WorldWideScience

Sample records for surface heat ux

  1. Living with an autonomous spatiotemporal home heating system: Exploration of the user experiences (UX) through a longitudinal technology intervention-based mixed-methods approach.

    Science.gov (United States)

    Kruusimagi, Martin; Sharples, Sarah; Robinson, Darren

    2017-11-01

    Rising energy demands place pressure on domestic energy consumption, but savings can be delivered through home automation and engaging users with their heating and energy behaviours. The aim of this paper is to explore user experiences (UX) of living with an automated heating system regarding experiences of control, understanding of the system, emerging thermal behaviours, and interactions with the system as this area is not sufficiently researched in the existing homes setting through extended deployment. We present a longitudinal deployment of a quasi-autonomous spatiotemporal home heating system in three homes. Users were provided with a smartphone control application linked to a self-learning heating algorithm. Rich qualitative and quantitative data presented here enabled a holistic exploration of UX. The paper's contribution focuses on highlighting key aspects of UX living with an automated heating systems including (i) adoption of the control interface into the social context, (ii) how users' vigilance in maintaining preferred conditions prevailed as a better indicator of system over-ride than gross deviation from thermal comfort, (iii) limited but motivated proactivity in system-initiated communications as best strategy for soliciting user feedback when inference fails, and (iv) two main motivations for interacting with the interface - managing irregularities when absent from the house and maintaining immediate comfort, latter compromising of a checking behaviour that can transit to a system state alteration behaviour depending on mismatches. We conclude by highlighting the complex socio-technical context in which thermal decisions are made in a situated action manner, and by calling for a more holistic, UX-focused approach in the design of automated home systems involving user experiences. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. UX Professionals’ Definitions of Usability and UX

    DEFF Research Database (Denmark)

    Rajanen, Dorina; Clemmensen, Torkil; Iivari, Netta

    2017-01-01

    defining UX, and there are systematic differences related to socio-cultural conditions. UX professionals in Finland and France incline more towards the definition highlighting the experiential qualities, when compared to Turkey and Malaysia that incline towards the definition reflecting the ease of use......This paper examines the views of user experience (UX) professionals on the definitions of usability and UX, and compares the findings between countries and within different socio-cultural groups. A mixed-method analysis was employed on data gathered on 422 professionals through a survey in Turkey......, Finland, Denmark, France, and Malaysia. Usability appears to be an established concept, respondents across all countries agreeing on the importance of the ISO 9241-11 definition. There is also a tendency that UX professionals attach organizational perspective to usability. UX professionals diverge when...

  3. UX Tau A

    Science.gov (United States)

    2007-01-01

    This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star. Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets. Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps. Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks. Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.

  4. reflux

    African Journals Online (AJOL)

    manifestation of gastroesophageal reflux. bile reflux. (causing gastritis). peptic ulcer disease (PUD) or gallstones. Peptic ulcer is uncommon in pregnancy because of the decreased acid secretion that occurs in pregnancy. However. Helicobacter pylori gastritis. cigarette smoking. alcoholism and stress are risk factors for PUD ...

  5. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  6. Understanding Teen UX

    DEFF Research Database (Denmark)

    Fitton, Daniel; Iversen, Ole Sejer; Bell, Beth

    2014-01-01

    needs to be understood about this population, from a UX perspective. The theme of this workshop is Building a Bridge to the Future and the aim is to gather together academics and UX practitioners, interested in teen users specifically, in order to discuss experiences, understandings, insights...... and methods that we can use to comprehend teen UX now and explore how this may lead to the creation of better interactive products in the future. The workshop will also foster new collaborations, and define new research agendas to grow the research and literature in this area....

  7. UX for dummies

    CERN Document Server

    Nichols, Kevin

    2014-01-01

    Get up to speed quickly on the latest in user experience strategy and design UX For Dummies is a hands-on guide to developing and implementing user experience strategy. Written by globally-recognized UX consultants, this essential resource provides expert insight and guidance on using the tools and techniques that create a great user experience, along with practical advice on implementing a UX strategy that aligns with your organisation's business goals and philosophy. You'll learn how to integrate web design, user research, business planning and data analysis to focus your company's web prese

  8. UX Design Innovation

    DEFF Research Database (Denmark)

    Dove, Graham; Halskov, Kim; Forlizzi, Jodi

    2017-01-01

    Machine learning (ML) is now a fairly established technology, and user experience (UX) designers appear regularly to integrate ML services in new apps, devices, and systems. Interestingly, this technology has not experienced a wealth of design innovation that other technologies have, and this mig...

  9. UX-15 Reaches LEP

    CERN Multimedia

    2001-01-01

    The creation of the world's largest sandstone cavern, not a small feat! At the bottom, cave-in preventing steel mesh can be seen clinging to the top of the tunnel. The digging of UX-15, the cavern that will house ATLAS, reached the upper ceiling of LEP on October 10th. The breakthrough which took place nearly 100 metres underground occurred precisely on schedule and exactly as planned. But much caution was taken beforehand to make the LEP breakthrough clean and safe. To prevent the possibility of cave-ins in the side tunnels that will eventually be attached to the completed UX-15 cavern, reinforcing steel mesh was fixed into the walls with bolts. Obviously no people were allowed in the LEP tunnels below UX-15 as the breakthrough occurred. The area was completely evacuated and fences were put into place to keep all personnel out. However, while personnel were being kept out of the tunnels below, this has been anything but the case for the work taking place up above. With the creation of the world's largest...

  10. UX Ori-Type Stars

    Science.gov (United States)

    Grinin, V.

    2017-06-01

    The brief review of the properties of the UX Ori type stars is presented. A special attention is given to the results of the Crimean program of the multi-year photometric and polarimetric observations of these stars.

  11. Heavily doped M1−xUxF2+2x fluorites studied by quasielastic neutron scattering(M=Ba) and specific heat measurements (M=Pb)

    DEFF Research Database (Denmark)

    Andersen, Niels Hessel; Clausen, Kurt Nørgaard; Kjems, Jørgen

    1983-01-01

    of doping is an increase of the thermally generated defect concentration; at high temperatures the effect is reversed. The microscopic defect structure of Ba0.9U0.1F2.2 has been studied by diffuse quasielastic neutron scattering experiments at room temperature. The experimental observations are in good......The thermal generation of defects in pure and doped Pb1−xUxF2+2x (x=0, 0.05and0.10) has been studied by specific heat measurements between 475 k and 875 k. A simple phenomenological mean field thermodynamic model has been developed and used to interpret the data. At low temperatures the result...

  12. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1980-11-01

    The transformation of the friction data obtained with experiments in annuli can be performed either with the assumption of universal logarithmic velocity profile or of an universal eddy momentum diffusivity profile. For the roughness of practical interest both methods, when properly applied, give good results. For these roughnesses the transformed friction factors seem not to be unduly affected if one assumes a constant slope of the velocity profile equal to 2.5. All the transformation methods of the heat transfer data so far proposed predict too high wall temperatures in the central channels of a 19-rod bundle with three-dimensional roughness. Preliminary calculations show that the application of the superimposition principle with the logarithmic temperature profiles gives good results for the three-dimensional roughness as well. Although the measurements show that the slope of the logarithmic temperature profiles is different from 2.5, the assumption of a constant slope equal to 2.5 does not affect the transformed heat transfer data appreciably. For moderately high roughness ribs the turbulent Prandtl number, averaged over the cross section of a tube, is about the same (approx. 0.8) for rough as for smooth surfaces. The temperature effect on the heat transfer data with air cooling is stronger than originally assumed in the general correlation of Dalle Donne and Meyer. With helium cooling this temperature effect is even stronger. (orig.) [de

  13. Heat Transfer Manipulation via Switchable Wettability Surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research seeks to manipulate heat transfer during flow condensation in low-gravity environments by employing switchable wettability surfaces....

  14. Estimation of surface Latent Heat Fluxes from IRS-P4/MSMR ...

    Indian Academy of Sciences (India)

    The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat ux by multivariate regression technique. The MSMR measures the microwave radiances at 8 ...

  15. Estimation of surface latent heat fluxes from IRS-P4/MSMR satellite ...

    Indian Academy of Sciences (India)

    The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat ux by multivariate regression technique. The MSMR measures the microwave radiances at 8 ...

  16. IUE ultraviolet spectra and chromospheric models of HR 1099 and UX Arietis

    Science.gov (United States)

    Simon, T.; Linsky, J. L.

    1980-01-01

    IUE spectra in the region 1150-3200 A of the RS CVn-type variables HR 1099 and UX Arietis are presented and analyzed in terms of chromospheric models. Measurements of Mg h and k lines and Ca II H-K and H alpha spectra are indicated which are found not to be correlated with orbital phase or radio flares and which suggest that the strong emission arises in the K star rather than the G star in these systems. Under the assumption that the UV emission lines are associated with the K star, surface gravities of log g = 3.6 and 3.4 and effective temperatures of 4850 and 5000 K are adopted for HR 1099 and UX Ari, respectively, along with solar metal abundances for each. Model calculations of the chromospheric structure necessary to account for observed C(+), Mg(+), Si(+) and Si(+2) line fluxes are presented which indicate that the transition region pressure lies in the range 0.18-1.0 dynes/sq cm, implying transition regions that are more extended than that of the sun and are not conductively heated. It is noted that pressure scaling laws and the use of Mg II and C II lines as pressure diagnostics may be invalid, possibly due to atmospheric inhomogeneities or gas flows.

  17. Heat diffusion in fractal geometry cooling surface

    Directory of Open Access Journals (Sweden)

    Ramšak Matjaz

    2012-01-01

    Full Text Available In the paper the numerical simulation of heat diffusion in the fractal geometry of Koch snowflake is presented using multidomain mixed Boundary Element Method. The idea and motivation of work is to improve the cooling of small electronic devices using fractal geometry of surface similar to cooling ribs. The heat diffusion is assumed as the only principle of heat transfer. The results are compared to the heat flux of a flat surface. The limiting case of infinite small fractal element is computed using Richardson extrapolation.

  18. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  19. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  20. User experience (UX) design for libraries

    CERN Document Server

    Schmidt, Aaron

    2012-01-01

    This book shows you how to get there by providing hands-on steps and best practices for UX design principles, practices, and tools to engage with patrons online and build the best web presence for your library.

  1. UX výskum digitálnych produktov

    OpenAIRE

    Dziaková, Barbora

    2015-01-01

    Thesis deals with the UX research from the perspective of UX professionals. The main objective of this thesis is to determine the point of view these professionals on UX research. The first partial objective of this thesis is to identify problem areas and the causes of problems in the context of UX research. The second objective is to identify how the experts assess the impact of efforts carried out in connection with the UX. The third objective is to identify the benefits of conducting UX re...

  2. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  3. Teaching Software Developers to Perform UX Tasks

    DEFF Research Database (Denmark)

    Øvad, Tina; Bornoe, Nis; Larsen, Lars Bo

    2015-01-01

    Good UX design is becoming important within the industry when developing new products. This entails that UX skills have to be available in the development processes. This paper investigates the opportunities of using software developers as a UX work resource in the day-to-day working practice....... This is done via an action research study where the developers were provided with material concerning a modified AB usability test, by training them in performing this type of work, and by using their feedback to improve the method and the material. The overall result of the study is positive and it is found...... that by using the developers' feedback in the modification process, the method has truly become applicable within an agile, industrial setting. In combination with a guideline and template this has induced the developers to feel confident in independently performing this type of work....

  4. Data of evolutionary structure change: 2UXML-2UX3M [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 2UXML-2UX3M 2UXM 2UX3 L M -----ALLSFE--------------RKYRVPGG--TLVG.../alignment> 0 2UXM L 2UX...U CA 253 VAL CA 231 GLY CA 185 GLY CA 184 2UX...3 M 2UX3M 1 2UXM L 2UXML

  5. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  6. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  7. Surface wettability and subcooling on nucleate pool boiling heat transfer

    Science.gov (United States)

    Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki

    2018-02-01

    The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.

  8. Optical flare events on the RS Canum Venaticorum star UX Arietis

    Science.gov (United States)

    Cao, Dong-Tao; Gu, Sheng-Hong

    2017-05-01

    Based on long-term high-resolution spectroscopic observations obtained during five observing runs from 2001 to 2004, we study optical flare events and chromospheric activity variability of the very active RS CVn star UX Ari. By means of the spectral subtraction technique, several optical chromospheric activity indicators (including the He i D3, Na i D1, D2 doublet, Hα and Ca ii IRT lines) covered in our echelle spectra were analyzed. Four large optical flare events were detected on UX Ari during our observations, which show prominent He i D3 line emission together with great enhancement in emission of the Hα and Ca ii IRT lines and strong filled-in or emission reversal features in the Na i D1, D2 doublet lines. The newly detected flares are much more energetic than previous discoveries, especially for the flare identified during the 2002 December observing run. Optical flare events on UX Ari are more likely to be observed around two quadratures of the system, except for our optical flares detected during the 2004 November observing run. Moreover, we have found rotational modulation of chromospheric activity in the Hα and Ca ii IRT lines, which suggests the presence of chromospherically active longitudes over the surface of UX Ari. The change in chromospherically active longitudes among our observing runs, as well as the variation in chromospheric activity level from 2001 to 2004, indicates a long-term evolution of active regions.

  9. Study on Surface Heat Budget of Various Pavements for Urban Heat Island Mitigation

    Directory of Open Access Journals (Sweden)

    Hideki Takebayashi

    2012-01-01

    Full Text Available The surface heat budgets of various pavement surfaces are studied with the aim of mitigating the urban heat island effect. In this study, the thermal characteristics of pavements are examined using data from observations. The net radiation, surface temperature, temperature under the surface, conduction heat flux, and core weight for each experimental surface are recorded, together with the weather conditions at the time of observation. The latent heat flux is estimated from the observed weight of the cores. The surface heat budget under the same weather conditions is examined, and the sensible heat flux from each target surface is calculated. The parameters that influence the surface heat budget, for example, solar reflectance (albedo, evaporative efficiency, heat conductivity, and heat capacity, are examined. On a typical summer day, the maximum reduction in the sensible heat flux from that on a normal asphalt surface is about 150 W/m2 for an asphalt surface with water-retaining material and about 100 W/m2 for a cement concrete surface with water-retaining material, depending on the albedo of each surface.

  10. Surface renewal method for estimating sensible heat flux | Mengistu ...

    African Journals Online (AJOL)

    For short canopies, latent energy flux may be estimated using a shortened surface energy balance from measurements of sensible and soil heat flux and the net irradiance at the surface. The surface renewal (SR) method for estimating sensible heat, latent energy, and other scalar fluxes has the advantage over other ...

  11. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  12. Pediatric Urinary Tract Infections and Vesicoureteral Refl ux: What ...

    African Journals Online (AJOL)

    It has been nearly 50 years since Victor Politano and Wyland Leadbetter developed the first reliable operation for the surgical correction of vesicoureteral refl ux (VUR). It dispelled the notion of bladder outlet obstruction as the primary cause of refl ux. One might argue, however, since the operation was so reproducible that ...

  13. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of

  14. Rewetting analysis of hot surfaces with internal heat source by the heat balance integral method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, S.K.; Das, P.K.; Bhattacharyya, Souvik [IIT Kharagpur (India). Department of Mechanical Engineering

    2008-08-15

    A two region conduction-controlled rewetting model of hot vertical surfaces with internal heat generation and boundary heat flux subjected to constant but different heat transfer coefficient in both wet and dry region is solved by the Heat Balance Integral Method (HBIM). The HBIM yields the temperature field and quench front temperature as a function of various model parameters such as Peclet number, Biot number and internal heat source parameter of the hot surface. Further, the critical (dry out) internal heat source parameter is obtained by setting Peclet number equal to zero, which yields the minimum internal heat source parameter to prevent the hot surface from being rewetted. Using this method, it has been possible to derive a unified relationship for a two-dimensional slab and tube with both internal heat generation and boundary heat flux. The solutions are found to be in good agreement with other analytical results reported in literature. (orig.)

  15. The Human-Computer Domain Relation in UX Models

    DEFF Research Database (Denmark)

    Clemmensen, Torkil

    This paper argues that the conceptualization of the human, the computer and the domain of use in competing lines of UX research have problematic similarities and superficial differences. The paper qualitatively analyses concepts and models in five research papers that together represent two...... influential lines of UX research: aesthetics and temporal UX, and two use situations: using a website and starting to use a smartphone. The results suggest that the two lines of UX research share a focus on users’ evaluative judgments of technology, both focuses on product qualities rather than activity...... domains, give little details about users, and treat human-computer interaction as perception. The conclusion gives similarities and differences between the approaches to UX. The implications for theory building are indicated....

  16. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

    Science.gov (United States)

    Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

    2017-09-12

    Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

  17. Heat transfer in the post dryout region and on wetting heated surfaces

    International Nuclear Information System (INIS)

    Rassokhin, N.G.; Kabanov, L.P.

    1987-01-01

    A survey is given of the works published in the Soviet Union during 1983 and 1984 on heat transfer in the post dryout region and on wetting heated surfaces. New experimental data, heat transfer models, and computational techniques are analysed. The complexities of the heat transfer process under the above conditions are noted. The differences and common features of the heat transfer processes in the post dryout region and on wetting heated surfaces are indicated as well as the necessity for the development of computational techniques that would consider the two processes simultaneously. (author)

  18. The heat transfer coefficients of the heating surface of 300 MWe CFB boiler

    Science.gov (United States)

    Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai

    2012-08-01

    A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.

  19. Automated Hybrid Microwave Heating for Lunar Surface Solidification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project addresses the need for a system that will provide automated lunar surface stabilization via hybrid microwave heating. Surface stabilization is...

  20. Condensation Heat Transfer Performance of Nano- Engineered Cu Surfaces

    Science.gov (United States)

    Kim, Hyunsik; Nam, Youngsuk

    2014-11-01

    We investigated condensate mobility and resulting heat transfer performance on Cu based water repellent surfaces including hydrophobic, superhydrophobic and oil-infused surfaces. We observed the transient microscale condensation behaviours up to 3 hours with controlling the supersaturation level at 1.64. We experimentally characterized the nucleation density, droplet size distribution and growth rate, and then incorporated them into the developed condensation heat transfer model to compare the condensation heat transfer performance of each surface. Due to the spontaneous coalescence induced jumping, superhydrophobic surface can maintain the high heat transfer performance while other surfaces show a gradual decrease in heat transfer performance due to the increase in the thermal resistance across the growing droplets. We also quantified each thermal resistance values from the vapor to the surface through the droplets to find out the relative importance of each thermal resistance term.

  1. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  2. Non-steady-state heat transfer of finned surface

    International Nuclear Information System (INIS)

    Okamoto, Y.; Kameoka, T.

    1974-01-01

    For many purposes, the finned surface is being used to increase heat transfer. Heat exchangers and fuel elements of gas cooled nuclear reactors require the use of the finned surface for high flux heat transfer. The problem is analytically treated by deriving a non-steady-state equation of radiative and convective heat transfer of annular and radial fins in case of sudden change of the fin-root temperature or heat flux. The numerical solution of temperature distribution along the fin is obtained for several typical transient cases. (U.S.)

  3. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  4. Dynamic characteristics of numerical systems for induction surface heating

    Science.gov (United States)

    Kozulina, T.; Blinov, K.; Galunin, S.

    2018-01-01

    This paper describes the development, investigation and optimization of induction surface heating process of a workpice taking into account its rotation by numerical simulation in a commercial package ANSYS® [1]. During the investigation it is necessary to select the optimal dynamic characteristics of the heating process in order to obtain the required temperature level and uniform temperature distribution on the surface of the workpiece.

  5. First DT+RPC chambers installation round in the UX5 cavern

    CERN Multimedia

    Jesus Puerta-Pelayo

    2007-01-01

    DT+RPC packages corresponding to sectors 1 and 7 of the barrel region cannot be installed on surface, since the lowering gantry from SX5 to UX5 uses their gaps to hold the wheels. Therefore this installation has to be carried out in the cavern. These pictures illustrate the first installation round on YB+2 right after the lowering. A total of 8 chambers were successfully installed in 2 days.

  6. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  7. Some observations on boiling heat transfer with surface oscillation

    International Nuclear Information System (INIS)

    Miyashita, H.

    1992-01-01

    The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)

  8. Towards an Open, Distributed Software Architecture for UxS Operations

    Science.gov (United States)

    Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Allen, B. Danette

    2015-01-01

    To address the growing need to evaluate, test, and certify an ever expanding ecosystem of UxS platforms in preparation of cultural integration, NASA Langley Research Center's Autonomy Incubator (AI) has taken on the challenge of developing a software framework in which UxS platforms developed by third parties can be integrated into a single system which provides evaluation and testing, mission planning and operation, and out-of-the-box autonomy and data fusion capabilities. This software framework, named AEON (Autonomous Entity Operations Network), has two main goals. The first goal is the development of a cross-platform, extensible, onboard software system that provides autonomy at the mission execution and course-planning level, a highly configurable data fusion framework sensitive to the platform's available sensor hardware, and plug-and-play compatibility with a wide array of computer systems, sensors, software, and controls hardware. The second goal is the development of a ground control system that acts as a test-bed for integration of the proposed heterogeneous fleet, and allows for complex mission planning, tracking, and debugging capabilities. The ground control system should also be highly extensible and allow plug-and-play interoperability with third party software systems. In order to achieve these goals, this paper proposes an open, distributed software architecture which utilizes at its core the Data Distribution Service (DDS) standards, established by the Object Management Group (OMG), for inter-process communication and data flow. The design decisions proposed herein leverage the advantages of existing robotics software architectures and the DDS standards to develop software that is scalable, high-performance, fault tolerant, modular, and readily interoperable with external platforms and software.

  9. Heuristics Considering UX and Quality Criteria for Heuristics

    Directory of Open Access Journals (Sweden)

    Frederik Bader

    2017-12-01

    Full Text Available Heuristic evaluation is a cheap tool with which one can take qualitative measures of a product’s usability. However, since the methodology was first presented, the User Experience (UX has become more popular but the heuristics have remained the same. In this paper, we analyse the current state of heuristic evaluation in terms of heuristics for measuring the UX. To do so, we carried out a literature review. In addition, we had a look at different heuristics and mapped them with the UX dimensions of the User Experience Questionnaire (UEQ. Moreover, we proposed a quality model for heuristic evaluation and a list of quality criteria for heuristics.

  10. Smashing UX design foundations for designing online user experiences

    CERN Document Server

    Allen, Jesmond

    2012-01-01

    The ultimate guide to UX from the world's most popular resource for web designers and developers Smashing Magazine is the world's most popular resource for web designers and developers and with this book, the authors provide the pinnacle resource to becoming savvy with User Experience Design (UX). The authors first provide an overview of UX and chart its rise to becoming a valuable and necessary practice for narrowing the gap between Web sites, applications, and users in order to make a user's experience a happy, easy, and successful one.Examines the essential aspects of User Experience Design

  11. Bridging UX and web development better results through team integration

    CERN Document Server

    Moffett, Jack

    2014-01-01

    The divide between UX and Web development can be stifling. Bridging UX and Web Development prepares you to break down those walls by teaching you how to integrate with your team's developers. You examine the process from their perspective, discovering tools and coding principles that will help you bridge the gap between design and implementation. With these tried and true approaches, you'll be able to capitalize on a more productive work environment. Whether you're a novice UX professional finding your place in the software industry and looking to nail down your technical skills, or a seasone

  12. Forced heat loss from body surface reduces heat flow to body surface.

    Science.gov (United States)

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal

  13. Flow and heat transfer regimes during quenching of hot surfaces

    International Nuclear Information System (INIS)

    Barnea, Y.; Elias, E.

    1993-05-01

    Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs

  14. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  15. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  16. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  17. A comprehensive review of milk fouling on heated surfaces.

    Science.gov (United States)

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  18. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  19. Multiple Data Stream Measurement of UX in a Work Context

    DEFF Research Database (Denmark)

    Yadav, Mohit; Clemmensen, Torkil

    In this paper we discuss the emergence of a redefined human work interaction design environment due to Internet of Things. The change in paradigm challenges designers to re-think the category of the user/worker to include their trusted IT devices/cognitive objects while designing for work environ......) data-streams of UX in a work setting. This may give a holistic view of UX in the smart workplace....

  20. DESIGN AND CALCULATION OF AERODROMECOAING WITH HEATED SURFACE LAYERS

    Directory of Open Access Journals (Sweden)

    Vadim G. Piskunov

    2009-04-01

    Full Text Available  The developed constructions with heated by surface layers for aerodromes and auto roads when developed composition of electroconductive concrete reinforced with chemical electrical conductive fibres being used was researched. The experimentally obtained characteristics of ended conductive concrete reinforced with fibers were presented. Calculation by developed heated construction of shell was made.

  1. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  2. Surfaces for high heat dissipation with no Leidenfrost limit

    Science.gov (United States)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  3. Droplet Impingement Boiling on Heated Superhydrophobic Surfaces

    Science.gov (United States)

    Crockett, Julie; Clavijo, Cristian; Maynes, Daniel

    2015-11-01

    When a droplet impinges on a solid surface at a temperature well above the saturation temperature, vaporization of the liquid begins immediately after contact. Different boiling regimes may result depending on the surface temperature and volatility of the liquid. The nucleate boiling regime is characterized by explosive atomization, which occurs when vapor bubbles burst causing an extravagant shower of small micro droplets as well as the well-known ``sizzling'' sound. In this work, we show that the vapor is surprisingly re-directed during impingement on a superhydrophobic surface such that atomization is completely suppressed. We hypothesize that this occurs because vapor escapes through the superhydrophobic interface such that the top of the droplet remains free of bursting vapor bubbles. We explore a wide range of surface patterning with feature spacing of 8 to 32 microns and solid area fractions of 10 to 50 percent; surface temperatures from 100 C to 400 C; and Weber numbers of 1 to 100. Atomization is found to decrease with increasing feature spacing and decreasing solid fraction, and vanishes completely for large spacing. It may be that large feature spacing promotes early transition to the Leidenfrost regime.

  4. Urban Surfaces and Heat Island Mitigation Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Shea Rose, Leanna

    2007-06-14

    Data on materials and surface types that comprise a city, i.e. urban fabric, are needed in order to estimate the effects of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. We discuss the results of a semi-automatic statistical approach used to develop data on surface-type distribution and urban-fabric makeup using aerial color orthophotography, for four metropolitan areas of Chicago, IL, Houston, TX, Sacramento, CA, and Salt Lake City, UT. The digital high resolution (0.3 to 0.5-m) aerial photographs for each of these metropolitan areas covers representative urban areas ranging from 30 km{sup 2} to 52 km{sup 2}. Major land-use types examined included: commercial, residential, industrial, educational, and transportation. On average, for the metropolitan areas studied, vegetation covers about 29-41% of the area, roofs 19-25%, and paved surfaces 29-39%. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the tree canopies, vegetation covers about 20-37% of the area, roofs 20-25%, and paved surfaces 29-36%.

  5. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    Science.gov (United States)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  6. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    Science.gov (United States)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  7. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  8. Numerical study on condensation heat transfer of trapezoid grooved surfaces

    Directory of Open Access Journals (Sweden)

    Baojin Qi

    2016-05-01

    Full Text Available This article presents a numerical analysis and experimental study on condensation heat transfer and fluid flow for filmwise condensation on trapezoid grooved surfaces. First, a physical model was properly simplified based on some reasonable assumptions. Then, the coupled non-linear governing equations for the mass transfer, fluid flow, and two-dimensional thermal conduction were developed. The relationship between z-coordinate and heat transfer was obtained by solving the equations numerically. The influences of groove length and basic angle were discussed. The calculation results showed that the heat flux decreased with increase in groove length, and the decline range also decreased gradually. The calculation results also suggested that the heat flux through groove with α = 60° was lower than the groove with α = 75° at the top of the groove, while the opposite conclusion was obtained at the low parts. The distributions of wall temperature and heat flux on trapezoid groove were also studied systematically. The distribution of surface temperature and heat flux presents obvious lateral inhomogeneity, and the maximum wall temperature and heat flux were both obtained in region II. The thermal resistance of groove with α = 60° was lower but the liquid-discharged ability was better than that of groove with α = 75°. In order to validate the feasibility and reliability of the present analyses and to further investigate the heat transfer performance of trapezoid grooved surfaces, experiments were carried out with three condensing plates including two trapezoid grooved surfaces in different physical dimensions and one smooth surface. The experimental data obtained under various schooling were compared with the calculations, and the experimental results for different condensing plates are all in good agreement with the numerical model, with a maximum deviation less than 15%. Moreover, the trapezoid grooves can enhance the

  9. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  10. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  11. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  12. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    Directory of Open Access Journals (Sweden)

    Yu-Ting Sung

    2014-01-01

    Full Text Available Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61 surface. One is a four-row coil with opposite current directions and the other is a two-row coil with identical current directions. Magnetic flux concentrators were used to control magnetic field and heat the workpiece uniformly. The heating experiment results showed that coil with opposite adjacent current directions had more uniform temperature distribution on tool surface. The temperature uniformity was about 94%∼95%. The coil with identical adjacent current directions had higher average temperature and the temperature rose from 50°C to 150°C in 15 seconds.

  13. Identification of boundary heat flux on the continuous casting surface

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available In the paper the numerical solution of the inverse problem consisting in the identification of the heat flux on the continuous casting surface is presented. The additional information results from the measured surface or interior temperature histories. In particular the sequential function specification method using future time steps is applied. On the stage of numerical computations the 1st scheme of the boundary element method for parabolic equations is used. Because the problem is strongly non-linear the additional procedure 'linearizing' the task discussed is introduced. This procedure is called the artificial heat source method. In the final part of the paper the examples of computations are shown.

  14. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  15. Surface-Heating Algorithm for Water at Nanoscale.

    Science.gov (United States)

    Y D, Sumith; Maroo, Shalabh C

    2015-09-17

    A novel surface-heating algorithm for water is developed for molecular dynamics simulations. The validated algorithm can simulate the transient behavior of the evaporation of water when heated from a surface, which has been lacking in the literature. In this work, the algorithm is used to study the evaporation of water droplets on a platinum surface at different temperatures. The resulting contact angles of the droplets are compared to existing theoretical, numerical, and experimental studies. The evaporation profile along the droplet's radius and height is deduced along with the temperature gradient within the drop, and the evaporation behavior conforms to the Kelvin-Clapeyron theory. The algorithm captures the realistic differential thermal gradient in water heated at the surface and is promising for studying various heating/cooling problems, such as thin film evaporation, Leidenfrost effect, and so forth. The simplicity of the algorithm allows it to be easily extended to other surfaces and integrated into various molecular simulation software and user codes.

  16. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  17. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  18. The surface heat island of Rotterdam and its relationship with urban surface characteristics

    NARCIS (Netherlands)

    Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E.

    2012-01-01

    Thermal infrared high resolution satellite images from Landsat sensors were used to spatially quantify the surface heat island (SHI) of Rotterdam in the Netherlands. Based on surface temperature maps retrieved on 15 summer days since 1984, the average surface temperature of each district and

  19. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  20. Experimental determinations of the performances of heat transfer surfaces

    International Nuclear Information System (INIS)

    Pirovano, Alain; Viannay, Stephane; Mazeas, C.Y.

    1974-01-01

    With the help of flow schemes and of assumptions on the heat transfer, it is possible, in some cases, to predict the thermal and aerodynamical performances of a new heat transfer surface with moderate accuracy. These estimates, valid for an approximate classification of a new surface among known surfaces, are not accurate enough to be taken as a basis for the design of heat exchangers. In the present state of knowledge, the performances of a new heat transfer surface can only be determined accurately with experimental measurements. Bertin and Co have at their disposal two air test rigs especially designed for this purpose. The first one, more directly concerned with the measurements on tube bundles with fluid flow perpendicular to the generatrices of the tubes, is a semi-closed loop equipped with a high-efficiency ejector which amplifies the air flow rate supplied by an external source and thus allows high values of Reynolds number to be reached. The second one is adapted to other types of surfaces: tubes with external flow parallel to the generatrices, tubes with sophisticated cross section and with internal flow, compact surfaces with finned plates, etc. Both test rigs, the relevant equipment, the methods of data acquisition and of test results analysis are described in this paper. During the 5 past years, 60 configurations were tested. It was possible to compare some of the test results with the results of measurements performed later, on entire heat exchangers working with numbers of tubes, fluids, and temperature levels different from those prevailing during the tests on the small scale mock-up; the agreement is quite good [fr

  1. Interactions between bubble formation and heating surface in nucleate boiling

    International Nuclear Information System (INIS)

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  2. Fingering patterns during droplet impact on heated surfaces

    NARCIS (Netherlands)

    Khavari, M.; Sun, Chao; Lohse, Detlef; Tran, Tuan

    2015-01-01

    A droplet impinging on a sufficiently heated surfacemay be cushioned by its own vapor and never touch the surface. In previous work, the transition to this so-called Leidenfrost regime was only qualitatively described as an abrupt change between the “contact-boiling” regime, which is characterized

  3. Yield-stress fluid drop impact on heated surfaces

    Science.gov (United States)

    Blackwell, Brendan; Wu, Alex; Ewoldt, Randy

    2015-11-01

    Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact, motivating several applications of these rheologically-complex materials. Here we use high-speed imaging to experimentally study liquid-solid impact of yield-stress fluids on heated surfaces. At low temperatures yield-stress fluids tend to stick to surfaces and leave a coating layer. At sufficiently high temperatures the Leidenfrost effect can be observed, wherein a layer of vapor is created between the material and the surface due to rapid boiling, which can prevent a droplet of yield-stress fluid from sticking to the surface. In this study rheological material properties, drop size, drop velocity, and surface temperature are varied to characterize behavioral regimes. Material sticking to and releasing from the surface is observed as a function of the input parameters.

  4. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  5. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  6. Studies on boiling heat transfer on a hemispherical downward heating surface supposing IVR-AM

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Matsumoto, Hiroyuki; Matsumoto, Tadayoshi; Kataoka, Isao

    2006-01-01

    The scale-down experiments supposing the IVR-AM were made on the pool boiling heat transfer from hemispherical downward facing heating surface. The boiling phenomena were realized by flooding the heated hemispherical vessel into the sub-cooled water or saturated water under the atmospheric pressure. The hemispherical vessel supposing the scale-down pressure vessel was made of SUS304 stainless steel. Molten lead, which was preheated up to about 500 degrees Celsius, was put into the vessel and used as the heat source. The vessel was cooled down by flooding into the water to realize the quenching process. The direct observation by using the digital video camera was performed and made clear the special characteristics of boiling phenomena such as the film boiling, the transition boiling and the nucleate boiling taking place in order during the cooling process. The measurement for the wall superheat and heat flux by using thermocouples was also carried out to make clear the boiling heat transfer characteristics during the cooling process. Fifteen thermocouples are inserted in the wall of the hemispherical bowl to measure the temperature distributions and heat flux in the hemispherical bowl. (author)

  7. Critical heat flux variations on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, A.; Luxat, J.C., E-mail: behdada@mcmaster.ca, E-mail: luxatj@mcmaster.ca [McMaster Univ., Engineering Physics Dept., Hamilton, Ontario (Canada)

    2012-07-01

    Heavy water moderator surrounding each fuel channel is one of the important safety features in CANDU reactors since it provides an in-situ passive heat sink for the fuel in situations where other engineered means of heat removal from fuel channels have failed. In a critical break LOCA scenario, fuel cooling becomes severely degraded due to rapid flow reduction in the affected flow pass of the heat transport system. This can result in pressure tubes experiencing significant heat-up during early stages of the accident when coolant pressure is still high, thereby causing uniform thermal creep strain (ballooning) of the pressure tube (PT) into contact with its calandria tube (CT). The contact of the hot PT with the CT causes rapid redistribution of stored heat from the PT to CT and a large heat flux spike from the CT to the moderator fluid. For conditions where subcooling of the moderator fluid is low, this heat flux spike can cause dryout of the CT. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in continued thermal creep strain deformation of both the PT and the CT. The focus of this work is to develop a mechanistic model to predict Critical Heat Flux (CHF) on the CT surface following a contact with its pressure tube. A mechanistic CHF model is applied based on a concept of wall dry patch formation, prevention of rewetting and subsequent dry patch spreading. Results have been compared to an empirical correlation and a good agreement has been obtained. The model has been used to predict the spatial variation of CHF over a cylinder with dimensions of CANDU CT. (author)

  8. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  9. Measuring the surface-heating of medical ultrasonic probes

    International Nuclear Information System (INIS)

    Kollmann, Chr; Vacariu, G; Fialka-Moser, V; Bergmann, H

    2004-01-01

    Due to converting losses the probe's surface itself is heated up, especially when emitting into air. Possible temperature increases in an ensemble of 15 different diagnostic and therapeutic ultrasound probes from 7 manufacturers in the frequency range between 0.05-7.5 MHz have been examined. Surface temperatures were detected by means of a calibrated IR-thermographic camera using a scheme of various power and pulse settings, as well as different imaging modalitites as used in clinical routine. Depending on the setup and the output power, the absolute surface temperatures of some of the probes emitting in air can be beyond 43 deg. C within 5-7 min.; a maximum surface temperature of 84 deg. C has been detected. Continuous mode or high pulse repetition frequencies on the therapeutic system side, small focused Doppler modes on the diagnostic system side combined with increased emitted acoustic intensities result in high surface temperatures. Within a worst case scenario a potential risk of negative skin changes (heat damage) or non-optimal therapeutic effects seems to be possible if a therapeutic system is used very often and if its emission continues unintentionally. In general the user should be aware that low emission intensities of e.g. 50 mW cm -2 could already produce hot surfaces

  10. Embedded water-based surface heating part 2: experimental validation

    DEFF Research Database (Denmark)

    Karlsson, Henrik

    2010-01-01

    : hybrid 3D numerical model. Journal of Building Physics 33: 357-391). The thermal response of the system is tested in both long (16 h) and short (30 min) cycle experiments where the water flow alters between on and off. Temperature distribution, within the floor construction, and the heat exchange process...... are studied throughout the test cycles. The model underestimates the steady-state heat exchange from the pipe loop by 16% when boundary conditions and thermal properties according to the reference case are applied. Temperatures at the floor surface are assessed with good precision while temperatures......The transient operation of an embedded water-based floor heating system has been studied by means of a numerical simulation tool. Prior to this study, Caccavelli and Richard (Caccavelli D, Richard P (1994) Etude portant sur le dimensionnement d'un plancher chauffant a eau chaude en CIC. Rapport n...

  11. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  12. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  13. Computer analysis of transient heat transfer from coated surfaces

    International Nuclear Information System (INIS)

    Menard, A.; Holmes, D.

    1983-01-01

    The transient thermal response of internally heated, coated surfaces in contact with liquid helium was investigated with a previously developed computer model. The coatings were found to affect the time required to initiate film boiling or to quench a superconductor in the substrate. The energy which can be absorbed without an unacceptably large temperature rise depends most strongly upon the coating thermal property group (kpC /SUB p/ ) /SUP 1/2/ and on the peak nucleate boiling heat flux. Dielectric materials for electrical insulation usually have low thermal property group values, but a new class of ceramic materials shows great promise for application with superconducting devices as electrical insulations with good thermal properties. Coating materials with thermal property group values greater than that of OFHC copper at liquid helium temperatures provide the same thermal stability as a bare copper surface exposed to the helium bath. Possible applications of the new materials to potted windings are also discussed

  14. Diesel particulate filter regeneration via resistive surface heating

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  15. Evaluation of scale formation in waterwall heated surfaces

    Directory of Open Access Journals (Sweden)

    Taylasheva Tatiana

    2017-01-01

    Full Text Available This paper presents the possibility of forecasting assessments of the speed and the time of formation of depositions in the evaporator-tube elements of double-drum boilers. The values of thermal flow in the wall region of tank screens of boiler furnace are obtained, besides the velocity values of scaling metal corrosion products are obtained. Conclusions about the ability of forecasting unnominal situations and emergency risks dependent with damage to the screen surface heating pipes are made.

  16. Surface spin tunneling and heat dissipation in magnetic nanoparticles

    Science.gov (United States)

    Palakkal, Jasnamol P.; Obula Reddy, Chinna; Paulose, Ajeesh P.; Sankar, Cheriyedath Raj

    2018-03-01

    Quantum superparamagnetic state is observed in ultra-fine magnetic particles, which is often experimentally identified by a significant hike in magnetization towards low temperatures much below the superparamagnetic blocking temperature. Here, we report experimentally observed surface spin relaxation at low temperatures in hydrated magnesium ferrite nanoparticles of size range of about 5 nm. We observed time dependent oscillatory magnetization of the sample below 2.5 K, which is attributed to surface spin tunneling. Interestingly, we observed heat dissipation during the process by using an external thermometer.

  17. Droplet impact behavior on heated micro-patterned surfaces

    Science.gov (United States)

    Zhang, Wenbin; Yu, Tongxu; Fan, Jing; Sun, Weijie; Cao, Zexian

    2016-03-01

    Impact behavior of droplets on a surface is an intriguing research topic, and its control should be very useful in diverse industrial applications. We investigated the impact behavior of water droplets on the textured and chemically treated surface of silicon and obtained the impact mode map on the parameter plane subtended by the Weber number (up to 85) and temperature (up to 320 °C). The patterns comprise of micropillars (14 μm in height) in square lattice with a lattice constant of 10 and 20 μm, and the surface was further made superhydrophobic by coating with graphene nanosheets. Six distinct impact modes are identified. It was found that the impact mode map can be dramatically altered by modifying the texture and chemistry of the surface, and the observations are well explained with regard to heat transfer, vapor/bubble generation and vapor flow beneath the droplet. Instability in the droplet arising from the mismatch between vapor generation rate and exhaust conditions is the dominant factor in determining the impact mode. Our results revealed more facts and features of the droplet impact phenomenon and can be very useful for target-oriented surface design towards precise control of droplet impact behavior on heated substrates.

  18. Interaction Between Surface Heat Budgets, Sea Surface Temperature and Deep Convection in the Tropical Western Pacific

    Science.gov (United States)

    Chou, Shu-Hsien; Chou, Ming-Dah; Lin, Po-Hsiung; Starr, David OC. (Technical Monitor)

    2002-01-01

    The surface heat budgets, sea surface temperature (SST), clouds and winds in the tropical western Pacific are analyzed and compared for the periods April-June 1998 and 1999. The spring of 1998 is in the later phase of a strong El Nino, whereas the spring of 1999 is in a period of a La Nina. The surface shortwave (SW) and longwave (LW) radiative fluxes are retrieved from Japanese Geostationary Meteorological Satellite radiance measurements, while the surface turbulent fluxes (latent and sensible heat) are derived from SSM/I-Inferred surface air humidity and winds. The SST and sea-air temperature differences are taken from NCEP/NCAR reanalysis. Deep convection is inferred from the outgoing longwave radiation of NOAA's polar-orbiting satellites. The longitudinal shift in maximum SST, deep convection and winds during El Nino and La Nina have a large impact on the spatial distribution of surface heating. Changes in clouds between these two periods have a large impact on the monthly-mean radiative heating, exceeding 60 W m(exp -2) over large oceanic regions. Similarly, the differences in wind speeds and SST have a large impact on the latent cooling, exceeding 40 W m(exp -2) over large oceanic areas. However, the maximum impacts on radiative and latent heat fluxes occur in different regions. The regions of maximum impact on radiative fluxes coincide with the regions of maximum change in clouds, whereas regions of maximum impact on turbulent heat fluxes coincide with the regions of maximum change in trade winds. The time-evolution of SST in relation to that of surface heat fluxes and winds are investigated and compared between the two El Nino and La Nina periods. In regions where wind speeds (or wind stresses) are large, the change in SST agrees well with the change in the net surface heating, indicating a deep ocean mixed layer associated with strong trade winds. On the other hand, in regions where radiative fluxes are large, the change in SST does not agree well with the

  19. Thermal and Physical Properties and Deposit Structure of Power Equipment Heating Surfaces

    Directory of Open Access Journals (Sweden)

    A. V. Nerezko

    2007-01-01

    Full Text Available The paper shows influence of heating surface material, design peculiarities, operational conditions of heat exchangers and water-chemical regime on chemical and structural composition of deposits, their heat conduction and porosity.

  20. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  1. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  2. Surface urban heat island across 419 global big cities.

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Ottle, Catherine; Bréon, François-Marie; Nan, Huijuan; Zhou, Liming; Myneni, Ranga B

    2012-01-17

    Urban heat island is among the most evident aspects of human impacts on the earth system. Here we assess the diurnal and seasonal variation of surface urban heat island intensity (SUHII) defined as the surface temperature difference between urban area and suburban area measured from the MODIS. Differences in SUHII are analyzed across 419 global big cities, and we assess several potential biophysical and socio-economic driving factors. Across the big cities, we show that the average annual daytime SUHII (1.5 ± 1.2 °C) is higher than the annual nighttime SUHII (1.1 ± 0.5 °C) (P < 0.001). But no correlation is found between daytime and nighttime SUHII across big cities (P = 0.84), suggesting different driving mechanisms between day and night. The distribution of nighttime SUHII correlates positively with the difference in albedo and nighttime light between urban area and suburban area, while the distribution of daytime SUHII correlates negatively across cities with the difference of vegetation cover and activity between urban and suburban areas. Our results emphasize the key role of vegetation feedbacks in attenuating SUHII of big cities during the day, in particular during the growing season, further highlighting that increasing urban vegetation cover could be one effective way to mitigate the urban heat island effect.

  3. Fundamental research on supercooling phenomenon on heat transfer surface

    International Nuclear Information System (INIS)

    Saito, A.; Okawa, S.; Koganezawa, S.

    1991-01-01

    In relation to the problem of supercooling for ice storage devices, experiments on freezing a relatively large volume of supercooled water is carried out. In the experiment, an experimental method to determine a probability of freezing a large volume of supercooled water with a uniform temperature distribution is introduced. It is accomplished by dividing the water into many smaller droplets. In a statistical analysis, a method to improve an accuracy in a case of having a limited number of experiments is introduced, and the probability of freezing is calculated for each degree of supercooling. The average freezing temperature for the experiment is placed just at the extended region of the other researchers results worked on small droplets. By relating the value with the probability of freezing on various kinds of heat transfer surfaces, the probability of freezing which is independent of the surface is calculated. In this paper it is confirmed to be negligible compared with the one on the surface

  4. Fingering patterns during droplet impact on heated surfaces.

    Science.gov (United States)

    Khavari, Mohammad; Sun, Chao; Lohse, Detlef; Tran, Tuan

    2015-05-07

    A droplet impinging on a sufficiently heated surface may be cushioned by its own vapor and never touch the surface. In previous work, the transition to this so-called Leidenfrost regime was only qualitatively described as an abrupt change between the "contact-boiling" regime, which is characterized by violent boiling behaviors, and the Leidenfrost state. We reveal that the wetted area can be used as a quantity that quantitatively characterizes this transition and it is a continuous function of surface temperature up to the Leidenfrost regime. The wetted area exhibits fingering patterns caused by vapor flow under the liquid. This underlines the crucial role of vapor transport in the Leidenfrost transition and unveils the physical mechanism of the transition to the Leidenfrost regime.

  5. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  6. Optical and Infrared Variability of UX Ori-Type Stars

    Science.gov (United States)

    Rostopchina-Shakhovskaya, A.; Grinin, V.; Shenavrin, V.; Shakhovskoy, D.; Demidova, T.; Belan, S.

    2017-06-01

    Analyzing data of the long-term simultaneous NIR and optical photometry of five UX Ori type stars we estimate intrinsic NIR luminosity of their circumstellar disks in I, J, H bands. The H to J flux ratio for WW Vul, CQ Tau, RR Tau, UX Ori is consistent with 1500 K blackbody radiation, a typical temperature of dust sublimation. For the same stars except RR Tau, J to I flux ratio suggests much hotter source with T>2000 K, probably the inner dust-free disk. In case of RR Tau this value is close to 1500 K, implying sublimating dust as a main contributor in all three bands. The SED for BF Ori differs from the rest of objects, with flux density peaking in J band, probably due to an unresolved cool companion.

  7. Heat capacity mapping mission. [satellite for earth surface temperature measurement

    Science.gov (United States)

    Price, J. C.

    1978-01-01

    A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

  8. Optical spectra of UX Ari with BOOTES-2

    Science.gov (United States)

    Caballero-Garcia, M. D.; Castro-Tirado, A.; Jelinek, M.

    2014-07-01

    Following the detection and subsequent monitoring of the new outburst from the RS CVn UX Ari by SWIFT and MAXI (ATEL#5907, #6315 , #6319 ), the 0.6m TELMA robotic telescope at the BOOTES-2 astronomical station Malaga (Spain), obtained optical 4000-9000 A spectra starting at 2014-07-19, 01:32:24.382 UT and ending at 04:25:55.652 UT.

  9. A Textual Feedback Tool for Empowering Participants in Usability and UX Evaluations

    DEFF Research Database (Denmark)

    Sivaji, Ashok; Clemmensen, Torkil; Nielsen, Søren Feodor

    2017-01-01

    The usability movement has historically always sought to empower end-users of computers, so that they understand what is happening and can control the outcome. In this paper, we develop and evaluate a ‘Textual feedback’ tool for usability and UX evaluation that can be used to empower well......-educated, but low-status, users in UX evaluations in countries and contexts with high power distances. The proposed tool contributes to the HCI community’s pool of localized UX evaluation tools. We evaluate the tool with 40 users from two socio-economic groups in real-life UX usability evaluations setting...... in Malaysia. The results indicate that the Textual Feedback tool may help participants to give their thoughts in UX evaluation in high power distance contexts. In particular, the Textual Feedback tool helps high status females and low status males express more UX problems than they can do with traditional CTA...

  10. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  11. Ground surface temperature and continental heat gain: uncertainties from underground

    International Nuclear Information System (INIS)

    Beltrami, Hugo; Matharoo, Gurpreet S; Smerdon, Jason E

    2015-01-01

    Temperature changes at the Earth's surface propagate and are recorded underground as perturbations to the equilibrium thermal regime associated with the heat flow from the Earth's interior. Borehole climatology is concerned with the analysis and interpretation of these downward propagating subsurface temperature anomalies in terms of surface climate. Proper determination of the steady-state geothermal regime is therefore crucial because it is the reference against which climate-induced subsurface temperature anomalies are estimated. Here, we examine the effects of data noise on the determination of the steady-state geothermal regime of the subsurface and the subsequent impact on estimates of ground surface temperature (GST) history and heat gain. We carry out a series of Monte Carlo experiments using 1000 Gaussian noise realizations and depth sections of 100 and 200 m as for steady-state estimates depth intervals, as well as a range of data sampling intervals from 10 m to 0.02 m. Results indicate that typical uncertainties for 50 year averages are on the order of ±0.02 K for the most recent 100 year period. These uncertainties grow with decreasing sampling intervals, reaching about ±0.1 K for a 10 m sampling interval under identical conditions and target period. Uncertainties increase for progressively older periods, reaching ±0.3 K at 500 years before present for a 10 m sampling interval. The uncertainties in reconstructed GST histories for the Northern Hemisphere for the most recent 50 year period can reach a maximum of ±0.5 K in some areas. We suggest that continuous logging should be the preferred approach when measuring geothermal data for climate reconstructions, and that for those using the International Heat Flow Commission database for borehole climatology, the steady-state thermal conditions should be estimated from boreholes as deep as possible and using a large fitting depth range (∼100 m). (letter)

  12. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  13. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall

    Science.gov (United States)

    Misyura, S. Y.

    2017-08-01

    Water evaporation in a wide range of droplet diameters and wall temperatures on the structured and smooth surfaces were studied experimentally. Linear dependence of evaporation rate (dV/dt) on a droplet radius varies when the volume is greater than 40-60 μl. The static contact angles on the structured surface vary with a droplet diameter for high wall superheating. Dependence of the contact angle on diameter for the corrugated surface is defined by a change in both potential energy barrier U and three-phase contact line tension τcl. This energy barrier for the structured wall changes with an increase in the initial droplet diameter and becomes constant for the large droplets. For high wall superheating, the power in the law of evaporation increases from 1 to 1.45 with an increase in the initial droplet diameter. Depending on the droplet radius, number of droplets and heater length, four different characters of evaporation are realized. Complete droplet evaporation time on structured surface is less than smooth wall. Heat transfer coefficient is greater for structured wall than smooth one. When simulating droplet evaporation and heat transfer, it is necessary to take into account free convection of air and vapor.

  14. Satellite Based Analysis of Surface Urban Heat Island Intensity

    Directory of Open Access Journals (Sweden)

    Gémes Orsolya

    2016-06-01

    Full Text Available The most obvious characteristics of urban climate are higher air and surface temperatures compared to rural areas and large spatial variation of meteorological parameters within the city. This research examines the long term and seasonal development of urban surface temperature using satellite data during a period of 30 years and within a year. The medium resolution Landsat data were (preprocessed using open source tools. Besides the analysis of the long term and seasonal changes in land surface temperature within a city, also its relationship with changes in the vegetation cover was investigated. Different urban districts and local climate zones showed varying strength of correlation. The temperature difference between urban surfaces and surroundings is defined as surface urban heat island (SUHI. Its development shows remarkable seasonal and spatial anomalies. The satellite images can be applied to visualize and analyze the SUHI, although they were not collected at midday and early afternoon, when the phenomenon is normally at its maximum. The applied methodology is based on free data and software and requires minimal user interaction. Using the results new urban developments (new built up and green areas can be planned, that help mitigate the negative effects of urban climate.

  15. Origin of spray formation during impact on heated surfaces.

    Science.gov (United States)

    van Limbeek, Michiel A J; Hoefnagels, Paul B J; Sun, Chao; Lohse, Detlef

    2017-10-25

    In many applications, it is crucial to control the heat transfer rate of impacting drops on a heated plate. When the solid exceeds the so-called Leidenfrost temperature, an impacting drop is prevented from contacting the plate by its own evaporation. But the decrease in the resulting cooling efficiency of the impacting drop is yet not quantitatively understood. Here, we experimentally study the impact of such water drops on smooth heated surfaces of various substances. We demonstrate that, in contrast to previous results for other liquids, water exhibits spray in the vertical direction when impacting sapphire and silicon. We show that this typical spray formation during impact is a result of the local cooling of the plate. This is surprising since these two materials were considered to remain isothermal during the impact of mm-sized droplets. We conclude and explain that the thermal time scale of the system is not solely determined by the thermal properties of the solid, but also by those of the liquid. We also introduce a dimensionless number comparing the thermal time scale and the dynamic time scale with which we can predict the spraying behaviour at impact.

  16. Surface Modification and Heat Generation of FePt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Da-Hua Wei

    2017-02-01

    Full Text Available The chemical reduction of ferric acetylacetonate (Fe(acac3 and platinum acetylacetonate (Pt(acac2 using the polyol solvent of phenyl ether as an agent as well as an effective surfactant has successfully yielded monodispersive FePt nanoparticles (NPs with a hydrophobic ligand and a size of approximately 3.8 nm. The present FePt NPs synthesized using oleic acid and oleylamine as the stabilizers under identical conditions were achieved with a simple method. The surface modification of FePt NPs by using mercaptoacetic acid (thiol as a phase transfer reagent through ligand exchange turned the NPs hydrophilic, and the FePt NPs were water-dispersible. The hydrophilic NPs indicated slight agglomeration which was observed by transmission electron microscopy images. The thiol functional group bond to the FePt atoms of the surface was confirmed by Fourier transform infrared spectroscopy (FTIR spectra. The water-dispersible FePt NPs employed as a heating agent could reach the requirement of biocompatibility and produce a sufficient heat response of 45 °C for magnetically induced hyperthermia in tumor treatment fields.

  17. Radiant heat evaluation of concrete: a study of the erosion of concrete due to surface heating

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.Y.

    1978-01-01

    Experiments were carried out to investigate the erosion of concrete under high surface heat flux in connection with the core-melt/concrete interaction studies. The dominate erosion mechanism was found to be melting at the surface accompanied by chemical decomposition of the concrete beneath the melt-solid interface. The erosion process reaches a steady state after an initial transient. The steady state is characterized by an essentially constant erosion rate at the surface and a nonvarying (with respect to the moving melt interface) temperature distribution within the concrete. For the range of incident heat flux 64 W/cm/sup 2/ to 118 W/cm/sup 2/, the corresponding steady state erosion rate varies from approximately 8 cm/hr to 23 cm/hr. A simple ablation/melting model is proposed for the erosion process. The model was found to be able to correlate all temperature responses at various depths from all tests at large times and for temperatures above approximately 250/sup 0/C.

  18. Heat transfer characteristics in closed-loop spray cooling of micro-structured surfaces

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Zhaoliang; Xu Minghai

    2012-01-01

    With water as the working fluid, experiments on the heat transfer characteristics of spray cooling of micro-structured surfaces were performed in a closed loop system. Experimental data were analyzed in the view of the ratio between convective heat transfer and phase change heat transfer. The results indicate that heat transfer is obviously enhanced for micro-channel surfaces relative to the flat surface because of higher phase change heat transfer. For the geometries tested at lower surface temperature, the straight finned surface has the largest heat flux; while at higher surface temperature, the cubic pin finned surface has the largest heat flux. Heat fluxes of all the surfaces grow with increasing flow rates, except for the straight finned surface under lower surface temperature. The ratio of phase change to total heat transfer is bigger than 20% for the flat surface, and higher than 50% for micro-structured surface. Critical heat fluxes of 159.1 W/cm 2 , 120.2 W/cm 2 , and 109.8 W/cm 2 are attained respectively for cubic pin finned, straight finned and flat surfaces when the flow rate is 15.9 mL/min, and the corresponding evaporation efficiency are 96.0%, 72.5%, 67.1%. (authors)

  19. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  20. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  1. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  2. Observation of contact area of bubbles with heating surface in pool boiling of water under microgravity

    International Nuclear Information System (INIS)

    Suzuki, K.; Kawamura, H.; Suzuki, M.; Takahashi, S.; Abe, Y.

    2003-01-01

    Burnout heat flux was measured in subcooled pool boiling of water under attached boiling bubbles on heating surface with bubble holding plate in ground experiment. A thin stainless flat plate was employed for heating surface. The experimental setup and the heating procedures were same as used in reduced gravity experiment performed by a parabolic flight of jet aircraft. Same burnout heat flux as in the reduced gravity was obtained by adjusting the clearance between the bubble holder and the heating surface. They were 100 ∝ 400 percent higher than the widely accepted existing theories. As extending heating time longer than the reduced gravity duration until burnout occurred, burnout heat flux decreased gradually and became a constant value calculated from the existing theories. In a result of observing contact area of boiling bubbles with transparent heating surface, the contact area was smaller in quick heating time than that in long time heating at same heat flux. The experimental results suggest in microgravity that liquid layer is remained between rapidly expanded bubbles and heating surface. In microgravity experiment by a drop shaft facility, contact area of bubbles with heating surface increased considerably at starting of microgravity. (orig.)

  3. Three-Component Model of Spottedness in the Classical RS CVn System UX Ari

    Science.gov (United States)

    Alekseev, I. Yu.

    2014-09-01

    It is shown that the hypothesis of a complex (cold spots and hot flares) structure for the active regions on UX Ari reproduces well the photometric behavior of the star. According to the model the spots are colder than the quiescent atmosphere at 1300 K, while the flares are hotter than the photosphere at 750 K. These estimates are in good agreement with Doppler mapping of the star, with calculations of its photometric behavior, and with observations of OH molecular bands. The effective area of the spotted regions approaches half the total surface of the star. Our estimates show that the flares form about a third of the spotted area. The time variation in the star's brightness and in the effective area of the spots is probably cyclical with a characteristic time of 8-9 years. The switching of the active latitudes shows no obvious cyclicity.

  4. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    Science.gov (United States)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  5. Data of evolutionary structure change: 2UXML-2UX4M [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 2UXML-2UX4M 2UXM 2UX4 L M -----ALLSFE--------------RKYRVPGG--TLVG...ment> 0 2UXM L 2UXML...ndex> 2UXM L 2UXML Y...> 2UXM L 2UXML AANPEKGKEMRTPDHL 2UXML TIWFDQWVDWWQWWV

  6. Multi-unmanned vehicle systems (nUxV) at Defence R&D Canada

    Science.gov (United States)

    Verret, Sean R.; Monckton, Simon

    2006-05-01

    No single UxV is perfectly suited to all task assignments. A homogeneous UxV team, for example, a troop of identical UGVs, brings redundancy and reliability to a specific class of tasks. Heterogeneous UxV teams, for example, a troop of UGVs, a flight of low flying rotorcraft, and a high flying UAV, provide increased capability. They can tackle multiple tasks simultaneously through cooperative decision making, distributed task allocation, and collective mapping. Together, they can convoy payloads, provide communications, observe targets, shield troops, and, ultimately, deliver munitions. nUxVs have the potential to share, learn, and adapt information between like platforms and across platform types, to produce expanded capability and greater reliability. Current research exploits simple vehicle state exchange, communications relay and formation keeping. Our near-term research areas include map sharing and integration, task coordination, and heterogeneous nUxV teaming. Future research will address military nUxV C2; nUxV capability definition and understanding; behaviour-based and reactive nUxVs, emergence and stigmergy; and collaboration and interaction between human-robot teams.

  7. The Prevalence of UX Design in Agile Development Processes in Industry

    DEFF Research Database (Denmark)

    Øvad, Tina; Larsen, Lars Bo

    2015-01-01

    formalized UX processes. They also allocated more resources to conduct UX and usability work than earlier. We found that all of the companies made use of low-fi prototyping, followed by usability testing, workshops, personas, expert evaluations, user or customer journeys, customer visits and user task...

  8. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  9. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2017-11-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  10. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  11. Rossiter-mclaughlin effect in emission from UX Ori stars

    Science.gov (United States)

    Grinin, V. P.; Potravnov, I. S.

    2013-03-01

    The possibility of detecting changes in the radial velocities of UX Ori stars during eclipses by circumstellar dust clouds is examined. Calculations show that, despite the large sizes of the clouds, this effect may actually be observable and, perhaps, has already been observed during spectral studies of stars of this kind. Monitoring of events of this kind can provide important information about the motion of matter in close proximity to young stars, as well as about the structure of gas-dust clouds shielding a star.

  12. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  13. KQ Mon and the nature of the UX Ursa Majoris Nova-like variables

    Science.gov (United States)

    Sion, E. M.; Guinan, E. F.

    1983-01-01

    The UX Ursa Majoris stars form a group of nova-like variables with common photometric and spectroscopic properties. These objects appear to be related to the cataclysmic variables. However, there is no information that they have undergone major outbursts. The present investigation is concerned with a new object, KQ Mon, which has been included in a program of study conducted with the IUE satellite. A description of observations of KQ Mon is presented, and the relationship of this star to other UX UMa stars is examined. Attention is given to the nature of the UX Ursa Majoris stars. It is argued that the accretion rates of the UX UMa stars are higher than, for example, the dwarf novae during quiescence and that the higher accretion rates of the UX UMa stars are responsible for their lack of major outbursts.

  14. On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces

    Science.gov (United States)

    Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.

    2011-01-01

    Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…

  15. Alternative heat transfer surfaces for AGR fuel pins

    International Nuclear Information System (INIS)

    Wilkie, D.

    1983-01-01

    Advanced gas-cooled reactors employing stainless-steel clad fuel pins must be economical in the use of steel to avoid incurring crippling penalties arising from neutron absorption. Any means of enhancing heat transfer by altering the surface of the pin by the adoption of projections necessitates that these projections are of low height relative to the equivalent diameter of the surrounding passage. This rules out the use of extended surfaces in the form of large fins, which in any case would be ruled out on thermal efficiency grounds owing to the large temperature drop down the poorly conducting steel but it does not rule out the use of many fins of low height. Longitudinal fins of low height for which results have been obtained for single pins tested in smooth circular channels and multi-start ribs for which single-pin and cluster results are available, are considered. The advantages and disadvantages of these and other ideas are considered in relation to the Advanced Gas-cooled Reactor. (author)

  16. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  17. The UX Moment: A Weave Digital Panel, Part Two

    Directory of Open Access Journals (Sweden)

    Pete Coco

    2015-01-01

    Full Text Available In mid-January 2015, Weave reached out to a number of librarians who are doing user experience work with the hope of instigating and documenting the conversation they might have with one another. Coming from not only academic and public libraries, but also library and information science degree programs, the assembled group of professionals is doing and thinking about library user experience in a broad set of contexts and by a variety of means. The conversation that resulted reflects that broad range of experience. Some librarians are working inside user experience departments, where others must find a way to do UX amidst other duties (duties which also vary. Some work in job descriptions emphasizing web development, others focus on visual design and architecture and still others work primarily as ethnographers of library users. If this feature is itself a modest documenting of what library user experience can look like—at least in 2015 and in these nine different institutions—then library user experience is itself quite a large number of things. The conversation below unfolded over email between Tuesday, January 20 and Friday, January 23, 2015. Because of the length of the conversation and the range of topics it covers, the editors have decided to run it in two segments. UX,

  18. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Directory of Open Access Journals (Sweden)

    Andrzejczyk Rafał

    2016-12-01

    Full Text Available The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  19. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  20. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  1. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction.

    Science.gov (United States)

    Lee, Haw-Long; Chen, Wen-Lih; Chang, Win-Jin; Yang, Yu-Ching

    2015-01-01

    In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.

  2. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  3. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  4. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  5. Integrating User eXperience practices into software development processes: implications of the UX characteristics

    Directory of Open Access Journals (Sweden)

    Pariya Kashfi

    2017-10-01

    Full Text Available User eXperience (UX is a key factor in the success of software systems. Many software companies face challenges in their work with UX. Existing research does not analyze UX practices and challenges in relation to other software quality characteristics or, in particular, in relation to usability. A better understanding of these challenges can help researchers and practitioners better address them in the future. In this empirical study, we have interviewed 17 practitioners with different backgrounds and occupations from eight software development companies. Their responses are coded, and analyzed with thematic analysis. We report eight themes of challenges that practitioners face in their work with UX. While some of these challenges partly overlap with those reported in existing literature about usability or other software quality characteristics, the participants of our study either view many of the challenges as unique to UX, or more severe in the case of UX. Although at a superficial level challenges of UX and other quality characteristics overlap, we differentiate these challenges at a deeper level through the five main characteristics of UX: subjective, holistic, dynamic, context-dependent and worthwhile. In particular, we identified that these characteristics have at least 20 implications (i.e. additional difficulties for day-to-day work of practitioners. We found that 11 of these implications have been previously reported in literature. However, to the best of our knowledge, the remaining nine implications are unique to our study. These implications can explain why practitioners perceive the challenges to be more severe than for other quality characteristics. Most importantly, they can explain the industry’s lopsided focus on the pragmatic aspect of UX. Our findings can be useful for researchers in identifying new and industry-relevant research areas and for practitioners to learn from empirically investigated challenges in UX work, and

  6. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  7. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    Fry, C.J.

    1985-08-01

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  8. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  9. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    Science.gov (United States)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  10. Heat transfer tests under forced convection conditions with high wettable heater surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitsutake, Toru; Morooka, Shin-ichi; Miura, Shigeru; Akiba, Miyuki; Sato, Hisaki; Shirakawa, Ken-etsu; Oosato, Tetsuo; Yamamoto, Seiji [Toshiba Co., Kanagawa (Japan)

    2002-07-01

    Under forced convection and atmospheric pressure conditions, heat transfer tests were performed using the annulus channel of a heater rod with highly wettable surface. Improvement of boiling heat transfer requires that the cooling liquid can contact the heating surface, or a high-wettability heating surface, even if a vapor bubble layer is generated on the surface. >From this point of view, high-wettable heating surface was studied. As oxide semiconductor-coated materials are highly-wettable, we made a TiO{sub 2} coated heater rod. TiO{sub 2} coated surface has a high-wettability, in terms of contact angle and Leidenfrost temperature. The boiling curve was measured with and without TiO coated surface. The results showed difference between with and without TiO{sub 2} coating. TiO{sub 2} coating rod showed lower boiling onset heat flux, wider nucleate boiling region and higher critical heat flux than without coating. In summary, high wettablity heater surface produced higher boiling heat transfer characteristics under forced convection conditions. (author)

  11. Selecting the induction heating for normalization of deposited surfaces of cylindrical parts

    Directory of Open Access Journals (Sweden)

    Олена Валеріївна Бережна

    2017-07-01

    Full Text Available The machine parts recovered by electric contact surfacing with metal strip are characterized by high loading of the surface layer, which has a significant impact on their performance. Therefore, the improvement of the operational stability of fast-wearing machine parts through the use of combined treatment technologies is required. Not all the work-piece but just the worn zones are subjected to recovery with electric contact surfacing; the tape thickness and depth of the heat affected zone being not more than a few millimeters. Therefore, the most optimal in this case is the use of a local surface heating method of high frequency currents. This method has economical benefits because there is no need to heat the entire work-piece. The induction heating mode at a constant power density has been proposed and analytically investigated. The ratios that make it possible to determine the main heating parameters ensuring calculation of the inductor for the normalization of the reconstructed surface of cylindrical parts have been given. These parameters are: specific power, frequency and warm-up time. The proposed induction heating mode is intermediate between the quenching and cross-cutting heating and makes it possible to simultaneously obtain the required temperatures at the surface and at the predetermined depth of the heated layer of cylindrical parts with the normalization of their surfaces restored with electric contact surfacing

  12. Instantaneous heat flux flowing into ceramic combustion chamber wall surface of low heat rejection engine; Shanetsu engine no ceramic nenshoshitsu hekimen eno shunji netsuryusoku

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Y.; Hagihara, Y. [Musashi Institute of Technology, Tokyo (Japan); Kimura, S. [Nissan Motor Co. Ltd., Tokyo (Japan); Adachi, K. [Daido Hoxan Inc., Sapporo (Japan); Nagano, H. [Riso Kagaku Corp., Tokyo (Japan); Ishii, A. [Mitani Sangyo Co. Ltd., Tokyo (Japan)

    1998-08-25

    To evaluate the effectiveness of low heat rejection engine under heat loss condition, instantaneous heat fluxes flowing into ceramic piston surface and aluminum alloy (Loex) piston surface using thin film thermocouple were measured, and both were compared. As a result, in the working stroke, the instantaneous heat flux flowing into ceramic piston surface was larger than the instantaneous heat flux flowing into Loex piston surface. Accordingly, it became clear that reduction of heat loss was not effected when ceramics that thermal conductivity is small was used for combustion chamber wall. 21 refs., 14 figs.

  13. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  14. Injection molding of nanopatterned surfaces in the sub-micrometer range with induction heating aid

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    Replication of sub-micrometer structures by injection molding leads to special requirements for the mold in order to ensure proper replica and acceptable cycle time. This paper investigates the applicability of induction heating embedded into the mold for the improvement of nanopattern replication...... as materials, and heating parameters were investigated after a preliminary optimization with standard heating conditions. The replicated surfaces were quantitatively characterized by atomic force microscopy using specific three-dimensional surface amplitude parameters and qualitatively inspected by scanning...

  15. Scaling of Calcium Carbonate at Heated Surfaces in a Continuous System

    OpenAIRE

    Nergaard, Margrethe

    2011-01-01

    Scaling is the precipitation of a mineral layer on a surface. Sparingly soluble salts with inverse solubility, which calcium carbonate exhibits, will prefer precipitation at heated surfaces, making heat exchangers a target for scale formation. A continuous setup was used to study scale formation, the nature of the scale formed and scaling rate. An internally heated U-shaped tube was inserted into a continuously stirred tank, giving the same conditions for all scaling points. The experimental ...

  16. Ultraviolet and radio flares from UX Arietis and HR 1099

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.

    1988-01-01

    Simultaneous observations of the RS CVn systems UX Ari and HR 1099 with the IUE satellite and the VLA are presented. Flaring activity is observed at ultraviolet wavelengths with the IUE when none is detected at radio wavelengths with the VLA. Radio flares with no detectable ultraviolet activity have also been observed. Thus, flares in the two spectral regions are either uncorrelated or weakly correlated. The flaring emission probably originates in different regions at the two wavelengths. Radio flares from RS CVn stars may originate in sources that are larger than, or comparable to, a star in size. This is in sharp contrast to compact, coherent radio flares from dwarf M stars. The ultraviolet flares from RS CVn stars probably originate in sources that are smaller than a component star.

  17. Swift/BAT detects an outburst from UX Ari

    Science.gov (United States)

    Krimm, H. A.; Barthelmy, S. D.; Baumgartner, W.; Cummings, J.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T.

    2014-02-01

    The RS Canum Venaticorum type variable star UX Ari is currently in outburst as detected in the Swift/BAT hard X-ray transient monitor in the 15-50 keV band. The current outburst began on 2014 February 14 (MJD 56702) when it had a count rate of 0.004 +/- 0.002 ct/s/cm^2 (~20 mCrab). It continued to brighten, reaching a rate of 0.013 +/- 0.003 ct/s/cm^2 (~60 mCrab) on 2014 February 17. It has since faded somewhat, with a rate of 0.005 +/- 0.002 ct/s/cm^2 (~20 mCrab) on 2014 February 19.

  18. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  19. Origin of spray formation during impact on heated surfaces

    NARCIS (Netherlands)

    Van Limbeek, Michiel A.J.; Hoefnagels, Paul B.J.; Sun, Chao; Lohse, Detlef

    2017-01-01

    In many applications, it is crucial to control the heat transfer rate of impacting drops on a heated plate. When the solid exceeds the so-called Leidenfrost temperature, an impacting drop is prevented from contacting the plate by its own evaporation. But the decrease in the resulting cooling

  20. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  1. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  2. Competing effects of surface albedo and orographic elevated heating on regional climate

    Science.gov (United States)

    Hu, Shineng; Boos, William R.

    2017-07-01

    All else being equal, a given atmospheric pressure level is thought to be warmer over a plateau than over surrounding nonelevated terrain because of orographic "elevated heating." However, elevated surfaces are also typically brighter due to reduced vegetation and increased ice cover. Here we assess the degree to which surface albedo compensates for orographic elevated heating. We confirm that land surface albedo generally increases with surface elevation in observations. Using a cloud system-resolving model, we show that increased surface albedo strongly compensates for orographic elevated heating in radiative-convective equilibrium. A nonelevated surface with the albedo of modern India would enter a runaway greenhouse regime without ventilation by monsoonal winds, while a surface with the albedo and elevation of Tibet would achieve a cooler radiative-convective equilibrium. Surface albedo changes may thus be just as important as surface elevation changes for the evolution of low-latitude regional climate throughout Earth's history.

  3. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  4. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. INVESTIGATION OF SOLAR ABSORPTANCE OF BUILDING EXTERNAL SURFACES FROM HEAT FLUX POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Meral ÖZEL

    2006-02-01

    Full Text Available In this study, solar absorptance of external surfaces of buildings has been numerically investigated from the heat gain and losses point of view. For this purpose, external surface solar absorptance was icreased from 0 to 1with an ratio of 0.1 and, for the summer and winter conditions, heat fluxs was calculated by considering orientations of the wall and its roof for brick and concrete structure materials. Besides, external surface absorptance was assumed as 0.2, 0.5 and 0.9, respectively. Than, heat gain and losses were calculated to insulation thickness increasing on the outdoor surface of wall. Results obtained were presented as graphics

  6. Surface chemical composition analysis of heat-treated bamboo

    International Nuclear Information System (INIS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-01-01

    Highlights: • Investigate the detailed chemical components contents change of bamboo due to heating. • Chemical analysis of bamboo main components during heating. • Identify the connection between the oxygen to carbon atomic ratio changes and chemical degradation. - Abstract: In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  7. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  8. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  9. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  10. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.

    Science.gov (United States)

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer.

  11. Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies

    Science.gov (United States)

    Dejarnette, F. R.; Kania, L. A.; Chitty, A.

    1983-01-01

    A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.

  12. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  13. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    International Nuclear Information System (INIS)

    Hong, Soon-Joon; Choo, Yeon-Jun; Ha, Sang-Jun

    2016-01-01

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect

  14. Heat and fluid flow in microscale from micro and nano structured surfaces

    OpenAIRE

    İzci, Türker; Izci, Turker

    2012-01-01

    The use of enhanced surfaces became one of the most popular studies in order to increase heat transfer performances of microsystems. There are various techniques/processes applied to surfaces to enhance excess heat removal from microsystems. In parallel to these research efforts, various micro and nano structured surfaces were evaluated in channel flow, jet impingement and pool boiling applications. In the first study, single micro pin-fins having the same chord thickness/diameter but differe...

  15. Surface heat transfer in a channel with porous insert

    Science.gov (United States)

    Gortyshov, Yu. F.

    1993-05-01

    One of the possible ways of the effective intensification is the realization of heat carrier flows in porous structures. For this purpose inserts are placed in moving heat carrier channels. Despite a large number of publications, net-like, fibrous, brush, caked and powder structures of low and mean porosity (epsilon less than or equal to 0.6) are studied. Application of high-porous permeable honeycomb materials (HPHM) shows, that among the the well-known porous materials possessing maximal permeability (penetrability factors are 10(exp -8) ...10(exp -9) sq m). HPHM's have a characteristic three-dimensional net-like honeycomb structure with high repeatability of cells. All the frame substance is concentrated in stripping ribs, which bound each separate cell. In coolant flowing in the channel with porous insert the transfer of energy from the heated wall into the channel interior originates at the expense of the frame material heat conduction and lateral conduction and lateral convective mixing of flow. In this paper we present the results of analytical and experimental heat transfer investigation at forced heat carrier, flowing in the channel that is filled-in by porous HPHM medium.

  16. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  17. Surface renewal model for heat transfer calculation between a porous solid wall and an internally heated bubbling pool

    International Nuclear Information System (INIS)

    Tourniaire, B.

    2005-01-01

    Full text of publication follows: This work has been performed in the frame of the study of severe accident of LWR involving core meltdown and failure of the reactor vessel with molten corium relocation in the reactor pit. One of the main issue in nuclear safety is the estimation of the time when the reactor cavity may fail due to the erosion of the basemat since it would lead to the contamination of the groundwater. The calculation of the basemat erosion velocity requires the knowledge of the heat transfer between the corium pool and the concrete. Due to the gas release (mainly CO 2 and H 2 O) resulting from the concrete erosion, two-phase flow heat transfers occur during molten core concrete interaction (MCCI). Two-phase flow heat transfer between a porous horizontal wall and an internally heated bubbling pool has been already extensively investigated on the experimental side by several authors (Kutateladze and Malenkov, Duignan et al, Bonnet et al, Bilbao y Leon et al). The effect of various parameters such as the physical properties of the fluid or the pool aspect ratio has been studied so that many experimental data are available. From dimensional analysis (Kutateladze-Malenkov, Bonnet et al) or theoretical approach (Konsetov) and from these experimental data, heat transfer correlations have been proposed based on usual non-dimensional groups as Nu, Pr, Ra, etc. Today, the most widely used correlation in MCCI study are those proposed by Konsetov and by Kutateladze and Malenkov. Comparisons of the results of these correlations with available experimental data show that not all tendencies are well reproduced. The main purpose of this paper is to present an alternative heat transfer correlation that can be used in MCCI study. This correlation has been proposed by Deckwer in the frame of the study of heat transfer in bubble column reactors dedicated to chemical engineering. This correlation has been deduced from a theoretical analysis based on a surface renewal

  18. Multi Function Heat Pulse Probes (MFHPP) to Estimate Ground Heat Flux and Reduce Surface Energy Budget Errors

    Science.gov (United States)

    Ciocca, Francesco; Sharma, Varun; Lunati, Ivan; Parlange, Marc B.

    2013-04-01

    Ground heat flux plays a crucial role in surface energy budget: an incorrect estimation of energy storage and heat fluxes in soils occur when probes such as heat flux plates are adopted, and these mistakes can account for up to 90% of the residual variance (Higgins, GRL, 2012). A promising alternative to heat flux plates is represented by Multi Function Heat Pulse Probes (MFHPP). They have proven to be accurate in thermal properties and heat fluxes estimation (e.g. Cobos, VZJ, 2003) and can be used to monitor and quantify subsurface evaporation in field experiments (Xiao et al., VZJ, 2011). We perform a laboratory experiment with controlled temperature in a small Plexiglas column (20cm diameter and 40cm height). The column is packed with homogeneously saturated sandy soil and equipped with three MFHPPs in the upper 4cm and thermocouples and dielectric soil moisture probes deeper. This configuration allows for accurate and simultaneous ground heat flux, soil moisture and subsurface evaporation measurements. Total evaporation is monitored using a precision scale, while an infrared gun and a long wave radiometer measure the soil skin temperature and the outgoing long-short wave radiation, respectively. A fan and a heat lamp placed above the column allow to mimick on a smaller and more controlled scale the field conditions induced by the diurnal cycle. At a reference height above the column relative humidity, wind speed and air temperature are collected. Results are interpreted by means of numerical simulations performed with an ad-hoc-developed numerical model that simulates coupled heat and moisture transfer in soils and is used to match and interpolate the temperature and soil moisture values got at finite depths within the column. Ground heat fluxes are then estimated by integrating over almost continuous, numerically simulated temperature profiles, which avoids errors due to use of discrete data (Lunati et al., WRR, 2012) and leads to a more reliable estimate of

  19. Effects of heat treatments on surface roughness of silicon nitride ceramics

    International Nuclear Information System (INIS)

    Nakano, T.; Kinemuchi, Y.; Ishizaki, K.

    1999-01-01

    Silicon nitride ceramics were sintered by Pulsed Electric Current Sintering (PECS) method. Sintered Si 3 N 4 bodies were coated by copper, and heat treated at 1200 deg C for 1 hour in air. After the Cu coating and heat treatment, the ground Si 3 N 4 surface was oxidized, its duration was calculated from intensities obtained by an Electron Probe Micro Analyzer. The oxidized surfaces became smoother by heat treatment as the Cu coating period increases. The oxidation for smoothening treatments of silicon nitride ceramics requires the eutectic mixture of copper oxide and silicon oxide formed by the heat treatment on the ground surface covered by Cu before the treatment. Less nitrogen atoms on the Si 3 N 4 surface is necessary in order to smoothen the Si 3 N 4 surface. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  20. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  1. Fluid flow and heat transfer on a falling liquid film with surfactant from a heated vertical surface

    International Nuclear Information System (INIS)

    Kang, B. H.; Kim, K. H.; Lee, D. Y.

    2007-01-01

    The addition of surface active agent to a falling liquid film affects the flow characteristics of the falling film. In this study, the flow and heat transfer characteristics for a falling liquid film have been investigated by addition of the surfactant. The falling liquid film was formed on a vertical flat plate. Contact angle of a liquid droplet above a plate surface can be substantially reduced with an increase in the surfactant concentration. The results obtained indicate that not only the wetted area of falling liquid film is increased but also the film thickness is decreased as the surfactant concentration is increased. It is also found that heat transfer rate is significantly increased while the heat transfer coefficient is almost constant value with an increase in the surfactant concentration at a given mass flow rate

  2. Turbulent heat transfer on a permeable surface in the range of supercritical gas injections

    International Nuclear Information System (INIS)

    Kichatov, B.V.; Polyaev, V.M.

    1997-01-01

    Gas injection in a permeable surface is used as one of the most perspective ways of thermal protection. Forcing back of the boundary layer from the surface takes place by injection, whereby the friction coefficients and heat exchange are decreased. By certain injection parameter, which is called critical, there takes place the complete forcing back of the boundary layer from the surface. However the process of friction and heat exchange degeneration proceeds nonuniformly. This article is devoted to explanation of the above notice. Analysis of the problem is based on the limiting relative law of heat exchange and friction for a turbulent boundary layer

  3. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate...... the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  4. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these DAE systems. Experimental verification has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  5. IDENTIFYING THE LOCAL SURFACE URBAN HEAT ISLAND THROUGH THE MORPHOLOGY OF THE LAND SURFACE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-06-01

    Full Text Available Current characterization of the Land Surface Temperature (LST at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1 it extends the understanding of the SUHI to the local scale, and (2 the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.

  6. Observations of Near-Surface Heat-Flux and Temperature Profiles Through the Early Evening Transition over Contrasting Surfaces

    Science.gov (United States)

    Jensen, Derek D.; Nadeau, Daniel F.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    Near-surface turbulence data from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program are used to study countergradient heat fluxes through the early evening transition. Two sites, subjected to similar large-scale forcing, but with vastly different surface and sub-surface characteristics, are considered. The Playa site is situated at the interior of a large dry lakebed desert with high sub-surface soil moisture, shallow water table, and devoid of vegetation. The Sagebrush site is located in a desert steppe region with sparse vegetation and little soil moisture. Countergradient sensible heat fluxes are observed during the transition at both sites. The transition process is both site and height dependent. At the Sagebrush site, the countergradient flux at 5 m and below occurs when the sign change of the sensible heat flux precedes the local temperature gradient sign change. For 10 m and above, the countergradient flux occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. At the Playa site, the countergradient flux at all tower levels occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. The phenomenon is explained in terms of the mean temperature and heat-flux evolution. The temperature gradient sign reversal is a top-down process while the flux reversal occurs nearly simultaneously at all heights. The differing countergradient behaviour is primarily due to the different subsurface thermal characteristics at the two sites. The combined high volumetric heat capacity and high thermal conductivity at the Playa site lead to small vertical temperature gradients that affect the relative magnitude of terms in the heat-flux tendency equation. A critical ratio of the gradient production to buoyant production of sensible heat flux is suggested so as to predict the countergradient behaviour.

  7. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...... was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated by detailed...

  8. On the heat transfer of enhancement condensation of vapor over the surface of an axisymmetric cylinder

    International Nuclear Information System (INIS)

    Xiou, W.J.; Ru, Y.A.; Mo, C.S.; Yi, H.S.

    1987-01-01

    The heat transfer of enhancement condensation of the vapor over the surface of an axisymmetric cylinder has been first studied theoretically in this paper. The problems of an axisymmetric cylinder are transformed into plate problems. The effects of some parameters on heat transfer coefficients of the vapor condensation over the surface of an axisymmetric cylinder have been discussed here. The heat transfer of the vapor condensation over an elliptical cylinder and an axisymmetric wing-shape cylinder has compared with the heat transfer of the vapor condensation over a tube surface. The conclusion is that the heat transfer of the vapor condensation over an elliptical cylinder and an axisymmetric wing-shape cylinder is greater than that over tubes

  9. Experimental heat transfer coefficients between a surface and fixed and fluidized beds with PCM

    OpenAIRE

    Izquierdo-Barrientos, María Asunción; Sobrino, Celia; Almendros-Ibáñez, José Antonio

    2015-01-01

    This work presents an experimental study to determine the capacity of a phase change material (PCM) in granular form to be used in fixed and bubbling fluidized beds for thermal energy storage. The experimental measurements are focused on determination of the heat transfer coefficient between a heated surface immersed in the bed and the granular PCM. The flow rate is varied to quantify its influence on the heat transfer coefficient. The PCM used is Rubitherm GR50 with a phase change tem...

  10. Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris

    Science.gov (United States)

    Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.

    2016-02-01

    Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.

  11. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  12. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  13. Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Ahn, Ho Seon [Division of Mechanical System Engineering, Incheon National University, 406-772 (Korea, Republic of); Kim, Joonwon [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-10-15

    Highlights: • Heat transfer performance of a droplet on a modified zirconium surface is evaluated. • Modified (nano/micro-) surfaces enhanced heat transfer rate and Leidenfrost point. • A highly wettable condition of the modified surface contributes the enhancement. • Nano-scaled modification indicates the higher performance of droplet cooling. • Investigation via visualization of the droplet support the heat transfer experimental data. - Abstract: In this study, we observed the behavior of water droplets near the Leidenfrost point (LFP) on zirconium alloy surfaces with anodizing treatment and investigated the droplet cooling performance. The anodized zirconium surface, which consists of bundles of nanotubes (∼10–100 nm) or micro-mountain-like structures, improved the wetting characteristics of the surface. A deionized water droplet (6 μL) was dropped onto test surfaces heated to temperatures ranging from 250 °C to the LFP. The droplet dynamics were investigated through high-speed visualization, and the cooling performance was discussed in terms of the droplet evaporation time. The modified surface provided vigorous, intensive nucleate boiling in comparison with a clean, bare surface. Additionally, we observed that the structured surface had a delayed LFP due to the high wetting condition induced by strong capillary wicking forces on the structured surface.

  14. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  15. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  16. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g.

  17. Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage

    Science.gov (United States)

    Song, Xiangzhou; Yu, Lisan

    2017-05-01

    This study provides an analysis of the Mediterranean Sea surface energy budget using nine surface heat flux climatologies. The ensemble mean estimation shows that the net downward shortwave radiation (192 ± 19 W m-2) is balanced by latent heat flux (-98 ± 10 W m-2), followed by net longwave radiation (-78 ± 13 W m-2) and sensible heat flux (-13 ± 4 W m-2). The resulting net heat budget (Qnet) is 2 ± 12 W m-2 into the ocean, which appears to be warm biased. The annual-mean Qnet should be -5.6 ± 1.6 W m-2 when estimated from the observed net transport through the Strait of Gibraltar. To diagnose the uncertainty in nine Qnet climatologies, we constructed Qnet from the heat budget equation by using historic hydrological observations to determine the heat content changes and advective heat flux. We also used the Qnet from a data-assimilated global ocean state estimation as an additional reference. By comparing with the two reference Qnet estimates, we found that seven products (NCEP 1, NCEP 2, CFSR, ERA-Interim, MERRA, NOCSv2.0, and OAFlux+ISCCP) overestimate Qnet, with magnitude ranging from 6 to 27 W m-2, while two products underestimate Qnet by -6 W m-2 (JRA55) and -14 W m-2 (CORE.2). Together with the previous warm pool work of Song and Yu (2013), we show that CFSR, MERRA, NOCSv2.0, and OAFlux+ISCCP are warm-biased not only in the western Pacific warm pool but also in the Mediterranean Sea, while CORE.2 is cold-biased in both regions. The NCEP 1, 2, and ERA-Interim are cold-biased over the warm pool but warm-biased in the Mediterranean Sea.

  18. Ultra-Compact Heat Rejection System for Fission Surface Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiator panels are the baseline approach for rejecting waste heat from NASA Fission Surface Power (FSP) systems. The required panels are very large, which makes...

  19. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  20. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions

    International Nuclear Information System (INIS)

    Herz, A.; Malayeri, M.R.; Mueller-Steinhagen, H.

    2008-01-01

    The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 μm for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 μm) decreases more rapidly than that of 0.54 μm. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture

  2. Proposal for the award of a contract for the repair work on the endwalls of the UX45 and UX65 caverns

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the repair work on the endwalls of the UX 45 and UX 65 caverns in the LHC tunnel. Following a market survey carried out among 39 firms in ten Member States, a call for tenders (IT-2886/ST/LHC) was sent on 22 January 2001 to seven firms and two consortia, each consisting of three firms, in six Member States. By the closing date, CERN had received four tenders from two firms and two consortia in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with CONRAD ZSCHOKKE (CH), the lowest bidder complying with the technical requirements, for the repair work on the endwalls of the UX 45 and UX 65 caverns for a total amount of 1 734 340 Swiss francs, not subject to revision until 31 December 2002. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CH - 100%.

  3. Novel Technique for the UX15 Cavern Vault Support System

    CERN Document Server

    Rammer, H

    2000-01-01

    The overall LHC project schedule requires the civil engineering work to begin before the final LEP shutdown. The new caverns for the ATLAS experiment will be built in and around the existing underground structures at point 1. In order to make the best possible use of the time available for the LHC civil engineering before the shutdown of LEP, a particular arrangement for the construction of the UX15 cavern vault has been developed. The basic concept of this arrangement consists of the excavation of the cavern top heading and the installation of the concrete vault immediately afterwards, prior to the subsequent bench excavation after LEP shutdown. A temporary support of the dead weight of the concrete roof will be achieved by the suspension of the roof by 38 no. pre-stressed ground anchors of 225 tons capacity each. This support system will work up to the construction of the cavern base slab and walls and the completion of the permanent concrete lining.

  4. UX Ori Variables in the Cluster IC 348

    Science.gov (United States)

    Barsunova, O. Yu.; Grinin, V. P.; Sergeev, S. G.; Semenov, A. O.; Shugarov, S. Yu.

    2015-06-01

    Results are presented from many years of photometric (VRCIC) observations of three variable T Tauri type stars in the cluster IC 348: V712 Per, V719 Per, and V909 Per. All three stars have photometric activity characteristic of UX Ori stars. The activity of V719 Per has increased significantly over the last 10 years: the amplitude of its Algol-like minima has increased by roughly a factor of 4 and has reached three stellar magnitudes in the I band. Periodograms of the light curves do not confirm the periods found previously by other authors on the basis of shorter series of observations. The slope of the color tracks on "color-magnitude" diagrams is used to determine the reddening law for these stars owing to selective absorption by circumstellar dust. Modelling of these parameters by the Mie theory shows that the maximum size amax of the dust particles in the protoplanetary disks of these stars is 1.5-2 times greater than in the interstellar medium. In V712 Per and V909 Per, the bulk of the mass of the dust particles is concentrated near amax, while in V719 Per the average mass of the dust particles is determined by the minimum size of the particles. It should be emphasized that these conclusions rely on an analysis of the optical variability of these stars.

  5. Accretion-disc precession in UX Ursae Majoris

    Science.gov (United States)

    de Miguel, E.; Patterson, J.; Cejudo, D.; Ulowetz, J.; Jones, J. L.; Boardman, J.; Barret, D.; Koff, R.; Stein, W.; Campbell, T.; Vanmunster, T.; Menzies, K.; Slauson, D.; Goff, W.; Roberts, G.; Morelle, E.; Dvorak, S.; Hambsch, F.-J.; Starkey, D.; Collins, D.; Costello, M.; Cook, M. J.; Oksanen, A.; Lemay, D.; Cook, L. M.; Ogmen, Y.; Richmond, M.; Kemp, J.

    2016-04-01

    We report the results of a long campaign of time series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ˜ 1800 h of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V = 13, with slow waves in the light curve and eclipses every 4.72 h. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 ± 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a ±33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies ωorb + N and 2ωorb + N, where ωorb and N are, respectively, the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 yr of previous photometric studies.

  6. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms.

    Science.gov (United States)

    Almatroudi, A; Tahir, S; Hu, H; Chowdhury, D; Gosbell, I B; Jensen, S O; Whiteley, G S; Deva, A K; Glasbey, T; Vickery, K

    2018-02-01

    The importance of biofilms to clinical practice is being increasingly realized. Biofilm tolerance to antibiotics is well described but limited work has been conducted on the efficacy of heat disinfection and sterilization against biofilms. To test the susceptibility of planktonic, hydrated biofilm and dry-surface biofilm forms of Staphylococcus aureus, to dry-heat and wet-heat treatments. S. aureus was grown as both hydrated biofilm and dry-surface biofilm in the CDC biofilm generator. Biofilm was subjected to a range of temperatures in a hot-air oven (dry heat), water bath or autoclave (wet heat). Dry-surface biofilms remained culture positive even when treated with the harshest dry-heat condition of 100°C for 60min. Following autoclaving samples were culture negative but 62-74% of bacteria in dry-surface biofilms remained alive as demonstrated by live/dead staining and confocal microscopy. Dry-surface biofilms subjected to autoclaving at 121°C for up to 30min recovered and released planktonic cells. Recovery did not occur following autoclaving for longer or at 134°C, at least during the time-period tested. Hydrated biofilm recovered following dry-heat treatment up to 100°C for 10min but failed to recover following autoclaving despite the presence of 43-60% live cells as demonstrated by live/dead staining. S. aureus dry-surface biofilms are less susceptible to killing by dry heat and steam autoclaving than hydrated biofilms, which are less susceptible to heat treatment than planktonic suspensions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  8. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    Science.gov (United States)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  9. Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    Science.gov (United States)

    Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.

    2017-08-01

    Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.

  10. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    Science.gov (United States)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes

  11. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa

    Science.gov (United States)

    Dreier, Jürg; Ruggerone, Paolo

    2015-01-01

    Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa. PMID:26217310

  12. Performance Evaluation and Comparison of the Fully Automated Urinalysis Analyzers UX-2000 and Cobas 6500.

    Science.gov (United States)

    Wesarachkitti, Bongkot; Khejonnit, Varanya; Pratumvinit, Busadee; Reesukumal, Kanit; Meepanya, Suriya; Pattanavin, Chanutchaya; Wongkrajang, Preechaya

    2016-05-01

    To evaluate and compare the performances of the automated urinalysis devices UX-2000 and Cobas 6500. A total of 258 urine specimens were collected from the routine specimen workload. We analyzed all specimens on both automated instruments and recorded the turnaround time from each method. Physical, chemical, and sedimentary urine components were compared between the automated and the manual method for each analyzer. The correlation of urine physical/chemical properties between the 2 instruments was excellent. The Cobas 6500 instrument demonstrated a higher level of agreement for red blood cells (Cobas 6500:R= 0.94; UX-2000:R= 0.78) and white blood cells (Cobas 6500:R= 0.95; UX-2000:R= 0.85). The UX-2000 demonstrated higher sensitivity for small round cells, hyaline casts, pathological casts, and bacteria. The median turnaround time was 1.5 minutes and 8.5 minutes for the Cobas 6500 and UX-2000, respectively. The 2 devices showed similar performance in technical evaluation; they each reduce workload and increase time saving. However, manual examination by technicians is recommended for pathological specimens. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The nova-like variable KQ Mon and the nature of the UX Ursa Majoris stars

    Science.gov (United States)

    Sion, E. M.; Guinan, E. F.

    1982-01-01

    The KQ Mon is a UX UMa type nova-like variable discovered by Howard Bond. Optical spectra taken by Bond in 1978 reveal very shallow Balmer absorption lines and He I absorption. Bond also did UBV and high speed photometry in 1978 and early 1981. There has been no evidence of orbital variations but the appearance of the optical spectrum and the presence of low amplitude flickering suggested a strong similarity to CD-42-14462 (=V3885 Sgr) and other members of the UX UMa class. Low dispersion observations of KQ Mon were made with the International Ultraviolet Explorer satellite. Six spectra taken with the shot wavelength prime camera are dominated by strong broad absorption lines due to N V, O I, Si III, Si IV, C IV, He II, N IV, and Al III. There is little evidence of orbital phase modulation over the time baseline of the observations. Unlike UV observations of other UX UMa type objects, KQ Mon exhibits no emission lines or P Cygni type profiles and the velocity displacements appear to be smaller, suggesting the absence of a hot, high velocity wind characterizing other UX UMa stars. The relationship of KQ Mon to other UX UMa disk stars is discussed and a model is suggested to explain their observed properties and the lack of major outbursts.

  14. Heat transfer at boiling of R114/R21 refrigerants mixture film on microstructured surfaces

    Science.gov (United States)

    Volodin, O. A.; Pecherkin, N. I.; Pavlenko, A. N.; Zubkov, N. N.; Bityutskaya, Yu L.

    2017-10-01

    The paper presents the results of experimental study of heat transfer in the film flow of R114/R21 refrigerant mixture on the vertical thin-wall copper cylinders with microstructured outer surfaces. Microstructuring is made by the method of deforming cutting with subsequent rolling by a straight knurl roller along the fin tops. The pitch of micro-finning was 100 or 200 μm and height was 220 or 440 μm, respectively. The knurling pitch in both cases was 318 μm. The film Reynolds number was varied in the range of 300-1500. The heat flux density was step-by-step increased from zero to the values corresponding to the boiling crisis. It is shown that the heat transfer coefficients at nucleate boiling on the studied surfaces with microstructuring exceed the corresponding values for a smooth surface more than by 3 times, the critical heat flux increases more than twice.

  15. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  16. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  17. Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Tae; Lim, Dae Ho; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2014-08-15

    Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10{sup -3} N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502U{sub G}{sup 0.236}{sub L}{sup -0.250}{sub L}{sup -}0{sup .028} Nu=3.25Re{sup 0.180}Pr{sup -0.067}We{sup 0.028}.

  18. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  19. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2012-02-28

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet

  20. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Low correlation (r = 0.12) was observed between body weight and ear width. There were no correlations between ear width, respiratory rates and pulse rate. However, a residual correlation (r = -0.03) was obtained between ear width and body temperature. Large ear surface area in composite rabbits enhances better ...

  1. Surface development of a brazing alloy during heat treatment–a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  2. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    Science.gov (United States)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  3. The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface

    NARCIS (Netherlands)

    Kollet, S.J.; Cvijanovic, I.; Schüttemeyer, D.; Maxwell, R.M.; Moene, A.F.; Bayer, P.

    2009-01-01

    In land surface models, which account for the energy balance at the land surface, subsurface heat transport is an important component that reciprocally influences ground, sensible, and latent heat fluxes and net radiation. In most models, subsurface heat transport parameterizations are commonly

  4. Heat transfer control in a plane magnetic fluid layer with a free surface

    International Nuclear Information System (INIS)

    Bashtovoi, V.G.; Pogirnitskaya, S.G.; Reks, A.G.

    1993-01-01

    The heat transfer mechanisms that are specific to a magnetic liquid have been already investigated extensively. The high sensitivity of the free magnetic liquid surface to the external magnetic field introduces a new feature into the heat transfer process. In the present work, the authors have investigated the possibility of controlling the heat transfer through the phenomenon of magnetic liquid surface instability in a uniform magnetic field. The conditions for heat transfer through a chamber, partially filled with a magnetic liquid, are governed by the characteristics of the free liquid surface and by its stability and development in the supercritical magnetic fields. The authors consider a model two-dimensional problem of heat transfer through a two-layer medium consisting of horizontally situated immiscible layers of magnetic and nonmagnetic liquids with given thermal conductivities. In the absence of an external magnetic field, the interface of the liquids represents a plane surface. In fields which exceed the critical magnitude, the interface is deformed along the wave. As the field intensity is increased, the amplitude of interface distortion becomes larger. The two-dimensional shape of the free magnetic liquid surface may be realized experimentally using two plane layers of magnetic and nonmagnetic liquids in a uniform magnetic field tangent to the interface of the component layers. 7 refs., 9 figs

  5. The UX Book Process and Guidelines for Ensuring a Quality User Experience

    CERN Document Server

    Hartson, Rex

    2012-01-01

    This is a comprehensive textbook on designing interaction to ensure a quality user experience. Combining breadth, depth, and practical applications, this book takes a time-tested process-and-guidelines approach that provides readers with actionable methods and techniques while retaining a firm grounding in HCI concepts and theory. The authors will guide you through the UX lifecycle process, including contextual inquiry and analysis, requirements extraction, design ideation and creation, practical design production, prototyping, and UX evaluation. Development activities are linked via handof

  6. FUSE Observations of the Bright, Eclipsing Nova-like Cataclysmic Variable, UX UMa (FUSE 2000)

    Science.gov (United States)

    Long, Knox; Froning, Cynthia

    2004-01-01

    This was a project to study the disk and wind of the eclipsing nova-like variable UX UMa, in order to better define the wind geometry of the system, including the nature of the transition region between the disk photosphere and the supersonic wind. We proposed to use phase resolved spectroscopy of the system, taking advantage of the fact that UX UMa is an eclipsing system, to isolate different regions of the wind and to use a Monte Carlo radiative transfer code to simulate the spectra through the eclipse.

  7. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of); Kim, Ook Joong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer.

  8. Comments on the dissipation of hydromagnetic surface waves. [applicable to solar coronal plasma heating

    Science.gov (United States)

    Lee, M. A.

    1980-01-01

    A recent paper by Wentzel, which claims to calculate a plasma heating rate due to dissipation of surface waves in an ideal magnetohydrodynamic (MHD) fluid, is found to be in error in interpretation. A well-established general theorem pertaining to the conservative ideal MHD fluid requires that the normal mode calculated by Wentzel be oscillatory in time. Within ideal MHD, dissipation and plasma heating are therefore impossible.

  9. Influence of surface roughness and porosity of inclusion in water droplet on heat transfer enhancement

    OpenAIRE

    Borisova Anastasia G.; Gumerov Vladislav M.; Piskunov Maxim V.

    2016-01-01

    Using high-speed camera, the experiments were performed to research evaporation of 10 μl water droplets containing 2 mm solid inclusions in the shape of cube, when heated (up to 850 K) in combustion products of technical ethanol. Adding solid inclusions in water droplets allowed considerably decreasing (by 70%) their evaporation times. Also, the artificial irregularities (roughness and porosity) at the surfaces of solid inclusions were manufactured to increase heat transfer area. Such approac...

  10. [A mathematical model of heat exchange between astronaut and environmental medium on the Lunar surface].

    Science.gov (United States)

    Wu, Q

    1997-12-01

    To maintain thermal balance of astronaut, and avoid injuries by heats of the solar radiation and radiation from the Moon, a detailed analysis of heat exchange between the astronaut and the environment medium was made and a mathematical model was established. It indicates that the Lunar surface temperature and the thermal current transmitted to the astronaut change with the incident angle of the solar radiation. The thermal balance of the astronaut is affected by absorption coefficient, radiation coefficient and thermal resistance.

  11. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  12. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, A. A.; Labbe, J. C.

    2013-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable. (author)

  13. Land surface and atmospheric conditions associated with heat waves in the South Central United States

    Science.gov (United States)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Richter, Heather

    2017-04-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (> 2.0°C) to the lower troposphere (> 1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  14. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  15. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  16. Growth of a bubble at a heated surface in a pool of liquid metal

    International Nuclear Information System (INIS)

    Bankoff, S.G.; Choi, H.K.

    1976-01-01

    A theoretical investigation of the initial vapor bubble growth from a heated wall in a pool of liquid is reported. The analysis assumes the bubble to have the shape of a spherical sector, at the base of which a thin liquid microlayer is retained on the heating surface. The effects of time-and-space dependent heat conduction in the solid, microlayer vaporization, and non-equilibrium condensation on the bubble upper surface are considered. A two-term expression for the bubble growth rate is obtained by a collocation procedure. Calculated results predict the growth of the bubble on a heated surface as a function of the heat flux, the external pressure and the thermophysical properties of the liquid and solid. An expression due to Ruckenstein, modified to take into account the effective contact angle, is used to determine the departure bubble diameter. This turns out to be sensitive to the contact angle, and less strongly influenced by the bubble drag coefficient. The growth is initially inertia-controlled, but heat-transfer effects become significant before departure. In this pressure range (0.1 to 1 atm) the presence of inert gas, by reducing the effective accommodation coefficient for condensation, increases bubble growth rate moderately. (author)

  17. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  18. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    Science.gov (United States)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  19. A review of surface heat-flow data of the northern Middle Atlas (Morocco)

    Science.gov (United States)

    Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine

    2017-12-01

    We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.

  20. A Bayesian approach to estimate sensible and latent heat over vegetated land surface

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

  1. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Impact of overall and particle surface heat transfer coefficients on thermal process optimization in rotary retorts.

    Science.gov (United States)

    Simpson, R; Abakarov, A; Almonacid, S; Teixeira, A

    2008-10-01

    This study attempts to examine the significance of recent research that has focused on efforts to estimate values for global and surface heat transfer coefficients under forced convection heating induced by end-over-end rotation in retorting of canned peas in brine. The study confirms the accuracy of regression analysis used to predict values for heat transfer coefficients as a function of rotating speed and headspace, and uses them to predict values over a range of process conditions, which make up the search domain for process optimization. These coefficients were used in a convective heat transfer model to establish a range of lethality-equivalent retort temperature-time processes for various conditions of retort temperature, rotating speed, and headspace. Then, they were coupled with quality factor kinetics to predict the final volume average and surface quality retention resulting from each process and to find the optimal thermal process conditions for canned fresh green peas. Results showed that maximum quality retention (surface and volume average retention) was achieved with the shortest possible process time (made possible with highest retort temperature), and reached the similar level in all cases with small difference between surface and volume average quality retention. The highest heat transfer coefficients (associated with maximum rotating speed and headspace) showed a 10% reduction in process time over that required with minimum rotating speed and headspace. The study concludes with a discussion of the significance of these findings and degree to which they were expected.

  3. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  4. Photometric activity of UX orionis stars and related objects in the near infrared and optical: CO Ori, RR Tau, UX Ori, and VV Ser

    Science.gov (United States)

    Shenavrin, V. I.; Rostopchina-Shakhovskaya, A. N.; Grinin, V. P.; Demidova, T. V.; Shakhovskoi, D. N.; Belan, S. P.

    2016-08-01

    This paper continues a study of the photometric activity of UX Ori stars in the optical and near-infrared ( JHKLM bands) initiated in 2000. For comparison, the list of program stars contains two Herbig Ae stars that are photometrically quiet in the optical: MWC480 andHD179218. Fadings ofUXOri stars in the optical ( V band) due to sporadic increases of the circumstellar extinction are also observed in the infrared (IR), but with decreasing amplitude. Two stars, RR Tau and UX Ori, displayed photometric events when V -band fadings were accompanied by an increase in IR fluxes. Among the two Herbig Ae stars that are photometrically quiet in the optical, MWC 480 proved to be fairly active in the IR. Unlike the UX Ori stars, the variation amplitude of MWC 480 increases from the J band to the M band. In the course of the observations, no deep fadings in the IR bands were detected. This indicates that eclipses of the program stars have a local nature, and are due to extinction variations in the innermost regions of the circumstellar disks. The results presented testify to an important role of the alignment of the circumstellar disks relative to the direction towards the observer in determining the observed IR variability of young stars.

  5. Substrate Wetting Under the Conditions of Drop Free Falling on a Heated Surface

    Directory of Open Access Journals (Sweden)

    Batischeva Ksenia A.

    2015-01-01

    Full Text Available We conducted an experimental study of a heated substrate wetting by drops of distilled water under the conditions of their free-falling. The studies were conducted using a shadow system, which consists of a light source, lens and high-speed video camera. It was found that the maximum wetted area of drop is directly proportional to its volume. The main ranges of evolution of distilled water drop behavior on the heated surface (change of geometry at contact with the surface have been conditionally divided.

  6. Influence of surface roughness and porosity of inclusion in water droplet on heat transfer enhancement

    Directory of Open Access Journals (Sweden)

    Borisova Anastasia G.

    2016-01-01

    Full Text Available Using high-speed camera, the experiments were performed to research evaporation of 10 μl water droplets containing 2 mm solid inclusions in the shape of cube, when heated (up to 850 K in combustion products of technical ethanol. Adding solid inclusions in water droplets allowed considerably decreasing (by 70% their evaporation times. Also, the artificial irregularities (roughness and porosity at the surfaces of solid inclusions were manufactured to increase heat transfer area. Such approach enabled to decrease evaporation times of heterogeneous liquid droplets in high-temperature gases by 40% (when comparing inclusions with artificial irregularities and smooth surface.

  7. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  8. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.

    Science.gov (United States)

    Chakraborty, Surya Deb; Kant, Yogesh; Mitra, Debashis

    2015-01-15

    Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of ±2 °C than MODIS with an error of ±3 °C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 °C & for MODIS data is 3.7 °C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  10. Computational prediction of heat transfer to gas turbine nozzle guide vanes with roughened surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.M.; Jones, T.V. [Univ. of Oxford (United Kingdom). Dept. of Engineering Science; Lock, G.D. [Univ. of Bath (United Kingdom). Dept. of Mechanical Engineering; Dancer, S.N. [Rolls-Royce PLC, Derby (United Kingdom)

    1998-04-01

    The local Mach number and heat transfer coefficient over the aerofoil surfaces and endwalls of a transonic gas turbine nozzle guide vane have been calculated. the computations were performed by solving the time-averaged Navier-Stokes equations using a fully three-dimensional computational code (CFDS), which is well established at Rolls-Royce. A model to predict the effects of roughness has been incorporated into CFDS and heat transfer levels have been calculated for both hydraulically smooth and transitionally rough surfaces. The roughness influences the calculations in two ways; first the mixing length at a certain height above the surface is increased; second the wall function used to reconcile the wall condition with the first grid point above the wall is also altered. The first involves a relatively straightforward shift of the origin in the van Driest damping function description, the second requires an integration of the momentum equation across the wall layer. A similar treatment applies to the energy equation. The calculations are compared with experimental contours of heat transfer coefficient obtained using both thin-film gages and the transient liquid crystal technique. Measurements were performed using both hydraulically smooth and roughened surfaces, and at engine-representative Mach and Reynolds numbers. The heat transfer results are discussed and interpreted in terms of surface-shear flow visualization using oil and dye techniques.

  11. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  12. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  13. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  14. Modeling the land surface heat exchange process with the aid of moderate resolution imaging spectroradiomer images

    Science.gov (United States)

    Gao, Zhiqiang; Zhang, Wenjiang; Gao, Wei; Chang, Ni-Bin

    2009-12-01

    Most ecosystems and crops experience water stress in arid and semiarid areas of the Inner Mongolia grassland, Northern China. Yet the lack of long-term in situ monitoring data hinders the managerial capacity of changing water vapor environment, which is tied with sustaining the grassland in the Inner Mongolia. Environmental remote sensing monitoring and modeling may provide synergistic means of observing changes in thermodynamic balance during drought onset at the grassland surface, providing reliable projections accounting for variations and correlations of water vapor and heat fluxes. It is the aim of this paper to present a series of estimates of latent heat, sensible heat, and net radiation using an innovative first-principle, physics-based model (GEOMOD: GEO-model estimated the land surface heat with MODis data) with the aid of integrated satellite remote sensing and in situ eddy covariance data. Based on the energy balance principle and aerodynamics diffusion theory, the GEOMOD model is featured with MODIS (Moderate Resolution Imaging Spectroradiometer) data with 250 m spatial resolution to collectively reflect the spatial heterogeneity of surface properties, supplement missing data with the neighborhood values across both spatial and temporal domains, estimate the surface roughness height and zero-plane displacement with dynamic look-up table, and implement a fast iterative algorithm to calculate sensible heat. Its analytical framework is designed against overreliance on local micro-meteorological parameters. Practical implementation was assessed in the study area, the Xilin Gol River Basin, a typical grassland environment, Northern China. With 179 days of MODIS data in support of modeling, coincident ground-based observations between 2000 and 2006 were selected for model calibration. The findings indicate that GEOMOD performs reasonably well in modeling the land surface heat exchange process, as demonstrated by a case study of Inner Mongolia.

  15. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  16. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2012-12-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.

  17. Compensation of the ux modulation distortion using an additional coil in a loudspeaker unit

    DEFF Research Database (Denmark)

    Antonello, Niccoló; Agerkvist, Finn T.

    2014-01-01

    the compensation coil is de- rived. The compensation technique consists on feeding the compensation coil and voice coil with ltered versions of the wanted audio signal. Simulations show that a signicant reduction in ux modulation distor- tion can be achieved with this technique. A simple magnetic circuit has been...

  18. An Efficient Surface Algorithm for Random-Particle Simulation of Vorticity and Heat Transport

    Science.gov (United States)

    Smith, P. A.; Stansby, P. K.

    1989-04-01

    A new surface algorithm has been incorporated into the random-vortex method for the simulation of 2-dimensional laminar flow, in which vortex particles are deleted rather than reflected as they cross a solid surface. This involves a modification to the strength and random walk of newly created vortex particles. Computations of the early stages of symmetric, impulsively started flow around a circular cylinder for a wide range of Reynolds numbers demonstrate that the number of vortices required for convergence is substantially reduced. The method has been further extended to accommodate forced convective heat transfer where temperature particles are created at a surface to satisfy the condition of constant surface temperature. Vortex and temperature particles are handled together throughout each time step. For long runs, in which a steady state is reached, comparison is made with some time-averaged experimental heat transfer data for Reynolds numbers up to a few hundred. A Karman vortex street occurs at the higher Reynolds numbers.

  19. On ultrahigh-vacuum preparation of monocrystalline transition metal surfaces by heat treatment

    CERN Document Server

    Krakhmalev, V A; Nimatov, S J; Garafutdinova, I A; Boltaev, N N

    2002-01-01

    The composition and substructure changes in monocrystalline singular W, Mo, Nb surfaces under heat treatment have been studied in the range 30-1900 sup d egC and vacuum approx 5 centre dot 10 sup - sup 8 Pa by electronic Auger spectroscopy, optical microscopy, and X-ray methods. Under multiple thermal-cycled treatment the large carbide inclusions have been found to become the places of local surface polygonization with block disordering >=3 sup d eg. In the case of Nb annealing the carbide in the O sub 2 atmosphere has led to solving O sub 2 in sample volume. In what follows, the solute O sub 2 is found to diffuse to on the surface under heating up to maximal temperatures of the above range. Under 30 min annealing of Nb(110) at approx 550 sup d egC, sulphur (S sub 1 sub 5 sub 2) segregation on surface appears that increases with temperature. (author)

  20. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  1. Empirical mapping of the convective heat transfer coefficients with local hot spots on highly conductive surfaces

    Directory of Open Access Journals (Sweden)

    Tekelioğlu Murat

    2017-01-01

    Full Text Available An experimental method was proposed to assess the natural and forced convective heat transfer coefficients on highly conductive bodies. Experiments were performed at air velocities of 0m/s, 4.0m/s, and 5.4m/s, and comparisons were made between the current results and available literature. These experiments were extended to arbitrary-shape bodies. External flow conditions were maintained throughout. In the proposed method, in determination of the surface convective heat transfer coefficients, flow condition is immaterial, i.e., either laminar or turbulent. With the present method, it was aimed to acquire the local heat transfer coefficients on any arbitrary conductive shape. This method was intended to be implemented by the heat transfer engineer to identify the local heat transfer rates with local hot spots. Finally, after analyzing the proposed experimental results, appropriate decisions can be made to control the amount of the convective heat transfer off the surface. Limited mass transport was quantified on the cooled plate.

  2. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  3. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  4. A Quantitative Assessment of Surface Urban Heat Islands Using Satellite Multitemporal Data over Abeokuta, Nigeria

    Directory of Open Access Journals (Sweden)

    K. A. Ishola

    2016-01-01

    Full Text Available The fast urban expansion has led to the transformation of the natural landscape into anthropogenic surfaces. The city of Abeokuta, for instance, is located in a region experiencing rapid urbanization, which has produced a remarkable effect on the surface thermal response. This effect significantly influences urban internal microclimatology on a regional scale. In this study, the surface temperatures and land cover types retrieved from Landsat TM and ETM+ images of Abeokuta city for 1984, 2003, and 2014 were analyzed. A quantitative approach was used to assess surface urban heat islands through the relationships among surface temperature and land cover types. Results showed that impervious surface areas were found to be correlated positively with high temperatures. Conversely, vegetated areas and bare surfaces correlated positively with mid temperature zones. This study found that areas with increasing impervious surfaces will accelerate LST rise and consequently lead to increasing effect of surface urban heat islands. These findings pose a major challenge to urban planners. However, the study would help to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth on LST and consequently to devise appropriate policy measures.

  5. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  6. Mechanical Properties, Surface Structure, and Morphology of Carbon Fibers Pre-heated for Liquid Aluminum Infiltration

    Science.gov (United States)

    Kachold, Franziska S.; Kozera, Rafal; Singer, Robert F.; Boczkowska, Anna

    2016-04-01

    To efficiently produce carbon fiber-reinforced aluminum on a large scale, we developed a special high-pressure die casting process. Pre-heating of the fibers is crucial for successful infiltration. In this paper, the influence of heating carried out in industrial conditions on the mechanical properties of the fibers was investigated. Therefore, polyacrylonitrile-based high-tensile carbon fiber textiles were heated by infrared emitters in an argon-rich atmosphere to temperatures between 450 and 1400 °C. Single fiber tensile tests revealed a decrease in tensile strength and strain at fracture. Young's modulus was not affected. Scanning electron microscopy identified cavities on the fiber surface as the reason for the decrease in mechanical properties. They were caused by the attack of atmospheric oxygen. The atomic structure of the fibers did not change at any temperature, as x-ray diffraction confirmed. Based on these data, the pre-heating for the casting process can be optimized.

  7. Dry heat treatment affects wheat bran surface properties and hydration kinetics.

    Science.gov (United States)

    Jacobs, Pieter J; Hemdane, Sami; Delcour, Jan A; Courtin, Christophe M

    2016-07-15

    Heat stabilization of wheat bran aims at inactivation of enzymes which may cause rancidity and processability issues. Such treatments may however cause additional unanticipated phenomena which may affect wheat bran technological properties. In this work, the impact of toasting on wheat bran hydration capacity and hydration kinetics was studied. Hydration properties were assessed using the Enslin-Neff and drainage centrifugation water retention capacity methods, thermogravimetric analysis and contact angle goniometry, next to more traditional methods. While equilibrium hydration properties of bran were not affected by the heat treatment, the rate at which the heat treated bran hydrated was, however, very significantly reduced compared to the untreated bran. This phenomenon was found to originate from the formation of a lipid coating during the treatment rendering the bran surface hydrophobic. These insights help to understand and partially account for the modified processability of heat treated bran in food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Frost formation and heat transfer on a cold surface in ice fog

    Energy Technology Data Exchange (ETDEWEB)

    Mago, P.J. [Mississippi State University (United States). Department of Mechanical Engineering; Sherif, S.A. [University of Florida, Gainesville (United States). Department of Mechanical and Aerospace Engineering

    2005-06-01

    In this paper a semi-empirical model describing heat and mass transfer on a cold surface in humid air under supersaturated frosting conditions is presented. The lack of psychrometric data in the supersaturated zone of the psychrometric chart has historically impeded the ability of researchers to accurately predict heat and mass transfer in supersaturated air. The work described in this paper has been partially made possible by developing a systematic procedure to compute the properties of supersaturated air, especially in the low temperature zone of the psychrometric chart. Development of such a capability will allow us to predict the amount of frost collected, the frost deposition and heat transfer rates, frost thickness and surface temperature, and other important parameters. (author)

  9. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  10. The ground surface energy balance in modelling horizontal ground heat exchangers

    Science.gov (United States)

    Bortoloni, M.; Bottarelli, M.; Su, Y.

    2017-01-01

    The performance of horizontal ground heat exchangers (HGHEs) is strongly dependent on climatic conditions, due to the low installation depth. In numerical modelling of HGHEs, the estimation of shallow soil temperature distribution is a key issue, therefore the boundary condition (BC) at the ground surface should be assigned carefully. With this in mind, a model of the energy balance at the ground surface (GSEB), based on weather variables, was developed. The model was tested as the 3rd kind BC at ground surface in modelling HGHEs by means of the FEM code Comsol Multiphysics, solving the unsteady heat transfer problem in a 2D domain. The GSEB model was calibrated and validated with the observed soil temperature at different depths. In addition, the effect on numerical solutions of different BCs, when assigned at the ground surface, was analysed. Three different simulations were carried out applying the GSEB model, the equivalent surface heat flux and temperature as boundary conditions of the 1st, 2nd and 3rd kind, respectively. The results of this study indicate that the use of the GSEB model is a preferable approach to the problem and that the use of the equivalent surface temperature can be considered as a reasonable simplification.

  11. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  12. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is a critical component of the surface energy balance along with the ... and prediction techniques. Evaporation measured .... Both incident and reflected solar radiation sensors are developed using wide spectrum photodiodes. The accuracy, resolution and range of the sensors used in the hydro-meteorological ...

  13. The practical application of scintillometers in determining the surface fluxes of heat, moisture and momentum

    NARCIS (Netherlands)

    Green, A.E.

    2001-01-01

    This thesis has collated one review chapter and five experiments concerned with addressing the question, 'how successful is the scintillometer method in determining the surface fluxes of heat, moisture and momentum and under what circumstances does it appear to fail?'

  14. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  15. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  16. Brain Surface Heating After Exposure to Ultrasound: An Analysis Using Thermography.

    Science.gov (United States)

    Schneider, Michal E; Lombardo, Paul

    2016-05-01

    Ultrasound is the imaging modality of choice to monitor brain pathologies in neonates after complicated deliveries. Animal studies have indicated that ultrasound may cause heating of brain tissues. To date, no study has explored brain surface heating by ultrasound during clinically relevant exposure. Hence, we investigated heating effects of B-mode and pulsed Doppler (PD) mode on ex vivo lamb brains using thermography. Five brains were scanned for 5 min in B-mode or for 3 min, 1 min, 30 s or 15 s in PD mode. Brain surface temperature was measured pre- and post-exposure using thermography. The highest mean temperature increase was recorded by B-mode (3.82 ± 0.43°C). All five PD exposure protocols were associated with surface temperature increases of 2.1-2.7°C. These outcomes highlight for the first time that B-mode ultrasound can contribute to brain surface heating during a routine cranial scan. Scan duration should be minimised whenever possible. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  18. The resistance of surfaces treated with oils and waxes to the action of dry heat

    Directory of Open Access Journals (Sweden)

    Jaić Milan

    2009-01-01

    Full Text Available Surface treatment of wood can be done with different coatings, and the choice of the appropriate system of processing depends on several factors, such as technological, aesthetic, economic and ecological. Raising awareness of the need to preserve the living and working environment has had a crucial impact on the increase in the use of natural materials for surface treatment of wood - oil and wax. The application of oils and waxes allows surface treated wood to keep the natural look, while protecting it from different influences, which can cause degradation and deterioration of the final product. The paper presents the results of testing the resistance of beech surface (Fagus silvatica L. processed with linseed oil and beeswax to the action of dry heat. In order to compare the quality of surface treated with oil and/or wax, beech wood treated with 2K-polyurethane coating is taken as a reference of surface treatment of wood. Surfaces treated with beeswax are less resistant to dry heat than those treated with linseed oil, and both showed significantly less resistance than surface treated with 2K-polyurethane coating.

  19. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    Directory of Open Access Journals (Sweden)

    Chen-Yi Sun

    2008-09-01

    Full Text Available The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures.

  20. Developments in convective heat transfer models featuring seamless and selected detail surfaces, employing electroless plating

    Science.gov (United States)

    Stalmach, C. J., Jr.

    1975-01-01

    Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

  1. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data

    Science.gov (United States)

    Heilman, J. L.; Moore, D. G.

    1982-01-01

    Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed in order to evaluate HCMM thermal data use in estimating near-surface soil moisture in a complex agricultural landscape. Because of large spatial and temporal ground cover variations, HCMM radiometric temperatures alone did not correlate with soil water content. The radiometric temperatures consisted of radiance contributions from different canopies and their respective soil backgrounds. However, when surface soil temperatures were empirically estimated from HCMM temperatures and percent cover of each pixel, a highly significant correlation was obtained between the estimated soil temperatures and near-surface soil water content.

  2. Graphitization of amorphous carbon on a multiwall carbon nanotube surface by catalyst-free heating

    Science.gov (United States)

    Asaka, Koji; Karita, Motoyuki; Saito, Yahachi

    2011-08-01

    Structural changes in amorphous carbon coating the surfaces of multiwall carbon nanotubes (MWNTs) under applying an electric current were investigated by in situ transmission electron microscopy with simultaneous measurements of the bias voltage and electric current. Joule heating transformed amorphous carbon on the surfaces of individual MWNTs suspended between gold electrodes into graphite layers even without a metal catalyst through a phase of glasslike carbon. The MWNTs after the formation of ordered surface layers sustained a high current with a density of up to 3.1 × 108 A/cm2.

  3. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  4. Surface temperature variations as measured by the Heat Capacity Mapping Mission

    Science.gov (United States)

    Price, J. C.

    1979-01-01

    The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

  5. Heat transfer in a liquid film on an unsteady stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Helge I.; Aarseth, Jan B. [Norwegian Univ. of Science and Technology, Div. of Applied Mechanics, Trondheim (Norway); Dandapat, Bhabani S. [Indian Statistical Inst., Physics and Applied Mathematics Unit, Calcutta (India)

    2000-01-01

    The momentum and heat transfer in a laminar liquid film on a horizontal stretching sheet is analysed. The governing time-dependent boundary layer equations are reduced to a set of ordinary differential equations by means of an exact similarity transformation. The resulting two-parameter problem is solved numerically for some representative values of the unsteadiness parameter S for Prandtl numbers from 0.001 to 1000. The temperature is observed to increase monotonically from the elastic sheet towards the free surface except in the high diffusivity limit Pr {yields} where the surface temperature approaches that of the sheet. A low stretching rate, i.e. high values of S, tends to reduce the surface temperature for all Prandtl numbers. The heat flux from the liquid to the elastic sheet decreases with S for Pr <{approx} 0.1 and increases with increased unsteadiness for Pr >{approx} 1. (Author)

  6. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    Science.gov (United States)

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar. © 2015 John Wiley & Sons Ltd.

  7. Streaked optical pyrometer for measuring surface temperature of ion heated plasma

    Science.gov (United States)

    Roycroft, R.; Dyer, G. M.; Wagner, C.; Bernstein, A.; Ditmire, T.; Hegelich, B. M.; Albright, B. J.; Fernandez, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.

    2015-11-01

    The evolution of the interface between a light and heavy material isochorically heated to warm dense matter conditions is important to the understanding of electrostatic effects on the usual hydrodynamic understanding of fluid mixing. In recent experiments at the Trident laser facility in Los Alamos National Laboratory, the target, containing a high Z and a low Z material, is heated to several eV by laser accelerated aluminum ions. We fielded a streaked optical pyrometer to measure surface temperature. The pyrometer images the back surface of a heated target on a sub-nanosecond timescale with 400nm light from the plasma. This poster presents the details of the experimental setup and pyrometer design, as well as initial results of ion heating of aluminum targets. The interface between heated diamond and gold is also observed. Work supported by NNSA cooperative agreement DE-NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  8. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available Three to four tropical cyclones (TCs by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC version of the Hurricane WRF (HWRF model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the right position. Sensitive experiments indicated that Taiwan’s surface heat fluxes have significant influence on the super Typhoon Haitang. Compared to sensible heat (SH fluxes, latent heat (LH is the dominant factor affecting the intensity and rainfall, but they showed opposite effects on intensity and rainfall. LH (SH flux of Taiwan Island intensified (weakened Typhoon Haitang’s intensity and structure by transferring more energy from (to surface. However, only LH played a major role in the looped path before the landfall of the Typhoon Haitang.

  9. Evaluation of Heat Losses Behind the Front of the Detonation Moving Along the Metallic Porous Surface

    Directory of Open Access Journals (Sweden)

    S. V. Golovastov

    2016-01-01

    Full Text Available The paper considers a computational technique of the heat flow from the hot products of detonation combustion into the porous coating and estimates the efficiency of the coating layer that results in slowing the flame front down with disregard the transverse displacement of the combustion products weight of a hydrogen-air mixture.Initial thermodynamic parameters of combustion products on the porous coating surface have been estimated. A drag (stagnation temperature of flow was determined.The statement of task was to calculate the heat flow into the long cylindrical metal fiber with radius of 15 μm. The reference values of heat capacity and heat diffusivity were used to estimate a thermal diffusivity in a wide range of temperatures. An approximation of the parameters is given for a wide range of temperatures.The calculation algorithm using an explicit four-point scheme is presented. The convergence and accuracy of the results were confirmed. The theoretical estimation using cylindrical Bessel functions was made to prove the accuracy of the results.Total heat loss was estimated using the photos of moving detonation front and hot combustion gases.Comparison of the total heat loss and the amount of energy absorbed by a single fiber allowed us to find that the porous coating thickness, resulting in attenuation of detonation wave, is efficient.

  10. Effects of porous superhydrophilic surfaces on flow boiling critical heat flux in IVR accident scenarios

    OpenAIRE

    Atkhen, Kresna; Buongiorno, Jacopo; Azizian, Mohammad Reza; McKrell, Thomas J

    2015-01-01

    Critical Heat Flux (CHF) plays a key role in nuclear reactor safety both during normal operation as well as in accident scenarios. In particular,when an in-vessel retention (IVR) strategy is used as a severe accident management strategy, the reactor pressure vessel (RPV) cavity is flooded with water, to remove the decay heat from the corium relocated in the lower plenum by conduction through the RPV wall and flow boiling on the outer surface of the RPV. The CHF limit must not be ex...

  11. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  12. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  13. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  14. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    White, T.L.; Grubb, R.G.; Pugh, L.P.; Foster, D. Jr.; Box, W.D.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm 3 /s with 5.2 kW of 2.45.-GHz power and 2.11 cm 3 /s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm 3 /s/kW at 2.45 GHz and 0.59 cm 3 /s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  15. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  16. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces

    Science.gov (United States)

    Bhosle, Sachin M.; Friedrich, Craig R.

    2017-10-01

    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  17. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  18. Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface

    Directory of Open Access Journals (Sweden)

    C.S.K. Raju

    2016-03-01

    Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.

  19. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  20. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  1. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    Science.gov (United States)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  2. The effect of a heated skate blade on the ice surface

    Energy Technology Data Exchange (ETDEWEB)

    Hache, A. [Moncton Univ., NB (Canada). Dept. of Physics and Astronomy

    2007-05-15

    A new hockey skate using a heated blade, called the Therma Blade, cuts ice friction by half, thereby improving skating performance but has created questions about melting and damage of the ice surface. This paper discussed the effect of the heated skate blade on the ice surface. The paper discussed the thermal power produced by the Therma Blade skate, the ice melting capacity of the therma blade, and the ice temperature profile around the heated blade. It also examined the power dissipation by friction comparing the cold versus the heated blade. Units and definitions as well as conversion factors were also presented in appendix format. Constants and technical specifications were listed in an appendix. It was concluded that the maximum melting capacity of the therma blade is 0.7 grams of ice per skate per minute. This is the upper limit as set by the laws of physics, and this requires the skate to be completely static over ice at 0 degrees Celsius and all the power drawn by the battery to reach the ice friction force. 5 refs., 1 tab., 2 figs.

  3. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  4. Numerical study of the role of microphysical latent heating and surface heat fluxes in a severe precipitation event in the warm sector over southern China

    Science.gov (United States)

    Yin, Jin-Fang; Wang, Dong-Hai; Liang, Zhao-Ming; Liu, Chong-Jian; Zhai, Guo-Qing; Wang, Hong

    2017-12-01

    Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation

  5. Numerical Study of the Role of Microphysical Latent Heating and Surface Heat Fluxes in a Severe Precipitation Event in the Warm Sector over Southern China

    Science.gov (United States)

    Yin, Jin-Fang; Wang, Dong-Hai; Liang, Zhao-Ming; Liu, Chong-Jian; Zhai, Guo-Qing; Wang, Hong

    2018-02-01

    Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation

  6. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers

    Science.gov (United States)

    Zhao, Rui-Xue; Sun, Peng-fei; Liu, Rui-jian; Ding, Zhan-hui; Li, Xiang-shan; Liu, Xiao-yang; Zhao, Xu-dong; Gao, Zhong-min

    2018-03-01

    The stabilized polyacrylonitrile (PAN) fibers were obtained after heating the precursor PAN fibers under air atmosphere by different procedures. The surface structures and compositions of as-prepared stabilized PAN fibers have been investigated by SEM, SSNMR, XPS and Raman spectroscopy. The results show that 200 °C, 220 °C, 250 °C, and 280 °C are key temperatures for the preparation of stabilized PAN fibers. The effect of heating gradient on the structure of stabilized PAN fibers has been studied. The possible chemical structural formulas for the PAN fibers is provided, which include the stable and unstable structure. The stable structure (α-type) could endure the strong chemical reactions and the unstable structure (β- or γ-type) could mitigate the drastic oxidation reactions. The inferences of chemical formula of stabilized PAN fibers are benefit to the design of appropriate surface structure for the production for high quality carbon fibers.

  7. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  8. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  9. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005)

    OpenAIRE

    Xu, Hongxiong

    2015-01-01

    Three to four tropical cyclones (TCs) by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC) version of the Hurricane WRF (HWRF) model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the ...

  10. Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The existing equations for the thermal performance evaluation, at equal pumping power for the artificially roughened and smooth surfaced multitube and rectangular duct heat exchangers, have been critically reviewed because the literature survey indicates that a large number of researchers have not interpreted these equations correctly. Three of the most widely used equations have been restated with clearly defined constraints and conditions for their application. Two new equations have been developed for the design constraints not covered earlier.

  11. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  12. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Silva Carrico, A. da; Albuquerque, E.L. de

    1981-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. Only the low-temperature limit case is considered since, provided K sub(B) T/h is very small, the dispersion relation for the three acoustic branches can be replaced by its long-wavelenght form. The contributions of surface elastic waves of the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (Author) [pt

  13. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Carrico, A.S.; Albuquerque, E.L.

    1980-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. We consider only the low-temperature limit case since, provided K B 1/h is very samll, we can replace the dispersion relation for the three acoustic branches by its long-wavelenghts form. The contributions of surface elastic waves ot the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (author) [pt

  14. Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2013-01-01

    Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.

  15. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  16. Early Development of Refl ux Esophagitis after Successful Helicobacter Pylori Eradication in Superfi cial Gastritis

    Directory of Open Access Journals (Sweden)

    H H Jeon

    2011-10-01

    Full Text Available The relationship between gastroesophageal refl ux disease (GERD and Helicobacter pylori (H. pylori eradication is still debated. Recently, we had a patient of GERD who had developed it shortly after H. pylori eradication therapy. A 72-year-old man was diagnosed by endoscopy as suffering from severe superfi cial gastritis in the stomach body. A rapid urease test showed H. pylori infection. He was then started on proton pump inhibitor (PPI based therapy for two weeks eradicating H.pylori. After completion of H. pylori eradication, he complained of a heart-burn sensation. Follow-up endoscopy showed refl ux esophagitis, of grade B according to the Los Angeles classifi cation. Since the patient had developed GERD after completion of the triple therapy, their suggests that H. pylori eradication must have triggered the development of de novo GERD after a short period of time. Keywords: GERD, Helicobacter pylori, PPI.

  17. Flow and heat transfer over a rotating disk with surface roughness

    International Nuclear Information System (INIS)

    Yoon, Myung Sup; Hyun, Jae Min; Park, Jun Sang

    2007-01-01

    A numerical study is made of flow and heat transfer near an infinite disk, which rotates steadily about the longitudinal axis. The surface of the disk is characterized by axisymmetric, sinusoidally-shaped roughness. The representative Reynolds number is large. Numerical solutions are acquired to the governing boundary-layer-type equations. The present numerical results reproduce the previous data for a flat disk. For a wavy surface disk, the radial distributions of local skin friction coefficient and local Nusselt number show double periodicity, which is in accord with the previous results. Physical explanations are provided for this finding. The surface-integrated torque coefficient and average Nusselt number increase as the surface roughness parameter increases. The effect of the Rossby number is also demonstrated

  18. Mitigating the surface urban heat island: Mechanism study and sensitivity analysis

    Science.gov (United States)

    Meng, Chunlei

    2017-08-01

    In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.

  19. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    Science.gov (United States)

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  20. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    Science.gov (United States)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  1. Secondary atomization of water and isooctane drops impinging on tilted heated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, A.L.N.; Moita, A.S. [Technical University of Lisbon, Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal); Cossali, E.; Marengo, M.; Santini, M. [Universita degli Studi di Bergamo, Department of Industrial Engineering, Dalmine (Italy)

    2007-08-15

    The present paper reports an experimental study aimed at characterizing the effects of heat transfer on the secondary atomization, which occurs during droplet impact on hot surfaces at conditions reproducing those occurring at fuel injection in internal combustion engines. The experiments consider single isooctane and water droplets impacting at different angles on a stainless steel surface with known roughness and encompass a range of Weber numbers from 240 to 600 and heat transfer regimes from the film-vaporization up to the Leidenfrost regime. The mechanisms of secondary breakup are inferred from the temporal evolution of the morphology of the impact imaged with a CCD camera, together with instantaneous measurements of droplet size and velocity. The combination of a technique for image processing with a phase Doppler instrument allows evaluating extended size distributions from 5.5 {mu}m up to a few millimetres and to cover the full range of secondary droplet sizes observed at all heat transfer regimes and impaction angles. Temporal evolution of the size and velocity distributions are then determined. The experiments are reported at impact conditions at which disintegration does not occur at ambient temperature. So, any alteration observed in droplet impact behavior is thermally induced. The analysis is relevant for port fuel injection systems, where droplets injected to impact on the back surface of the valves, behave differently depending on fuel properties, particularly when the use of alcohols is considered, even as an additive to gasoline. (orig.)

  2. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  3. Trends of urban surface temperature and heat island characteristics in the Mediterranean

    Science.gov (United States)

    Benas, Nikolaos; Chrysoulakis, Nektarios; Cartalis, Constantinos

    2017-11-01

    Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001-2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade-1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade-1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.

  4. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  5. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  6. When nearing the ATLAS cavern UX15 through RB16: the TX1S shielding

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Photo 01: 52 tons of ATLAS TX1S shielding with bare hands. Photos 02,03,04: Installation of the second TX1S shielding tube at Point Photos 05,06: Positioning of TX1S shielding, the first ATLAS/LHC interface component to be installed underground. Photo 07: Final adjustment of the TX1S shielding tube at the interface between the LHC tunnel and the ATLAS cavern (UX15).

  7. User Experience Design (UX Design) in a Website Development : Website redesign

    OpenAIRE

    Orlova, Mariia

    2016-01-01

    The purpose of the study was to implement an approach of user experience for a website design. Mostly, I concentrated on revealing and understanding the concepts of UX design which include usability, visual design and human factors affecting the user experience. Another aim of the study was to investigate people’s behaviour related to web design. The thesis based on a project. The project was to redesign an existing web design for a company called Positive Communications. They provide differe...

  8. Transferring Approaches from Experience Oriented Disciplines to User Experience Design: The ExodUX Model

    OpenAIRE

    Kremer, Simon; Hoffmann, Andreas; Lindemann, Udo

    2015-01-01

    User Experience Design (UXD) addresses the increasing importance of emotional aspects in user product interaction and aims at creating holistic experiences. Within product development UXD is a rather young discipline. But other disciplines outside engineering design traditionally focus on creating experiences. We aim at transferring knowledge from those disciplines to support the design of fascinating User Experience (UX). We identified relevant experience disciplines and selected the three m...

  9. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    Science.gov (United States)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  10. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  11. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface

    Directory of Open Access Journals (Sweden)

    Ziaei Poor Hamed

    2016-01-01

    Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.

  12. Similarities and differences in the spectral behavior of W Ser and UX Mon in the ultraviolet

    Science.gov (United States)

    Sanad, M. R.; Bobrowsky, M.

    2013-04-01

    We present ultraviolet spectra of two eclipsing interacting binary systems, W Ser and UX Mon, with good coverage over the 14.16-day and 5.9-day orbital periods, respectively, using observations taken by the International Ultraviolet Explorer ( IUE) during the period between 1978-1993 and 1981-1991. Two profiles of W Ser and UX Mon showing variations of line fluxes at two orbital phases are presented. This paper focuses on the N V emission line at 1240 Å, C II emission line at 1336 Å, C IV emission line at 1550 Å, O III emission line at 1666 Å and the Si III emission line at 1892 Å, produced in an extended gaseous envelope around the mass-gaining component by calculating spectral line fluxes. Our results show that there are variations of line fluxes with time, similar to the light curves found for both W Ser and UX Mon. We attribute these spectral variations to eclipse effects and to variations in the mass transfer rate. These results from the IUE observations support the thick disk model around the primary star in which variations of mass transfer affect the observed radiation from the gaseous envelope around the hot star. Future, high-resolution imaging is recommended to confirm the inferred asymmetrical circumstellar envelopes.

  13. A COUPLED LAND-SURFACE AND DRY DEPOSITION MODEL AND COMPARISON TO FIELD MEASUREMENTS OF SURFACE HEAT, MOISTURE, AND OZONE FLUXES

    Science.gov (United States)

    We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...

  14. Heat

    CERN Document Server

    Lawrence, Ellen

    2016-01-01

    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  15. The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L. Wood

    Directory of Open Access Journals (Sweden)

    Nevzat Çakıcıer

    2008-09-01

    Full Text Available Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L. wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, wereb made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra, mean peak-to-valley height (Rz, root mean square roughness (Rq, and maximum roughness (Ry obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05 between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  16. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    Science.gov (United States)

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2017-04-01

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1 + but not STRO-1 - cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1 BRIGHT /HSP70 - fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2017;35:940-951. © 2016 AlphaMed Press.

  17. Representing the Australian Heat Low in a GCM Using Different Surface and Cloud Schemes

    Directory of Open Access Journals (Sweden)

    Matthew M. Allcock

    2016-01-01

    Full Text Available The high insolation during the Southern Hemisphere summer leads to the development of a heat low over north-west Australia, which is a significant feature of the monsoon circulation. It is therefore important that General Circulation Models (GCMs are able to represent this feature well in order to adequately represent the Australian Monsoon. Given that there are many different configurations of GCMs used globally (such as those used as part of the Coupled Model Intercomparison Project, it is difficult to assess the underlying causes of the differences in circulation between such GCMs. In order to address this problem, the work presented here makes use of three different configurations of the Australian Community Climate and Earth System Simulator (ACCESS. The configurations incorporate changes to the surface parameterization, cloud parameterization, and both together (surface and cloud while keeping all other parameterized processes unchanged. The work finds that the surface scheme has a larger impact on the heat low than the cloud scheme, which is caused by differences in the soil thermal inertia. This study also finds that the differences in the circulation caused by changing the cloud and surface schemes together are the linear sum of the individual perturbations (i.e., no nonlinear interaction.

  18. Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malataya (Turkey). Dept. of Machine and Metal Technologies; Erdem, Mehmet; Bozkir, Oguz [Inonu Univ., Malataya (Turkey); Ozay, Cetin [Univ. of Firat Elazig (Turkey). Faculty of Tech. Education

    2016-05-01

    The study examines how, using wire electrical discharge machining (WEDM), the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4V are changed as a result of heat treatment and the effect they have on machinability. Scanning electron microscope (SEM), optical microscope and X-ray diffraction (XRD) examinations were performed to determine various characteristics and additionally related microhardness and conductivity measurements were conducted. L{sub 18} Taquchi test design was performed with three levels and six different parameters to determine the effect of such alterations on its machinability using WEDM and post-processing surface roughness (Ra) values were determined. Micro-changes were ensured successfully by using heat treatments. Results obtained with the optimization technique of artificial neural network (ANN) presented minimum surface roughness. Values obtained by using response surface method along with this equation were completely comparable with those achieved in the experiments. The best surface roughness value was obtained from sample D which had a tempered martensite structure.

  19. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  20. Mass Transfer and MHD Effects on Unsteady Porous Stretching Surface Embedded in a Porous Medium With Variable Heat Flux in The Presence of Heat Source

    Directory of Open Access Journals (Sweden)

    G.V. Ramana REDDY

    2013-01-01

    Full Text Available An unsteady two dimensional boundary layer flowof a viscous, incompressible, electrically conducting fluid over aporous stretching surface embedded in a porous medium in thepresence of heat source or sink is studied in chapter 7. Theunsteadiness in the flow and temperature fields is caused by thetime dependence of the stretching velocity and the surface heatflux. The governing partial differential equations aretransformed into a system of ordinary differential equationsusing similarity variables, which is then solved numerically byapplying shooting method using Runge-Kutta method. Thesolution is found to be dependent on the governing parametersincluding the Prandtl number, porous parameter, heat source/sink parameter, suction or injection parameter andunsteadiness parameter. Comparison of numerical results ismade with previously published results under the special cases,and found to be in good agreement. Effects of the Prandtlnumber, porous parameter, heat source /sink parameter, suctionor injection parameter and unsteadiness parameter on the flowand heat transfer are examined.

  1. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  2. Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel

    2016-11-06

    We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.

  3. Buoyancy effects laminar slot jet impinging on a surface with constant heat flux

    International Nuclear Information System (INIS)

    Shokouhmand, H.; Esfahanian, V.; Masoodi, R.

    2004-01-01

    The two-dimensional laminar air jet issuing from a nozzle of half which terminates at height above a flat plate normal to the jet is numerically on the flow and thermal structure of the region near impingement. The impinging surface is maintained at a constant heat flux condition. The full Navier-Stocks and energy equations are solved by a finite difference method to evaluate the velocity profiles and temperature distribution. The governing parameters and their ranges are: Reynolds number Re, 10-50, Grashof number Gr, 0-50, Richardson number Ri=Gr/ Re 2 , Non dimensional nozzle height H,2-3. Results of the free streamline, local friction factor and heat transfer coefficient are graphically presented. It is found that enhancement of the heat transfer rate is substantial for high Richardson number conditions. Although the laminar jet impingement for isothermal condition has been already studied, however the constant heat flux has not been studied enough. the present paper will analyze a low velocity air jet, Which can be used for cooling of a simulated electronics package

  4. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  5. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  6. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities.

    Science.gov (United States)

    Yao, Rui; Wang, Lunche; Huang, Xin; Niu, Zigeng; Liu, Fongfu; Wang, Qing

    2017-12-31

    There are many studies focusing on spatial variations of surface urban heat islands (SUHIs) in literature. In this study, MODIS land surface temperature (LST) data and China's Land Use/Cover Datasets (CLUDs) were used to examine the temporal trends of SUHIs in 31 major Chinese cities during 2001-2015 using three indicators: SUHI intensity (SUHII), area of the SUHI (Area SUHI ) and percentage of area with increasing SUHII (PAISUHII). Correlation analyses between SUHII and background (rural) LST (extracted from MODIS LST), vegetation coverage (reflected by MODIS EVI data) and anthropogenic heat release (reflected by nighttime light data) were performed from temporal rather than spatial perspectives. Our findings showed that the SUHII and Area SUHI in urbanized areas increased significantly in most cities in summer days, whereas they increased significantly in approximately half and more than half of the cities in summer and winter nights, respectively. In summer days, summer nights and winter nights, the PAISUHII was approximately 80% and over 50% in union areas and the 20km buffer, respectively. Correlation analyses indicated that the SUHII in stable urban areas was negatively correlated with the background LST in summer and winter days for most cities, especially in northern China. A reduction in vegetation contributed to the increasing SUHII in urbanized areas in summer days and nights. The increasing anthropogenic heat release was an important factor for increases in the SUHII in urbanized areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  8. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kudo, Takahiro [Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2016-04-15

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag{sup 0}. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag{sup +} ion to Ag{sup 0}. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  9. When sticky fluids don't stick: yield-stress fluid drops on heated surfaces

    Science.gov (United States)

    Blackwell, Brendan; Wu, Alex; Ewoldt, Randy

    2016-11-01

    Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact; this sticky behavior motivates several applications of these rheologically-complex materials. Here we describe experiments with aqueous yield stress fluids that are more 'sticky' than water at room temperature (e.g. supporting larger coating thicknesses), but are less 'sticky' at higher temperatures. Specifically, we study the conditions for aqueous yield stress fluids to bounce and slide on heated surfaces when water sticks. Here we present high-speed imaging and color interferometry to observe the thickness of the vapor layer between the drop and the surface during both stick and non-stick events. We use these data to gain insight into the physics behind the phenomenon of the yield-stress fluids bouncing and sliding, rather than sticking, on hot surfaces.

  10. Preliminary study on the effect of heated surfaces upon bloodstain pattern analysis.

    Science.gov (United States)

    Larkin, Bethany A J; Banks, Craig E

    2013-09-01

    Bloodstain pattern analysis (BPA) involves the interpretation of distinct blood patterns found at crime scenes following a violent act. In this paper, we explored for the first time the effects of surface temperatures upon blood impacting a horizontal surface (steel) with its implications in BPA explored. Specific surface temperatures were explored over the range 24-250°C which relate to the four major boiling regimes of liquid media; natural convection, nucleate boiling, transition boiling, and film boiling, where a series of blood drops tests were performed at varying impact velocities. Blood was found to separate into its components at temperatures of 50°C+, displayed as temperature induced blood rings, where a single secondary and a series of further inner rings are exhibited. This consequently led to the development of a new constant Cd heated expressing the decrease in spread factor (D(s)/D(o)) at the secondary ring. © 2013 American Academy of Forensic Sciences.

  11. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  12. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)

    2016-03-15

    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  13. Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump

    Science.gov (United States)

    Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.

    2017-10-01

    The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.

  14. Similarity Solutions for Flow and Heat Transfer of Non-Newtonian Fluid over a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Atta Sojoudi

    2014-01-01

    Full Text Available Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

  15. Propagation of a surface electromagnetic wave in a plasma with allowance for electron heating

    International Nuclear Information System (INIS)

    Boev, A.G.; Prokopov, A.V.

    1978-01-01

    Considered is propagation of a surface high-frequency wave in a semibounded plasma, which electron component is heated within the wave field. Dissipative effects are considered small, that is possible if wave frequency is much higher than the collision frequency and phase velocity of wave considerably exceeds electron heat velocity. Under conditions of anomalous skin-effect the distributions of electron temperature and wave damping have been found. It is established, that higher electron temperature on the boundary results in a higher decrease of temperature inside a plasma, far from the boundary temperature decreases exponentially; damping coefficient under anomalous skin-effect conditions is characterized by a stronger dependence not only on the wave amplitude, but as well as on gas pressure and wave frequency in comparison with normal conditions

  16. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    Science.gov (United States)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  17. Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis and observations

    Science.gov (United States)

    Xie, Jin; Yu, Ye; Li, Jiang-lin; Ge, Jun; Liu, Chuan

    2018-02-01

    Surface sensible and latent heat fluxes (SH and LE) over the Tibetan Plateau (TP) have been under research since 1950s, especially for recent several years, by mainly using observation, reanalysis, and satellite data. However, the spatiotemporal changes are not consistent among different studies. This paper focuses on the spatiotemporal variation of SH and LE over the TP from 1981 to 2013 using reanalysis data sets (ERA-Interim, JRA-55, and MERRA) and observations. Results show that the spatiotemporal changes from the three reanalysis data sets are significantly different and the probable causes are discussed. Averaged for the whole TP, both SH and LE from MERRA are obviously higher than the other two reanalysis data sets. ERA-Interim shows a significant downward trend for SH and JRA-55 shows a significant increase of LE during the 33 years with other data sets having no obvious changes. By comparing the heat fluxes and some climate factors from the reanalysis with observations, it is found that the differences of heat fluxes among the three reanalysis data sets are closely related to their differences in meteorological conditions as well as the different parameterizations for surface transfer coefficients. In general, the heat fluxes from the three reanalysis have a better representation in the western TP than that in the eastern TP under inter-annual scale. While in terms of monthly variation, ERA-Interim may have better applicability in the eastern TP with dense vegetation conditions, while SH of JRA-55 and LE of MERRA are probably more representative for the middle and western TP with poor vegetation conditions.

  18. An investigation into heat recovery from the surface of a cyclone dust collector attached to a downdraft biomass gasifier

    International Nuclear Information System (INIS)

    Nwokolo, Nwabunwanne; Mamphweli, Sampson; Makaka, Golden

    2016-01-01

    Highlights: • At a temperature of 450 °C–500 °C, hot syngas is regarded as a good heat carrier. • A significant quantity of energy (665893.07 kcal) is lost via the surface of the cyclone. • The surface temperature 150 °C–220 °C was within the low waste heat recovery temperature. - Abstract: The gas leaving the reactor of a downdraft biomass gasifier contains large quantities of heat energy; this is due to the fact that the gas passes through a hot bed of charcoal before leaving the reactor. This heat is normally wasted in the gas scrubber/cooler that cools it from between 400 °C–500 °C to ambient temperature (around 25 °C). The waste heat stream under consideration is the raw syngas that emanates from a gasification process in a downdraft gasifier situated at Melani Village, Eastern Cape. This loss of heat is undesirable as it impacts on the thermal efficiency of the system. This study investigates the feasibility of heat recovery from the surface of the cyclone dust collector prior to entering the gas scrubber. It was shown that there was a downward decrease in temperature along the length of the cyclone. It is found that the total quantity of heat contained in the gas was 665893.07 kcal, which could indicate the viability of recovering heat from the cyclone.

  19. Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer.

    Science.gov (United States)

    Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad

    2018-02-02

    Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.

  20. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  1. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  2. Assessment of surface urban heat island across China's three main urban agglomerations

    Science.gov (United States)

    Liu, Yonghong; Fang, Xiaoyi; Xu, Yongming; Zhang, Shuo; Luan, Qingzu

    2017-06-01

    This article proposes a method for estimating the surface urban heat island intensity (SUHI) of urban areas, which addresses prior difficulties in the determination of rural contexts that may be used as a point of comparison. Based on indexes produced using this method, as well as remotely sensed datasets, the article compares the temporal and spatial characteristics of SUHIs within three major urban agglomerations (the Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta) and six typical metropolises. The article also examines the influence of socioeconomic factors on SUHI. The study revealed that this method is able to objectively monitor regional-scale SUHIs. The climate of the area studied is probably a determining factor in the seasonal variation of SUHIs. Research from the last 5 years (2010-2014) demonstrates that the urban heat island effect within the three urban agglomerations and five metropolises is serious. From 1994 to 2014, the average SUHI value for central urban areas rose from 0.4 to 2.3 K, while the total area where the SUHI value was >3.0 K increased from 1938 to 29,690 km2. The morphology of heat islands is significantly influenced by urbanization, meaning that heat islands within the areas studied will only continue to grow. Urban population and electricity consumption are the socioeconomic factors that exerted the greatest influence on the size of heat islands in China's major urban agglomerations. However, it is likely that economic measures designed to mitigate the UHI effect will differ in effectiveness from one urban agglomeration to another.

  3. Effects of aluminum oxide addition on the flexural strength, surface hardness, and roughness of heat-polymerized acrylic resin

    Directory of Open Access Journals (Sweden)

    Mahroo Vojdani

    2012-09-01

    Conclusion: Reinforcement of the conventional heat-cured acrylic resin with 2.5 wt% Al2O3 powder significantly increased its flexural strength and hardness with no adverse effects on the surface roughness.

  4. Short-term variability of surface heat budget of the east central Arabian Sea during November, 1992

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Rao, L.V.G.

    The analysis of surface meteorological data collected from the east central Arabian Sea during 10-28 November, 1992 revealed considerable variability in the meteorological parameters and heat budget components on both daily and diurnal time scales...

  5. Analysis of surface roughness and surface heat affected zone of steel S355J0 after plasma arc cutting

    International Nuclear Information System (INIS)

    Hatala, Michal; Chep, Robert; Pandilov, Zoran

    2010-01-01

    This paper deals with thermal cutting technology of materials with plasma arc. In the first part of this paper the theoretical knowledge of the principles of plasma arc cutting and current use of this technology in industry are presented. The cut of products with this technology is perpendicular and accurate, but the use of this technology affects micro-structural changes and depth of the heat affected zone (HAZ). This article deals with the experimental evaluation of plasma arc cutting technological process. The influence of technological factors on the roughness parameter Ra of the steel surface EN S355J0 has been evaluated by using planned experiments. By using the factor experiment, the significance of the four process factors such as plasma burner feed speed, plasma gas pressure, nozzle diameter, distance between nozzle mouth and material has been analyzed. Regression models obtained by multiple linear regression indicate the quality level of observed factors function. The heat from plasma arc cutting affects the micro-structural changes of the material, too.

  6. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  7. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  8. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  9. The Numerical Simulation Application for Fire-Tube Boiler Heating Surface Safety Evaluation

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2016-01-01

    Full Text Available The numerical simulation is applied for fire-tube boiler heating surface safety estimation. Thermal processes in an inflatable fire-tube furnace during its emergency operation were simulated using the finite volume method with Euler approximation and the implicit pressure based algorithm. Study results reproduce failures connected with increasing of impasse aerodynamic resistance. The method of these failures prediction is suggested. Simulation has shown that entering the amount of coolant into combustion volume results in burner fan incapability to overcome the impasse resistance of the furnace. The simulation results are visually confirmed during the inspection of emergency boilers.

  10. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.

    Science.gov (United States)

    Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K

    2014-01-01

    Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.

  11. Cost-Effective Fabrication of Wettability Gradient Copper Surface by Screen Printing and its Application to Condensation Heat Transfer

    Science.gov (United States)

    Leu, Tzong-Shyng; Huang, Hung-Ming; Huang, Ding-Jun

    2016-06-01

    In this paper, wettability gradient pattern is applied to condensation heat transfer on a copper tube surface. For this application, the vital issue is how to fabricate gradient patterns on a curve tube surface to accelerate the droplet collection efficiently. For this purpose, novel fabrication processes are developed to form wettability gradient patterns on a curve copper tube surface by using roller screen printing surface modification techniques. The roller screen printing surface modification techniques can easily realize wettability gradient surfaces with superhydrophobicity and superhydrophilicity on a copper tube surface. Experimental results show the droplet nucleation sites, movement and coalescence toward the collection areas can be effectively controlled which can assist in removing the condensation water from the surface. The effectiveness of droplet collection is appropriate for being applied to condensation heat transfer in the foreseeable future.

  12. Drought and Heat Waves: The Role of SST and Land Surface Feedbacks

    Science.gov (United States)

    Schubert, Siegfried

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.

  13. Waste Tyres as Heat Sink to Reduce the Driveway Surface Temperatures in Malaysia

    Directory of Open Access Journals (Sweden)

    Aniza Abdul Aziz

    2013-12-01

    Full Text Available The development of roads and driveways are on the rise as automobiles are now a necessity to all. This excessive development with its requirements increased the urban heat temperature and the generation of waste tyres. Waste tyre management has therefore been taken seriously by developed countries and since the European directive to ban used tyre products and whole tire disposal from landfill in 2003 and 2006 respectively, many researchers have looked for alternative ways to use the waste tyre. In Malaysia, The Smart and Cool Home Developer attempted to develop an eco-house by utilising waste tyre as the foundation for the driveway and claimed that the buried tyres act as a heat sink for the concrete and reduce the surface temperature of the driveway. Hence investigations were conducted on two sample houses to investigate this phenomenon. Findings from this pilot study show that waste tyres do act as a heat sink to the concrete driveways which affect the ambient temperature and relative humidity of the immediate surroundings.

  14. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E W; Wang, Y B; Zheng, Y F [State Key Laboratory for Turbulence and Complex System, Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S C, E-mail: enwei@pku.edu.cn, E-mail: yanbo.pku@pku.edu.cn, E-mail: shuaikegang@gmail.com, E-mail: soarfgoal@gmail.com, E-mail: norice86@163.com, E-mail: chengyan@pku.edu.cn, E-mail: xxiaoling11@hotmail.com, E-mail: yfzheng@pku.edu.cn, E-mail: weishicheng99@163.com [Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing 100081 (China)

    2011-04-15

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  15. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment

    International Nuclear Information System (INIS)

    Zhang, E W; Wang, Y B; Zheng, Y F; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Wei, S C

    2011-01-01

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  16. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.

    Science.gov (United States)

    Liu, Guangming; Craig, Vincent S J

    2010-01-01

    We present an investigation of the change in wettability of water droplets on 3 different flat, smooth substrates with an elevation in temperature. Two methods were employed. In the first method the droplet was placed on the substrate before it was heated and in the second method the droplets were induced to fall onto a preheated substrate. We find that the intrinsic wettability of the surface is important and that fundamentally different behavior is observed on a hydrophobic surface relative to hydrophilic surfaces. For the hydrophobic surface and employing the first method, we have observed three different regimes over the temperature range of 65 degrees C to 270 degrees C. In regime I (65 degrees C to 110 degrees C), the contact angle of water droplets exhibit a slight decrease from 108 degrees to 105 degrees and an accompanying significant decrease in droplet lifetime (tau) from approximately 111 s to approximately 30 s is observed. In regime II (120 degrees C to 190 degrees C), tau remains constant at approximately 20 s however the contact angle significantly increases from 127 degrees to 158 degrees--that is we enter a superhydrophobic regime on a flat surface. In this regime the droplet remains stationary on the surface. Regime III (210 degrees C to 270 degrees C), is the Leidenfrost regime in which the water droplet exhibits a rapid motion on the solid surface with a contact angle higher than 160 degrees. In comparison, the wetting behavior of a water droplet on two relatively hydrophilic surfaces (Au and GaAs) have also been investigated as a function of temperature. Here no wetting transition is observed from 65 degrees C up to 365 degrees C. In the second method, the wetting behavior on the hydrophobic surface is similar to that observed in the first method for temperatures below the Leidenfrost temperature and the water droplet rebounds from the solid surface at higher temperatures. Additionally, the Leidenfrost phenomenon can be observed above 280

  17. Extended-range forecasting of Chinese summer surface air temperature and heat waves

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim

    2018-03-01

    Because of growing demand from agricultural planning, power management and activity scheduling, extended-range (5-30-day lead) forecasting of summer surface air temperature (SAT) and heat waves over China is carried out in the present study via spatial-temporal projection models (STPMs). Based on the training data during 1960-1999, the predictability sources are found to propagate from Europe, Northeast Asia, and the tropical Pacific, to influence the intraseasonal 10-80 day SAT over China. STPMs are therefore constructed using the projection domains, which are determined by these previous predictability sources. For the independent forecast period (2000-2013), the STPMs can reproduce EOF-filtered 30-80 day SAT at all lead times of 5-30 days over most part of China, and observed 30-80 and 10-80 day SAT at 25-30 days over eastern China. Significant pattern correlation coefficients account for more than 50% of total forecasts at all 5-30-day lead times against EOF-filtered and observed 30-80 day SAT, and at a 20-day lead time against observed 10-80 day SAT. The STPMs perform poorly in reproducing 10-30 day SAT. Forecasting for the first two modes of 10-30 day SAT only shows useful skill within a 15-day lead time. Forecasting for the third mode of 10-30 day SAT is useless after a 10-day lead time. The forecasted heat waves over China are determined by the reconstructed SAT which is the summation of the forecasted 10-80 day SAT and the lower frequency (longer than 80-day) climatological SAT. Over a large part of China, the STPMs can forecast more than 30% of heat waves within a 15-day lead time. In general, the STPMs demonstrate the promising skill for extended-range forecasting of Chinese summer SAT and heat waves.

  18. Radiative heat transfer with hydromagnetic flow and viscous dissipation over a stretching surface in the presence of variable heat flux

    Directory of Open Access Journals (Sweden)

    Kumar Hitesh

    2009-01-01

    Full Text Available The boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a transverse magnetic field is studied. The equations of motion and heat transfer are reduced to non-linear ordinary differential equations and the exact solutions are obtained using properties of confluent hypergeometric function. It is assumed that the prescribed heat flux at the stretching porous wall varies as the square of the distance from origin. The effects of the various parameters entering into the problem on the velocity field and temperature distribution are discussed.

  19. HERSCHEL OBSERVATIONS OF A NEWLY DISCOVERED UX Ori STAR IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Clayton, Geoffrey C.; Sargent, B.; Boyer, M. L.; Meixner, M.; Roman-Duval, J.; Sewilo, M.

    2010-01-01

    The LMC star, SSTISAGE1C J050756.44-703453.9, was first noticed during a survey of EROS-2 light curves for stars with large irregular brightness variations typical of the R Coronae Borealis (RCB) class. However, the visible spectrum showing emission lines including the Balmer and Paschen series as well as many Fe II lines is emphatically not that of an RCB star. This star has all of the characteristics of a typical UX Ori star. It has a spectral type of approximately A2 and has excited an H II region in its vicinity. However, if it is an LMC member, then it is very luminous for a Herbig Ae/Be star. It shows irregular drops in brightness of up to 2 mag, and displays the reddening and 'blueing' typical of this class of stars. Its spectrum, showing a combination of emission and absorption lines, is typical of a UX Ori star that is in a decline caused by obscuration from the circumstellar dust. SSTISAGE1C J050756.44-703453.9 has a strong IR excess and significant emission is present out to 500 μm. Monte Carlo radiative transfer modeling of the spectral energy distribution requires that SSTISAGE1C J050756.44-703453.9 have both a dusty disk as well as a large extended diffuse envelope to fit both the mid- and far-IR dust emission. This star is a new member of the UX Ori subclass of the Herbig Ae/Be stars and only the second such star to be discovered in the LMC.

  20. Revealing the inclined circumstellar disk in the UX Ori system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-07-01

    We study the inner sub-AU region of the circumstellar environment of the UX Ori type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we will use this information to test the current standard picture for UX Ori stars. We recorded spectrally dispersed (R˜35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases and the SED of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ˜3.0 corresponding to an inclination of ˜70 degree. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ˜0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ˜70 degree and an additional dust envelope. The finding of an ˜70 degree inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.

  1. Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-03-01

    Aims: We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars. Methods: We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). Results: We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope. Conclusions: The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar. Based on observations made with ESO telescopes at Paranal Observatory under program ID: 083.D-0224(C) and 088.C-0575(A).

  2. On the nature of the UX Ursa Majoris-type nova-like variables - CPD-48 deg 1577

    Science.gov (United States)

    Sion, E. M.

    1985-01-01

    A series of low-dispersion spectra and one high-dispersion spectrum have been obtained of the catacylsmic variable CPD-48 deg 1577. Like other UX UMa stars, this variable exhibits the flat continuum of a luminous, thick, steady state accretion disk dominating its light from the far UV to the infrared. A wind mass loss rate of less than about 10 to the -9th solar mass/yr and an accretion rate of roughly 5 x 10 to the -9th solar mass/yr is roughly consistent with the range which characterizes other UX UMa stars. An SWP echelle spectrum reveals detailed line profile information on the N V, Si IV, and C IV resonance lines. He II 1640 A is remarkably weak and even absent in two of the spectra. The known properties and evolutionary status of CPD-48 deg 1577 and the other UX UMa stars are summarized.

  3. Multiple wavelength microwave observations of the RS Canum Venaticorum stars UX Arietis, HR 1099, HR 5110, and II Pegasi

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.

    1987-01-01

    The variabilities, core size and magnetic field of the RS CVn star UX Arietis was measured with the VLA at pairs of frequencies near 1415 MHz and 4835 MHz on June 10, 1985. Data were also gathered on HR 1099, HR 5110 and II Peg. UX Arietis exhibited variability on time scales ranging from 30 sec to 1 hr at 4835 MHz, but no detectable variations at 1415 MHz. An upper limit of 900 billion cm was placed on the size of the core emitting region, which is estimated to have a magnetic field strength of 15 G. The 30 sec variations are attributed to absorption by thermal plasma between the G5 and K1 companions of the UX Arietis system.

  4. Mathematical Heat Transfer Model of Surface Quenching Process for Hot Charging

    Science.gov (United States)

    Zhong, Jing; Wang, Qian; Li, Yugang; Zhang, Shaoda; Yan, Chen

    Online surface quenching technology has been developed for the hot charging process to prevent the surface cracks in high strength low-alloy steel slabs. In this paper, a two-dimensional heat transfer model of surface quenching process was presented. This finite element model includes nonlinear thermodynamic properties, by which the slab temperature distributions were computed. The model predicted temperatures show reasonable agreement with the measurements. The effects of the water flow rate and slab movement velocity on temperature variation during the quenching and subsequent tempering process were investigated. The result shows that the temperature drop increases but the tempering temperature changes slightly with increasing water flow rate and decreasing slab velocity. Keeping the slab movement velocity at 1.2-2.1m/min and the water flow rate at 55-70m3/h, the slab surface experiences a temperature drop of 400-600°C firstly, then recovers above 650°C, the quenching and energy-saving effect are remarkable.

  5. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  6. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  7. Compensation of the ux modulation distortion using an additional coil in a loudspeaker unit

    DEFF Research Database (Denmark)

    Antonello, Niccoló; Agerkvist, Finn T.

    2014-01-01

    Flux modulation is one of the main causes of distortion in electrodynamic loudspeaker units. A new com- pensation technique that eliminates this type of non-linearity using an additional compensation coil in the speaker unit is presented. An equivalent circuit model of the device including...... the compensation coil is de- rived. The compensation technique consists on feeding the compensation coil and voice coil with ltered versions of the wanted audio signal. Simulations show that a signicant reduction in ux modulation distor- tion can be achieved with this technique. A simple magnetic circuit has been...

  8. Spectrally resolved eclipse maps of the accretion disk in UX Ursae Majoris

    Science.gov (United States)

    Rutten, Rene G. M.; Dhillon, V. S.; Horne, Keith; Kuulkers, E.; Van Paradijs, J.

    1993-01-01

    An effort is made to observationally constrain accretion disks on the basis of light curves from the eclipsing cataclysmic variable UX Ursae Majoris, reconstructing the spectral energy distribution across the face of an accretion disk. The spectral resolution obtained suffices to reveal not only the radial dependence of absorption and emission line features within the disk, but also the spectral details of the bright spot that is formed where the accretion stream from the secondary star collides with the disk. The importance of such constraints for theoretical models is noted.

  9. The inner circumstellar disk of the UX Orionis star V1026 Scorpii

    Science.gov (United States)

    Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; Massi, F.

    2014-04-01

    Context. The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. Aims: We investigate the structure of the circumstellar environment of the UX Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. Methods: We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Results: Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 ± 0.06 AU in the H band and 0.18 ± 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257+133-53 K at the inner rim and extends from 0.19 ± 0.01 AU to 0.23 ± 0.02 AU. The outer disk begins at 1.35+0.19-0.20 AU and has an inner temperature of 334+35-17 K. The derived inclination of 48.6+2.9-3.6° approximately agrees with the inclination derived with the geometric model (49 ± 5° in the K band and 50 ± 11° in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 ± 9° (K band; 179 ± 17° in the H band) and 169.3+4.2-6.7°, respectively. Conclusions: The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50° is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  10. Comparison of automated devices UX-2000 and SediMAX/AutionMax for urine samples screening: A multicenter Spanish study.

    Science.gov (United States)

    Sánchez-Mora, Catalina; Acevedo, Delia; Porres, Maria Amelia; Chaqués, Ana María; Zapardiel, Javier; Gallego-Cabrera, Aurelia; López, Jose María; Maesa, Jose María

    2017-08-01

    In this study we aim to compare UX2000 (Sysmex Corp, Japan) and SediMAX/AutionMax (Arkray Factory Inc., Japan), totally automatized analyzers, against Fuchs-Rosenthal counting chamber, the gold standard technique for sediment analysis. Urine samples of 1454 patients from three Spanish hospitals were assessed for red and white blood cells (RBC; WBC) using three different techniques: flow cytometry, image-based method and Fuchs-Rosenthal counting chamber. Test strip results were subjected to concordance evaluation. Agreement was assessed by Cohen's weighted kappa for multinomial results. Sensitivity (SE) and specificity (SP) were calculated. The categorization of the results showed that UX-2000 had higher concordance over SediMAX for WBC (0.819 vs. 0.546) and similar for RBC (0.573 vs. 0.630). For RBC, UX-2000 had higher SE (92.7% vs. 80.3%) but lower SP (77.1% vs. 87.4%), and showed higher both SE (94.3% vs. 76.7%) and SP (94.7% vs. 88.2%) for WBC. Inter-devices test strip agreement was substantial (kappa>0.600) for all variables except for bilirubin (kappa: 0.598). Intra-device test strip agreement was similar for UX2000 and SediMAX with regard to RBC (kappa: 0.553 vs. 0.482) but better for UX2000 with regard to WBC (0.688 vs. 0.465). Both analyzers studied are acceptable for daily routine lab work, even though SediMAX is easier to use in laboratories thanks to its lower maintenance procedure. UX-2000 has shown to have better concordance with the gold standard method. However, it needs some improvements such as an image module in order to decrease manual microscopy review for urine samples. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Prevention of biofouling on heat transfer surfaces of ocean thermal energy converters. Progress report, May 1, 1975--November 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Ostrozynski, R.L.; Jones, P.E.

    1975-12-01

    The objectives of the program were to develop chemical processes utilizing a combination of certain fluorochemicals and tribulyltin based toxicants for treating the surfaces of metals which may be used to fabricate OTEC heat exchangers, and to demonstrate the effectiveness of these surface treatments as antibiofoulants. Aluminium alloy No. 3003-H14 and titanium were testd, neither of which proved satisfactory. (WDM)

  12. An analytical and experimental study for surface heat flux determination. [in Space Shuttle Orbiter thermal protection system

    Science.gov (United States)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    A numerical method by which data from a single embedded thermocouple can be used to predict the transient thermal environment for both high- and low-conductivity materials is described. The results of an investigation performed to verify the method clearly demonstrate that accurate transient surface heating conditions can be obtained from a thermocouple 1.016 cm from the surface in a low-conductivity material. Space Shuttle Orbiter thermal protection system materials having temperature- and pressure-dependent properties and typical Orbiter entry heating conditions were used to verify the accuracy of the analytical procedure. Analytically generated, as well as experimental, data were used to compare predicted and measured surface temperatures.

  13. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling

    International Nuclear Information System (INIS)

    Aguilar, Guillermo; Vu, Henry; Nelson, J Stuart

    2004-01-01

    High speed video imaging and an inverse heat conduction problem algorithm were used to observe and measure the effect of the angle between the nozzle and surface of a skin phantom on: (a) surface temperature; (b) heat flux q; and (c) overall heat extraction Q during cryogen spray cooling (CSC). A skin phantom containing a fast-response temperature sensor was sprayed with 50 ms cryogen spurts from a commercial nozzle placed 30 mm from the surface. The nozzle was systematically positioned at angles ranging from 5 deg. to 90 deg. (perpendicular) with respect to the phantom surface. It is shown that angles as low as 15 deg. have an insignificant impact on the surface temperature, q and Q. Only exaggerated angles of 5 deg. show up to 10% lower q and 30% lower Q with respect to the maximal values measured when nozzles are aimed perpendicularly. This study proves that the slight angle that many commercial nozzles have does not affect significantly the CSC efficiency. (note)

  14. Recovery of 29 Second Oscillations in Hubble Space Telescope Eclipse Observations of the Cataclysmic Variable UX Ursae Majoris

    Science.gov (United States)

    Knigge, Christian; Drake, Nick; Long, Knox S.; Wade, Richard A.; Horne, Keith; Baptista, Raymundo

    1998-01-01

    Low-amplitude (approximately 0.5%) 29 s oscillations have been detected in Hubble Space Telescope Faint Object Spectrograph eclipse observations of the nova-like cataclysmic variable UX UMa. These are the same dwarf nova-type oscillations that were originally discovered in this system in 1972. The 29 s oscillations are seen in one pair of eclipse sequences obtained with the FOS/PRISM in 1994 November but not in a similar pair obtained with the FOS/GI60L grating in August of the same year. The oscillations in the PRISM data are sinusoidal to within the small observational errors and undergo an approximately - 360' phase shift during eclipses (i.e., one cycle is lost). The amplitudes are highest at pre-eclipse orbital phases and exhibit a rather gradual eclipse whose shape is roughly similar to, although perhaps slightly narrower than, LTX UMa's overall light curve in the PRISM bandpass (2000-8000 A). Spectra of the oscillations have been constructed from pre-, mid, and post-eclipse data segments of the November observations. The spectra obtained from the out-of-eclipse segments are extremely blue, and only lower limits can be placed on the temperature of the source that dominates the modulated flux at these orbital phases. Lower limits derived from blackbody (stellar atmosphere) model fits to these data are >or equal to 95,000 K (> or equal to 85,000 K); the corresponding upper limits on the projected area of this source are all less than 2% of the white dwarf (WD) surface area. By contrast, oscillation spectra derived from mid- eclipse data segments are much redder. Fits to these spectra yield temperature estimates in the range 20,000 K approximately greater T and T approximately less than 30,000 K for both blackbody and stellar atmosphere models and corresponding projected areas of a few percent of the WD surface area. These estimates are subject to revision if the modulated emission is optically thin. We suggest that the ultimate source of the oscillations is a

  15. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City

    Directory of Open Access Journals (Sweden)

    Sirous Haashemi

    2016-04-01

    Full Text Available The process of the surface urban heat island (SUHI varies with latitude, climate, topography and meteorological conditions. This study investigated the seasonal variability of SUHI in the Tehran metropolitan area, Iran, with respect to selected surface biophysical variables. Terra Moderate Resolution Imaging Spectroradiometer (MODIS Land Surface Temperature (LST was retrieved as nighttime LST data, while daytime LST was retrieved from Landsat 8 Thermal Infrared Sensor (TIRS using the split-window algorithm. Both data covered the time period from September 2013 to September 2015. To assess SUHI intensity, we employed three SUHI indicators, i.e., the LST difference of urban-rural, that of urban-agriculture and that of urban-water. Physical and biophysical surface variables, including land use and land cover (LULC, elevation, impervious surface (IS, fractional vegetation cover (FVC and albedo, were selected to estimate the relationship between LST seasonal variability and the surface properties. Results show that an inversion of the SUHI phenomenon (i.e., surface urban cool island existed at daytime with the maximal value of urban-rural LST difference of −4 K in March; whereas the maximal value of SUHI at nighttime yielded 3.9 K in May. When using the indicators of urban-agriculture and urban-water LST differences, the maximal value of SUHI was found to be 8.2 K and 15.5 K, respectively. Both results were observed at daytime, suggesting the role of bare soils in the inversion of the SUHI phenomenon with the urban-rural indicator. Maximal correlation was observed in the relationship between night LST and elevation in spring (coefficient: −0.76, night LST and IS in spring (0.60, night LST and albedo in winter (−0.53 and day LST with fractional vegetation cover in summer (−0.41. The relationship between all surface properties with LST possessed large seasonal variations, and thus, using these relationships for SUHI modeling may not be

  16. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  17. Transitions to improved core electron heat confinement triggered by low order rational magnetic surfaces in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Lopez-Bruna, D.; AscasIbar, E.; BalbIn, R.; Cappa, A.; Castejon, F.; Eguilior, S.; Fernandez, A.; Guasp, J.; Hidalgo, C.; Petrov, S.

    2007-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II electron cyclotron heated (ECH) plasmas. Experiments are performed changing the magnetic shear around the rational surface n = 3/m = 2 to study its influence on the transition; ECH power modulation is used to look at transport properties. The improvement in the electron heat confinement shows no obvious dependence on the magnetic shear. Transitions triggered by the rational surface n = 4/m = 2 show, in addition, an increase in the ion temperature synchronized with the increase in the electron temperature. Ion temperature changes had not been previously observed either in TJ-II or in any other helical device. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition

  18. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  19. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic.

    Science.gov (United States)

    Siavikis, Georgius; Behr, Michael; van der Zel, Jef M; Feilzer, Albert J; Rosentritt, Martin

    2011-04-01

    Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of zirconia. Zirconia bars (Cercon, DeguDent, G; 0.5x2x20 mm) were fabricated and treated according to veneering conditions. Besides heating regimes between 680°C and 1000°C (liner bake and annealing), sandblasting (Al(2)O(3)) or steam cleaning were used. The bars were investigated after 90 days storage in water and acid. For investigating the influence of veneering, the bars were veneered in press- or layer technique. Dynamic mechanical analysis (DMA) in a three-point-bending design was performed to determine the storage modulus between 25°C and 200°C at a frequency of 1.66 Hz. All specimens were loaded on top and bottom (treatment on pressure or tensile stress side). Scanning electron microscopy (SEM) was used for evaluating the superficial changes of the zirconia surface due to treatment. Statistical analysis was performed using Mann Whitney U-test (α=0.05). Sintered zirconia provided a storage modulus E' of 215 (203/219) GPa and tan δ of 0.04 at 110°C. A 10%-decrease of E' was found up to 180°C. The superficial appearance changed due to heating regime. Sandblasting reduced E' to 213 GPa, heating influenced E' between 205 GPa (liner bake 1) and 222 GPa (dentin bake 1). Steam cleaning, annealing and storage changed E' between 4 GPa and 22 GPa, depending on the side of loading. After veneering, strong E'-reduction was found down to 84 GPa and 125 GPa. Veneering of zirconia with glass-ceramic in contrast to heat treating during veneering procedure had a strong influence on the modulus. The application of the glass-ceramic caused a stronger decrease of the storage modulus.

  20. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  1. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    International Nuclear Information System (INIS)

    Jung, Satbyoul; Kim, Hyungdae

    2016-01-01

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  2. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae, E-mail: hdkims@khu.ac.kr

    2016-08-15

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  3. Enhancement of Nucleate Boiling Heat Flux on Macro/Micro-Structured Surfaces Cooled by Multiple Impinging Jets

    Science.gov (United States)

    Kugler, Scott Lee

    1997-01-01

    An experimental investigation of nucleate boiling heat transfer from modified surfaces cooled by multiple in-line impinging circular jets is reported and found to agree with single jet results. A copper block is heated from the back by two electrical arcs, and cooled on the opposite side by three identical liquid jets of distilled water at subcoolings of 25 C 50 C and 77 C and Freon 113 at 24 C subcooling. Liquid flow rates are held constant at 5, 10, and 15 GPH for each of the three jets with jet velocities ranging from 1.4 m/s to 1 1.2 m/s and jet diameters from 0.95 mm to 2.2 mm. To increase the maximum heat flux (CHF) and heat removal rate, the boiling surface was modified by both macro and micro enhancements. Macro modification consists of machined radial grooves in the boiling surface arranged in an optimally designed pattern to allow better liquid distribution along the surface. These grooves also reduce splashing of liquid droplets, and provide 'channels' to sweep away bubbles. Micro modification was achieved by flame spraying metal powder on the boiling surface, creating a porous, sintered surface. With the addition of both micro and macro structured enhancements, maximum heat flux and nucleate boiling can be enhanced by more than 200%. Examination of each surface modification separately and together indicates that at lower superheats, the micro structure provides the enhanced heat transfer by providing more nucleation sites, while for higher superheats the macro structure allows better liquid distribution and bubble removal. A correlation is presented to account for liquid subcoolings and surface enhancements, in addition to the geometrical and fluid properties previously reported in the literature.

  4. Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge.

    Science.gov (United States)

    MacDonald, Daniel E; Rapuano, Bruce E; Schniepp, Hannes C

    2011-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy's surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy's surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. Published by Elsevier B.V.

  5. An analytic model of pool boiling critical heat flux on an immerged downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    He, Hui; Pan, Liang-ming, E-mail: cneng@cqu.edu.cn; Wu, Yao; Chen, De-qi

    2015-08-15

    Highlights: • Thin liquid film and supplement of liquid contribute to the CHF. • CHF increases from the bottom to the upper of the lowerhead. • Evaporation of thin liquid film is dominant nearby bottom region. • The subcooling has significant effects on the CHF. - Abstract: In this paper, an analytical model of the critical heat flux (CHF) on the downward facing curved surface for pool boiling has been proposed, which hypothesizes that the CHF on the downward facing curved is composed of two parts, i.e. the evaporation of the thin liquid film underneath the elongated bubble adhering to the lower head outer surface and the depletion of supplement of liquid due to the relative motion of vapor bubbles along with the downward facing curved. The former adopts the Kelvin–Helmholtz instability analysis of vapor–liquid interface of the vapor jets which penetrating in the thin liquid film. When the heat flux closing to the CHF point, the vapor–liquid interface becomes highly distorted, which block liquid to feed the thin liquid film and the thin liquid film will dry out gradually. While the latter considers that the vapor bubbles move along with the downward facing curved surface, and the liquid in two-phase boundary layer enter the liquid film that will be exhausted when the CHF occurs. Based on the aforementioned mechanism and the energy balance between the thin liquid film evaporation and water feeding, and taking the subcooling of the bulk water into account, the mathematic model about the downward facing curved surface CHF has been proposed. The CHF of the downward facing curved surface for pool boiling increases along with the downward facing orientation except in the vicinity of bottom center region, because in this region the vapor bubble almost stagnates and the evaporation of the thin liquid film is dominant. In addition, the subcooling has significant effect on the CHF. Comparing the result of this model with the published experimental results show

  6. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  7. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products

    Science.gov (United States)

    Lai, Jiameng; Zhan, Wenfeng; Huang, Fan; Quan, Jinling; Hu, Leiqiu; Gao, Lun; Ju, Weimin

    2018-05-01

    The temporally regular and spatially comprehensive monitoring of surface urban heat islands (SUHIs) have been extremely difficult, until the advent of satellite-based land surface temperature (LST) products. However, these LST products have relatively higher errors compared to in situ measurements. This has resulted in comparatively inaccurate estimations of SUHI indicators and, consequently, may have distorted interpretations of SUHIs. Although reports have shown that LST qualities are important for SUHI interpretations, systematic investigations of the response of SUHI indicators to LST qualities across cities with dissimilar bioclimates are rare. To address this issue, we chose eighty-six major cities across mainland China and analyzed SUHI intensity (SUHII) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The LST-based SUHII differences due to inclusion or exclusion of MODIS quality control (QC) flags (i.e., ΔSUHII) were evaluated. Our major findings included, but are not limited to, the following four aspects: (1) SUHIIs can be significantly impacted by MODIS QC flags, and the associated QC-induced ΔSUHIIs generally accounted for 24.3% (29.9%) of the total SUHII value during the day (night); (2) the ΔSUHIIs differed between seasons, with considerable differences between transitional (spring and autumn) and extreme (summer and winter) seasons; (3) significant discrepancies also appeared among cities located in northern and southern regions, with northern cities often possessing higher annual mean ΔSUHIIs. The internal variations of ΔSUHIIs within individual cities also showed high heterogeneity, with ΔSUHII variations that generally exceeded 5.0 K (3.0 K) in northern (southern) cities; (4) ΔSUHIIs were negatively related to SUHIIs and cloud cover percentages (mostly in transitional seasons). No significant relationship was found in the extreme seasons. Our findings highlight the need to be extremely cautious when using LST

  8. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  9. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  10. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  11. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    Science.gov (United States)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  12. Eddy heat flux across the Antarctic Circumpolar Current estimated from sea surface height standard deviation

    Science.gov (United States)

    Foppert, Annie; Donohue, Kathleen A.; Watts, D. Randolph; Tracey, Karen L.

    2017-08-01

    Eddy heat flux (EHF) is a predominant mechanism for heat transport across the zonally unbounded mean flow of the Antarctic Circumpolar Current (ACC). Observations of dynamically relevant, divergent, 4 year mean EHF in Drake Passage from the cDrake project, as well as previous studies of atmospheric and oceanic storm tracks, motivates the use of sea surface height (SSH) standard deviation, H*, as a proxy for depth-integrated, downgradient, time-mean EHF (>[EHF>¯>]) in the ACC. Statistics from the Southern Ocean State Estimate corroborate this choice and validate throughout the ACC the spatial agreement between H* and >[EHF>¯>] seen locally in Drake Passage. Eight regions of elevated >[EHF>¯>] are identified from nearly 23.5 years of satellite altimetry data. Elevated cross-front exchange usually does not span the full latitudinal width of the ACC in each region, implying a hand-off of heat between ACC fronts and frontal zones as they encounter the different >[EHF>¯>] hot spots along their circumpolar path. Integrated along circumpolar streamlines, defined by mean SSH contours, there is a convergence of ∮>[EHF>¯>] in the ACC: 1.06 PW enters from the north and 0.02 PW exits to the south. Temporal trends in low-frequency [EHF] are calculated in a running-mean sense using H* from overlapping 4 year subsets of SSH. Significant increases in downgradient [EHF] magnitude have occurred since 1993 at Kerguelen Plateau, Southeast Indian Ridge, and the Brazil-Malvinas Confluence, whereas the other five >[EHF>¯>] hot spots have insignificant trends of varying sign.

  13. User Experience (Ux sebagai Bagian dari Pemikiran Desain dalam Pendidikan Tinggi Desain Komunikasi Visual

    Directory of Open Access Journals (Sweden)

    Mendiola B. Wiryawan

    2011-10-01

    Full Text Available Digital world, internet and mobile have made communication does not move in one way anymore. Visual Communication as a part of Communication recently is going to be more personal, segmented, interactive, user-generated content, accessible and available in huge quantities. In the positive side, users have more options to receive or to respond communication signals according to his/her needs and wants. In opposite, now everybody gets information clutter caused by unbalanced information between what we can received and what we can digested. For that reason we need method to study the people as an object of our communication. Learning user experience concept make us understand more about our object insight. The aim of this paper is to review principles that used in UX study. In the future we expect this discourse will be assesed and used in a design thinking method and developed in visual communication design institution. Research method used in this paper is based on literatural studies. Understanding of UX will help designers developing design that can be effectively communicate with their segement.  

  14. Chronic Asthma and Gastro-Esophageal Reflux Disease: The Treatment Plans

    Directory of Open Access Journals (Sweden)

    Leila Ghofraniha

    2015-09-01

    Full Text Available Gastro-esophageal reflux disease (GERD regularly occurs when stomach acid moves up from the stomach into the esophagus. GERD might be associated with chronic asthma symptoms such as coughing and breathlessness. According to several studies on children and adults, GERD is proven to have a close relationship with asthma.  Medication treatment via proton-pump inhibitors (PPIs, such as Omeprazole, H2 receptor blockers (Ranitidine, and other antireflux medications, is appropriate for ameliorating GERD and asthma. Moreover, surgery is another useful approach to GERD and asthma treatment. In this regard, Nissen fundoplication (laparoscopic is a principal surgery method. Medical and surgical antireflux therapies are recognized as effective methods in the treatment of GERD-associated asthma. Our  review included studies that evaluated treatment of GERD-associated asthma. These studies accentuated the critical role of acid reflux suppression in relieving the patients suffering from a difficult to control asthma.

  15. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  16. New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating.

    Science.gov (United States)

    Manara, D; Sheindlin, M; Heinz, W; Ronchi, C

    2008-11-01

    An original technique for the measurement of high-temperature phase transitions was implemented based on a laser-heating method, enabling chemically unstable, refractory materials to be melted under controlled conditions. This technique includes two independent but correlated methods: In the first, fast multichannel pyrometry is employed to measure thermograms and spectral emissivity; in the second, a low-power probe laser beam is used for the detection of reflectivity changes induced by phase transitions on the sample surface. The experiments are carried out under medium ( approximately 10(2) kPa) or high ( approximately 10(2) MPa) inert-gas pressures in order to kinetically suppress evaporation in volatile or chemically instable samples. Two models for the simulation of the laser-heating pulses are as well introduced. Some results are presented about the successful application of this technique to the study of the melting behavior of oxides such as UO(2+x), ZrO(2), and their mixed oxides. The method can be extended to a broad class of refractory materials.

  17. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  18. Impact of structural design criteria on first wall surface heat flux limit

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    The irradiation environment experienced by the in-vessel components of fusion reactors presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. Recently, Draft 7 of the ITER structural design criteria (ISDC), which provide new rules for guarding against such problems, was released for trial use by the ITER designers. The new rules, which were derived from a simple model based on the concept of elastic follow up factor, provide primary and secondary stress limits as functions of uniform elongation and ductility. The implication of these rules on the allowable surface heat flux on typical first walls made of type 316 stainless steel and vanadium alloys are discussed

  19. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  20. Accuracy Investigation of Creating Orthophotomaps Based on Images Obtained by Applying Trimble-UX5 UAV

    Directory of Open Access Journals (Sweden)

    Hlotov Volodymyr

    2017-06-01

    Full Text Available The main purpose of this work is to confirm the possibility of making largescale orthophotomaps applying unmanned aerial vehicle (UAV Trimble- UX5. A planned altitude reference of the studying territory was carried out before to the aerial surveying. The studying territory has been marked with distinctive checkpoints in the form of triangles (0.5 × 0.5 × 0.2 m. The checkpoints used to precise the accuracy of orthophotomap have been marked with similar triangles. To determine marked reference point coordinates and check-points method of GNSS in real-time kinematics (RTK measuring has been applied. Projecting of aerial surveying has been done with the help of installed Trimble Access Aerial Imaging, having been used to run out the UX5. Aerial survey out of the Trimble UX5 UAV has been done with the help of the digital camera SONY NEX-5R from 200m and 300 m altitude. These aerial surveying data have been calculated applying special photogrammetric software Pix 4D. The orthophotomap of the surveying objects has been made with its help. To determine the precise accuracy of the got results of aerial surveying the checkpoint coordinates according to the orthophotomap have been set. The average square error has been calculated according to the set coordinates applying GNSS measurements. A-priori accuracy estimation of spatial coordinates of the studying territory using the aerial surveying data have been calculated: mx=0.11 m, my=0.15 m, mz=0.23 m in the village of Remeniv and mx=0.26 m, my=0.38 m, mz=0.43 m in the town of Vynnyky. The accuracy of determining checkpoint coordinates has been investigated using images obtained out of UAV and the average square error of the reference points. Based on comparative analysis of the got results of the accuracy estimation of the made orthophotomap it can be concluded that the value the average square error does not exceed a-priori accuracy estimation. The possibility of applying Trimble UX5 UAV for making

  1. Areal Measurements of Ozone, Water, and Heat Fluxes Over Land With Different Surface Complexity, Using Aircraft

    International Nuclear Information System (INIS)

    Hicks, Bruce B.

    2001-01-01

    Contemporary models addressing issues of air quality and/or atmospheric deposition continue to exploit air-surface exchange formulations originating from single-tower studies. In reality,these expressions describe situations that are rare in the real world - nearly flat and spatially homogeneous. There have been several theoretical suggestions about how to extend from single-point understanding to areal descriptions, but so far the capability to address the problem experimentally has been limited. In recent years, however, developments in sensing technology have permitted adaptation of eddy-correlation methods to low-flying aircraft in a far more cost-effective manner than previously. A series of field experiments has been conducted, ranging from flat farmland to rolling countryside, employing a recently modified research aircraft operated by the US NationalOceanic and Atmospheric Administration (NOAA). The results demonstrate the complexity of the spatial heterogeneity question,especially for pollutants (ozone in particular). In general, the uncertainty associated with the adoption of any single-point formulation when describing areal averages is likely to be in the range 10% to 40%. In the case of sensible and latent heat fluxes, the overall behavior is controlled by the amount of energy available. For pollutant deposition, there is no constraint equivalent to the net radiation limitation on convective heat exchange. Consequently, dry deposition rates and air-surface exchange of trace gases in general are especially vulnerable to errors in spatial extrapolation. The results indicate that the susceptibility of dry deposition formulations to terrain complexity depends on the deposition velocity itself. For readily transferred pollutants (such as HNO 3 ), a factor of two error could be involved

  2. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    energy balance along with the net radiation (R), latent heat flux (L), sensible heat flux (H), and in some cases, canopy storage and photosynthesis. (Cobos and Baker 2003). The influence of soil heat flux on chemical reactions and microclimate are self evident. On a wet or full-vegetation-covered sur- face, the soil heat flux is ...

  3. Heat transfer in a couple stress fluid over a continuous moving surface with internal hat generation and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics

    2012-05-15

    This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)

  4. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  5. Influence of the nucleation surface inclination on heat transfers and on the growth dynamics of a steam bubble

    International Nuclear Information System (INIS)

    Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L.

    2006-01-01

    The influence of the inclination of the nucleation surface on heat and mass transfers and on the growth dynamics of a single steam bubble is experimentally studied. The bubble is created beneath a wall with an imposed heating flux. The evolution of geometrical bubble parameters and of the frequency of emission with respect to the inclination angle are presented. The total heat flux measurements are compared to the evaporation fluxes determined by image processing. Contrary to the evaporation flux, the total flux is conditioned by the inclination and thus is correlated to the frequency of bubbles emission. (J.S.)

  6. Numerical study for nanofluid flow due to a nonlinear curved stretching surface with convective heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This article presents the simultaneous effects of convective heat and mass conditions in boundary-layer flow of nanoliquid due to a nonlinear curved stretching surface. A nonlinear curved stretching surface is used to generate the flow. Thermophoretic diffusion and random motion features are also incorporated. Convective heat and mass conditions are imposed at boundary. Suitable variables are utilized to convert the nonlinear partial differential system into nonlinear ordinary differential system. The obtained nonlinear systems are solved numerically through shooting technique. Plots are displayed in order to explore the role of physical flow variables on the solutions. The skin-friction coefficient and local Nusselt and Sherwood numbers are computed and examined. Our findings indicate that the local Nusselt and Sherwood numbers are reduced for larger values of thermophoresis parameter. Keywords: Nonlinear curved stretching surface, Nanoparticles, Convective heat and mass conditions, Numerical solution

  7. Development of a 3-D urbanization index using digital terrain models for surface urban heat island effects

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice; Jan, Jihn-Fa

    2013-07-01

    This study assesses surface urban heat island (SUHI) effects during heat waves in subtropical areas. Two cities in northern Taiwan, Taipei metropolis and its adjacent medium-sized city, Yilan, were selected for this empirical study. Daytime and night time surface temperature and SUHI intensity of both cities in five heat wave cases were obtained from MODIS Land-Surface Temperature (LST) and compared. In order to assess SUHI in finer spatial scale, an innovated three-dimensional Urbanization Index (3DUI) with a 5-m spatial resolution was developed to quantify urbanization from a 3-D perspective using Digital Terrain Models (DTMs). The correlation between 3DUI and surface temperatures were also assessed. The results obtained showed that the highest SUHI intensity in daytime was 10.2 °C in Taipei and 7.5 °C in Yilan. The SUHI intensity was also higher than that in non-heat-wave days (about 5 °C) in Taipei. The difference in SUHI intensity of both cities could be as small as only 1.0 °C, suggesting that SUHI intensity was enhanced in both large and medium-sized cities during heat waves. Moreover, the surface temperatures of rural areas in Taipei and Yilan were elevated in the intense heat wave cases, suggesting that the SUHI may reach a plateau when the heat waves get stronger and last longer. In addition, the correlation coefficient between 3DUI and surface temperature was greater than 0.6. The innovative 3DUI can be employed to assess the spatial variation of temperatures and SUHI intensity in much finer spatial resolutions than measurements obtained from remote sensing and weather stations. In summary, the empirical results demonstrated intensified SUHI in large and medium-sized cities in subtropical areas during heat waves which could result in heat stress risks of residents. The innovative 3DUI can be employed to identify vulnerable areas in fine spatial resolutions for formulation of heat wave adaptation strategies.

  8. Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part II, Friction, heating, and torque.

    Science.gov (United States)

    Davidson, J A; Schwartz, G; Lynch, G; Gir, S

    1988-04-01

    In Part I, (J.A. Davidson and G. Schwartz, "Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part I, A review," J. Biomed. Mater. Res., 21, 000-000 (1987) it was shown that lubrication of the artificial hip joint was complex and that long-term performance is governed by the combined wear, creep, and to a lesser extent, oxidation degradation of the articulating materials. Importantly, it was shown that a tendency for heating exists during articulation in the hip joint and that elevated temperatures can increase the wear, creep, and oxidation degradation rate of UHMWPE. The present study was performed to examine closely the propensity to generate heat during articulation in a hip joint simulator. The systems investigated were polished Co-Cr-Mo alloy articulating against UHMWPE, polished alumina ceramic against UHMWPE, and polished alumina against itself. Frictional torque was also evaluated for each system at various levels of applied loads. A walking load history was used in both the frictional heating and torque tests. The majority of tests were performed with 5 mL of water lubricant. However, the effect of various concentrations of hyaluronic acid was also evaluated. Results showed frictional heating to occur in all three systems, reaching an equilibrium after roughly 30 min articulation time. Ceramic systems showed reduced levels of heating compared to the cobalt alloy-UHMWPE system. The level of frictional torque for each system ranked similar to their respective tendencies to generate heat. Hyaluronic acid had little effect, while dry conditions and the presence of small quantities of bone cement powder in water lubricant significantly increased frictional torque.

  9. Neutron diffraction and TSDC on Ba1−xUxF2+2x solid electrolytes

    DEFF Research Database (Denmark)

    Ouwerkerk, M.; Andersen, N. H.; Veldkamp, F. F.

    1986-01-01

    The defect structure of fluorite-type Ba1−xUxF2+2x solid solutions, which exhibit fast fluoride ion conductivity, has been investigated by quasi-elastic diffuse neutron scattering (QDNS) experiments, and thermally stimulated depolarisation current (TSDC) measurements. A comparison with model...

  10. Antiferromagnetism, crystal fields and hybridisation in UxY1-xPd3 studied by neutron scattering

    DEFF Research Database (Denmark)

    Bull, M.J.; McEwen, K.A.; Eccleston, R.S.

    1999-01-01

    We summarise our UxY1-xPd3 inelastic neutron scattering experiments and present new neutron diffraction results for a single crystal of U0.45Y0.55Pd3. Long-range antiferromagnetic order is unambiguously observed below T-N = 22.5 K. in contrast, no long-range order is found in polycrystalline...

  11. Relevant time- and length scale of touch-down for drops impacting on a heated surface

    Science.gov (United States)

    van Limbeek, Michiel A. J.; Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-11-01

    The vapor generated from a liquid drop impacting a hot solid surface can prevent it to make contact, depending on the solid temperature. The minimum temperature when no contact is made between the drop and the solid is called the dynamic Leidenfrost temperature. The latent heat needed to generated the vapor is drawn from the solid, and in general the Leidenfrost temperature depends on the solid thermal properties. Here we show experiments conducted on a sapphire plate, to minimize the cooling of the solid and ensuring nearly isothermal conditions. By using high speed total internal reflection imaging, we observe the drop base during impact up to about 100nm above the substrate surface. By this technique we are able to study the processes responsible for the transition between fully wetting and fully levitating drop impact conditions as the solid temperature increases. We reveal the relevant length- and time-scales for the dimple formation under the drop and explain their relevance for the late-time dynamics. As the transition regime is traversed from low to high temperature, the liquid-solid contact gradually decreases which reduces the friction with the solid, enhancing the spreading of the drop considerably.

  12. Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.

    Science.gov (United States)

    Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2017-08-01

    Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China.

    Science.gov (United States)

    Yang, Qiquan; Huang, Xin; Li, Jiayi

    2017-08-24

    The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.

  14. The historical development of heat transfer surfaces for gas-cooled reactors analysed with a simple criterion

    International Nuclear Information System (INIS)

    Leslie, D.C.

    1980-01-01

    The evolution of finned heat transfer surfaces for gas-cooled reactors, from longitudinal through transverse to the sophisticated helical polyzonal and herring-bone fins, is described, and their merits are compared using a simple criterion of heat transfer efficiency. These fins cannot be used in AGR's because of the high neutron absorption and low thermal conductivity of stainless steel, and artificial roughening in the form of ribbing is used instead; the same criterion can be applied to this type of surface. The interest of the material is largely historical. (author)

  15. Towards closure of regional heat budgets in the North Atlantic using Argo floats and surface flux datasets

    Directory of Open Access Journals (Sweden)

    N. C. Wells

    2009-04-01

    Full Text Available The upper ocean heat budget (0–300 m of the North Atlantic from 20°–60° N is investigated using data from Argo profiling floats for 1999–2005 and the NCEP/NCAR and NOC surface flux datasets. Estimates of the different terms in the budget (heat storage, advection, diffusion and surface exchange are obtained using the methodology developed by Hadfield et al. (2007a, b. The method includes optimal interpolation of the individual profiles to produce gridded fields with error estimates at a 10°×10° grid box resolution. Closure of the heat budget is obtained within the error estimates for some regions – particularly the eastern subtropical Atlantic – but not for those boxes that include the Gulf Stream. Over the whole range considered, closure is obtained for 13 (9 out of 20 boxes with the NOC (NCEP/NCAR surface fluxes. The seasonal heat budget at 20–30° N, 35–25° W is considered in detail. Here, the NCEP based budget has an annual mean residual of −55±35 Wm−2 compared with a NOC based value of −4±35 Wm−2. For this box, the net heat divergence of 36 Wm−2 (Ekman=−4 Wm−2, geostrophic=11 Wm−2, diffusion=29 Wm−2 offsets the net heating of 32 Wm−2 from the NOC surface heat fluxes. The results in this box are consistent with an earlier evaluation of the fluxes using measurements from research buoys in the subduction array which revealed biases in NCEP but good agreement of the buoy values with the NOC fields.

  16. UriSed 3 and UX-2000 automated urine sediment analyzers vs manual microscopic method: A comparative performance analysis.

    Science.gov (United States)

    Laiwejpithaya, Sathima; Wongkrajang, Preechaya; Reesukumal, Kanit; Bucha, Chonticha; Meepanya, Suriya; Pattanavin, Chanutchaya; Khejonnit, Varanya; Chuntarut, Achara

    2018-02-01

    Fully automated urine analyzers now play an important role in routine urinalysis in most laboratories. The recently introduced UriSed 3 has a new automated digital imaging urine sediment analyzer with a phase contrast feature. The aim of this study was to compare the performance of the UriSed 3 and UX-2000 automated urine sediment analyzers with each other and with the results of the manual microscopic method. Two hundred seventy-seven (277) samples of leftover fresh urine from our hospital's central laboratory were evaluated by two automated urine sediment analyzers-UriSed 3 and UX-2000. The results of urine sediment analysis were compared between the two automated analyzers and against the results of the manual microscopic method. Both devices demonstrated excellent agreement for quantitative measurement of red blood cells and white blood cells. UX-2000 had a lower coefficient correlation and demonstrated slightly lower agreement for squamous epithelial cells. Regarding semiquantitative analysis, both machines demonstrated very good concordance, with all applicable rates within one grade difference of the other machine. UriSed 3 had higher sensitivity for small round cells, while UX-2000 showed greater sensitivity for detecting bacteria and hyaline casts. UriSed 3 demonstrated slightly better specificity, especially in the detection of hyaline and pathological casts. Both instruments had nearly similar performance for red blood cells and white blood cells measurement. UriSed 3 was more reliable for measuring squamous epithelial cells and small round cells, while the UX-2000 was more accurate for detecting bacteria and hyaline casts. © 2017 Wiley Periodicals, Inc.

  17. Hubble Space Telescope Eclipse Observations of the Nova Like Cataclysmic Variable UX Ursae Majoris

    Science.gov (United States)

    Knigge, Christian; Long, Knox S.; Wade, Richard A.; Baptista, Raymundo; Horne, Keith; Hubeny, Ivan; Rutten, Rene G. M.

    1998-01-01

    We present and analyze Hubble Space Telescope observations of the eclipsing nova-like cataclysmic variable UX UMa obtained with the Faint Object Spectrograph. Two eclipses each were observed with the G160L grating (covering the ultraviolet waveband) in 1994 August and with the PRISM (covering the near-ultraviolet to near-infrared) in November of the same year. The system was about 50% brighter in November than in August, which, if due to a change in the accretion rate, indicates a fairly substantial increase in Mass accretion by about 50%. The eclipse light curves are qualitatively consistent with the gradual occultation of an accretion disk with a radially decreasing temperature distribution. The light curves also exhibit asymmetries about mideclipse that are likely due to a bright spot at the disk edge. Bright-spot spectra have been constructed by differencing the mean spectra observed at pre- and posteclipse orbital phases. These difference spectra contain ultraviolet absorption lines and show the Balmer jump in emission. This suggests that part of the bright spot may be optically thin in the continuum and vertically extended enough to veil the inner disk and/or the outflow from UX UMa in some spectral lines. Model disk spectra constructed as ensembles of stellar atmospheres provide poor descriptions of the observed posteclipse spectra, despite the fact that UX UMa's light should be dominated by the disk at this time. Suitably scaled single temperature model stellar atmospheres with T(sub eff) approximately equals 12,500-14,500 K actually provide a better match to both the ultraviolet and optical posteclipse spectra. Evidently, great care must be taken in attempts to derive accretion rates from comparisons of disk models to observations. One way to reconcile disk models with the observed posteclipse spectra is to postulate the presence of a significant amount of optically thin material in the system. Such an optically thin component might be associated with the

  18. Surface Modification Technology of ODS Alloying Treatment by using Laser Heat Source

    International Nuclear Information System (INIS)

    Kim, H. G.; Kim, I. H.; Choi, B. K.; Park, J. Y.; Koo, Y. H.

    2012-01-01

    The ODS (Oxide Dispersion Strengthed) alloys can be applied as structural materials for components in the core of a nuclear power plants since these components must have a high mechanical strength at high temperature up to 700 .deg. C. This type of alloy was generally manufactured by mechanical alloying from its source metal and Y 2 O 3 powders. The mechanical alloyed powder is subjected to the HIP (Hot Isotatic Pressing) or hot extrusion: and this product is heat treated at target temperature and time. Thus, the Y 2 O 3 particles are dispersed in the metal matrix. These manufacturing process of ODS alloy is very complex and expensive. Also, it is necessary the special techniques to obtain the uniform dispersion and volume control of Y 2 O 3 particles. Another problem is the final product forming such as tube and sheet because the intermediated-product has a high mechanical strength due to the dispersion of Y 2 O 3 particles. The laser cladding techniques was applied on the surface cladding of ceramics and inter-metallic compounds on metal base and ceramic base components to increase corrosion and wear resistance. The laser heat source can be used to the alloying the metal and ceramic materials, because thermally melting of metal and ceramic is possible. So, we are applied on ODS alloy manufacturing by using the laser heat source. The main advantages and disadvantage of this technology can be resumed as follows: · It is possible to apply to the sheet and tube shape component, directly. · Metallurgical damage such as HAZ and severe grain growth is considerably reduced. · Good control of the alloying element of the treated zone · Highly reproducible homogeneous zone · The pores and cracks are suppressed in the treated zone · Oxidation can be prevented during the process. · Good control is possible for the irregular shaped components. · The bulk material alloying is limited by the power of laser source. So, this work is studied on the ODS alloy manufacturing

  19. Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyun; Ahn, Kyung Hyun [Seoul National University, Seoul (Korea, Republic of); Choi, Sunwoong; Oh, Ju Seok [Hannam University, Daejeon (Korea, Republic of)

    2017-08-15

    Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

  20. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter

    Science.gov (United States)

    Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe

    2017-03-01

    Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life.

  1. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter.

    Science.gov (United States)

    Lin, Yu-Shih; Koch, Boris P; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe

    2017-03-22

    Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life.

  2. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  3. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  4. Flip flop of Day-night and Summer-Winter Surface Urban Heat Island Intensity in India

    OpenAIRE

    Shastri, Hiteshri; Barik, Beas; Ghosh, Subimal; Venkataraman, Chandra; Sadavarte, Pankaj

    2017-01-01

    The difference in land surface temperature (LST) between an urban region and its nearby non?urban region, known as surface urban heat island intensity (SUHII), is usually positive as reported in earlier studies. India has experienced unprecedented urbanization over recent decades with an urban population of 380 million. Here, we present the first study of the diurnal and seasonal characteristics of SUHII in India. We found negative SUHII over a majority of urban areas during daytime in pre-mo...

  5. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dong Keun; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of)

    2003-07-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better.

  6. Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Fitnat Saba

    2018-03-01

    Full Text Available We have investigated a two-dimensional radiative flow of a boundary layer nature. The fluid under consideration is carbon nanotube (CNT-based nanofluid and it flows over a curved surface. The heat transfer through the flow is analyzed under the influence of internal heat generation. Water (base fluid along with single or multi-walled carbon nanotubes is taken to compose the nanofluid. After introducing the suitable similarity variables, the consequent equations are reduced to a system of nonlinear ordinary differential equations. The solution to the system is computed by using the shooting method accompanied by Runge–Kutta–Fehlberg algorithm. Various parameters, emerging in the governing equations, influences the flow and heat transfer distribution. These changes are captured and portrayed in the form of graphs. The changes in local rate of heat transfer and skin friction coefficient are also enlisted. To ensure the correctness of applied numerical scheme, the results are compared with some already existing studies.

  7. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  8. Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling

    Science.gov (United States)

    Iizuka, Hideo; Fan, Shanhui

    2018-02-01

    We show that near-field electromagnetic heat transfer between multilayer thermal bodies can be significantly enhanced by the contributions of surface states at multiple surfaces. As a demonstration, we show that when one of the materials forming the multilayer structure is described by the Drude model, and the other one is a vacuum, at the same gap spacing the resulting heat transfer can be up to 40 times higher as compared to that between two semi-infinite materials described by the same Drude model. Moreover, this system can exhibit a nonmonotonic dependency in its heat transfer coefficient as a function of the middle gap spacing. The enhancement effect in the system persists for realistic materials.

  9. Influences of the wavy surface inserted in the middle of a circular tube heat exchanger on thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Jedsadaratanancai, Withada [King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Boonloi, Amnart [King Mongkut' s University of Technology North Bangkok, Bangkok (Thailand)

    2015-09-15

    Numerical investigations on flow topology, heat transfer behavior and performance evaluation in a circular tube inserted with various configurations of wavy surfaces, Inclined wavy surface (IWS), V-downstream wavy surface (VDWS), V-Upstream wavy surface (VUWS) are presented. The effects of the flow attack angles; 20 .deg., 30 .deg., 45.deg. and 60.deg. are studied for the Reynolds numbers, Re = 100-2000. The numerical results are compared with the smooth circular tube with no wavy surface and the previous works. It is found that the IWS, VDWS and VUWS can produce longitudinal vortex flow and impinging jet of the fluid flow like inclined baffle, V-downstream baffle and V-Upstream baffle, respectively, but give lower friction loss. The flow phenomena created by the wavy surfaces help to augment the heat transfer rate and thermal performance in the test tube. In the range studied, the order of enhancement for heat transfer rate is around 1.40-3.75, 1.60-6.25 and 1.30-5.80 times higher than the smooth tube for IWS, VDWS and VUWS, respectively. Moreover, the maximum thermal performance, presented in terms of the Thermal enhancement factor (TEF), is found to be about 1.60, 2.40 and 2.10, respectively, for IWS, VUWS and VDWS.

  10. Design and construction of the tensioned ties for UX15 cavern vault

    CERN Document Server

    Parkin, R J H

    2002-01-01

    Due to the programme constraints for the UX15 cavern set by CERN, it has been necessary to complete the concrete lining of the vault prior to the excavation of the bench. The vault lining is therefore being temporarily suspended from a number of pre-tensioned high capacity multi-strand tensioned ties. During excavation of the bench, additional loads will be imposed onto the vault lining due to ground displacements. In order to minimise the number of ties, the previously completed linings of the PX14 and PX16 access shafts will be used to support some of the load. Three-dimensional modelling has been undertaken to design the structures and determine the expected behaviour of this complex support system. Geotechnical instrumentation has been installed in the concrete linings and the ground to monitor loads and displacements during construction. After the cavern walls have been completed, the ties will be released.

  11. Dust around young stars. Observations of the polarization of UX Ori in deep minima

    International Nuclear Information System (INIS)

    Voshchinnikov, N.V.; Grinin, V.P.; Kiselev, N.N.; Minikulov, N.K.

    1988-01-01

    Photometric and polarimetric monitoring observations of UX Ori begun in 1986 in the Crimea and Bolivia have resulted in the observation of two deep minima of the brightness during which a growth of the linear polarization (to ≅7%) was observed, together with a tendency for the circular polarization to increase (up to ≅1%). Analysis of the observational data shows that the main source of the polarized radiation in the deep minima is the emission of the star scattered by grains of circumstellar dust. On the basis of Mie's theory for a polydisperse graphite-silicate mixtures of particles the optical properties of ellipsoidal dust envelopes have been calculated and a model of the Algol-like minimum constructed

  12. Quantitative comparison of Zeiss-Humphrey model 840 and Rion UX-02 systems of ultrasound biomicroscopy.

    Science.gov (United States)

    Kobayashi, H; Kobayashi, K

    1999-05-01

    Our objective was to estimate the agreement between two different ultrasound biomicroscopes (UBMs) and to evaluate the clinical implications of the measurements obtained. We measured the anterior chamber depth, trabecular-iris angle, angle opening distance at 250 and 500 microm from the scleral spur, iris thickness and scleral-iris angle using the Humphrey UBM model 840 and Rion UBM UX-02 in 25 eyes of 25 normal volunteers. No significant difference was found in the mean values of any parameters measured by the Humphrey and Rion systems. Correlation coefficients of greater than 90% were observed for the parameters studied. Each system showed high reproducibility for all measured parameters. There were significant differences between the two systems in coefficients of variation for all parameters measured except the anterior chamber depth. The parameters measured with the Humphrey and Rion systems showed correlation coefficients of greater than 90%. The Humphrey system showed better reproducibility than the Rion system.

  13. Clinical and functional features of gastroesophageal refl ux disease in children and adolescents

    Directory of Open Access Journals (Sweden)

    L.M. Boyarska

    2012-04-01

    Full Text Available The aim of our work was to study clinical and endoscopic peculiarities, infl uence of H.Pylori infection and gastric acidity on changes of mucosa of the esophagus in children and adolescents with gastroesophageal refl ux disease (GERD. 140 children (93 with GERD: 48.4% – children with oesophagitis, 51.6% – children with endoscopically negative form of GERD were examinated. Main complaints of heartburn were in 79,6% patients. Frequency and intensity of heartburn did not depend on oesophagitis presence. The correlation between frequency and severity of heartburn and endoscopic changes wasn’t detected. Esophageal endoscopic changes were combined with moderate infl ammation signs of stomach and duodenum. The correlation between H.Pylori and GERD wasn’t detected. According to acidometry data hyperacid state in stomach prevailed.

  14. IUE spectra of a flare in the RS Canum Venaticorum-type system UX Arietis

    Science.gov (United States)

    Simon, T.; Linsky, J. L.; Schiffer, F. H., III

    1980-01-01

    IUE spectra of UX Ari obtained during the large flare of 1979 January 1 exhibit chromospheric and transition-region emission-line fluxes about 2.5 and 5.5 times brighter than quiescent fluxes, respectively, and up to 1400 times brighter than the quiet sun. A high-dispersion spectrum of the 2000-3000 A region exhibits enhanced Fe II emission, which is probably associated mainly with the K0 IV star, and enhanced Mg II emission with asymmetric wings extending to +475 km/s. These line wings are interpreted as evidence for mass flow from the K0 IV star to the G5 V star. A speculative scenario of major long-lived RS CVn flares is proposed in which the component stars have very large corotating flux tubes, which occasionally interact. Magnetic reconnection results in flux tubes that temporarily connect the two stars.

  15. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  16. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    An analysis of the heat budgets of the near-surface Arabian Sea and Bay of Bengal shows significant differences between them during the summer monsoon (June-September). In the Arabian Sea the winds associated with the summer monsoon are stronger...

  17. In situ soil temperature and heat flux measurements during controlled surface burns at a southern Colorado forest site

    Science.gov (United States)

    W. J. Massman; J. M. Frank; W. D. Shepperd; M. J. Platten

    2003-01-01

    This study presents in situ soil temperature measurements at 5-6 depths and heat flux measurements at 2-5 depths obtained during the fall/winter of 2001/ 2002 at seven controlled (surface) fires within a ponderosa pine forest site at the Manitou Experimental Forest in central Colorado. Six of these burns included three different (low, medium, and high) fuel loadings...

  18. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.

    2005-01-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it

  19. Effects on heat transfer of multiphase magnetic fluid due to circular magnetic field over a stretching surface with heat source/sink and thermal radiation

    Directory of Open Access Journals (Sweden)

    A. Zeeshan

    Full Text Available The purpose of the current article is to explore the boundary layer heat transport flow of multiphase magnetic fluid with solid impurities suspended homogeneously past a stretching sheet under the impact of circular magnetic field. Thermal radiation effects are also taken in account. The equations describing the flow of dust particles in fluid along with point dipole are modelled by employing conservation laws of mass, momentum and energy, which are then converted into non-linear coupled differential equations by mean of similarity approach. The transformed ODE’s are tackled numerically with the help of efficient Runga-Kutta method. The influence of ferromagnetic interaction parameter, viscous dissipation, fluid-particle interaction parameter, Eckert number, Prandtl number, thermal radiation parameter and number of dust particles, heat production or absorption parameter with the two thermal process namely, prescribed heat flux (PHF or prescribed surface temperature (PST are observed on temperature and velocity profiles. The value of skin-friction coefficient and Nusselt number are calculated for numerous physical parameters. Present results are correlated with available for a limited case and an excellent agreement is found. Keywords: Ferromagnetic interaction parameter, Dusty magnetic fluid, stretching sheet, Magnetic dipole, Heat source/sink, Thermal radiation

  20. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  1. On radiative-magnetoconvective heat and mass transfer of a nanofluid past a non-linear stretching surface with Ohmic heating and convective surface boundary condition

    Directory of Open Access Journals (Sweden)

    Shweta Mishra

    2016-12-01

    Full Text Available In this paper magnetoconvective heat and mass transfer characteristics of a two-dimensional steady flow of a nanofluid over a non-linear stretching sheet in the presence of thermal radiation, Ohmic heating and viscous dissipation have been investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and the presence of nanoparticles in the base fluid. The governing equations are transformed into a system of nonlinear ordinary differential equations by using similarity transformation. The numerical solutions are obtained by using fifth order Runge–Kutta–Fehlberg method with shooting technique. The non-dimensional parameters on velocity, temperature and concentration profiles and also on local Nusselt number and Sherwood number are discussed. The results indicate that the local skin friction coefficient decreases as the value of the magnetic parameter increases whereas the Nusselt number and Sherwood number increase as the values of the Brownian motion parameter and magnetic parameter increase.

  2. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  3. Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zainizan Sahdan, M. [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Hafiz Mamat, M.; Salina, M.; Noor, Uzer M.; Rusop, Mohamad [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Zuraida [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2010-09-15

    Zinc oxide (ZnO) nanostructures have received broad attention due to its wide applications especially for thin-film solar cells and transistors. In this paper, we report the effects of heat treatment on the structural and optical properties of ZnO nanostructures. Zinc oxide nanostructures were synthesized using thermal chemical vapour deposition (CVD) method on glass substrate. The surface morphologies which were observed by scanning electron microscope (SEM) show that ZnO nanostructures change its shape and size when the annealing temperature increases from 400 C to 600 C. Structural measurement using X-ray diffraction (XRD) has shown that ZnO nanostructures have the highest crystallinity and smallest crystallite size (20 nm) when annealed at 550 C. Furthermore, the samples were optically characterized using Photoluminescence (PL) spectrometer. The PL spectra indicate that ZnO nanostructures have the highest peak at UV wavelength when annealed at 550 C. The mechanism of the PL properties of ZnO nanostructures is also discussed. We conclude that ZnO nanostructures deposited using thermal CVD have the optimum structural and PL properties when annealed at 550 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated Determinants across Major Chinese Cities

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-03-01

    Full Text Available Urban heat islands (UHIs created through urbanization can have negative impacts on the lives of people living in cities. They may also vary spatially and temporally over a city. There is, thus, a need for greater understanding of these patterns and their causes. While previous UHI studies focused on only a few cities and/or several explanatory variables, this research provides a comprehensive and comparative characterization of the diurnal and seasonal variation in surface UHI intensities (SUHIIs across 67 major Chinese cities. The factors associated with the SUHII were assessed by considering a variety of related social, economic and natural factors using a regression tree model. Obvious seasonal variation was observed for the daytime SUHII, and the diurnal variation in SUHII varied seasonally across China. Interestingly, the SUHII varied significantly in character between northern and southern China. Southern China experienced more intense daytime SUHIIs, while the opposite was true for nighttime SUHIIs. Vegetation had the greatest effect in the day time in northern China. In southern China, annual electricity consumption and the number of public buses were found to be important. These results have important theoretical significance and may be of use to mitigate UHI effects.

  5. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    International Nuclear Information System (INIS)

    Teng, K.H.; Amiri, Ahmad; Kazi, S.N.; Bakar, M.A.; Chew, B.T.; Al-Shamma’a, A.; Shaw, A.

    2017-01-01

    Highlights: • Decoration EDTA on MWCNT surface to retard the rate of fouling. • Preparation of DTPA-treated MWCNT/water nanofluid. • Evaluating the mitigation of DTPA-treated MWCNT-based water nanofluids. • Retarding of calcium carbonate crystals by MWCNT-DTPA additives. • The effect of additive on the rate of fouling. - Abstract: Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L −1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution.

  6. Cattaneo-Christov heat flux on UCM nanofluid flow across a melting surface with double stratification and exponential space dependent internal heat source

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2017-01-01

    Full Text Available Melting and exponential space dependent internal heat source effects on magnetohydrodynamic of upper convected Maxwell liquid towards a horizontal flat surface are addressed. The combined effect of Brownian motion and thermophoresis in nanofluid modeling are retained. The Cattaneo-Christov heat flux model is imposed. Impacts of thermal and solutal stratifications are also accounted. A set of similarity variables are utilized to form ordinary differential system from the prevailing partial differential equations. The problem of ordinary differential system is analyzed numerically through Runge-Kutta-Fehlberg based shooting method. Graphical results of pertinent parameters on the velocity, temperature and nanoparticle concentration are studied. Skin friction coefficient, local Nusselt number and Sherwood number are also addressed.

  7. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  8. Switching the JLab Accelerator Operations Environment from an HP-UX Unix-based to a PC/Linux-based environment

    International Nuclear Information System (INIS)

    Mcguckin, Theodore

    2008-01-01

    The Jefferson Lab Accelerator Controls Environment (ACE) was predominantly based on the HP-UX Unix platform from 1987 through the summer of 2004. During this period the Accelerator Machine Control Center (MCC) underwent a major renovation which included introducing Redhat Enterprise Linux machines, first as specialized process servers and then gradually as general login servers. As computer programs and scripts required to run the accelerator were modified, and inherent problems with the HP-UX platform compounded, more development tools became available for use with Linux and the MCC began to be converted over. In May 2008 the last HP-UX Unix login machine was removed from the MCC, leaving only a few Unix-based remote-login servers still available. This presentation will explore the process of converting an operational Control Room environment from the HP-UX to Linux platform as well as the many hurdles that had to be overcome throughout the transition period

  9. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    .g. in mofettes and diffuse degassing areas). The occurrence of thermal anomalies at the surface often reveals that a process of steam condensation is occurring below the ground and that CO2 fluxes are being released on the surface. A thermal map of steam heated grounds therefore highlights boundaries of underground steam advection and also the more suitable sites for geochemical monitoring. Pirogips has been assembled for the quick acquisition of surface parameters related to the exhaling activity of volcanic systems. It has been formerly tested in a controlled environment, after in the well known fumaroles areas of Vulcano island, and then in the volcanic system El Machin (Colombia) for the field survey preliminary to the installation of new monitoring stations. The preliminary test and the first field experiences confirmed that pirogips acquires the surface temperatures quickly and with good detail. The combination of sensors supplies the advantage of in situ methods (i.e. accuracy of the direct measurement by thermocouple) and those of ground-based remote sensing techniques (i.e. quickness of measurement process), at the same time reducing the main disadvantages of each method. A home-made data-logger combines the acquired parameters and returns a data-string allowing an easy visualization of acquired data on geo-referenced maps. The string of data returns the position of acquisition (lat, long, WGS84), surface temperature (either derived by the pyrometer and by thermocouple), ambient temperature, barometric pressure and air moisture. -References -Diliberto I.S., Gurrieri S., Valenza M. (2002) Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984-1994 Bulletin of Volcanology vol 64: 219-228. -Diliberto I.S., (2013) Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, italy). Journal of Volcanology and Geothermal Research

  10. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  11. A multi-resolution approach to heat kernels on discrete surfaces

    KAUST Repository

    Vaxman, Amir

    2010-07-26

    Studying the behavior of the heat diffusion process on a manifold is emerging as an important tool for analyzing the geometry of the manifold. Unfortunately, the high complexity of the computation of the heat kernel - the key to the diffusion process - limits this type of analysis to 3D models of modest resolution. We show how to use the unique properties of the heat kernel of a discrete two dimensional manifold to overcome these limitations. Combining a multi-resolution approach with a novel approximation method for the heat kernel at short times results in an efficient and robust algorithm for computing the heat kernels of detailed models. We show experimentally that our method can achieve good approximations in a fraction of the time required by traditional algorithms. Finally, we demonstrate how these heat kernels can be used to improve a diffusion-based feature extraction algorithm. © 2010 ACM.

  12. SURFACE HARDNESS BEHAVIOUR OF HEAT TREATED Ni-Cr-Mo ALLOYS

    OpenAIRE

    V.K.MURUGAN; DR.P.KOSHY MATHEWS

    2012-01-01

    Low carbon steel is easily available and cheap having good material properties that are acceptable for many applications. Hardening and tempering process are used as a major heat treatment method. The purpose of heat treatment of low carbon steel is to improve the ductility, toughness, hardness and tensile strength. Hardening and tempering process of metals offer enormous advantages to the manufacturing industry because the heat treatment results can reveal optimum combination of mechanical p...

  13. Coupled thermo-capillary and buoyancy convection in a liquid layer locally heated on its free surface

    International Nuclear Information System (INIS)

    Favre, E.

    1997-01-01

    Coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas, which changes drastically the heat and mass transfer across the liquid layer. Two experiments are considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow looking like petals or rays appears when the aspect ratio length/depth is small, and like concentric rings in the case of large values of the aspect ratio. The lateral confinement selects the azimuthal length wave. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be 'weak', even for the largest values of the Marangoni number (Ma ≅ 1.3 * 10 5 ). In the case of mercury, the thermo-capillary effect is reduced to zero, due to impurities at the surface, which have special trajectories we describe and compare to a simpler experiment. The only buoyancy forces induces an un-stationary, weakly turbulent flow as soon as the heating power exceeds 4 W (≅ 4.5 * 10 3 , calculated with h = 1 mm). The last part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number, the buoyancy force, with the help of the literature. Results concerning heat transfer, especially the exponent of the law Nusselt number vs. heating power, are compared with available data. (author) [fr

  14. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    Science.gov (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  15. Mathematical Model for Localised and Surface Heat Flux of the Human Body Obtained from Measurements Performed with a Calorimetry Minisensor

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam

    2017-01-01

    The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body’s local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W(t) = A0 + ∑Aiexp(−t/τi). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm2) varies depending on the sensor’s thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100–250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants. PMID:29182567

  16. The Impact of Energy Consumption on the Surface Urban Heat Island in China’s 32 Major Cities

    Directory of Open Access Journals (Sweden)

    Weilin Liao

    2017-03-01

    Full Text Available Supported by the rapid economic development in the last few decades, China has become the largest energy consumer in the world. Alongside this, the effect of the anthropogenic heat released from energy consumption is increasingly apparent. We quantified the daytime and nighttime surface urban heat island intensity (SUHII for the 32 major cities in mainland China, using MODIS land surface temperature data from 2008 to 2012, and estimated the energy consumption intensity (ECI based on the correlation between energy consumption and the sum of nighttime lights. On this basis, the impact of energy consumption on the surface urban heat island in China’s 32 major cities was analyzed, by directly examining the relationship between SUHII and the urban-suburban difference in ECI. The results show that energy consumption has a significantly positive correlation with the nighttime SUHII, but no correlation with the daytime SUHII. It indicates that the cities with a larger urban-suburban difference in ECI have a far greater impact on SUHII during the nighttime. Therefore, the statistical analysis of the historical observation data in this study provides evidence for a long-held hypothesis that the anthropogenic heat released from energy consumption is an important contributor to the urban thermal environment.

  17. A study on bubble detachment and the impact of heated surface structure in subcooled nucleate boiling flows

    International Nuclear Information System (INIS)

    Wu Wen; Chen Peipei; Jones, Barclay G.; Newell, Ty A.

    2008-01-01

    This study examines the bubble detachment phenomena under subcooled nucleate boiling conditions, in order to obtain a better understanding of the bubble dynamics on horizontal flat heat exchangers. Refrigerant R134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments are run with varying experimental parameters, e.g. pressure, inlet subcooled level, flow rate, etc. Digital images are obtained at frame rates up to 4000 frames/s, showing the characteristics of bubble movements. Bubble departure and bubble lift-off, which are described as bubbles detaching from the original nucleation sites and bubbles detaching from the horizontal heated surface respectively, are both considered and measured. Results are compared against the model proposed by Klausner et al. for the prediction of bubble detachment sizes. While good overall agreement is shown, it is suggested that finite rather than zero bubble contact area should be assumed, which improves the model prediction at the pressure range of 300-500 kPa while playing no significant role at a lower pressure of 150 kPa where the model was originally benchmarked. The impact of heated surface structure is studied whose results provide support to the above assumption

  18. Mathematical Model for Localised and Surface Heat Flux of the Human Body Obtained from Measurements Performed with a Calorimetry Minisensor.

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam; Rodríguez de Rivera, Manuel

    2017-11-28

    The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body's local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W ( t ) = A ₀ + ∑A i exp( -t / τ i ). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm²) varies depending on the sensor's thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100-250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants.

  19. Enhanced pool boiling critical heat flux induced by capillary wicking effect of a Cr-sputtered superhydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Seo, Gwang Hyeok; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    In light of boiling heat transfer, the smooth surface potentially reduces active nucleation of bubbles and rewetting of dry spots near the critical heat flux (CHF). This kind of process is highly likely to deteriorate the CHF. Thus, it is essential to produce appropriate microstructures on the surface for the enhancement of the CHF. In this study, to investigate the microstructural effect of thin film-fabricated surfaces on the pool boiling CHF, we controlled the surface roughness in a narrow range of 0.1-0.25 μm and its morphologies, in the form of micro-scratches using PVD sputtering technique. Specifically for DC magnetron sputtering, pure chromium (Cr) was selected as a target material owing to its high oxidation resistance. In order to analyze the CHF trend with changes in roughness, we introduced existing capillary wicking-based models because superhydrophilic characteristics of microstructures are highly related to the capillary wicking behaviors in micro-flow channels. After Cr sputtering under given conditions, the Cr-sputtered surfaces showed superhydrophilic characteristics and its capability became more enhanced with an increase of surface roughness. Judging from spreading behavior of a liquid droplet, the presence of micro-wicking channels, coupled with Cr nanostructures, effectively enhanced the advancing rate of drop base diameter. The CHF exhibited an increasing trend with increasing surface roughness. However, the enhancement ratio agreed poorly with the predictions of the roughness factor-based models, all of which originated from a conventional static force balance.

  20. CORRELATION ANALYSIS OF SURFACE TEMPERATURE OF ROOFTOPS, STREETSCAPES AND URBAN HEAT ISLAND EFFECT: CASE STUDY OF CENTRAL SYDNEY

    Directory of Open Access Journals (Sweden)

    Ehsan Sharifi

    2015-01-01

    Full Text Available Cities are frequently experiencing artificial heat stress, known as the Urban Heat Island (UHI effect. The UHI effect is commonly present in cities due to increased urbanization, where anthropogenic heat and human modifications have altered the characteristics of surfaces and atmosphere. Urban structure, land cover and metabolism are underlined as UHI key contributors and can result in higher urban densities being up to 10°C hotter compared to their peri-urban surroundings. The UHI effect increases the health-risk of spending time outdoors and boosts the need for energy consumption, particularly for air-conditioning during summer. Under investigation is what urban features are more resilient to the surface layer Urban Heat Island (sUHI effect in precinct scale. In the context of Sydney, this ongoing research aims to explore the most heat resilient urban features at precinct scale. This UHI investigation covers five highdensity precincts in central Sydney and is based on a nocturnal remote-sensing thermal image of central Sydney taken on 6 February 2009. Comparing the surface temperature of streetscapes and buildings’ rooftops (dominant urban horizontal surfaces, indicates that open spaces and particularly streetscapes are the most sensitive urban elements to the sUHI effect. The correlations between street network intensity, open space ratio, urban greenery ratio and the sUHI effect is being analysed in Sydney’s high-density precincts. Results indicate that higher open space ratio and street network intensity correlate significantly to higher sUHI effect at precinct scale. Meanwhile, 10% increase in the urban greenery can effectively decrease the precinct temperature by 0.6°C.

  1. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  2. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  3. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw

    uxes, such as sensible heat ux, ground heat ux and net radiation, are also necessary. While it is possible to measure those uxes with ground-based instruments at local scales, at region scales they usually need to be modelled or estimated with the help of satellite remote sensing data. Even though...... to increase the spatial resolution of the reliable DTD-modelled fluxes from 1 km to 30 m. Furthermore, synergies between remote sensing based models and distributed hydrological models were studied with the aim of improving spatial performance of the hydrological models through incorporation of remote sensing......Evaporation of water from soil and its transpiration by vegetation together form a ux between the land and the atmosphere called evapotranspiration (ET). ET is a key factor in many natural and anthropogenic processes. It forms the basis of the hydrological cycle and has a strong inuence on local...

  4. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2013-10-01

    Full Text Available The relationship between variations in surface latent heat flux (SLHF and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from an earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyzed SLHF changes several months before six marine earthquakes by employing daily SLHF data. Additionally, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest the following: (1 before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2 after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3 for each case, apart from Haiti, more than half of the studied earthquakes, which were moderate and even devastating earthquakes (larger than Mw = 5.3, had no precursory variations in SLHF; and (4 the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors that may result in SLHF variations should also be carefully considered.

  5. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    Energy Technology Data Exchange (ETDEWEB)

    Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

    2014-06-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  6. Numerical analysis of a heat exchanger with differentiated temperatures surface at varying distances from the wall

    Science.gov (United States)

    Orłowska, Magdalena

    2018-02-01

    This article is one of a series of articles by the author. For many years she conducts research on convective heat exchange. The work is mainly concerned on knowing the effect of positioning the heater on the heat output of the device. It turns out that the correct location is very important.

  7. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Energy Technology Data Exchange (ETDEWEB)

    Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  8. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    International Nuclear Information System (INIS)

    Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S. Reddy; Abbasi, F.M.; Shehzad, S.A.

    2016-01-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al 2 O3 and TiO 2 types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  9. Copernicus observations of Ly-alpha and Mg II emission from HR 1099 /V711 Tauri/ and UX Ari

    Science.gov (United States)

    Weiler, E. J.

    1978-01-01

    Ultraviolet observations of two RS CVn binaries obtained with Copernicus are described. High-resolution (0.05 A) U1 observations indicate that both HR 1099 and UX Ari display broad Ly-alpha emission. The Ly-alpha emission strength from HR 1099 is variable and seems to be correlated with orbital phase, while the UX Ari results indicate no significant variation. Moderate resolution (0.51 A) V2 scans of both systems show variable Mg II h and k emission-line profiles which usually matched the velocity of the more active star in each binary. Additionally, displaced emission components were seen at velocities of up to + or - 250 km/s, indicative of high-velocity gas motions. The radial velocities of these emission features from HR 1099 are marginally correlated with orbital phase. Highly active and variable chromospheric phenomena are found to be the most consistent explanation of these results.

  10. VLBI observations of the RS Canum Venaticorum binary systems UX Arietis and HR 1099 at 1.65 GHz

    Science.gov (United States)

    Mutel, R. L.; Doiron, D. J.; Phillips, R. B.; Lestrade, J. F.

    1984-01-01

    VLBI observations of the RS CVn binaries UX Arietis and HR 1099 have been made at 1.65 GHz using a three-element array with a minimum fringe spacing of 11.5 milli-arcsec. Both sources were found to be unresolved within measurement uncertainties. In both cases, the derived upper limit to the source size was comparable to the overall size of each binary system. The lower limits to the brightness temperature were 1.4 x 10 to the 10th K for UX Arietis and 2.9 x 10 to the 10th K for HR 1099. Simultaneous polarization measurements at the VLA showed 4-8 percent circular polarization and less than 2 percent linear polarization. It is found that the data are consistent with gyrosynchrotron emission from a power-law energy distribution of electrons in a magnetic field B less than or approximately equal to 6 gauss.

  11. UV-B and B-band Optical Flare Search in AR Lacertae, II Pegasi, and UX Arietis Star Systems

    Science.gov (United States)

    Vander Haagen, G. A.

    2013-11-01

    A high-cadence search was conducted on the known RS CVn-type flare stars AR Lac, II Peg, and UX Ari. Two optical flares were observed in the B-band on AR Lac at 5 milliseconds (ms) resolution for a rate of 0.04 fl/hr. Flare energy of the two B-band fast-flares ranged from 0.55 to 16.7 × 1033 ergs. The UV-B and B-band search of II Peg for 44.5 hours at 5 and 10 ms resolution and UV-B band search of UX Ari for 25.6 hours at 10 ms resolution detected no flare activity.

  12. Conjugate Heat Transfer Study at Interior Surface of NGV Leading Edge with Combined Shower Head and Impingement Cooling

    Directory of Open Access Journals (Sweden)

    Arun Kumar Pujari

    2014-01-01

    Full Text Available A computational study on conjugate heat transfer is carried out to present the behavior of nondimensional temperature and heat transfer coefficient of a Nozzle Guide Vane (NGV leading edge. Reynolds number of both mainstream flow and coolant impinging jets are varied. The NGV has five rows of film cooling holes arranged in shower head manner and four rows of impingement holes arranged in staggered manner. The results are presented by considering materials of different thermal conductivity. The results show that the mainstream flow affects the temperature distribution on the interior side of the vane leading edge for high conductivity material whereas it has negligible effects for low conductivity material. The effect of changing blowing ratio on internal heat transfer coefficient and internal surface temperature is also presented.

  13. Evaluation of Surface Microhardness and Abrasion Resistance of Two Dental Glass Ionomer Cement Materials after Radiant Heat Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2017-01-01

    Full Text Available The aim of this study was to evaluate the effect of a radiant heat treatment using a dental LED unit on the surface microhardness and abrasion resistance after toothbrushing simulation of two conventional GIC materials. Two conventional GIC materials were studied in this investigation: Ketac Fil Plus Aplicap and IonoStar Molar. Twenty disk-shaped specimens (n=10 were prepared of each GIC (7 mm × 2 mm using cylindrical Teflon molds. Group 1 specimens were left in the mold to set without any treatment, while in Group 2 after placement in the mold the specimens were irradiated for 60 sec at the top surface using a LED light-curing unit. Toothbrushing simulation was carried out using a commercial electric toothbrush which was fixed in a constructed device that allowed the heads of the brushes to be aligned parallel to the surface of the specimens and to control the pressure, with the following parameters: load of the toothbrush standardized at 250 g, medium hardness toothbrush head, and rotation sense changing every 30 sec. The toothbrush abrasion test mechanism, based on a 1.25-Hz frequency for 10,000 cycles, was equivalent to 800 days (~2 years of brushing. Surface hardness, surface roughness, and surface loss after abrasive procedure were evaluated using Vickers method and Vertical Scanning Interferometry. Data were statistically analyzed using one-way ANOVA and Tukey’s post hoc test (a=0.05. The radiant heat treatment increased the surface microhardness and decreased surface roughness and surface loss after abrasive procedures of both the tested GIC materials but to different extent. Between the tested GIC materials there were significant differences in their tested properties (p<0.05.

  14. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage

    International Nuclear Information System (INIS)

    Grooten, M.H.M.; Van der Geld, C.W.M.

    2012-01-01

    In this study, the effect of a partially structured Ti-coated plate surface on droplet drainage and heat transfer in dropwise condensation in a compact plate heat exchanger is investigated. In the presence of high concentrations of inert gases, heat transfer is governed by vapor diffusion and condensate drainage is of major importance. A structured coating of the condenser plates is applied to create two coexisting dropwise condensation patterns. The structured Ti-coating constrains drainage and introduces directed surface energy 'gradients', 1-D binary patterns. The condenser with the partially structured coating is compared with two equally sized condensers: a full PVDF and a fully Ti-coated PVDF condenser. It is found that drop drainage is promoted by oriented Ti-coated tracks with a width of approximately the diameter of the maximum drop size to such a degree that the heat transfer performance is practically the same as that of a fully Ti-coated exchanger. Design recommendations are given. (authors)

  15. Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases

    Directory of Open Access Journals (Sweden)

    Yaoping Cui

    2016-07-01

    Full Text Available Urbanization is a global problem with demographic trends. The urban heat island plays a dominant role in local climate systems. Despite existing efforts to understand the impacts of multiple urbanization factors on the urban heat island globally, very little is known about the attribution of urban heat island magnitude to urbanization in different locations or developmental phases. In this study, based on global land surface temperature data, urban spatial domain data, gross domestic product (GDP, and population data, we analyzed the influence of multiple urbanization factors on global surface urban heat island intensity (SUHII. We also tentatively compared the abovementioned factors between different regions across the globe, especially between China and the USA, the largest countries that are experiencing or have experienced rapid urbanization in recent decades. The results showed that global SUHII had remarkable spatial heterogeneity due to the geographical and socioeconomic variation between cities. There was a significant correlation between SUHII and population as well as GDP in global cities. Moreover, this study suggested that the impacts of population on SUHII might be stronger in the early stages of urbanization, and the GDP factor would become a critical factor at a certain development level. The urban area also had non-ignorable impacts on SUHII, while the correlation between SUHII and urban shape was relatively weak. All these may imply that the best approach to slow down SUHII is to find other solutions, e.g., optimize the spatial configuration of urban internal landscapes, when the urbanization reaches a high level.

  16. Urban Heat Island Modeling in Conjunction with Satellite-Derived Surface/Soil Parameters.

    Science.gov (United States)

    Hafner, Jan; Kidder, Stanley Q.

    1999-04-01

    Although it has been studied for over 160 years, the urban heat island (UHI) effect is still not completely understood, yet it is increasingly important. The main purpose of this work is to improve UHI modeling by using AVHRR (Advanced Very High Resolution Radiometer) satellite data to retrieve the surface parameters (albedo, as well as soil thermal and moisture properties). In this study, a hydrostatic three-dimensional mesoscale model was used to perform the numerical modeling. The Carlson technique was applied to retrieve the thermal inertia and moisture availability using the thermal AVHRR channels 4 and 5. The net urban effect was determined as the difference between urban and nonurban simulations, in which urban parameters were replaced by rural parameters.Two winter days were each used for two numerical simulations: a control and an urban-to-rural replacement run. Moisture availability values on the less windy day showed generally a south to north gradient downwind of the city and urban values less than rural values (the urban dry island day). Moisture availability was higher on the windy day, with uniform values in the rural and urban areas (uniform soil moisture day). The only exceptions were variations in the rural hills north of the city and the low rural values under the polluted urban plume downwind of the city.While thermal inertia values showed no urban-rural differences on the uniform soil moisture day, they exhibited larger values over Atlanta than in surrounding rural area on the (less moist) dry island day. Two puzzling facts exist in the data: 1) lack of a north-south thermal inertia gradient on the dry soil day to correspond to its above-mentioned moisture availability gradient and 2) rural thermal inertia values do not change between both days in spite of their large difference in soil moisture. The observed lack of corresponding urban change is expected, as its thermal inertia values depend more on urban building materials than on moisture of

  17. Exploring organisational competences in Human Factors and UX project work: managing careers, project tactics and organisational strategy.

    Science.gov (United States)

    Furniss, Dominic; Curzon, Paul; Blandford, Ann

    2018-06-01

    Organisational competence in Human Factors and UX (user experience) has not been looked at before despite its relevance to project success. We define organisational competence as the collective competence of the individuals, bringing together their complementary abilities to deliver an outcome that is typically more than the sum of its parts. Twenty-two UX and Human Factors practitioners were interviewed about their project work in two contrasting domains: web design and safety-critical systems to explore organisational competences. Through doing a FRAM analysis, 29 functions and 6 main areas of competences were identified: the central project process; the process of learning about the problem; maintaining and developing client relations; staff development; evolving practices; and the management of documentation for audit and quality control. These dynamic and situated competences form a web of interactions. Managing competences is essential for project success. Implications for managing careers, project tactics and organisational strategy are discussed. Practitioner Summary: Organisational competences impact how routine and non-routine project work is performed, but these have received little attention in the literature. Six key areas of competences in Human Factors and UX project work were identified from practitioner interviews. Managing combinations of adaptive competences is important for developing careers, project tactics and organisational strategies.

  18. Application of satellite images analysis to assess the variability of the surface thermal heat island distribution in urban areas

    Directory of Open Access Journals (Sweden)

    Fudała Janina

    2018-01-01

    Full Text Available One of the elements of the urban plans for adapting to climate change is to identify the range the urban heat island (UHI. To a relatively rare ground station network air temperature, one of the possible methods to identify this phenomenon in cities is the analysis of satellite images, and in particular the thermal images surface cities in conjunction with the land-use structure. In the publication is presented the application of indirect methods of determining surface characteristics of heat island in the cities of Upper Silesia Agglomeration on the basis of the analysis of the thermal images from the satellite Landsat for the period 1986-2016. It presents ways to interpret these images depending on the needs of determination the areas sensitive to the impact of the (UHI and define the areas where adaptation actions to the climate change should be undertaken.

  19. Application of satellite images analysis to assess the variability of the surface thermal heat island distribution in urban areas

    Science.gov (United States)

    Fudała, Janina; Nádudvari, Ádám; Bronder, Joachim; Fudała, Marta

    2018-01-01

    One of the elements of the urban plans for adapting to climate change is to identify the range the urban heat island (UHI). To a relatively rare ground station network air temperature, one of the possible methods to identify this phenomenon in cities is the analysis of satellite images, and in particular the thermal images surface cities in conjunction with the land-use structure. In the publication is presented the application of indirect methods of determining surface characteristics of heat island in the cities of Upper Silesia Agglomeration on the basis of the analysis of the thermal images from the satellite Landsat for the period 1986-2016. It presents ways to interpret these images depending on the needs of determination the areas sensitive to the impact of the (UHI) and define the areas where adaptation actions to the climate change should be undertaken.

  20. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.