

    International Nuclear Information System (INIS)

    Strobel, G.S.

    1995-11-01

    Moisture contents values were calculated from electrical impedance-computed tomography measurements and compared with thermocouple psychrometer moisture values. The measurements were taken, in situ and under isothermal conditions, in a bentonite clay/sand packed borehole at the Underground Research Laboratory. Two sets of impedances moisture contents were calculated from the impedance valves--independent of each other. For one set, impedance measurements were fitted to the psychrometer moisture values in a least-squares fit to a generalized calibration curve and, for the second set, an impedance-moisture relationship from laboratory calibrations was applied. The impedance-computed moisture content data showed low scatter and the trends were consistent between the three sets of values. However, the moisture content data computed from the calibration curve were more consistent with those expected from physical arguments. The moisture values from the psychrometer readings were offset and, consequently, so were those produced after applying the fitting strategy. Internal redistribution of moisture appears to have had a more significant effect on the system than did inflow at the boundary. Inflow did cause a significant change but this was localized, during this period, to the outer ∼ 0.05 m of the test hole. No comment was made as to what internal processes caused these responses. (author) 9 refs., 2 tabs., 5 figs

  3. Electrochemical impedance spectroscopy investigation on the clinical lifetime of ProTaper rotary file system.

    Science.gov (United States)

    Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  4. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    Directory of Open Access Journals (Sweden)

    Poornachandra Papireddy Vinayaka

    2016-09-01

    Full Text Available A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8 as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.

  5. Electrochemical Impedance Spectroscopic Sensing of Methamphetamine by a Specific Aptamer

    Directory of Open Access Journals (Sweden)

    Omid Mashinchian

    2012-05-01

    Full Text Available Introduction: Electrochemical impedance spectroscopy (EIS is a simple and highly sensitive technique that can be used for evaluation of the aptamer-target interaction even in a label-free approach. Methods: To pursue the effectiveness of EIS, in the current study, the folding properties of specific aptamer for methamphetamine (METH (i.e., aptaMETH were evaluated in the presence of METH and amphetamine (Amph. Folded and unfolded aptaMETH was mounted on the gold electrode surface and the electron charge transfer was measured by EIS. Results: The Ret of methamphetamine-aptaMETH was significantly increased in comparison with other folding conditions, indicating specific detection of METH by aptaMETH. Conclusion: Based on these findings, methamphetamine-aptaMETH on the gold electrode surface displayed the most interfacial electrode resistance and thus the most folding situation. This clearly indicates that the aptaMETH can profoundly and specifically pinpoint METH; as a result we suggest utilization of this methodology for fast and cost-effective identification of METH.

  6. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    Science.gov (United States)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  7. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    Directory of Open Access Journals (Sweden)

    R. Voutta

    2016-05-01

    Full Text Available The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS. In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  8. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  9. Transition metal oxide as anode interface buffer for impedance spectroscopy

    Science.gov (United States)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  10. Four-Wire Impedance Spectroscopy on Planar Zeolite/Chromium Oxide Based Hydrocarbon Gas Sensors

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-11-01

    Full Text Available Impedometric zeolite hydrocarbon sensors with a chromium oxide intermediatelayer show a very promising behavior with respect to sensitivity and selectivity. Theunderlying physico-chemical mechanism is under investigation at the moment. In order toverify that the effect occurs at the electrode and that zeolite bulk properties remain almostunaffected by hydrocarbons, a special planar setup was designed, which is very close to realsensor devices. It allows for conducting four-wire impedance spectroscopy as well as two-wire impedance spectroscopy. Using this setup, it could be clearly demonstrated that thesensing effect can be ascribed to an electrode impedance. Furthermore, by combining two-and four-wire impedance measurements at only one single frequency, the interference of thevolume impedance can be suppressed and an easy signal evaluation is possible, withouttaking impedance data at different frequencies.

  11. Feasibility and acceptability of a self-measurement using a portable bioelectrical impedance analysis, by the patient with chronic heart failure, in acute decompensated heart failure.

    Science.gov (United States)

    Huguel, Benjamin; Vaugrenard, Thibaud; Saby, Ludivine; Benhamou, Lionel; Arméro, Sébastien; Camilleri, Élise; Langar, Aida; Alitta, Quentin; Grino, Michel; Retornaz, Frédérique

    2018-06-01

    Chronic heart failure (CHF) is a major public health matter. Mainly affecting the elderly, it is responsible for a high rate of hospitalization due to the frequency of acute heart failure (ADHF). This represents a disabling pathology for the patient and very costly for the health care system. Our study is designed to assess a connected and portable bioelectrical impedance analysis (BIA) that could reduce these hospitalizations by preventing early ADHF. This prospective study included patients hospitalized in cardiology for ADHF. Patients achieved 3 self-measurements using the BIA during their hospitalization and answered a questionnaire evaluating the acceptability of this self-measurement. The results of these measures were compared with the clinical, biological and echocardiographic criteria of patients at the same time. Twenty-three patients were included, the self-measurement during the overall duration of the hospitalization was conducted autonomously by more than 80% of the patients. The acceptability (90%) for the use of the portable BIA was excellent. Some correlations were statistically significant, such as the total water difference to the weight difference (p=0.001). There were common trends between the variation of impedance analysis measures and other evaluation criteria. The feasibility and acceptability of a self-measurement of bioelectrical impedance analysis by the patient in AHF opens up major prospects in the management of monitoring patients in CHF. The interest of this tool is the prevention of ADHF leading to hospitalization or re-hospitalizations now requires to be presented by new studies.

  12. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  13. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...

  14. Impedance analysis of a disk-type SOFC using doped lanthanum gallate under power generation

    Science.gov (United States)

    Kato, Tohru; Nozaki, Ken; Negishi, Akira; Kato, Ken; Monma, Akihiko; Kaga, Yasuo; Nagata, Susumu; Takano, Kiyonami; Inagaki, Toru; Yoshida, Hiroyuki; Hosoi, Kei; Hoshino, Koji; Akbay, Taner; Akikusa, Jun

    Impedance measurements were carried out under practical power generation conditions in a disk-type SOFC, which may be utilized as a small-scale power generator. The tested cell was composed of doped lanthanum gallate (La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ) as the electrolyte, Sm 0.5Sr 0.5CoO 3 as the cathode electrode and Ni/Ce 0.8Sm 0.2O 2 cermet as the anode electrode. The cell impedance was measured between 10 mHz and 10 kHz by varying the fuel utilization and gas flow rate and plotted in complex impedance diagrams. The observed impedance shows a large semi-circular pattern on the low frequency side. The semi-circular impedance, having a noticeably low characteristic frequency between 0.13 and 0.4 Hz, comes from the change in gas composition, originally caused by the cell reaction. The change in impedance with the fuel utilization (load current) and the gas flow rate agreed qualitatively well with the theoretical predictions from a simulation. This impedance was dominant under high fuel-utilization power-generation conditions. The impedance, which described the activation polarizations in the electrode reactions, was comparatively small and scarcely changed with the change in fuel utilization (load current) and gas flow rate.

  15. Electrical impedance tomography of the 1995 OGI gasoline release

    International Nuclear Information System (INIS)

    Daily, W.; Ramirez, A.

    1996-01-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline

  16. A High Performance Impedance-based Platform for Evaporation Rate Detection.

    Science.gov (United States)

    Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng

    2016-10-17

    This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.

  17. The use of piezoelectric bimorph transducers to measure forces in colloidal systems

    International Nuclear Information System (INIS)

    Stewart, A.M.

    1996-01-01

    The Surface Force Apparatus developed in this Department has proved useful for the measurement of colloidal forces between transparent surfaces in liquids and gases at surface separations of 1 nm up to 500 nm. The distance between the surfaces is measured by the interferometry of white light, and the force is measured from the movement of one of the surfaces that is attached to a cantilever spring which deflects under the influence of the force. In the present work an analysis is made of the effect of the errors introduced at a longer time scale by bimorph drift and decay upon accuracy of measurement. For direct measurements the errors will be small provided that the time constant of the bimorph, given by the product of its capacitance and amplifier input impedance, is much larger than the total time of measurement. With the force-feedback technique the errors will be negligible provided that, in addition the integrator time constant is much smaller than the bimorph time constant, a condition easily satisfied. In is important to use an amplifier with a very high input impedance to buffer bimorphs used for this type of measurement

  18. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  19. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    International Nuclear Information System (INIS)

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge

    2016-01-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue

  20. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@icn2.cat [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Cottance, Myline [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Degardin, Julie [INSERM, U968, Institut de la Vision, Paris (France); Scorsone, Emmanuel [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Rousseau, Lionel; Lissorgues, Gaelle [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Bergonzo, Philippe [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Picaud, Serge [INSERM, U968, Institut de la Vision, Paris (France)

    2016-12-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue.

  1. Altered electrode degradation with temperature in LiFePO4/mesocarbon microbead graphite cells diagnosed with impedance spectroscopy

    International Nuclear Information System (INIS)

    Klett, Matilda; Zavalis, Tommy Georgios; Kjell, Maria H.; Lindström, Rakel Wreland; Behm, Mårten; Lindbergh, Göran

    2014-01-01

    Highlights: • Aging of LiFePO 4 /mesocarbon microbead graphite cells from hybrid electric vehicle cycling. • Electrode degradation evaluated post-mortem by impedance spectroscopy and physics-based modeling. • Increased temperature promotes different degradation processes on the electrode level. • Conductive carbon degradation at 55 °C in the LiFePO 4 electrode. • Mesocarbon microbead graphite electrode degraded by cycling rather than temperature. - Abstract: Electrode degradation in LiFePO 4 /mesocarbon microbead graphite (MCMB) pouch cells aged at 55 °C by a synthetic hybrid drive cycle or storage is diagnosed and put into context with previous results of aging at 22 °C. The electrode degradation is evaluated by means of electrochemical impedance spectroscopy (EIS), measured separately on electrodes harvested from the cells, and by using a physics-based impedance model for aging evaluation. Additional capacity measurements, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are used in the evaluation. At 55 °C the LiFePO 4 electrode shows increased particle/electronic conductor resistance, for both stored and cycled electrodes. This differs from results obtained at 22 °C, where the electrode suffered lowered porosity, particle fracture, and loss of active material. For graphite, only cycling gave a sustained effect on electrode performance at 55 °C due to lowered porosity and changes of surface properties, and to greater extent than at low temperature. Furthermore, increased current collector resistance also contributes to a large part of the pouch cell impedance when aged at increased temperatures. The result shows that increased temperature promotes different degradation on the electrode level, and is an important implication for high temperature accelerated aging. In light of the electrode observations, the correlation between full-cell and electrode impedances is discussed

  2. The IMPACT shirt: textile integrated and portable impedance cardiography

    International Nuclear Information System (INIS)

    Ulbrich, Mark; Wan, Tingting; Leonhardt, Steffen; Walter, Marian; Mühlsteff, Jens; Sipilä, Auli; Kamppi, Merja; Koskela, Anne; Myry, Manu

    2014-01-01

    Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient’s home. (paper)

  3. Optical breast shape capture and finite-element mesh generation for electrical impedance tomography

    International Nuclear Information System (INIS)

    Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D

    2011-01-01

    X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis

  4. Impedance spectroscopy of organic magnetoresistance devices—Effect of interface disorder

    International Nuclear Information System (INIS)

    Fayolle, M.; Yamaguchi, M.; Ohto, T.; Tada, H.

    2015-01-01

    Organic magnetoresistance (OMAR) can be caused by either single carrier (bipolaron) or double carriers (electron-hole)-based mechanisms. In order to consider applications for OMAR, it is important to control the mechanism present in the device. In this paper, we report the effect of traps on OMAR resulting of disorder at the interface between the organic active layer with the hole injection layer [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate): PEDOT:PSS]. It has been found that while the single carriers OMAR is enhanced by the presence of traps, the double carriers OMAR is totally removed in a sample with a high interface trap density. The reasons for these results are discussed based on the impedance spectroscopy measurements. First, the mechanism (single or double carriers) responsible of the OMAR was determined with the support of the capacitance measurement. Then, the influence of traps was discussed with the Nyquist diagrams and phase angle-frequency plots of the samples. The results suggested that with a rough interface and thus high disorder, the presence of traps enhanced the bipolaron formation. Traps also acted as recombination centers for electron-hole pairs, which prevented the double carriers OMAR in devices with a rough interface. On the other hand, with a low trap density, i.e., with a smooth surface, the single carrier OMAR decreased, and double carriers OMAR appeared. The sign of the OMAR could then be controlled by simply sweeping the bias voltage. This work demonstrated that the roughness at the interface is important for controlling OMAR and its reproducibility, and that the combination of OMAR measurement and impedance spectroscopy is helpful for clarifying the processes at the interface

  5. Detection of microbial concentration in ice-cream using the impedance technique.

    Science.gov (United States)

    Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B

    2008-06-15

    The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines.

  6. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  7. Impedance metrology with Josephson voltage normals; Impedanzmetrologie mit Josephson-Spannungsnormalen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephan; Palafox, Luis [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.63 ' ' Josephson-Effekt, Spannung' '

    2016-09-15

    This article first explains the fundamental principle of an impedance measurement bridge on the base of Josephson voltage normals, before both types of measurement bridges realized in the PTB are more precisely discussed.

  8. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    International Nuclear Information System (INIS)

    Patuzzi, Robert; Cook, Alison

    2014-01-01

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  9. Components of Variance when Assessing the Reproducibility of Body Composition Measurements using Bio-Impedance and the Hologic QDR-2000 DXA Scanner

    DEFF Research Database (Denmark)

    Jensen, Martin Bach; Hermann, Anne Pernille; Hessov, Ib

    1997-01-01

    This study evaluated the reproducibility of measuring lean tissue mass (LTM), fat mass(FM(DXA)), bone mineral content (BMC) and density (BMD) with a Hologic QDR-2000 DXA scanner, and both fat free mass (FFM(bio)) and fat mass (FM(bio)) with an impedance meter. Furthermore, the study aimed to assess...

  10. Smartphone-Based Bioelectrical Impedance Analysis Devices for Daily Obesity Management

    Directory of Open Access Journals (Sweden)

    Ahyoung Choi

    2015-09-01

    Full Text Available Current bioelectric impedance analysis (BIA systems are often large, cumbersome devices which require strict electrode placement on the user, thus inhibiting mobile capabilities. In this work, we developed a handheld BIA device that measures impedance from multiple frequencies (5 kHz~200 kHz with four contact electrodes and evaluated the BIA device against standard body composition analysis systems: a dual-energy X-ray absorptiometry (DXA system (GE Lunar Prodigy, GE Healthcare, Buckinghamshire, UK and a whole-body BIA system (InBody S10, InBody, Co. Ltd, Seoul, Korea. In the study, 568 healthy participants, varying widely in body mass index, age, and gender, were recruited at two research centers: the Samsung Medical Center (SMC in South Korea and the Pennington Biomedical Research Center (PBRC in the United States. From the measured impedance data, we analyzed individual body fat and skeletal muscle mass by applying linear regression analysis against target reference data. Results indicated strong correlations of impedance measurements between the prototype pathways and corresponding InBody S10 electrical pathways (R = 0.93, p < 0.0001. Additionally, body fat estimates from DXA did not yield significant differences (p > 0.728 (paired t-test, DXA mean body fat 29.45 ± 10.77 kg, estimated body fat 29.52 ± 12.53 kg. Thus, this portable BIA system shows a promising ability to estimate an individual’s body composition that is comparable to large stationary BIA systems.

  11. Inspection of freeform surfaces considering uncertainties in measurement, localization and surface reconstruction

    International Nuclear Information System (INIS)

    Mehrad, Vahid; Xue, Deyi; Gu, Peihua

    2013-01-01

    Inspection of a manufactured freeform surface can be conducted by building its surface model and comparing this manufactured surface model with the ideal design surface model and its tolerance requirement. The manufactured freeform surface model is usually achieved by obtaining measurement points on the manufactured surface, transforming these measurement points from the measurement coordinate system to the design coordinate system through localization, and reconstructing the surface model using the localized measurement points. In this research, a method was developed to estimate the locations and their variances of any selected points on the reconstructed freeform surface considering different sources of uncertainties in measurement, localization and surface reconstruction processes. In this method, first locations and variances of the localized measurement points are calculated considering uncertainties of the measurement points and uncertainties introduced in the localization processes. Then locations and variances of points on the reconstructed freeform surface are obtained considering uncertainties of the localized measurement points and uncertainties introduced in the freeform surface reconstruction process. Two case studies were developed to demonstrate how these three different uncertainty sources influence the quality of the reconstructed freeform curve and freeform surface in inspection. (paper)

  12. Association between baseline impedance values and response proton pump inhibitors in patients with heartburn.

    Science.gov (United States)

    de Bortoli, Nicola; Martinucci, Irene; Savarino, Edoardo; Tutuian, Radu; Frazzoni, Marzio; Piaggi, Paolo; Bertani, Lorenzo; Furnari, Manuele; Franchi, Riccardo; Russo, Salvatore; Bellini, Massimo; Savarino, Vincenzo; Marchi, Santino

    2015-06-01

    Esophageal impedance measurements have been proposed to indicate the status of the esophageal mucosa, and might be used to study the roles of the impaired mucosal integrity and increased acid sensitivity in patients with heartburn. We compared baseline impedance levels among patients with heartburn who did and did not respond to proton pump inhibitor (PPI) therapy, along with the pathophysiological characteristics of functional heartburn (FH). In a case-control study, we collected data from January to December 2013 on patients with heartburn and normal findings from endoscopy who were not receiving PPI therapy and underwent impedance pH testing at hospitals in Italy. Patients with negative test results were placed on an 8-week course of PPI therapy (84 patients received esomeprazole and 36 patients received pantoprazole). Patients with more than 50% symptom improvement were classified as FH/PPI responders and patients with less than 50% symptom improvement were classified as FH/PPI nonresponders. Patients with hypersensitive esophagus and healthy volunteers served as controls. In all patients and controls, we measured acid exposure time, number of reflux events, baseline impedance, and swallow-induced peristaltic wave indices. FH/PPI responders had higher acid exposure times, numbers of reflux events, and acid refluxes compared with FH/PPI nonresponders (P < .05). Patients with hypersensitive esophagus had mean acid exposure times and numbers of reflux events similar to those of FH/PPI responders. Baseline impedance levels were lower in FH/PPI responders and patients with hypersensitive esophagus, compared with FH/PPI nonresponders and healthy volunteers (P < .001). Swallow-induced peristaltic wave indices were similar between FH/PPI responders and patients with hypersensitive esophagus. Patients with FH who respond to PPI therapy have impedance pH features similar to those of patients with hypersensitive esophagus. Baseline impedance measurements might allow for

  13. Robotic Assistance by Impedance Compensation for Hand Movements While Manual Welding.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2016-11-01

    In this paper, we present a robotic assistance scheme which allows for impedance compensation with stiffness, damping, and mass parameters for hand manipulation tasks and we apply it to manual welding. The impedance compensation does not assume a preprogrammed hand trajectory. Rather, the intention of the human for the hand movement is estimated in real time using a smooth Kalman filter. The movement is restricted by compensatory virtual impedance in the directions perpendicular to the estimated direction of movement. With airbrush painting experiments, we test three sets of values for the impedance parameters as inspired from impedance measurements with manual welding. We apply the best of the tested sets for assistance in manual welding and perform welding experiments with professional and novice welders. We contrast three conditions: 1) welding with the robot's assistance; 2) with the robot when the robot is passive; and 3) welding without the robot. We demonstrate the effectiveness of the assistance through quantitative measures of both task performance and perceived user's satisfaction. The performance of both the novice and professional welders improves significantly with robotic assistance compared to welding with a passive robot. The assessment of user satisfaction shows that all novice and most professional welders appreciate the robotic assistance as it suppresses the tremors in the directions perpendicular to the movement for welding.

  14. Bioelectrical impedance vector distribution in the first year of life.

    Science.gov (United States)

    Savino, Francesco; Grasso, Giulia; Cresi, Francesco; Oggero, Roberto; Silvestro, Leandra

    2003-06-01

    We assessed the bioelectrical impedance vector distribution in a sample of healthy infants in the first year of life, which is not available in literature. The study was conducted as a cross-sectional study in 153 healthy Caucasian infants (90 male and 63 female) younger than 1 y, born at full term, adequate for gestational age, free from chronic diseases or growth problems, and not feverish. Z scores for weight, length, cranial circumference, and body mass index for the study population were within the range of +/-1.5 standard deviations according to the Euro-Growth Study references. Concurrent anthropometrics (weight, length, and cranial circumference), body mass index, and bioelectrical impedance (resistance and reactance) measurements were made by the same operator. Whole-body (hand to foot) tetrapolar measurements were performed with a single-frequency (50 kHz), phase-sensitive impedance analyzer. The study population was subdivided into three classes of age for statistical analysis: 0 to 3.99 mo, 4 to 7.99 mo, and 8 to 11.99 mo. Using the bivariate normal distribution of resistance and reactance components standardized by the infant's length, the bivariate 95% confidence limits for the mean impedance vector separated by sex and age groups were calculated and plotted. Further, the bivariate 95%, 75%, and 50% tolerance intervals for individual vector measurements in the first year of life were plotted. Resistance and reactance values often fluctuated during the first year of life, particularly as raw measurements (without normalization by subject's length). However, 95% confidence ellipses of mean vectors from the three age groups overlapped each other, as did confidence ellipses by sex for each age class, indicating no significant vector migration during the first year of life. We obtained an estimate of mean impedance vector in a sample of healthy infants in the first year of life and calculated the bivariate values for an individual vector (95%, 75%, and 50

  15. Electrical impedance of layered atherosclerotic plaques on human aortas

    NARCIS (Netherlands)

    C.J. Slager (Cornelis); A.C. Phaff; C.E. Essed; N. Bom (Klaas); J.C.H. Schuurbiers (Johan); P.W.J.C. Serruys (Patrick)

    1992-01-01

    textabstractElectrical impedance measurements were performed on 13 atherosclerotic human aortic segments at 67 measuring spots in order to determine whether or not on the basis of these data a distinction can be made between atherosclerotic lesions and normal tissue. Stenosis localization and

  16. Investigation of body's impedance under different conditions for electro-acupuncture

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Abrarov, S.; Khan, R.R.; Maqsood, R.S.; Qaiser, M.A.; Karimov, Kh. S.

    2001-01-01

    A computer controlled automated setup has been designed to investigate the body acupuncture points (bio-active points) by using a probes matrix which exerts a uniform pressure on the body. 16 probes matrix was placed in a 15 : 15 mm/sup 2/ dielectric substrate with 5 mm inter probe distance, compatible with the average diameter of the points. These probes have been designed to facilitate a semiconductor injection laser for probing of the points along with optical and/or electric signal. The bioactive points were identified by evaluating the impedance between each probe and a hand held electrode through a micro-controlled scan. This also allowed the selection of an appropriate signal - DC, AC or tidal waveform, for the electric treatment of bioactive points. It has been found that body impedance decreases with the increase of measuring voltage. Moreover, for current-voltage characteristics a nonlinearity coefficient in the range 2-3 was also observed. The study revealed that at low applied voltages 0.l V, the impedance depends on the polarity of the applied signal. Furthermore, body impedance decreases nonlinearly by increasing the probe's pressure on the skin, which may be attributed to piezo resistive effect. By using the AC and Dc measurements an appropriate body equivalent circuit is proposed in this investigation. (author)

  17. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    Science.gov (United States)

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  18. Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer

    International Nuclear Information System (INIS)

    Wang, Dansheng; Song, Hongyuan; Zhu, Hongping

    2014-01-01

    The electromechanical (EM) impedance approach in which piezoelectric ceramics (PZT) simultaneously act as both a sensor and an actuator due to their direct and inverse piezoelectric effects has emerged as a powerful tool for structural health monitoring in recent years. This paper formulates a new 3D electromechanical impedance model that characterizes the interaction between an embedded square PZT transducer and the host structure based on the effective impedance. The proposed formulations can be conveniently used to extract the mechanical impedance of the host structure from the electromechanical admittance measurements of an embedded PZT patch. The proposed model is verified by experimental and numerical results from a smart concrete cube in which a square PZT transducer is embedded. Subsequently, this paper also presents a new methodology to monitor the compressive strength of concrete based on the effective mechanical impedance. By extracting the effective mechanical impedances from the electromechanical admittance signatures, measuring the compressive strength of the concrete cubes at different ages and combining these measurements with the index of the correlation coefficient (CC), a linear correlation between the concrete strength gain and the CC of the real mechanical admittances was found. The proposed approach is found to be feasible to monitor the compressive strength of concrete by age. (paper)

  19. Determination of salt content in various depth of pork chop by electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Kaltenecker, P; Szöllösi, D; Vozáry, E; Friedrich, L

    2013-01-01

    The salt concentration was determined inside of pork chop both by electrical impedance spectroscopy and by a conventional chemical method (according to Mohr). The pork chop in various depths (4 mm, 10 mm, 20 mm and 25 mm) was punctured with two stainless steel electrodes. The length of electrodes was 60 mm, and they were insulated along the length except 1 cm section on the end, so the measurement of impedance was realized in various depths. The magnitude and phase angle of impedance were measured with a HP 4284A and a HP 4285A LCR meters from 30 Hz up to 1 MHz and from 75 kHz up to 30 MHz frequency range, respectively at 1 V voltage. The distance between the electrodes was 1 cm. The impedance magnitude decreased as the salt concentration increased. The magnitude of open-short corrected impedance values at various frequencies (10 kHz, 100 kHz, 125 kHz, 1.1 MHz and 8 MHz) showed a good correlation with salt content determined by chemical procedure. The electrical impedance spectroscopy seems a prospective method for determination the salt concentration inside the meat in various depths during the curing procedure.

  20. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.