WorldWideScience

Sample records for surface graft polymerization

  1. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.

    Science.gov (United States)

    Abednejad, Atiye Sadat; Amoabediny, Ghasem; Ghaee, Azadeh

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H2 and O2 plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37°C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Faculty of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-03-15

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  3. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  4. Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes

    International Nuclear Information System (INIS)

    Zhu Liping; Zhu Baoku; Xu Li; Feng Yongxiang; Liu Fu; Xu Youyi

    2007-01-01

    Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm 2 . In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes

  5. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya

    2012-01-01

    Grafting of poly(ethylene glycol)methacrylate (PEGMA) and N,N-dimethylacrylamide (DMAAm) from UV-initiator modified polypropylene (PP) was performed by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). The modification and hydrophilization of the PP substrates were confirmed...

  6. Visible-light-induced surface graft polymerization via camphorquinone impregnation technique.

    Science.gov (United States)

    Ziani-Cherif, Houcine; Abe, Yusuke; Imachi, Kou; Matsuda, Takehisa

    2002-02-01

    A surface modification method that is particularly applicable to complexly shaped fabricated devices has long been awaited. In this article, we describe the visible-light-induced surface photograft polymerization technique by which an inner surface of the device is modified by visible-light irradiation through the external surface. Comphorquione, as a photoradical initiator, was impregnated on a segmented polyurethane surface by solvent soaking, followed by visible-light irradiation in the presence of monomers such as acrylamide and poly(ethylene glycol) methacrylate. The resultant surfaces were highly wettable with water, and surface chemical compositional analysis by X-ray photoelectron spectroscopy revealed that the surface was graft-polymerized with these monomers. The simple and widespread applicability of this surface modification technique to biomedical devices is discussed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 59: 386-389, 2002

  7. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Li Xiaomeng; Luan Shifang; Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing; Yin Jinghua; Stagnaro, Paola

    2012-01-01

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  8. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    Science.gov (United States)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  9. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Wei, Jun

    2016-09-30

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  10. Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions

    Directory of Open Access Journals (Sweden)

    Ryo Endo

    2015-08-01

    Full Text Available Surface-initiated graft atom transfer radical polymerization (ATRP of methyl methacrylate (MMA from self-assembled chitin nanofibers (CNFs was performed under dispersion conditions. Self-assembled CNFs were initially prepared by regeneration from a chitin ion gel with 1-allyl-3-methylimidazolium bromide using methanol; the product was then converted into the chitin nanofiber macroinitiator by reaction with α-bromoisobutyryl bromide in a dispersion containing N,N-dimethylformamide. Surface-initiated graft ATRP of MMA from the initiating sites on the CNFs was subsequently carried out under dispersion conditions, followed by filtration to obtain the CNF-graft-polyMMA film. Analysis of the product confirmed the occurrence of the graft ATRP on the surface of the CNFs.

  11. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization.

    Science.gov (United States)

    Zoppe, Justin O; Habibi, Youssef; Rojas, Orlando J; Venditti, Richard A; Johansson, Leena-Sisko; Efimenko, Kirill; Osterberg, Monika; Laine, Janne

    2010-10-11

    Cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with thermoresponsive macromolecules. The CNCs were grafted with poly(N-isopropylacrylamide) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) under various conditions at room temperature. The grafting process was confirmed via Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy and the different molecular masses of the grafts were quantified and found to depend on the initiator and monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. It is expected that suspension stability, interfacial interactions, friction, and other properties of grafted CNCs can be controlled by changes in temperature and provide a unique platform for further development of stimuli-responsive nanomaterials.

  12. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone.

    Science.gov (United States)

    Luan, Shifang; Zhao, Jie; Yang, Huawei; Shi, Hengchong; Jin, Jing; Li, Xiaomeng; Liu, Jingchuan; Wang, Jianwei; Yin, Jinghua; Stagnaro, Paola

    2012-05-01

    Poly(N-vinyl pyrrolidone) (PNVP) was covalently grafted onto the surface of biomedical poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer via a technique of UV-induced graft polymerization combined with plasma pre-treatment. The surface graft polymerization of N-vinyl pyrrolidone (NVP) was confirmed by ATR-FTIR and XPS. Effect of the parameters of graft polymerization, i.e., the initiator concentration, the UV irradiation time and the monomer concentration on the grafting density was investigated. The morphology and the wettability of the PNVP-modified surfaces were characterized by AFM and DSA, respectively. Protein adsorption and platelet adhesion were obviously suppressed after PNVP was grafted onto the SEBS substrates. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ternary hybrid polymeric nanocomposites through grafting of polystyrene on graphene oxide-TiO{sub 2} by surface initiated atom transfer radical polymerization (SI-ATRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Bansal, Ankushi; Behera, Babita; Jain, Suman L.; Ray, Siddharth S., E-mail: ssray@iip.res.in

    2016-04-01

    A ternary hybrid of graphene oxide-titania-polystyrene (GO-TiO{sub 2}-PS) nanocomposite is developed where polystyrene composition is regulated by controlling growth of polymer chains and nanoarchitectonics is discussed. Graphene Oxide-TiO{sub 2} (GO-TiO{sub 2}) nanocomposite is prepared by in-situ hydrothermal method and the surface is anchored with α-bromoisobutyryl bromide to activate GO-TiO{sub 2} as initiator for polymerization. In-situ grafting of polystyrene through surface initiated atom transfer radical polymerization (SI- ATRP) on this Br-functionalized nano-composite initiator yields GO-TiO{sub 2}-PS ternary hybrid. Varying the monomer amount and keeping the concentration of initiator constant, polystyrene chain growth is regulated with narrow poly-dispersivity to achieve desired composition. This composite is well characterized by various analytical techniques like FTIR, XRD, DSC, SEM, TEM, and TGA. - Highlights: • Nanocomposite of ternary hybrid of GO-TiO{sub 2} with polystyrene. • PS is surface grafted on GO-TiO{sub 2}. • Polymer chain lengths are well regulated by SI-ATRP living polymerization. • Thermal stability of this hybrid is relatively high.

  14. Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Masaaki [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)], E-mail: mokubo@me.osakafu-u.ac.jp; Tahara, Mitsuru [Environment and Chemistry Department, Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka 594-1157 (Japan); Saeki, Noboru [Laboratory of Technology Development, Pearl Kogyo Co., Ltd., 3-8-13 Minamikagaya, Suminoe-ku, Osaka 559-0015 (Japan); Yamamoto, Toshiaki [Department of Electrical and Electronic Engineering, Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan)

    2008-08-01

    Flexible thin solid films made of fluorocarbon polymers such as PFA (perfluoroalkoxy fluoroplastics), PTFE (polytetrafluoroethylene), and PCTFE (polychlorotrifluoroethylene) have excellent properties in terms of flexibility, gas and moisture barriers, etc. We develop a surface modification technique for improving the adhesion of the films using an atmospheric-pressure NTP (nonthermal plasma) method followed by graft-polymerization of the hydrophilic monomer. The results of the T-type peeling test show that the peeling strength of the film is thirty times larger than that of the untreated film. It is confirmed from XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectrophotometer) and the SEM (Scanning electron microscope) analyses that a few F atoms exist on the surface and the hydrophilic layer with a thickness is of the order of 1 {mu}m is formed due to the grafting process.

  15. Temperature-Triggered Colloidal Gelation through Well-Defined Grafted Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Jan Maarten van Doorn

    2017-06-01

    Full Text Available Sufficiently strong interparticle attractions can lead to aggregation of a colloidal suspension and, at high enough volume fractions, form a mechanically rigid percolating network known as a colloidal gel. We synthesize a model thermo-responsive colloidal system for systematically studying the effect of surface properties, grafting density and chain length, on the particle dynamics within colloidal gels. After inducing an attraction between particles by heating, aggregates undergo thermal fluctuation which we observe and analyze microscopically; the magnitude of the variance in bond angle is larger for lower grafting densities. Macroscopically, a clear increase of the linear mechanical behavior of the gels on both the grafting density and chain length arises, as measured by rheology, which is inversely proportional to the magnitude of local bond angle fluctuations. This colloidal system will allow for further elucidation of the microscopic origins to the complex macroscopic mechanical behavior of colloidal gels including bending modes within the network.

  16. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  17. Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Chufeng Sun

    2018-01-01

    Full Text Available To increase the durability of antibacterial coating on cotton and polymeric substrates, surface initiated grafting polymer brushes are introduced onto the substrates surface to bridge copper nanoparticles coatings and substrate. The morphologies of the composites consisting of the copper nanoparticles and polymer brushes were characterized with scanning electron microscopy (SEM. It was found that copper nanoparticles were uniformly and firmly distributed on the surfaces of the substrates by the polymer brushes; meanwhile, the reinforced concrete-like structures were formed in the composite materials. The substrates coated by the copper nanoparticles showed the efficient antibacterial activity against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli even after washing by 30 cycles. The copper nanoparticles were tethered on the substrates by the strong chemical bonds, which led to the excellent washable fitness and durability. The change of the phase structure of the copper was analyzed to investigate the release mechanism of copper ions.

  18. Stabilizing Single Sites on Solid Supports: Robust Grafted Ti(IV)-Calixarene Olefin Epoxidation Catalysts via Surface Polymerization and Cross-Linking

    OpenAIRE

    Guo, Yijun; Solovyov, Andrew; Grosso-Giordano, Nicolás A.; Hwang, Son-Jong; Katz, Alexander

    2016-01-01

    This manuscript develops a surface polymerization and cross-linking approach for the stabilization of single-site catalysts on solid surfaces, which is demonstrated here for grafted Ti(IV)-calixarene Lewis acids on silica. Our approach relies on cationic polymerization that is initiated by an adsorbed B(C_6F_5)_3 and uses styrene as the monomer and diisopropenylbenzene as the cross-linking agent. The mildness of this polymerization method is demonstrated by its lack of blocking micropores and...

  19. Surface grafting via photo-induced copper-mediated radical polymerization at extremely low catalyst concentrations

    Czech Academy of Sciences Publication Activity Database

    Laun, J.; Vorobii, Mariia; de los Santos Pereira, Andres; Pop-Georgievski, Ognen; Trouillet, V.; Welle, A.; Barner-Kowollik, C.; Rodriguez-Emmenegger, Cesar; Junkers, T.

    2015-01-01

    Roč. 36, č. 18 (2015), s. 1681-1686 ISSN 1022-1336 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : copper-mediated polymerization * photo-induced polymerization * polymer brushes Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.638, year: 2015

  20. Tunable Thermoresponsive Polymeric Platforms on Gold by Photoiniferter-Based Surface Grafting

    NARCIS (Netherlands)

    Benetti, Edmondo Maria; Zapotoczny, S.J.; Vancso, Gyula J.

    2007-01-01

    Thermoresponsive brushes with a tunable structure are grafted in a controlled way to gold substrates, exploiting an initiator-transfer-terminator agent (iniferter)-based photopolymerization. The chain length of the polymers is controlled by using UV light as a trigger and the end groups exposed are

  1. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer.

    Science.gov (United States)

    Zhou, Jun; Yuan, Jiang; Zang, Xiaopeng; Shen, Jian; Lin, Sicong

    2005-03-10

    Platelet adhesion and protein adsorption on the silicone rubber film grafted with N,N'-dimethyl-N-methacryloyloxyethyl-N-(2-carboxyethyl) ammonium (DMMCA) was studied. The grafting was carried out by means of ozone-induced method and was confirmed by ATR-FTIR and XPS investigations. The grafted films possessed relatively hydrophilic surface revealed by contact angle measurement. The blood compatibility of the grafted film was evaluated in vitro by platelet adhesion in platelet-rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG) using silicone film as the reference. No substantial platelet adhesion was observed for the grafted films incubated in PRP for 60 and 180 min. The protein absorption was also significantly reduced after incubated in bovine fibrinogen for 60 min. Both the results indicated that the blood compatibility of silicone rubber was greatly improved by ozone-induced grafting of carboxybetaine zwitterionic polymer onto its surface.

  2. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.

    Science.gov (United States)

    Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Li, Chenxi; Zhang, Huiqi

    2010-11-15

    A new and efficient approach to obtaining molecularly imprinted polymers (MIPs) with both pure water-compatible (i.e., applicable in the pure aqueous environments) and stimuli-responsive binding properties is described, whose proof-of-principle is demonstrated by the facile modification of the preformed MIP microspheres via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAAm). The presence of poly(NIPAAm) (PNIPAAm) brushes on the obtained MIP microspheres was confirmed by FT-IR as well as the water dispersion and static contact angle experiments, and some quantitative information including the molecular weights and polydispersities of the grafted polymer brushes, the thickness of the polymer brush layers, and their grafting densities was provided. In addition, the binding properties of the ungrafted and grafted MIPs/NIPs in both methanol/water (4/1, v/v) and pure water solutions were also investigated. The introduction of PNIPAAm brushes onto the MIP microspheres has proven to significantly improve their surface hydrophilicity and impart stimuli-responsive properties to them, leading to their pure water-compatible and thermo-responsive binding properties. The application of the facile surface-grafting approach, together with the versatility of RAFT polymerization and the availability of many different functional monomers, makes the present methodology a general and promising way to prepare water-compatible and stimuli-responsive MIPs for a wide range of templates. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Synthesis of Polymer Grafted Magnetite Nanoparticle with the Highest Grafting Density via Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Babu Kothandapani

    2009-01-01

    Full Text Available Abstract The surface-initiated ATRP of benzyl methacrylate, methyl methacrylate, and styrene from magnetite nanoparticle is investigated, without the use of sacrificial (free initiator in solution. It is observed that the grafting density obtained is related to the polymerization kinetics, being higher for faster polymerizing monomer. The grafting density was found to be nearly 2 chains/nm2for the rapidly polymerizing benzyl methacrylate. In contrast, for the less rapidly polymerizing styrene, the grafting density was found to be nearly 0.7 chain/nm2. It is hypothesized that this could be due to the relative rates of surface-initiated polymerization versus conformational mobility of polymer chains anchored by one end to the surface. An amphiphilic diblock polymer based on 2-hydroxylethyl methacrylate is synthesized from the polystyrene monolayer. The homopolymer and block copolymer grafted MNs form stable dispersions in various solvents. In order to evaluate molecular weight of the polymer that was grafted on to the surface of the nanoparticles, it was degrafted suitably and subjected to gel permeation chromatography analysis. Thermogravimetric analysis, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to confirm the grafting reaction.

  4. Preparation of Mg(OH){sub 2} hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: wangxiao@dlpu.edu.cn [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning Province (China); Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning Province (China); Pang, Guibing [School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian, Liaoning Province (China)

    2016-02-15

    Graphical abstract: - Highlights: • Adsorbed anionic dye molecules are conducive to preferential growth of (0 0 1) plane of Mg(OH){sub 2} crystal for Mg(OH){sub 2} pigments. • Uniform coverage of nanosized Mg(OH){sub 2} pigments on fiber surface is achieved via surface-initiated ATRP. • About 4 wt% of Mg(OH){sub 2} pigment on fiber surface shortens nearly half of burning time of cellulose. - Abstract: Mg(OH){sub 2} flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH){sub 2} hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH){sub 2} pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH){sub 2} crystals and affect the formation of lamella-like Mg(OH){sub 2} crystals. The cellulose fiber grafted with modified Mg(OH){sub 2} hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  5. Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite.

    Science.gov (United States)

    Murugan, R; Panduranga Rao, K

    2003-01-01

    Graft polymerization of glycidylmethacrylate (GMA) onto coralline hydroxyapatite (CHA) was carried out using potassium persulfate (K2S2O8) and sodium metabisulfite (Na2S2O5) as initiators in aqueous medium. To optimize the reaction conditions for getting maximum grafting yield, the concentrations of backbone, monomer, initiator, temperature and time were varied. The percent grafting was found to increase initially and then gradually decrease with respect to reaction parameters. The results obtained imply that the optimum temperature and time was 60 degrees C and 180 min, respectively, to obtain higher grafting yield. The grafting results have been discussed and a mechanism involved in the grafting of GMA onto CHA is described. The grafted materials were analyzed with Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) measurements. The results of FT-IR confirmed the presence of epoxy group on the grafted CHA. The XRD pattern showed that there was no secondary phase in the apatite lattice due to chemical modification.

  6. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery.

    Science.gov (United States)

    Huang, Long; Wu, Jing; Liu, Meiying; Mao, Liucheng; Huang, Hongye; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-15

    Mesoporous silica nanoparticles have attracted considerable research attention due to their various applications. Surface modification of these mesoporous silica nanoparticles with polymers not only can improve their water dispersity but can also endow several new functions, such as drug loading and delivery or targeting capability. In this work, we report a novel strategy for the direct surface grafting of phospholipid choline-containing copolymers onto Santa Barbara Amorphous-15 (SBA-15) through surface-initiated chain transfer free radical polymerization. The SBA-15 was synthesized by hydrolysis of tetraethoxysilane in the presence of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) under acidic synthetic conditions. Next, SBA-15 was subsequently modified with thiol groups by co-condensation with γ-mercaptopropyltrimethoxysilane to obtain SBA-15-SH. Finally, the copolymers were grafted on SBA-15-SH through chain transfer free radical polymerization using 2-methacryloyloxy ethyl phosphorylcholine (MPC) and itaconic acid (IA) as monomers. The SBA-15-based polymer composites (SBA-15-SH-poly(MPC-co-IA)) were used as matrices for controlled release of cisplatin (CDDP). The data from a series of characterization techniques indicated that the monomers were successfully grafted onto SBA-15. The resultant SBA-15-SH-poly(MPC-co-IA) composites showed many remarkable physicochemical properties, such as high water dispersity, desirable biocompatibility and high drug loading capacity. These features provide the SBA-15-SH-poly(MPC-co-IA) composites with considerable potential for biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid.

    Science.gov (United States)

    Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2013-02-01

    Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    International Nuclear Information System (INIS)

    Grasselli, M.; Betz, N.

    2005-01-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction

  9. Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies

    International Nuclear Information System (INIS)

    Bach, Long Giang; Islam, Md. Rafiqul; Lee, Doh Chang; Lim, Kwon Taek

    2013-01-01

    A novel approach for the synthesis of poly(glycidyl methacrylate) grafted CdSe quantum dot (QDs) (PGMA-g-CdSe) was developed. The PGMA-g-CdSe nanohybrids were synthesized by the surface-initiated atom transfer radical polymerization of glycidyl methacrylate from the surface of the strategic initiator, CdSe-BrIB QDs prepared by the interaction of 2-bromoisobutyryl bromide (BrIB) and CdSe-OH QDs. The structure, morphology, and optical property of the PGMA-g-CdSe nanohybrids were analyzed by FT-IR, XPS, TGA, XRD, TEM, and PL. The as-synthesized PGMA-g-CdSe nanohybrids having multi-epoxide groups were employed for the direct coupling of biotin via ring-opening reaction of the epoxide groups to afford the Biotin-f-PGMA-g-CdSe nanobioconjugate. The covalent immobilization of biotin onto PGMA-g-CdSe was confirmed by FT-IR, XPS, and EDX. Biocompatibility and imaging properties of the Biotin-f-PGMA-g-CdSe were investigated by MTT bioassay and PL analysis, respectively. The cell viability study suggested that the biocompatibility was significantly enhanced by the functionalization of CdSe QDs by biotin and PGMA.

  10. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    Science.gov (United States)

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  11. Synthesis of Monodisperse Silica Particles Grafted with Concentrated Ionic Liquid-Type Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization for Use as a Solid State Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Takashi Morinaga

    2016-04-01

    Full Text Available A polymerizable ionic liquid, N,N-diethyl-N-(2-methacryloylethyl-N-methylammonium bis(trifluoromethylsulfonylimide (DEMM-TFSI, was polymerized via copper-mediated atom transfer radical polymerization (ATRP. The polymerization proceeded in a living manner producing well-defined poly(DEMM-TFSI of target molecular weight up to about 400 K (including a polycation and an counter anion. The accurate molecular weight as determined by a GPC analysis combined with a light scattering measurement, and the molecular weight values obtained exhibited good agreement with the theoretical values calculated from the initial molar ratio of DEMM-TFSI and the monomer conversion. Surface-initiated ATRP on the surface of monodisperse silica particles (SiPs with various diameters was successfully performed, producing SiPs grafted with well-defined poly(DEMM-TFSI with a graft density as high as 0.15 chains/nm2. Since the composite film made from the silica-particle-decorated polymer brush and ionic liquid shows a relatively high ionic conductivity, we have evaluated the relationship between the grafted brush chain length and the ionic conductivity.

  12. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    Science.gov (United States)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  13. Tentacle-type zwitterionic stationary phase prepared by surface-initiated graft polymerization of 3-[N,N-dimethyl-N-(methacryloyloxyethyl)-ammonium] propanesulfonate through peroxide groups tethered on porous silica.

    Science.gov (United States)

    Jiang, Wen; Irgum, Knut

    2002-09-15

    A novel stationary phase with tentacle-type zwitterionic interaction layer was synthesized by free radical graft polymerization of 3-[N,N-dimethyl-N-(methacryloyloxyethyl)ammonium]propanesulfonate (SPE) from the surface of Kromasil porous silica particles. The polymerization was initiated by thermal cleavage of tert-butylperoxy groups covalently attached to the particle surface, and the material therefore carries a tentacle-type polymeric interaction layer with 3-sulfopropylbetaine functional moieties. The composition of the surface graft was determined by elemental analysis, and the surface charge was measured using photon correlation spectroscopy. The measured zeta-potentials were close to 0 and nearly independent of pH, and the tentacle character of the interactive layers were evident from the lack of colloidal stability in the absence of salt (antipolyelectrolytic behavior) and a marked increase in column back-pressure when the concentration of perchloric acid or perchlorate salt was increased. The chromatographic properties were evaluated on columns packed with the functionalized material, and it was shown that this zwitterionic stationary phase could simultaneously and independently separate inorganic anions and cations using aqueous solutions of perchloric acid or perchlorate salts as eluents. The material was also capable of separating two acidic and three basic proteins in a single run, using gradient salt elution at constant pH.

  14. Development of deodorizing materials by radiation graft polymerization

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Okamoto, Jiro; Fujiwara, Kunio; Sekiguchi, Hideo.

    1989-01-01

    With the development of society, the countermeasures for service water and sewerage in large cities and the environment preservation in industrial districts become difficult as their scale becomes larger. There are many unsolved problems, for example photochemical smog due to harmful gases, exhaust gas from automobiles, and smell of toilets and home waste water. The deodorizing materials used so far are mainly inorganic substances, and their ability of adsorbing harmful gases is very low. Besides, those are mostly granular, and limited in the formability. Therefore, it is expected to develop the fibrous adsorbent which has large adsorbing surface area and is easy to make filters. The chemical structures of the compounds having smell are shown. Eight legal bad smell substances which exert large influence to environment even in very small amount are designated. In this paper, the method of introducing functional radicals into existing fiber materials by the application of radiation graft polymerization process and the test of removing smelling compositions by using the obtained resin are reported. The experimental method, and the results of radiation graft polymerization, the adsorption of basic gases and acid gases, and gas flow test are described. (K.I.)

  15. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  16. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  17. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  18. Grafting of N,N-dimethylaminoethyl methacrylate from PE/PP nonwoven fabric via radiation-induced RAFT polymerization and quaternization of the grafts

    Science.gov (United States)

    Madrid, Jordan F.; Barsbay, Murat; Abad, Lucille; Güven, Olgun

    2016-07-01

    Radiation induced grafting method is one of the most promising grafting techniques and it works successfully together with the reversible addition fragmentation chain transfer (RAFT) polymerization, one of the most prominent controlled free-radical polymerization (CRP) methods. This study reports grafting of N,N-dimethylaminoethyl methacrylate (DMAEMA) from the surface of polyethylene/polypropylene nonwoven fabric (PE/PP NWF) by the combination of radiation-induced initiation and the RAFT polymerization technique. Effects of monomer concentration, absorbed dose and solvent choice on the grafting yield have been investigated. The grafted NWF's were characterized by ATR-FTIR, XPS, SEM, EDX and thermal analysis methods. The results indicated that surface properties were completely altered after grafting compared to pristine PE/PP even for those with very low degree of PDMAEMA grafting. Free homopolymers in solution have been analyzed by GPC in order to obtain information about the grafts. The PDMAEMA grafts on the fabric surfaces were later quaternized with dimethyl sulfate to yield positively charged surfaces that were tested for antibacterial properties.

  19. On the formation of polymer non-grafted onto the surface during radiation-induced polymerization of monomers adsorbed on mineral substrates

    International Nuclear Information System (INIS)

    Bruk, M.A.; Mund, S.L.; Aksman, I.B.; Abkin, A.D.

    1977-01-01

    It has been established that during radiation polymerization of vinylacetate and acrylonitrile, adsorbed on aerosil from the vapour phase, considerable amounts of the polymer are formed even at the initial stage of the process which is extracted by the organic solvents. It has been shown for polyvinylacetate as an example that probability of the polymer chain located on the surface to transfer into the solution depends not only on the ''quality'' of the solvent with respect to the given polymer but on the energy of solvent interaction with the surface adsorption centers as well. It has been observed that the molecular mass of PVA extracted from the aerosil surface by acetone is several times lower than that of PVA which remains on the surface after treating with acetone. Probable participation of low-molecular radicals in the formation of polymer chains not forming a chemical bond with the surface has been considered

  20. Grafting study of polysulfone polymeric membranes by gamma ray irradiation

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio A.M.; Gomes, Ailton de S.

    2011-01-01

    Radiation-induced grafting of styrene poli sulfone films were investigated by simultaneous method in solution using gamma-ray from a radio nuclide 60 Co source. The gamma-ray energy of high intensity induced breaking of chemical bonds leading to free radical formation. The radical start a conventional polymerization sequence comparable with that obtained with a chemical catalyst acting as initiator. The effects of grafting conditions such as irradiation total dose, dose rate and addition of cross linking agent, were studied by means of morphology analysis, thermal degradation and crystallinity. After the grafting reaction, the membranes were submitted to an exhaustive extraction with solvent to remove the polystyrene homopolymer formed. The degree of grafting (DOG) was analyzed by percentage of weight increase. As a result, the reaction always follows the same pattern: DOG increases rapidly initially whilst propagation is the main reaction, then more slowly as termination becomes more frequent. (author)

  1. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    International Nuclear Information System (INIS)

    Liu Hanzhou; Yu Ming; Deng Bo; Li Linfan; Jiang Haiqing; Li Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA). - Highlights: → Acrylonitrile is grafted onto pre-irradiated polyethylene (PE) nonwoven fabrics. → Emulsion system is applied, for the graft polymerization avoids organic solvent. → Kinetic of the pre-irradiation induced graft polymerization is studied. → Optimal condition is determined at the temperature below the b.p. of acrylonitrile.

  2. Surface grafted polymer brushes: potential applications in dengue biosensors

    International Nuclear Information System (INIS)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco; Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de

    2013-01-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar + ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  3. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  4. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  5. Cellulose Modification Through Grafting of Polyacrylonitrile by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Mojtaba Abbasian

    2015-09-01

    Full Text Available In addition to properties such as biocompatibility and biodegradability, cellulosic natural fibers have a higher strength property than the synthetic polymers and glass fibers. So they are suitable alternatives to synthetic and glass fibers. However, cellulose is highly hydrophilic and has low reactivity. Therefore, its industrial applications are limited. To overcome such drawbacks, the chemical modification of the cellulose structure is necessary. Graft copolymerization, a commonly used method for the modification of polymer surfaces, can be applied as an important tool for modifying the physical or chemical properties of polymers. By grafting hydrophobic polymer chains onto the cellulose fiber surface, the hydrophilicity of the cellulose can be altered. In this project, polyacrylonitrile was grafted onto cellulose surface by atom transfer radical polymerization (ATRP technique. In the first step, the reaction of OH cellulosic groups with acryloyl chloride in the LiBr/N,N-dimethyl acetamide mixture was carried out to form pendant double bonds and yield water soluble cellulose acrylate. Then, 4-chloromethyl styrene in the presence of toluene was grafted onto the unsaturated group via free radical polymerization and using azobisisobutyronitrile as the initiator. Finally, the synthesized cellulose-graft-polychloromethyl styrene having a transferable atom (Cl for the polymerization of acrylonitrile in THF and in the presence of copper (I chloride /2,2’-bipyridine as a catalyst system was used as an ATRP macroinitiator to prepare the cellulose-graft-polychloromethylstyrene-graftpolyacrylonitrile terpolymer. The products were characterized by scanning electron microscopy, X-ray diffraction and FTIR spectroscopy and their thermal stability was investigated by the thermogravimetric analysis and differential scanning calorimetry.

  6. Separation functional fibers by radiation induced graft polymerization and application

    International Nuclear Information System (INIS)

    Fujiwara, K.

    2007-01-01

    Commercially available non-woven fabric made of polyolefines was used as trunk polymer for radiation induced graft polymerization (RIGP). Ion exchange, antimicrobial and catalytic function was introduced on the fabric by RIGP. All of these materials are commercialized. Ion exchange fabric prepared by RIGP are applied for chemical filter to remove ionic impurities in semiconductor factory and are also applied for continuous de-ionization apparatus to make pure water in combination with ion conductive spacer. Polyvinylpyrrolidone-iodide grafted fabric was produced as antimicrobial fabric and applied for mask. Metal oxide nanoparticle was immobilized onto the ion exchange fabric. This material has catalytic function and was applied for the removal of ozone from air. In all of these applications, long sheets of non-woven fabrics are applied as a trunk polymer. Manufacturing process of RIGP for long sheet is also reported here

  7. Separation functional fibers by radiation induced graft polymerization and application

    Science.gov (United States)

    Fujiwara, K.

    2007-12-01

    Commercially available non-woven fabric made of polyolefines was used as trunk polymer for radiation induced graft polymerization (RIGP). Ion exchange, antimicrobial and catalytic function was introduced on the fabric by RIGP. All of these materials are commercialized. Ion exchange fabric prepared by RIGP are applied for chemical filter to remove ionic impurities in semiconductor factory and are also applied for continuous de-ionization apparatus to make pure water in combination with ion conductive spacer. Polyvinylpyrrolidone-iodide grafted fabric was produced as antimicrobial fabric and applied for mask. Metal oxide nanoparticle was immobilized onto the ion exchange fabric. This material has catalytic function and was applied for the removal of ozone from air. In all of these applications, long sheets of non-woven fabrics are applied as a trunk polymer. Manufacturing process of RIGP for long sheet is also reported here.

  8. Grafting of polymer onto silica surface in the presence of γ-ray irradiated silica

    International Nuclear Information System (INIS)

    Tsuchida, A.; Yokoyama, R.; Takami, M.; Chen, J.; Ohta, M.; Tsubokawa, N.

    2002-01-01

    Complete text of publication follows. We have reported the graft polymerization of vinyl monomers initiated by surface radicals formed by the decomposition of azo and peroxide groups previously introduced onto the surface. In addition, the grafting of polymers onto carbon black has been reported by the reaction of polymer radicals with the surface. On the other hand, it is well known that the relatively stable radicals are generated on the surface by the γ-ray irradiation. In this paper, the grafting of polystyrene onto silica surface during the thermal polymerization of styrene in the presence of γ-ray irradiated silica, grafting mechanism and thermal stability of grafted polymer will be discussed. The grafting of polymers onto silica surface by irradiation of polymer-adsorbed silica was also investigated. Silica obtained from Mitsubishi Chemical Co., Japan was used after pulverization: the particle size was 0.037-0.088 mm. Irradiation was performed in Cs-137 source at room temperature. The silica was irradiated at 50 Gy with dose rate of 3.463 Gy/min. Into a polymerization tube, styrene and irradiated silica was charged and the polymerization was carried out under argon under stirring. The percentage of polystyrene grafting was determined from weight loss when polystyrene-grafted silica was heated at 600 deg C by a thermal analyzer. Untreated silica did not affect the thermal polymerization of styrene. On the contrary, the thermal polymerization of styrene was remarkably retarded in the presence of the irradiated silica at 60 deg C. Similar tendency was reported during the polymerization of vinyl monomers in the presence of carbon black. In the initial stage of the polymerization in the presence of the irradiated silica below 50 deg C, the polymerization was accelerated. During the polymerization in the presence of irradiated silica, polystyrene was grafted onto the surface: the percentage of grafting was 5-11%. The amount of polystyrene grafted onto silica

  9. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid.

    Science.gov (United States)

    Zhao, Xiaoduo; Xiong, Dangsheng; Wang, Kun; Wang, Nan

    2017-06-01

    The keys of biomaterials application in artificial joints are good hydrophilicity and wear resistance. One kind of the potential bio-implant materials is polyetheretherketone (PEEK), which has some excellent properties such as non-toxic and good biocompatibility. However, its bioinert surface and inherent chemical inertness hinder its application. In this study, we reported an efficient method for improving the surface wettability and wear resistance for PEEK, a layer of acrylic acid (AA) polymer brushes on PEEK surface was prepared by UV-initiated graft polymerization. The effects of different grafting parameters (UV-irradiation time/AA monomer solution concentration) on surface characteristics were clearly investigated, and the AA-g-PEEK specimens were examined by ATR-FTIR, static water contact angle measurements and friction tests. Our results reveal that AA can be successfully grafted onto the PEEK surface after UV irradiation, the water wettability and tribological properties of AA-g-PEEK are much better than untreated PEEK because that AA is a hydrophilic monomer, the AA layer on PEEK surface can improve its bearing capacity and reduce abrasion. This detailed understanding of the grafting parameters allows us to accurately control the experimental products, and this method of surface modification broadens the use of PEEK in orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  11. Use of radiation graft polymerization for modification of polypropylene

    Directory of Open Access Journals (Sweden)

    Saule Nauryzova

    2016-06-01

    Full Text Available The article investigates the process of applying the conductive layer on isotactic polypropylene modified by the radiation grafting monomer for improving the wettability of the surface. Presented IR spectra, the results of measuring the contact angle of the modified material indicate the improved surface hydrophilicity. The degree of grafting functional groups to the surface of isotactic polypropylene is determined. A scheme of gradual modification of polypropylene surface is presented. As the primary layer for the polymer metallization, copper-phosphorus film may be used. Copper-phosphorus films were obtained by reduction of copper compounds with phosphine gas. Experimental results show that the copper phosphide is electrically conductive coating and imparts an increased hardness.

  12. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization.

    Science.gov (United States)

    Hsiue, G H; Lee, S D; Chang, P C; Kao, C Y

    1998-10-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) was grafted onto the surface of a silicon rubber (SR) membrane (pMPC-SR) by plasma induced grafted copolymerization (PIP). Argon plasma was used to activate the SR surfaces. Determination was also made of the influences of grafted copolymerization reaction time, reaction temperature, and monomer concentration on polymerization yield. The surface properties of SR were characterized by ATR-FTIR, ESCA, and SEM. In those analyses the ATR-FTIR spectra indicated that the pMPC grafted onto the SR surface at 1720 and 3300 cm(-1). The elemental composition and different carbon bindings on the surface of the SR were examined by ESCA. An increasing P1s/C1s value g was obtained in the grafted polymerization yield with a concentration of 0.05-0.5M of MPC in the isolated ethanol solution. The surface morphologies of pMPC-SR differed more than those of control and Ar plasma treated surfaces. The difference could have been caused by the homogeneous graft polymerization of pMPC onto the SR membrane. In the biological analyses, protein adsorption on pMPC-SR surfaces was reduced. The reduced level increased with an increase in the pMPC grafted amount. The epithelial cell attachment and growth onto these samples were suppressed. The blood compatibility for a series of pMPC-SR surfaces was examined by platelet adhesion. Blood platelet morphologies in contact with the high ratio of pMPC-SR surfaces were maintained, meaning that in this case the release reaction for platelets never occurred. Consequently, the high amount of pMPC-SR surface had excellent blood compatibility, further suggesting that prevention of adhesion, activation of platelets, and adsorption of blood protein could be achieved.

  13. Preparation of Dimethylaminoethylmethacrylate Grafted Polymeric Adsorbent by Using Radiation-Induced Grafting Technique for Removal of Anions

    International Nuclear Information System (INIS)

    Kavakli, P. A.

    2006-01-01

    The development of efficient separation and purification techniques is very important from industrial, environmental and economic points of view. Polymeric materials having polyfunctional groups such as carboxylic, amide, nitrile, iminodiacetic acid, amidoxime, and ammonium groups, etc., not only possess good hydrophilic properties, but also have good ion exchange properties which make them suitable for metal recovery from aqueous solutions. Radiation induced grafting is a powerful technique capable of controlling the introduction of various functional groups to the polymeric materials, keeping the original properties and especially the mechanical strength of the base material, and thus, allowing the synthesis of more stable polymeric adsorbents. The main objective of this study was to develop special polymeric adsorbents to remove NOx and PO 4 anions from aqueous systems. For this purpose, a novel nonwoven fabric was prepared by radiation-induced graft polymerization of imethylaminoethylmethacrylate (DMAEMA) onto polypropylene coated polyethylene nonwoven fabric. The trunk polymer was irradiated by electron beam at a voltage of 2 MeV and a current of 3 mA in a nitrogen atmosphere at dry-ice temperature at different doses. The degree of grafting was determined as a function of the total dose, monomer concentration, temperature, and reaction time. It was found that the degree of grafting of grafted polymer was greatly affected by reaction conditions. Grafting conditions were optimized, and about 150 % degree of grafting samples was used for further experiments. DMAEMA grafted polymer was later protonated by using acid solution to prepare adsorbent for the removal of anions. Adsorption experiments were performed in column mode for removal of phosphate. Approximately 2000 bed volumes of phosphate-free water can be produced from 10 ppb phosphate solution at high space velocity

  14. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  15. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fumin; Ma Xueming [Chenguan Research Institute of Chemical Industry, Chengdu (China)

    2000-03-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  16. Surface-initiated Atom Transfer Radical Polymerization - a Technique to Develop Biofunctional Coatings

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2009-01-01

    The initial formation of initiating sites for atom transfer radical polymerization (ATRP) on various polymer surfaces and numerous inorganic and metallic surfaces is elaborated. The subsequent ATRP grafting of a multitude of monomers from such surfaces to generate thin covalently linked polymer...

  17. Radiation-induced graft polymerization of glycidyl methacrylate onto nonwoven polypropylene

    International Nuclear Information System (INIS)

    Bondar', Yu.V.; Khong Dzhe Kim; Jong Dzhin Lim

    2005-01-01

    The influence of the major grafting parameters (radiation dose, reaction time, and inhibitor concentration) on graft polymerization of glycidyl methacrylate from its 10% solution in methanol onto nonwoven polypropylene upon irradiation in a 1 MeV electron beam accelerator in air was studied. It is shown that the method of preliminary irradiation of the substrate affords glycidyl methacrylate grafting at 70 deg C most efficiently when Mohr's salt in amounts of 10 -2 wt.% is added to the reaction mixture [ru

  18. Improved antifouling properties of photobioreactors by surface grafted sulfobetaine polymers.

    Science.gov (United States)

    Wang, Dongwei; Wu, Xia; Long, Lixia; Yuan, Xubo; Zhang, Qinghua; Xue, Shengzhang; Wen, Shumei; Yan, Chenghu; Wang, Jianming; Cong, Wei

    2017-11-01

    To improve the antifouling (AF) properties of photobioreactors (PBR) for microalgal cultivation, using trihydroxymethyl aminomethane (tris) as the linking agent, a series of polyethylene (PE) films grafted with sulfobetaine (PE-SBMA) with grafting density ranging from 23.11 to 112 μg cm -2 were prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). It was found that the contact angle of PE-SBMA films decreased with the increase in the grafting density. When the grafting density was 101.33 μg cm -2 , it reached 67.27°. Compared with the PE film, the adsorption of protein on the PE-SBMA film decreased by 79.84% and the total weight of solid and absorbed microalgae decreased by 54.58 and 81.69%, respectively. Moreover, the transmittance of PE-SBMA film recovered to 86.03% of the initial value after cleaning, while that of the PE film recovered to only 47.27%. The results demonstrate that the AF properties of PE films were greatly improved on polySBMA-grafted surfaces.

  19. Laser microstructuring for fabricating superhydrophobic polymeric surfaces

    Science.gov (United States)

    Cardoso, M. R.; Tribuzi, V.; Balogh, D. T.; Misoguti, L.; Mendonça, C. R.

    2011-02-01

    In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157°. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces.

  20. Pressure induced graft-co-polymerization of acrylonitrile onto ...

    Indian Academy of Sciences (India)

    WINTEC

    presence of free radical, a hydrogen atom may be ab- stracted from the cellulose by a growing chain ..... centration of monomer radical per unit volume and hence less grafting takes place. Figure 3. SEM of grafted fibre ... optimum molar ratio for the maximum graft yield has been found to be 0⋅250 : 1. It has been observed ...

  1. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Thalla

    2013-01-01

    Full Text Available Polyethylene glycol (PEG grafting has a great potential to create nonfouling and nonthrombogenic surfaces, but present techniques lack versatility and stability. The present work aimed to develop a versatile PEG grafting method applicable to most biomaterial surfaces, by taking advantage of novel primary amine-rich plasma-polymerized coatings. Star-shaped PEG covalent binding was studied using static contact angle, X-ray photoelectron spectroscopy (XPS, and quartz crystal microbalance with dissipation monitoring (QCM-D. Fluorescence and QCM-D both confirmed strong reduction of protein adsorption when compared to plasma-polymerized coatings and pristine poly(ethyleneterephthalate (PET. Moreover, almost no platelet adhesion was observed after 15 min perfusion in whole blood. Altogether, our results suggest that primary amine-rich plasma-polymerized coatings offer a promising stable and versatile method for PEG grafting in order to create nonfouling and nonthrombogenic surfaces and micropatterns.

  2. Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization

    Science.gov (United States)

    Tsuneda, Satoshi; Saito, Kyoichi; Sugo, Takanobu; Makuuchi, Keizo

    1995-08-01

    A polymer chain containing a diethylamino group was grafted onto the pore surface of a porous hollow-fiber membrane by radiation-induced graft polymerization. Dependence of the protein binding capacity of the membrane on environmental parameters such as salt concentration, pH and temperature was investigated. Saturation capacity of protein bound onto the graft chain containing ion-exchange group was governed by the conformation of the graft chain and the intensity of ion-exchange interaction. The conformation of the graft chain was investigated based on the pore radius of the membrane estimated from the permeation flux of a buffer solution through the membrane. By sufficiently permeating a bovine serum albumin (BSA) solution within the concentration range of 0.2-10 mg-BSA/ml through the membrane, the BSA binding capacity was determined. With increasing salt concentration or pH of the protein buffer solution, the graft chain shrank and BSA binding capacity decreased. On the other hand, the BSA binding capacity slightly increased with increasing temperature, and the conformation of the graft chain was insensitive to temperature in the range from 278 to 303 K. The bound BSA could be quantitatively eluted by permeating a buffer solution containing 0.5 M NaCl, and no deterioration in the BSA binding capacity was observed during five cycles of adsorption, elution and conditioning.

  3. Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization

    Science.gov (United States)

    Liu, Hui; Yi, Jianhong

    2009-03-01

    In order to avoid their agglomeration and incompatibility with hydrophobic polystyrene substrate, magnesium hydroxide nanoparticles were encapsulated by surface-initiated in-situ polymerization of styrene. The process contained two steps: electrostatic adsorption of initiator and polymerization of monomer on the surface of magnesium hydroxide. It was found that high adsorption ratio in the electrostatic adsorption of initiator could be attained only in acidic region, and the adsorption belonged to typical physical process. Compared to traditional in-situ polymerization, higher grafting ratio was obtained in surface-initiated in-situ polymerization, which can be attributed to weaker steric hindrance. Both Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that polystyrene/magnesium hydroxide nanocomposite particles had been successfully prepared by surface-initiated in-situ polymerization. The resulting samples were also analyzed and characterized by means of contact angle testing, dispersibility evaluation and thermogravimetric analysis.

  4. Characterization of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric developed by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Kumari, Mamta; Gupta, Bhuvanesh; Ikram, Saiqa

    2012-01-01

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was carried out on polypropylene nonwoven fabric to develop a thermosensitive material and has been found to affect the thermal and physical characteristics of fabric. The grafted fabrics with different monomer ratios were characterized by thermal gravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), contact angle and atomic force microscopy (AFM). Results of FTIR clearly indicated that poly(acrylic acid) and poly(N-isopropyl acrylamide) were successfully grafted onto the membrane surface. TGA results showed that the thermal stability of PP fabric increased after grafting of NIPAAm/AA. The crystallinity values from DSC and XRD were found to decrease with increase in degree of grafting because of the addition of grafted chains within the noncrystalline region. The decrease in contact angles of the grafted fabric with an increase of the degree of grafting shows that PNIPAAm/PAA exists as the hydrophilic component. The increase in surface roughness after grafting was observed by AFM. - Highlights: ► Grafting of NIPAAm/AA affects the thermal and physical characteristics of fabric. ► Thermal stability of PP fabric increased after grafting of NIPAAm/AA. ► Contact angles of the grafted fabric decrease with an increase of grafting yield. ► PNIPAAm/PAA was found to exist as the hydrophilic component. ► AFM images showed that there is an increase in surface roughness after grafting.

  5. Pressure induced graft-co-polymerization of acrylonitrile onto ...

    Indian Academy of Sciences (India)

    WINTEC

    such as pressure, time, pH, concentrations of initiator and monomer were optimized to get maximum graft yield (35⋅59%). Grafted and ungrafted Saccharum cilliare fibres were then subjected to evaluation of some of their properties like swelling behaviour in different solvents, moisture absorbance under different humidity.

  6. Recent achievements in the use of radiation polymerization and grafting for biomedical applications

    International Nuclear Information System (INIS)

    Carenza, Mario

    1992-01-01

    Papers mainly published in the last few years on radiation processing of polymeric systems for biomedical applications carried out in different laboratories are reviewed. Radiation-induced polymerization to obtain hydrogels as carriers for immobilization of bioactive agents and for controlled release of drugs is described. Radiation modification of polymers by graft copolymerization and/or crosslinking for the same purposes is also reported. The second part of the paper deals with the work recently carried out in the author's laboratory. Radiation-induced polymerization at low temperatures to obtain matrices susceptible to entrap drugs, including peptides and proteins, is discussed. Radiation grafting of hydrophilic monomers onto relatively new inorganic polymers, i.e. polyphosphazenes, and the properties of such modified polymeric materials, together with their biocompatibility, are summarized. (author)

  7. Kinetics of radiation-induced graft polymerization of styrene onto poly(ethylene oxide)

    International Nuclear Information System (INIS)

    Omichi, H.; Araki, K.

    1979-01-01

    The graft polymerization of styrene onto preirradiated poly(ethylene oxide) was studied. From the measurement of swelling of the polymer in various solvents the solubility parameter of poly(ethylene oxide) was estimated as 9.3. The kinetic analysis of the reaction indicated that the graft polymerization was diffusion controlled. Kinetic parameters of the reaction such as ∫ 0 /sup t/R/sub i/dt, k/sub p/, k/sub tr/, and k/sub t/ were obtained in poly(ethylene oxide)-styrene system and compared with those in poly(isobutylene)-styrene system. 9 figures, 1 table

  8. Application of radiation-induced graft polymerization to preparation of functional materials

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    2010-01-01

    Radiation-induced graft polymerization is a powerful method for appending various functionalities onto existing fabrics, nonwoven fabrics, fibers, membranes, and beads while maintaining the shape and mechanical strength. By using this method, the author has developed and commercialized functional polymeric materials over 45 years. The materials produced by the fruits of radiation chemistry contributed to the improvement of our lives and environments and the collection of rare metal resources. (author)

  9. Acrylic acid polymerization and its graft copolymerization to poly(ethylene oxide) by gamma rays

    International Nuclear Information System (INIS)

    Hochberg, A.

    1984-01-01

    Free radical initiated polymerization of acrylic acid was investigated in methanol-water solutions with and without poly(ethylene oxide) (PEO). The formation of poly(acrylic acid) (PAA) initiated both by gamma irradiation and water soluble azo initiators was found to follow classical free radical kinetics. A significant increase in the rate of the propagation step (together with the degree of polymerization) was observed as the water fraction of the medium increased. During homogeneous polymerization of acrylic acid in methanol-water solutions containing poly(ethylene oxide), PAA grafting efficiency was found to be 67% and independent of initiation rate and yield. A mechanism of grafting to poly(ethylene oxide) was proposed. Chain transfer to PEO (K/sub tr/ = 6.5 x 10 -5 ) was found to be the dominant mechanism for graft formation. Drag reduction characteristics of these PEO-PAA graft copolymers were measured in dilute aqueous solutions as a function of Reynolds number and solution pH. PEO graft copolymers containing 45% by mole PAA graft had, in neutral and basic solutions, drag reduction characteristics equivalent on a mass basis to the initial PEO. However at low pH, drag reduction characteristics disappeared as the PEO-PAA coacervate formed

  10. Controlled atom transfer radical polymerization of MMA onto the surface of high-density functionalized graphene oxide.

    Science.gov (United States)

    Kumar, Mukesh; Chung, Jin Suk; Hur, Seung Hyun

    2014-01-01

    We report on the grafting of poly(methyl methacrylate) (PMMA) onto the surface of high-density functionalized graphene oxides (GO) through controlled radical polymerization (CRP). To increase the density of surface grafting, GO was first diazotized (DGO), followed by esterification with 2-bromoisobutyryl bromide, which resulted in an atom transfer radical polymerization (ATRP) initiator-functionalized DGO-Br. The functionalized DGO-Br was characterized by X-ray photoelectron spectroscopy (XPS), Raman, and XRD patterns. PMMA chains were then grafted onto the DGO-Br surface through a 'grafting from' technique using ATRP. Gel permeation chromatography (GPC) results revealed that polymerization of methyl methacrylate (MMA) follows CRP. Thermal studies show that the resulting graphene-PMMA nanocomposites have higher thermal stability and glass transition temperatures (T g) than those of pristine PMMA.

  11. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films

    Science.gov (United States)

    Zorn, Gilad; Migonney, Véronique; Castner, David G.

    2014-01-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm2. PMID:25280842

  12. Complex-forming polymer prepared by electron beam radiation-induced graft polymerization

    Science.gov (United States)

    Okamoto, Jiro; Sugo, Takanobu; Katakai, Akio; Omichi, Hideki

    In order to prepare a complex-forming polymer useful as a selective adsorbent, radiation-induced graft polymerization of acrylonitrile onto a fibrous tetrafluoroethylene ethylene copolymer has been studied by using preirradiation method. The resulting grafted fibers were treated with 3% hydroxylamine alcohol-water solution, followed by controlling in alkali solution. The adsorbents containing amidoxime are able to take up transition metal ions from neutral and weakly acidic solutions while not sorbing the ions of alkaline and alkaline earth metals to any significant extent. It was shown that by introducing a small amount of hydrophilic groups to the fiber, it was possible to increase the exchange rate between the external water and the internal water interacted with functional groups in polymer matrix and to induce the diffusion of hydrated metal ions. The efficiency for adsorption of transition metal ions was successfully improved either by adding small amount of hydrophilic part composed of poly(acrylic acid) or by restricting the distribution of amidoxime groups at the fiber surface. A high stability of this adsorbents to various treatments ( alkali treatment at 80° C, contact with seawater for 24 h at 30° C, etc.) was confirmed. It's applicability to the recovery of uranium from seawater is demonstrated by laboratory scale experiments.

  13. Protein crystallization on polymeric film surfaces

    Science.gov (United States)

    Fermani, Simona; Falini, Giuseppe; Minnucci, Massimiliano; Ripamonti, Alberto

    2001-04-01

    Polymeric films containing ionizable groups, such as sulfonated polystyrene, cross-linked gelatin films with adsorbed poly- L-lysine or entrapped poly- L-aspartate and silk fibroin with entrapped poly- L-lysine or poly- L-aspartate, have been tested as heterogeneous nucleant surfaces for proteins. Concanavalin A from jack bean and chicken egg-white lysozyme were used as models. It was found that the crystallization of concanavalin A by the vapor diffusion technique, is strongly influenced by the presence of ionizable groups on the film surface. Both the induction time and protein concentration necessary for the crystal nucleation decrease whereas the nucleation density increases on going from the reference siliconized cover slip to the uncharged polymeric surfaces and even more to the charged ones. Non-specific attractive and local interactions between the protein and the film surface might promote molecular collisions and the clustering with the due symmetry for the formation of the crystal nuclei. The results suggest that the studied polymeric film surfaces could be particularly useful for the crystallization of proteins from solutions at low starting concentration, thus using small quantities of protein, and for proteins with very long crystallization time.

  14. Gold nanoparticles grafting on glass surface

    Science.gov (United States)

    Kvítek, Ondřej; Bot, Marek; Švorčík, Václav

    2012-09-01

    New method of grafting of gold nanoparticles (AuNPs) to glass surface was developed and investigated. The method based on glass activation by plasma discharge use dithiols for AuNP binding as an alternative to silane chemistry currently used for binding AuNPs onto glass surface. XPS measurements confirmed the presence of sulfur and gold on the modified glass surface. The presence of AuNPs on modified glass surface was then directly proven with AFM method. UV-vis spectra of samples with grafted AuNPs show a peak of SPR absorbance. With increasing modification time, more AuNPs are bound to the glass surface, which can aggregate.

  15. Kinetics of diffusion-free radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The diffusion-free radiation graft polymerization of styrene onto polyethylene has been studied. The grafting rate shows a dependence on monomer which is far different than what has been assumed. Further, the dependence on monomer changes with increasing dose rate as does the dependence of grafting rate on radiation dose rate. Three different regions of behavior are defined: (1) a region of low dose rate where the grafting rate is 1/2-order in dose rate and 3/2-order in monomer; (2) a region of intermediate dose rate where the grafting rate is intermediate between 1/2- and zero-order in dose rate and 5/2-order in monomer; and (3) a region of high dose rate, where the grafting rate is independent of dose rate and at least 5/2-order in monomer. Various possible mechanisms responsible for these effects are discussed, including the effects of viscosity on the initiation and termination reactions, the possibility of ionic graft polymerization, and energy transfer

  16. Surface modification of cellulose by PCL grafts

    International Nuclear Information System (INIS)

    Paquet, Olivier; Krouit, Mohammed; Bras, Julien; Thielemans, Wim; Belgacem, Mohamed Naceur

    2010-01-01

    Two cellulosic substrates (microcrystalline cellulose, MCC, and bleached kraft softwood pulps, BSK) were grafted by polycaprolactone (PCL) chains with different molecular weights, following a three-step procedure using non-swelling conditions in order to limit the reaction to their surface. First, one of the two OH PCL ends was blocked by phenyl isocyanate and the reaction product (adduct 1) was subsequently reacted with 2,4-toluene diisocyanate (adduct 2) to provide it with an NCO function, capable of reacting with cellulose. The ensuing PCL-grafted cellulosic materials were characterized by weight gain, elemental analysis, contact angle measurements, attenuated total reflexion-Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and biodegradation tests. The modification was proven to occur by the presence of nitrogen atoms in the elemental analysis tests and XPS spectra of modified and soxhlet-extracted cellulose. The contact angle measurements have also shown that the surface became as hydrophobic as PCL itself. The polar component of the surface energy of cellulosic substrates before treatment was found to be about 32 and 10 mJ m -2 , for MCC and BSK, respectively. This value vanished to practically zero after grafting with different PCLs. The strategy proposed in the present work is original since, to the best of our knowledge, this paper reports for the first time the chemical 'grafting onto' of the cellulose surface by PCL macromolecular structures, with the aim of obtaining fibre-matrix co-continuous fully sustainable and biodegradable composite materials.

  17. Comb-Type Grafted Hydrogels of PNIPAM and PDMAEMA with Reversed Network-Graft Architectures from Controlled Radical Polymerizations

    Directory of Open Access Journals (Sweden)

    Sheng-Qi Chen

    2016-02-01

    Full Text Available Dual thermo- and pH-responsive comb-type grafted hydrogels of poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA and poly(N-isopropylacrylamide (PNIPAM with reversed network-graft architectures were synthesized by the combination of atom transfer radical polymerization (ATRP, reversible addition-fragmentation chain transfer (RAFT polymerization and click chemistry. Two kinds of macro-cross-linkers with two azido groups at one chain-end and different chain length [PNIPAM–(N32 and PDMAEMA–(N32] were prepared with N,N-di(β-azidoethyl 2-halocarboxylamide as the ATRP initiator. Through RAFT copolymerization of DMAEMA or NIPAM with propargyl acrylate (ProA using dibenzyltrithiocarbonate as a chain transfer agent, two network precursors with different content of alkynyl side-groups [P(DMAEMA-co-ProA and P(NIPAM-co-ProA] were obtained. The subsequent azido-alkynyl click reaction of macro-cross-linkers and network precursors led to the formation of the network-graft hydrogels. These dual stimulus-sensitive hydrogels exhibited rapid response, high swelling ratio and reproducible swelling/de-swelling cycles under different temperatures and pH values. The influences of cross-linkage density and network-graft architecture on the properties of the hydrogels were investigated. The release of ceftriaxone sodium from these hydrogels showed both thermal- and pH-dependence, suggesting the feasibility of these hydrogels as thermo- and pH-dependent drug release devices.

  18. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    International Nuclear Information System (INIS)

    Liu, Hanzhou; Yu, Ming; Ma, Hongjuan; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2014-01-01

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions. - Highlights: • Acrylonitrile and acrylic acid were co-grafted onto a PE nonwoven fabric. • Pre-irradiation induced emulsion graft polymerization technique is applied. • The existence of AAc resulted in the increased hydrophilicity of the grafted fabric

  19. Radiation-induced graft polymerization of polyacrylamide onto polyethylene nonwoven fabric (PE NWF) for phenol adsorption

    International Nuclear Information System (INIS)

    Dumael, Cedrick Abrico

    2014-03-01

    Polyethylene nonwoven fabric was functionalized using radiation-induced graft polymerization of acrylonitrile by γ-rays from 60 Co source. The simultaneous grafting technique was employed wherein the polyethylene fibers were irradiated in nitrogen atmosphere in the presence of acrylonitrile dissolved in 1:1 water/methanol solvent. The effects of different grafting parameters to the grafting yield were evaluated. The optimum values of dose rate, absorbed dose and concentration of monomer were found to be 6kGy h -1 , 25kGy and 10% w/w acrylonitrile, respectively. Using the optimum conditions, the degree of grafting of approximately 14% is achieved. The grafted polyethylene fibers were reacted with hydroxylamine to introduce amidoxime functional groups on the nonwoven fabric. The unmodified, grafted and functionalized fibers were characterized using Attenuated Total Reflectance - Fourier Transformed Infrared Spectroscopy (FTIR - ATR) and Scanning Electron Microscopy (SEM). The results of these tests confirmed the successful grafting of acrylonitrile and functionalization to amidoxime functional groups. The ability of the amidoximated grafted polyethylene to remove phenol from aqueous solutions was investigated. The results from Gas Chromatography - Flame Ionization Detection (GC - FID) indicated that approximately 58% of the phenol was removed. (author)

  20. Modification of silicon rubber by the graft polymerization technique using the 60 Co pre-irradiation method

    International Nuclear Information System (INIS)

    Julio, C.A.; Higa, O.Z.

    1992-01-01

    Modified polymeric substrates can be attained by graft polymerization techniques, involving either simultaneous irradiation or pre-irradiation method. In the pre-irradiation method the polymeric substrate is irradiated in the presence of atmospheric oxygen to form peroxide groups onto the substrate, which in contact with vinylic monomer initiates the graft polymerization. In this work, silastic tubes were irradiated in 60 Co source. The acrylamide monomer has hydrophilic properties and rapidly homo polymerizes. Certain concentration of cupric ions inhibits homo polymerization and permits the graft polymerization to occur. It was studied the irradiation time that varied from 24 to 360 h at the dose rate of 0.66 kGy/h; the reaction time up to 48 h; the reaction temperature from 37 to 80 0 C; the acrylamide concentration from 1 to 50% and the copper concentration in the range of 0,01 to 0,5 molar. (author)

  1. Separation Functional Fibers by Radiation Induced Graft Polymerization and Application

    International Nuclear Information System (INIS)

    Fujiwara, K.

    2006-01-01

    1. Method for manufacturing process of separation functional fiber.Radiation graft machine(Photo 1) was developed by EBARA and Japan atomic energy research institute (JAERI) in 1999. Long Sheet of 1.5 m width is continuously grafted using Electron Beam EB (300 keV).The control of oxygen concentration in the monomer impregnation zone and reactor is very important. Usually 100% or more grafting ratio is obtained under irradiation dose of 150 kGy,.2. Application; Chemical filter (for clean room), Electric de-ionization(for pure water), Mask(for influenza) shows application of functional fiber. In clean room of semiconductor factory, ionic contaminants, such as ammonia gas(NH 3 ) should be removed to extremely low concentration level. Chemical filter (Photo 2) with ion-exchange fabric is widely used

  2. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongqiang [Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); “Textile Fiber Materials and Processing Technology” Local Joint National Engineering Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Yan; Zou, Chao [Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Shao, Jianzhong, E-mail: jshao@zstu.edu.cn [Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); “Textile Fiber Materials and Processing Technology” Local Joint National Engineering Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The plasma induced graft polymerization on the cotton fabric substrates. • Coating film on fibers changed fabric hydrophobicity and stability. • Effect of the plasma process time on grafting ratio was investigated. • The cotton grafted SMA exhibited an excellent heat resistance. - Abstract: A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  3. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    International Nuclear Information System (INIS)

    Li, Yongqiang; Zhang, Yan; Zou, Chao; Shao, Jianzhong

    2015-01-01

    Graphical abstract: - Highlights: • The plasma induced graft polymerization on the cotton fabric substrates. • Coating film on fibers changed fabric hydrophobicity and stability. • Effect of the plasma process time on grafting ratio was investigated. • The cotton grafted SMA exhibited an excellent heat resistance. - Abstract: A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  4. Facile Preparation of Crosslinked Polymeric Nanocapsules via Combination of Surface-Initiated Atom Transfer Radical Polymerization and Ultraviolet Irradiated Crosslinking Techniques

    Directory of Open Access Journals (Sweden)

    Mu Bin

    2009-01-01

    Full Text Available Abstract A facile approach for the preparation of crosslinked polymeric nanocapsules was developed by the combination of the surface-initiated atom transfer radical polymerization and ultraviolet irradiation crosslinking techniques. The well-defined polystyrene grafted silica nanoparticles were prepared via the SI-ATRP of styrene from functionalized silica nanoparticles. Then the grafted polystyrene chains were crosslinked with ultraviolet irradiation. The cross-linked polystyrene nanocapsules with diameter of 20–50 nm were achieved after the etching of the silica nanoparticle templates with hydrofluoric acid. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis, and transmission electron microscopy.

  5. Pressure induced graft-co-polymerization of acrylonitrile onto ...

    Indian Academy of Sciences (India)

    ... evaluation of some of their properties like swelling behaviour in different solvents, moisture absorbance under different humidity levels, water uptake and resistance towards chemicals such as hydrochloric acid and sodium hydroxide. The characterization of the graft copolymers were carried out by FTIR spectrophotometer ...

  6. Electroless Plating of Copper on Polyimide Film Modified by 50 Hz Plasma Graft Polymerization with 1-Vinylimidazole

    Science.gov (United States)

    Wong, Chiow San; Lem, Hon Pong; Goh, Boon Tong; Wong, Cin Wie

    2009-03-01

    This paper reports on the proof of concept work on the novel process of producing metalized polyimide (PI) film by coating a layer of copper (Cu) thin film on the surface of the PI film without using any adhesive. The method which is employed to produce a metalized PI film used in flexible printed circuit (FPC) is based on plasma graft polymerization of 1-vinlyimidazole (VIDz) on plasma pre-treated PI surface. The plasma grafted PI film (VIDz-g-PI) surfaces are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). AFM results show that the PI film surface has been successfully treated and grafted with VIDz. As post-thermal treatment is known to promote adhesion strength between the metallic film and the PI surface, the effects of post-thermal treatment environment and temperature on the adhesion property of Cu plated VIDz-g-PI (Cu/VIDz-g-PI) are evaluated. Post-thermal treatment in air shows better adhesion strength than in vacuum. The adhesion strength decreases as the post-thermal treatment temperature is increased. In the present development work, the adhesion strength obtained has met the initial market targeted 9-10 N/cm adhesion strength. Samples obtained at a pre-selected plasma power and time window are able to maintain their adhesion strength after being subjected to ageing at 100 °C for 168 h.

  7. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    Science.gov (United States)

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  8. Nitroxide mediated and atom transfer radical graft polymerization of atactic polymers onto syndiotactic polystyrene

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2012-06-01

    Full Text Available 'Living' radical graft polymerization was employed to prepare graft copolymers with nitroxide-mediated arylated syndiotactic polystyrene as the backbone and polystyrene (PS, poly(p-methylstyrene (PMS and poly(methylmethacrylate (PMMA as branches. A two-stage process has been developed to synthesize the macroinitiator. First, syndiotactic polystyrene (sPS was modified by the Friedel-Crafts reaction to introduce chlorine; second, the chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO-OH. The resulting macroinitiator (sPS-TEMPO for 'living' free radical polymerization was then heated in the presence of styrene and p-methylstyrene to form graft and block copolymers. We used the obtained copolymer and N-bromosuccinimide as brominating agent to achieve polymers with bromine groups. This brominated copolymer was used as a macroinitiator for polymerizing methyl methacrylate in the presence of the CuBr/bpy catalyst system. The formation of the graft and block copolymers was confirmed by DSC, ¹H NMR and FTIR spectroscopy. This approach using macroinitiators is an effective method for the preparation of new materials.

  9. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization.

    Science.gov (United States)

    Kapishon, Vitaliy; Whitney, Ralph A; Champagne, Pascale; Cunningham, Michael F; Neufeld, Ronald J

    2015-07-13

    Alginate-based amphiphilic graft copolymers were synthesized by single electron transfer living radical polymerization (SET-LRP), forming stable micelles during polymerization induced self-assembly (PISA). First, alginate macroinitiator was prepared by partial depolymerization of native alginate, solubility modification and attachment of initiator. Depolymerized low molecular weight alginate (∼12 000 g/mol) was modified with tetrabutylammonium, enabling miscibility in anhydrous organic solvents, followed by initiator attachment via esterification yielding a macroinitiator with a degree of substitution of 0.02, or 1-2 initiator groups per alginate chain. Then, methyl methacrylate was polymerized from the alginate macroinitiator in mixtures of water and methanol, forming poly(methyl methacrylate) grafts, prior to self-assembly, of ∼75 000 g/mol and polydispersity of 1.2. PISA of the amphiphilic graft-copolymer resulted in the formation of micelles with diameters of 50-300 nm characterized by light scattering and electron microscopy. As the first reported case of LRP from alginate, this work introduces a synthetic route to a preparation of alginate-based hybrid polymers with a precise macromolecular architecture and desired functionalities. The intended application is the preparation of micelles for drug delivery; however, LRP from alginate can also be applied in the field of biomaterials to the improvement of alginate-based hydrogel systems such as nano- and microhydrogel particles, islet encapsulation materials, hydrogel implants, and topical applications. Such modified alginates can also improve the function and application of native alginates in food and agricultural applications.

  10. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  11. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    International Nuclear Information System (INIS)

    Einig, A; Magga, Y; Bai, J B; Rumeau, P; Desrousseaux, S

    2013-01-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  12. Photo-grafting polymerization, microstructure and hydrophilicity of spun-blown polypropylene nonwoven fabrics

    Science.gov (United States)

    Zhu, X.; Shi, X.; Pan, Z.; Fang, Y.; Wu, Y.

    2017-10-01

    The non-polarity and poor hygroscopicity of polypropylene (PP) impede its wide application. The polar monomers, glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) were grafted onto the spun-blown polypropylene nonwoven fabric (SMS) under ultraviolet irradiation, and the subsequent functionalization of the grafted fabrics was implemented as well. The results show that both the monomer and the polymer of HEMA are hydrophilic and are grafted uniformly onto the fabric surface as well as into the melt-blown layer with the hydrophilicity being enhanced slightly, whereas the hydrophilic monomer yet the hydrophobic polymer of MAPTAC prefer to be grafted onto the melt-blown fibre with the wicking effect. Both the monomer and the polymer of GMA are hydrophobic and are favourably grafted into the meltblown layer with no hydrophilicity being improved. The grafting diminishes the fibre crystallinity and melting temperature, especially significant for the graftings of hydrophobic polymers, PGMA and PMAPTAC. All the grafting reduces the water flux of the grafted fabrics no matter what the grafting polymers are hydrophilicity or hydrophobicity not.

  13. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan, E-mail: yan_jiang_72@126.com [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Liang, Yuan; Zhang, Hongwen [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Zhang, Weiwei [College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, Heilongjiang (China); Tu, Shanshan [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2014-08-01

    The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering. - Highlights: • The PET film was grafted by functional β-CD copolymers, which owns amphiphilicity. • The surface of grafted PET film by copolymers enhanced the cell adhesion and growth. • The biocompatible PET film may be used in tissue engineering and cell cultivation.

  14. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    Science.gov (United States)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  15. Inorganic Surface Modification of Nonwoven Polymeric Substrates

    Science.gov (United States)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  16. Renewable and functional wood materials by grafting polymerization within cell walls.

    Science.gov (United States)

    Cabane, Etienne; Keplinger, Tobias; Merk, Vivian; Hass, Philipp; Burgert, Ingo

    2014-04-01

    A "grafting-from" polymerization approach within and at the complex and heterogeneous macromolecular assembly of wood cell walls is shown. The approach allows for the implementation of novel functionalities in renewable and functional wood-based materials. The native wood structure is retained and used as a hierarchical multiscale framework for a modular two-step polymerization process. The versatility and potential of the approach is shown by a polymerization of either hydrophobic or hydrophilic and pH-responsive monomers in the wood structure. Characterization of the modified wood reveals the presence of polymer in the cell wall, and the new properties of these wood materials are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption

    Science.gov (United States)

    Yin, Shiheng; Ren, Li; Wang, Yingjun

    2017-01-01

    Poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption. The surface properties were characterized by contact angle measurement, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy respectively. The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis. The results indicated that a thin layer of PEGMA was successfully grafted. The surface hydrophilicity was bettered and surface free energy increased. The lysozyme adsorption on the lens surface was reduced greatly. The study was supported by National Natural Science Foundation of China (No. 51273072).

  18. Capillary methacrylate-based monoliths by grafting from/to γ-ray polymerization on a tentacle-type reactive surface for the liquid chromatographic separations of small molecules and intact proteins.

    Science.gov (United States)

    Simone, Patrizia; Pierri, Giuseppe; Capitani, Donatella; Ciogli, Alessia; Angelini, Giancarlo; Ursini, Ornella; Gentile, Gennaro; Cavazzini, Alberto; Villani, Claudio; Gasparrini, Francesco

    2017-05-19

    Capillary methacrylate-based monoliths were prepared for the high performance liquid chromatography (HPLC) separation of both small molecules and large biomolecules. An efficient grafting from/to synthetic approach was adopted introducing a network of activated sites in the inner wall surface using the new silanization agent (N-trimethoxysilylpropyl)-polyethylenimine. Copolymerization of lauryl methacrylate monomer and 1,6-hexanediol dimethacrylate cross-linker in the presence of porogenic solvents was obtained under continuous γ-ray exposure with high conversion yield. The morphology and porous structure of the resulting monoliths have been investigated by Scanning Electron Microscopy (SEM) and 1 H NMR cryoporosimetry. By chromatographic investigation, the new capillary columns attested high kinetic performance (with efficiency larger than 100,000 theoretical plate/m for small molecules at optimum mobile phase linear velocity of about 0.5mm/s) and also excellent mechanical stability and repeatability. The new methacrylate-based monolithic capillary columns have been successfully employed for efficient reversed-phase separation of intact proteins and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2010-01-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based oil nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls...... ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while...

  20. PETMA-g-PETMA-b-PS 'palm tree' graft copolymer: A new polymeric architecture obtained via RAFT and ROP process

    International Nuclear Information System (INIS)

    Soares, Paula P.; Silva, Eduardo de O. da; Petzhold, Cesar L.

    2009-01-01

    Block copolymer with pendant thiirane moiety PETMA-b-PS is the base for a new class of 'palm tree' graft copolymers, which can show interesting properties. ETMA can be polymerized through ring opening polymerization with Lewis bases as initiator, e.g., Br- and tertiary amines. We used this reaction as a way to graft a copolymer PETMA-b-PS possessing 5% of ETMA unities, with chains having poly(propylene sulfide), obtained by graft from method. Produced materials were characterized through H1 NMR, SEC and DSC. (author)

  1. PNIPAAm-grafted thermoresponsive microcarriers: Surface-initiated ATRP synthesis and characterization

    International Nuclear Information System (INIS)

    Çakmak, Soner; Çakmak, Anıl S.; Gümüşderelioğlu, Menemşe

    2013-01-01

    In this study, we developed novel thermoresponsive microcarriers as a powerful tool for cell culture and tissue engineering applications. For this purpose, two types of commercially available spherical microparticles (approximately 100 μm in diameter), dextran-based Sephadex® and vinyl acetate-based VA-OH (Biosynth®), were used and themoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted to the beads' surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP). Initially, hydroxyl groups of microbeads were reacted with 2-bromopropionyl bromide to form ATRP macroinitiator. Then, NIPAAm was successfully polymerized from the initiator attached microbeads by ATRP with CuBr/2,2′-dipyridyl, catalyst complex. Furthermore, grafted and ungrafted microbeads were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscope (SEM), atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA). The results of characterization studies confirmed that PNIPAAm was successfully grafted onto both dextran and vinyl acetate-based beads by means of ATRP reaction and thus, grafted microbeads gained thermoresponsive characteristics which will be evaluated for cell harvesting in further studies. Highlights: • PNIPAAm was grafted to the hydroxyl group carrying polymer beads by SI-ATRP. • Dex-g-PNIPAAm and VA-OH-g-PNIPAAm beads exhibited thermoresponsive characteristics. • They are appropriate candidates for microcarrier-facilitated cell cultures

  2. Surface modification of polymeric materials using ultra low energy electron beam irradiation

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Shiraki, Fumiya; Fujita, Hajime; Washio, Masakazu

    2011-01-01

    An ultra low energy electron beam (UL-EB) was used to irradiate various polymeric materials such as fluorinated polymers and a polyimide under an oxygen-free atmosphere. After the irradiation of the polyimide, the change in the thermal properties was measured by DSC and TGA. The surface modification of fluorinated polymers was demonstrated by use of styrene grafting by the preirradiation grafting method. By the use of UL-EB irradiation it was possible to facilitate styrene monomer grafting onto the surface of fluorinated polymers without losing their material characteristics. Moreover, in the case of the polyimide (Kapton TM ), which has excellent radiation resistance, the glass transition temperature was improved by about 20 o C by irradiation up to 40 MGy within 1 h.

  3. Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N-isopropylacrylamide).

    Science.gov (United States)

    Akiyama, Yoshikatsu; Kikuchi, Akihiko; Yamato, Masayuki; Okano, Teruo

    2014-08-01

    A double polymeric nanolayer consisting of poly(N-isopropylacrylamide) (PIPAAm) and hydrophilic polyacrylamide (PAAm) was deposited on tissue culture polystyrene (TCPS) surfaces using electron beam irradiation to form a new temperature-responsive cell culture surface in which the basal hydrophilic PAAm component in the double polymeric layer promotes the hydration of the upper PIPAAm layer and induces rapid cell detachment compared to a conventional temperature-responsive cell culture surface, PIPAAm-grafted TCPS (PIPAAm-TCPS). Take-off angle-dependent X-ray photoelectron spectroscopy spectral analysis demonstrated that the grafted PIPAAm and PAAm components were located in the upper and basal regions of the double polymeric layer, respectively, suggesting that the double polymeric layer forms an inter-penetrating-network-like structure with PAAm at the basal portion of the PIPAAm grafted chains. The wettability of the temperature-responsive cell culture surfaces with the double polymeric layer tended to be more hydrophilic, with an increase in the basal PAAm graft density at a constant PIPAAm graft density. However, when the graft densities of the upper PIPAAm and basal PAAm were optimized, the resulting temperature-responsive cell culture surface with the double polymeric layer exhibited rapid cell detachment while maintaining cell adhesive character comparable to that of PIPAAm-TCPS. The cell adhesive character was altered from cell-adhesive to cell-repellent with increasing PAAm or PIPAAm graft density. The cell adhesive character of the temperature-responsive cell culture surfaces was relatively consistent with their contact angles. These results strongly suggest that the basal PAAm surface properties affect the degree of hydration and dehydration of the subsequently grafted PIPAAm. In addition, the roles of the hydrophilic component in accelerating cell detachment are further discussed in terms of the mobility of the grafted PIPAAm chains. Applications of

  4. Study of energy transfer to solvent in radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The radiation-initiated graft polymerization of styrene onto polyethylene was studied to determine whether energy transfer to diluent was responsible for the previously observed high orders of dependence of the grafting rate on monomer concentration. n-Octane was used as the diluent instead of benzene. If energy transfer from excited polyethylene to benzene were present, it should not be with n-octane. The percent swelling of polyethylene by various n-octane--styrene mixtures was determined. The compositions of various n-octane--styrene mixtures absorbed inside polyethylene were determined by ultraviolet and refractive index measurements and found to be richer in styrene than the corresponding mixtures in which the polyethylene had been placed. The graft polymerization rates were determined at 0.000761, 0.0371, and 0.213 Mrad/hr and plotted against the inside styrene concentrations on a log-log scale to yield the kinetic orders of dependence of rate on monomer as 2, 3, and 3, respectively. It was concluded that energy transfer to diluent was not responsible for the high-order dependence observed

  5. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    International Nuclear Information System (INIS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9x10 5 and 1.0x10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1 , which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  6. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Science.gov (United States)

    Barsbay, Murat; Güven, Olgun

    2009-12-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  7. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Energy Technology Data Exchange (ETDEWEB)

    Barsbay, Murat [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: mbarsbay@hacettepe.edu.tr; Gueven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: guven@hacettepe.edu.tr

    2009-12-15

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly {gamma} radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of {gamma} radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of {gamma} radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  8. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    International Nuclear Information System (INIS)

    Barsbay, Murat; Gueven, Olgun

    2009-01-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  9. Radiation-Induced Graft Polymerization of Vinyl Monomers with Anion Groups onto MWNT Supports and Their Application as Electrogenerated Chemiluminescence (ECL Biosensors

    Directory of Open Access Journals (Sweden)

    Ji-Hye Park

    2014-01-01

    Full Text Available Vinyl polymer-grafted multiwalled carbon nanotube (MWNT supports with anion groups were prepared for use as biosensor supports by radiation-induced graft polymerization (RIGP of the vinyl monomers acryloyl diphosphoric acid (ADPA, acrylic acid (AA, sodium styrenesulfonate (NaSS, and methacrylic acid (MA onto the surface of MWNTs. The electrogenerated chemiluminescence sensors based on a glass carbon electrode (ECL-GCE and a screen printed electrode (ECL-SPE were fabricated by immobilization of Ru(bpy3 2+ complex after coating of vinyl polymer-grafted MWNT inks on the surface of the GCE and SPE without any polymer binders in order to obtain high electrogenerated chemiluminescence intensity. For detection of alcohol concentration, alcohol dehydrogenase (ADH was immobilized onto an ECL-GCE sensor prepared by poly(NaSS-g-MWNT supports. The prepared biosensor based on ADH is suitable for the detection of ethanol concentration in commercial drinks.

  10. Surface grafting of epoxy polymer on CB to improve its dispersion to be the filler of resistive ink for PCB

    Directory of Open Access Journals (Sweden)

    Guoyun Zhou

    Full Text Available In this paper, we report a novel and efficient method of promoting the dispersing uniformity of carbon black (CB in epoxy polymer substrate of PCB (printed circuit board by chemical grafting. The reported method shows the promising capability in the application of advanced printable resistor ink. By taking advantage of the functionalized CB surfaces, the grafting reaction of epoxy polymer on CB particles was investigated with Fourier-transform infrared spectroscopy (FT-IR, transmission electron microscope (TEM and thermo gravimetric analysis (TGA. FT-IR spectra evidenced the polymerization of epoxy resin with coupling agent and TEM investigation directly confirmed the polymerization occurred on CB surface. The polymerization occurred on the limited part of the CB surfaces to form a network-structure polymer to reside on the CB particles and hence greatly improved CB dispersion in ink as evidenced in ink-droplet spreading verification on glass and PCB resin substrates. On the other hand, the polymer grafting has limited effect on the increasing of the as-cured ink filled with the grafted CBs. Finally, the cross-section observation also confirmed the dispersion improvement and sheet resistance uniformity due to epoxy polymer grafting on PCB substrate, indicating the prospective candidate as embedded resistors for PCB. Keywords: Grafting, Carbon black (CB, Epoxy polymer, Resistive ink, Printed circuit board (PCB

  11. Ingenious route for ultraviolet-induced graft polymerization achieved on inorganic particle: Fabricating magnetic poly(acrylic acid) densely grafted nanocomposites for Cu{sup 2+} removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qi, E-mail: roundzking@163.com [School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444 (China); Luo, Wenjun [Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074 (China); Zhang, Xing [School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444 (China)

    2017-08-15

    Highlights: • A novel PAA brushes-decorated magnetic adsorbent was prepared successfully. • The preparation approach was simple, rapid, and efficient. • Densely polymer grafting can be achieved on inorganic substrate by the method. • The g-MNPs exhibits an outstanding adsorption performance for Cu{sup 2+}. • The Cu{sup 2+}-saturated adsorbent can be separated and regenerated easily. - Abstract: In this study, ultraviolet (UV)-induced graft technology is improved to be successfully applied on inorganic substrate for fabricating a novel poly(acrylic acid) (PAA) brushes-decorated magnetic nano-composite particles (g-MNPs) as a potential adsorbent toward Cu{sup 2+} ion. The most fascinating features of the resultant g-MNPs are the abundant and highly accessible carboxyl groups present in PAA brushes and the rapid separation from the medium by magnetic field after adsorption. Through the new and high-efficiency surface-initiated polymerization route, the densely PAA brushes was successfully immobilized on the MNPs surface with a high grafting yield of 88.3%. Excitingly, the g-MNPs exhibited an exceptional performance for Cu{sup 2+} adsorption, e.g., ultrahigh adsorption capacity (up to 152.1 mg g{sup −1}), rapid adsorption rate (within 30 min) and low residual concentration (below 1.3 ppm). Full kinetic and isotherm analysis as well as thermodynamic study were also undertaken, the results showed that Cu{sup 2+} adsorption followed Langmuir isotherm and the pseudo-second-order kinetic model, the adsorption rate was controlled by two sequential periods of external and intraparticle diffusion. According to the calculated value of thermodynamic parameters, the Cu{sup 2+} adsorption onto g-MNPs was a spontaneous endothermic process. Furthermore, the excellent reusability of the resultant adsorbent was also confirmed, which can keep above 95% adsorption capacity and desorption rate in 8 consecutive cycles.

  12. Surface functionalization of cellulose with poly(3-hexylthiophene) via novel oxidative polymerization.

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-01-01

    Surface functionalization of cellulose with poly(3-hexylthiophene) (P3HT) was conducted with FeCl 3 as an oxidant in three different solvents: acetonitrile, chloroform, and hexane. Of these three solvents, hexane best promoted the grafting P3HT to cellulose with a high grafting ratio and molecular weight. The maxima of the UV-vis absorption and fluorescent spectra, observed at around 500 and 600nm, respectively, represented the build-up of the conjugated chain length formed by the grafting of P3HT onto the cellulose surface. The HOMO level of cellulose as determined by photoemission yield spectroscopy decreased from 4.83 to 4.67eV after modification with P3HT. Grafting P3HT onto the surface of cellulose provided super-hydrophobic property with a lotus effect. The conductivity of cellulose also improved significantly, from 10 -9 to 10 -6 S/cm when P3HT was present on the surface. The thermal stability and crystallinity of cellulose decreased slightly upon graft polymerization with P3HT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Emulsification of resin modified by simultaneous graft polymerization with electron beam

    International Nuclear Information System (INIS)

    Hosoi, Fumio; Sasaki, Takashi; Hagiwara, Miyuki

    1983-01-01

    Emulsification of the epoxy resins, onto which hydrophilic groups were introduced by simultaneous co-graft polymerization with electron beam irradiation, were studied. Resins modified with use of ionic monomers such as methacrylic acid (MAc), diethylaminoethyl methacrylate (DE), tetramethylammonium methacrylate (TMAMA), or methacryloyloxyethyltrimethyl ammonium chloride (QDM) formed latexes, when they were dissolved into small amounts of solvents followed by the addition of water. A higher composition of hydrophilic monomer in the resin-monomer mixture gave a latex with a smaller particle size and higher storage stability. TMAMA and QDM, both of which were incompatible with epoxy resin, were very effective in decreasing the particle size and increasing stability of a latex. It was also ascertained that an alkyd resin were able to emulsified similarly by grafting of 2-hydroxyethyl methacrylate and MAc. (author)

  14. Hydrophilization of Poly(ether ether ketone) Films by Surface-initiated Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    -modified PEEK using Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP). Surface reduction of PEEK to form hydroxyl groups [1, 2, 3] was .performed prior to the attachment of 2-bromoisobutyrate initiating groups. Each modification step of PEEK as well as the polymer grafting was followed...... and confirmed by ATR FTIR, water contact ang;le, and Thermal Gravimetric Analysis (TGA). The surface topography was evaluated by "Atomic Force Microscopy (AFM). X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the degree of functionalization. The performed modification allowed for successful...

  15. Preparation of Arsenic Selective Polymeric Adsorbent by Modification of Radiation Grafted Glycidyl Methacrylate (GMA) Nonwoven Fibers

    International Nuclear Information System (INIS)

    Kavakli, C.

    2006-01-01

    It is well known that arsenic is a hazardous element for the environment. It can originate either from anthropogenic activities (pesticides, wood preservatives, mining activities, and electronic industry) or from natural erosion of arsenic containing rocks. Arsenic is highly toxic and is a carcinogenic element that exists predominantly in the form of oxyanions in the aquatic environment and has become a worldwide environmental issue. Thus, arsenic removal from industrial effluents, groundwater, and even drinking water systems has become very important. At present, the WHO guideline value, the EC maximum admissible concentration, and the USEPA limit for As in drinking water is 10 μg/L. Various treatment processes such as precipitation, adsorption onto activated alumina, reverse osmosis and ion exchange have been reported in the literature to remove arsenic from aquatic environment. Recently, polymer ligand exchanger (PLE) adsorbents have been found as one of the most promising materials for arsenic removal due to their high adsorption capacity and selectivity at low concentrations. The objective of this research was to develop a novel PLE adsorbent by radiation-induced graft polymerization so as to achieve very low level of arsenic in aqueous solutions. For this purpose, GMA was grafted onto polypropylene coated polyethylene nonwoven fabrics in emulsion system by using radiation induced graft polymerization. For the preparation of GMA grafted fabric, the trunk PE/PP nonwoven fabric was irradiated by electron beam. After irradiation process, GMA was grafted onto irradiated nonwoven fabric under nitrogen atmosphere. In order to prepare fibrous PLE adsorbent for the removal of arsenic, grafted GMA was first modified with dipicolylamine. Maximum modification was obtained in 15 % (w/w) dipicolylamine solution. Then, PLE adsorbent was loaded with Cu 2 + ions. High copper ion loading was observed for PLE fibers. Column mode adsorption studies were conducted with copper

  16. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen Hwa 1st Rd., Kwei-San, Taoyuan 333, Taiwan (China); Kuo, Chang-Yi; Lee, Wen-Li [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen Hwa 1st Rd., Kwei-San, Taoyuan 333, Taiwan (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Poly(N-isopropylacrylamide) and chitosan were grafted to polypropylene non-wovens. Black-Right-Pointing-Pointer An easily stripped off thermo-responsive wound dressing was developed. Black-Right-Pointing-Pointer The wound dressing is biocompatible, has antibacterial and wound healing abilities. Black-Right-Pointing-Pointer The bigraft non-woven will be a potential wound dressing for biomedical use. - Abstract: To obtain a chitosan wound dressings with temperature-responsive characteristics, polypropylene (PP) non-woven fabric (NWF) was modified by direct current pulsed oxygen plasma-induced grafting polymerization of acrylic acid (AAc) to improve hydrophilicity and to introduce carboxylic acid groups. Conjugation of chitosan and poly(N-isopropylacrylamide) (PNIPAAm) followed by using water-soluble carbodiimide as a coupling agent to form a novel bigraft PP-g-chitosan-g-PNIPAAm wound dressing. The amount of chitosan and PNIPAAm grafted to PP-g-chitosan-g-PNIPAAm were 83.0 {+-} 4.6 {mu}g/cm{sup 2} and 189.5 {+-} 8.2 {mu}g/cm{sup 2}, respectively. The surface chemical composition and microstructure of the NWF were studied by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy (SEM). The linkages between AAc, chitosan, and PNIPAAm were confirmed with the formation of amide bonds. Physical properties of the NWF were characterized and potentials of these NWFs as wound dressings were evaluated using SD rat as the animal model. NWFs contained PNIPAAm were better than those contained only chitosan in wound healing rates and the wound areas covered by PP-g-chitosan-g-PNIPAAm wound dressings healed completely in 17 days.

  17. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics

    International Nuclear Information System (INIS)

    Chen, Jyh-Ping; Kuo, Chang-Yi; Lee, Wen-Li

    2012-01-01

    Highlights: ► Poly(N-isopropylacrylamide) and chitosan were grafted to polypropylene non-wovens. ► An easily stripped off thermo-responsive wound dressing was developed. ► The wound dressing is biocompatible, has antibacterial and wound healing abilities. ► The bigraft non-woven will be a potential wound dressing for biomedical use. - Abstract: To obtain a chitosan wound dressings with temperature-responsive characteristics, polypropylene (PP) non-woven fabric (NWF) was modified by direct current pulsed oxygen plasma-induced grafting polymerization of acrylic acid (AAc) to improve hydrophilicity and to introduce carboxylic acid groups. Conjugation of chitosan and poly(N-isopropylacrylamide) (PNIPAAm) followed by using water-soluble carbodiimide as a coupling agent to form a novel bigraft PP-g-chitosan-g-PNIPAAm wound dressing. The amount of chitosan and PNIPAAm grafted to PP-g-chitosan-g-PNIPAAm were 83.0 ± 4.6 μg/cm 2 and 189.5 ± 8.2 μg/cm 2 , respectively. The surface chemical composition and microstructure of the NWF were studied by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy (SEM). The linkages between AAc, chitosan, and PNIPAAm were confirmed with the formation of amide bonds. Physical properties of the NWF were characterized and potentials of these NWFs as wound dressings were evaluated using SD rat as the animal model. NWFs contained PNIPAAm were better than those contained only chitosan in wound healing rates and the wound areas covered by PP-g-chitosan-g-PNIPAAm wound dressings healed completely in 17 days.

  18. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    Science.gov (United States)

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  19. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    International Nuclear Information System (INIS)

    Pazat, Alice; Beyou, Emmanuel; Barrès, Claire; Bruno, Florence; Janin, Claude

    2017-01-01

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  20. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    Energy Technology Data Exchange (ETDEWEB)

    Pazat, Alice [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France); Beyou, Emmanuel, E-mail: beyou@univ-lyon1.fr [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Barrès, Claire [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Bruno, Florence; Janin, Claude [Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France)

    2017-02-28

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  1. Grafting of Bioactive Polymers with Various Architectures: A Versatile Tool for Preparing Antibacterial Infection and Biocompatible Surfaces.

    Science.gov (United States)

    Chouirfa, Hamza; Evans, Margaret D M; Bean, Penny; Saleh-Mghir, Azzam; Crémieux, Anne Claude; Castner, David G; Falentin-Daudré, Céline; Migonney, Véronique

    2018-01-17

    The aim of this Research Article is to present three different techniques of poly(sodium styrene sulfonate) (polyNaSS) covalent grafting onto titanium (Ti) surfaces and study the influence of their architecture on biological response. Two of them are "grafting from" techniques requiring an activation step either by thermal or UV irradiation. The third method is a "grafting to" technique involving an anchorage molecule onto which polyNaSS synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization is clicked. The advantage of the "grafting to" technique when compared to the "grafting from" technique is the ability to control the architecture and length of the grafted polymers on the Ti surface and their influence on the biological responses. This investigation compares the effect of the three different grafting processes on the in vitro biological responses of bacteria and osteoblasts. Overall outcomes of this investigation confirmed the significance of the sulfonate functional groups on the biological responses, regardless of the grafting method. In addition, results showed that the architecture and distribution of grafted polyNaSS on Ti surfaces alter the intensity of the bacteria response mediated by fibronectin.

  2. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  3. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...... angle measurements and XPS. Moreover, ATR FTIR has been used to confirm the formation of initiating groups. Grafting of PEGMA from PEEK was performed in aqueous solution. The presence of the PPEGMA grafts on PEEK was revealed by the thermograms from TGA whereas investigations with AFM rejected changes...... in the surface topography. Two possible applications arose from the hydrophilization of PEEK, metal deposition and protein repellency. The performed modification allowed for successful electroless deposition and good adhesion of nickel as well as copper....

  4. Albumin grafting on biomaterial surfaces using gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls.

  5. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2017-02-01

    Full Text Available Surface-initiated atom transfer radical polymerization (SI-ATRP is one of the most versatile techniques to modify the surface properties of materials. Recent developed metal-free SI-ATRP makes such techniques more widely applicable. Herein photo-induced metal-free SI-ATRP of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,N-dimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organic-inorganic hybrid materials. A SBA-15-based polymeric composite with an adjustable graft ratio was obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced adsorption ability for the model compound toluene in aqueous conditions. This procedure provides a low-cost, readily available, and easy modification method to synthesize polymeric composites without the contamination of metal.

  6. Surface grafting of epoxy polymer on CB to improve its dispersion to be the filler of resistive ink for PCB

    Science.gov (United States)

    Zhou, Guoyun; Xu, Xiaolan; Wang, Shouxu; He, Xuemei; He, Wei; Su, Xinhong; Wong, Ching Ping

    In this paper, we report a novel and efficient method of promoting the dispersing uniformity of carbon black (CB) in epoxy polymer substrate of PCB (printed circuit board) by chemical grafting. The reported method shows the promising capability in the application of advanced printable resistor ink. By taking advantage of the functionalized CB surfaces, the grafting reaction of epoxy polymer on CB particles was investigated with Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and thermo gravimetric analysis (TGA). FT-IR spectra evidenced the polymerization of epoxy resin with coupling agent and TEM investigation directly confirmed the polymerization occurred on CB surface. The polymerization occurred on the limited part of the CB surfaces to form a network-structure polymer to reside on the CB particles and hence greatly improved CB dispersion in ink as evidenced in ink-droplet spreading verification on glass and PCB resin substrates. On the other hand, the polymer grafting has limited effect on the increasing of the as-cured ink filled with the grafted CBs. Finally, the cross-section observation also confirmed the dispersion improvement and sheet resistance uniformity due to epoxy polymer grafting on PCB substrate, indicating the prospective candidate as embedded resistors for PCB.

  7. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism

    Science.gov (United States)

    Cai, Junyan; Wang, Shuhui; Zhang, Junhong; Liu, Yang; Hang, Tao; Ling, Huiqin; Li, Ming

    2018-04-01

    In this paper, a superhydrophobic surface with hierarchical structure was fabricated by chemical deposition of Cu micro-cones array, followed by chemical grafting of poly(methyl methacrylate) (PMMA). Water contact measurements give contact angle of 131.0° on these surfaces after PMMA grafting of 2 min and 165.2° after 6 min. The superhydrophobicity results from two factors: (1) the hierarchical structure due to Cu micro-cones array and the second level structure caused by intergranular corrosion during grafting of PMMA (confirmed by the scanning electron microscopy) and (2) the chemical modification of a low surface energy PMMA layer (confirmed by Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy). In the chemical grafting process, the spontaneous reduction of nitrobenzene diazonium (NBD) tetrafluoroborate not only causes the corrosion of the Cu surface that leads to a hierarchical structure, but also initiates the polymerization of methyl methacrylate (MMA) monomers and thus the low free energy surface. Such a robust approach to fabricate the hierarchical structured surface with superhydrophobicity is expected to have practical application in anti-corrosion industry.

  8. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yuhao; Cai, Mengtan; He, Liu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Luo, Xianglin, E-mail: luoxl@scu.edu.cn [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Dense package of poly(acrylamide) on poly(caprolactone) surface was achieved by surface-initiated atom transfer radical polymerization. • Poly(acrylamide) grafted surface exhibited high protein retention ability. • Loaded protein was resistant to detachment and maintained its structure without denaturation. - Abstract: To enhance the biocompatibility or extend the biomedical application of poly(caprolactone) (PCL), protein retention on PCL surface is often required. In this study, poly(acrylamide) (PAAm) brushes were grown from PCL surface via surface-initiated atom transfer radical polymerization (SI-ATRP) and served as a protein-capturing platform. Grafted PAAm was densely packed on surface and exhibited superior protein retention ability. Captured protein was found to be resistant to washing under detergent environment. Furthermore, protein structure after being captured was investigated by circular dichroism (CD) spectroscopy, and the CD spectra verified that secondary structure of captured proteins was maintained, indicating no denaturation of protein happened for retention process.

  9. Development of phosphonic acid chelating fibers by means of electron beam irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Jyo, Akinori; Aoki, Shoji; Yamabe, Kazunori; Shuto, Taketomi

    2001-01-01

    Chloromethylstyrene was graft-polymerized onto polyethylene coated polypropylene fibers (0.9 denier) and its nonwoven cloth (1.5 denier) by means of electron beam irradiation induced graft polymerization technique. The grafted fiber and cloth were reacted with phosphorus trichloride in the presence of anhydrous aluminum trichloride under reflux of phosphorus trichloride, and the followed hydrolysis gave the objective phosphonic acid fibrous chelating exchangers FCSP-c (cloth type) and FCSP-f (fiber type) with phosphorus contents of 3.3 ± 0.2 mmol/g and acid capacities of 5.5 ± 0.2 meq/g. Adsorption rates of Pb(II), Cu(II) and Cd(II) by FCSP-c and FCSP-f were evaluated by batchwise and columnar methods, and compared with those by a chelating resin RCSP having the same functional groups. In batchwise and columnar adsorption of these metal ions, both FCSP-c and FCSP-f exhibited extremely higher adsorption rates than did the resin RCSP. For instance, FCSP-f packed columns exhibited flow rate independent breakthrough capacities of ca. 0.7-0.8 mmol/g for Cu(II) and Cd(II) within the tested range of flow rates from 50 to 1000 h -1 in space velocity, whereas breakthrough capacities of a RCSP resin packed one for Cu(II) decreased markedly with an increase in flow rate. For example, the breakthrough capacity of RCSP column at the flow rate of 500 h -1 was only ca. 0.2 mmol/g. (author)

  10. Fabrication of triazinedithiol functional polymeric nanofilm by potentiostatic polymerization on aluminum surface

    International Nuclear Information System (INIS)

    Wang Fang; Wang Yabin; Li Yanni; Wang Qian

    2011-01-01

    The functional polymeric nanofilm of 6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)amino-1,3,5-triazine-2, 4-dithiol monosodium (AF17N) was prepared on pure aluminum surface by potentiostatic polymerization at different potentials. The thickness and weight of polymeric nanofilm increased proportionally to electro-polymerization potential following linear equation. The chemical structure of nanofilm was characterized by Fourier transform-infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Adsorption peaks in FT-IR and C1s, N1s, S2p, F1s and Al2p peaks in XPS spectra indicated that the polymeric nanofilm was poly(6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)amino-1,3,5-triazine-2, 4-disulfide) (PAF17). The morphologies of polymeric nanofilm were also observed by atomic force microscopy (AFM). All the results showed that the optimal electro-polymerization potential and time were 8 V and 20 s, respectively. Uniform and compact nanofilm of PAF17 could be obtained under these conditions. It is expected that this technique will be applied in the preparation of lubricating, dielectric and hydrophobic surface on aluminum substrate.

  11. Free-Radical Graft Polymerization onto Starch as a Tool to Tune Properties in Relation to Potential Applications. A Review

    Directory of Open Access Journals (Sweden)

    Inge-Willem Noordergraaf

    2018-04-01

    Full Text Available Grafting of acrylic monomers onto the renewable feedstock starch via free radical polymerizations has been investigated for many years. Many potential applications have been studied, such as superabsorbents, flocculants, thickening agents and so forth. It is expected that size and spacing of the grafts have a large influence on the performance of such polymers. Yet, information upon the structure-property relationships is only scarcely found in literature. Moreover, there is no clear overview of how reaction variables can be used to influence the grafted structure. In this review, an assessment has been made of the relation between the architecture of the grafts and potential applications. Then, from a selection of relevant literature data it is demonstrated that reaction variables such as the relative concentrations of initiator and monomer, have a large impact on the average size and spacing of the grafts. The emergence of controlled radical polymerizations, like Atom Transfer Radical Polymerization (ATRP and Reversible Addition-Fragmentation chain Transfer (RAFT, is discussed, both the current status and future prospects. These methods are promising in the future of starch grafting, especially for systems where homopolymer formation may be a problem. Nevertheless, higher costs and other related issues make these advanced methods more suitable in high added-value products.

  12. Synthesis and characterization of styrene-co-divinylbenzene-graft-linseed oil by free radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available A variety of opaque white to light yellow polymeric material have been prepared by two methods, one copolymerization of styrene (ST, divinylbenzene (DVB, and grafting of linseed oil (LIN, and the second involves the copolymerization of the same comonomers with pre-reacted (with initiator linseed oil. All of the reactant mixtures in different concentrations start to solidify at 100°C and give rise to a solid crosslinked polymer at 130°C. These polymeric materials contain approximately 30 to 74% of crosslinked materials. Their 1H NMR spectra indicate that the polymeric samples contain both soft oily and hard aromatic segments. The insoluble material left after soxhlet extraction contains finely distributed micropores. The heat deflection temperatures (HDT of the polymer samples range from 26 to 44°C. The glass transition temperature for different linseed oil polymer samples ranges from 66 to 147°C (from dynamic mechanical analysis and 158 to 182°C (from differential scanning calorimetry. The crosslinking density of samples ranges from 35.0 to 6.01•104 mol/m3. Irrespective of methods, the storage modulus decreases with increasing oil content in the copolymers. The polymers prepared by the first method show minimum swelling in saline water and maximum swelling in tetrahydrofuran. On the other hand, the polymers from the second method show maximum swelling in alkaline solution and a minimum in acidic solution.

  13. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid

    International Nuclear Information System (INIS)

    Song Lingjie; Zhao Jie; Yang Huawei; Jin Jing; Li Xiaomeng; Stagnaro, Paola; Yin Jinghua

    2011-01-01

    This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O 2 plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124 o to 26 o with the increasing grafting density of poly(AMPS) from 0 to 884.2 μg cm -2 , while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 μg cm -2 ); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.

  14. Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-03-01

    In the present work, the modification of biomaterials such as chitin and chitosan were successfully prepared by directly grafting poly(3-hexylthiophene) (P3HT) to their surfaces using simple oxidative polymerization with FeCl3. The thermal stability and crystallinity of grafted chitin and chitosan changed upon grafting with P3HT. The build-up of π-π* structure from the P3HT on the surface of chitin and chitosan resulted in the appearance of UV-vis absorption and fluorescence emission peaks in the range from 500 to 600 nm. Introducing P3HT to the surface of chitin and chitosan improved significantly the electrical property of chitin and chitosan with the increase in conductivity from 10-9 to 10-7 S/cm. Furthermore, the usual behavior of hydrophilic surface of chitin and chitosan that turned to hydrophobic with water contact angle of 97.7° and 107.0°, respectively in the presence of P3HT. The mechanism for graft reaction of P3HT to chitin and chitosan was also proposed and discussed.

  15. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics.

    Science.gov (United States)

    Hazer, Baki; Kalaycı, Özlem A

    2017-05-01

    Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Preparation of polymeric superhydrophobic surfaces and analysis of their wettability

    Science.gov (United States)

    Zhuang, Jian; Huang, Manling; Zhang, Yajun; Wu, Daming; Kuang, Tairong; Xu, Hong; Zhang, Xiaoxu

    2015-10-01

    In this paper, we presented three simple, facile and low-cost manufacturing methods—template method, nanoparticle filling method and extrusion stamping forming method—to fabricate the polymeric superhydrophobic surfaces. The stainless steel wire mesh as the template and glass beads was investigated in this study for the first time and low-cost hollow glass beads were rarely used as particles for fabricating the superhydrophobic surface. The water contact angle measurement of polymeric surfaces was used to investigate the effect of mesh count, glass beads and PTFE on fabricating polymeric superhydrophobic surface. It was found that the mesh count significantly affected the hydrophobicity of polymer surface in template method. The addition of glass beads improved the hydrophobicity by nanoparticle filling method. The addition of PTFE was of importance to fabricate the superhydrophobic surface by extrusion stamping forming method. The surface microstructure was also observed by scanning electron microscope.

  17. Simultaneous radiation induced graft polymerization of N-vinyl-2-pyrrolidone onto polypropylene non-woven fabric for improvement of blood compatibility

    Science.gov (United States)

    Li, Rong; Wang, Hengdong; Wang, Wenfeng; Ye, Yin

    2013-07-01

    In this study, N-vinyl-2-pyrrolidone (NVP) was grafted onto polypropylene non-woven fabric (PPNWF) through a simultaneous irradiation induced graft polymerization technique. Effect of the parameters of graft polymerization, i.e., monomer concentration, absorbed dose and dose rate, on the degree of grafting (DG) was investigated. The graft polymerization of NVP was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). A contact angle goniometry was used to test water contact angle (WCA) of original PPNWF and modified samples. The in vitro blood compatibility, including hemolysis, protein adsorption, platelet adhesion and activated partial thromboplastin time (APTT) of tested specimens, was evaluated. The results demonstrated that the hemocompatibility of PPNWF was improved via graft polymerization of NVP.

  18. DNA nanosensor surface grafting and salt dependence

    Science.gov (United States)

    Carvalho, B. G.; Fagundes, J.; Martin, A. A.; Raniero, L.; Favero, P. P.

    2013-02-01

    In this paper we investigated the Paracoccidoides brasiliensis fungus nanosensor by simulations of simple strand DNA grafting on gold nanoparticle. In order to improve the knowledge of nanoparticle environment, the addiction of salt solution was studied at the models proposed by us. Nanoparticle and DNA are represented by economic models validated by us in this paper. In addition, the DNA grafting and salt influences are evaluated by adsorption and bond energies calculations. This theoretical evaluation gives support to experimental diagnostics techniques of diseases.

  19. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  20. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: pstwmz@ustc.edu.cn; Ge Xuewu [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: xwge@ustc.edu.cn

    2009-02-15

    Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 deg. C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by {gamma}-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer (G{sub PU/monomer}) was calculated from {sup 1}H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. G{sub PU/monomer} varied as G{sub PU/styrene}(37%)>G{sub PU/butyl} {sub acrylate} {sub (BA)}(21%)>G{sub PU/methyl} {sub methacrylate} {sub (MMA)}(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

  1. Radioactive cesium removal from seawater using adsorptive fibers prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Goto, Shota; Kawai-Noma, Shigeko; Umeno, Daisuke; Saito, Kyoichi; Fujiwara, Kunio; Sugo, Takanobu; Kikuchi, Takahiro; Morimoto, Yasutomi

    2015-01-01

    The meltdown of three reactors of the TEPCO Fukushima Daiichi nuclear power station (NPS) caused by the Great East Japan Earthquake on March 11th 2011 resulted in the emission of radionuclides such as cesium-137 and strontium-90 to the environment. For example, radioactive cesium exceeding the legal discharge limit (90 Bq/L, 2×10 -13 M) was detected in the seawater of the seawater-intake area of the NPS at the end of September 2014. Adsorbents with a high selectivity for cesium ions over other alkali metal ions such as sodium and potassium ions are required for cesium removal from seawater because sodium and potassium ions dissolve respectively at much higher concentrations of 5×10 -1 and 1×10 -2 M than cesium ions (2×10 -9 M). In addition, the simple operations of the immersion in seawater and the recovery of the adsorbents from seawater are desirable at decontamination sites. We prepared a cobalt-ferrocyanide-impregnated fiber capable of specifically capturing cesium ions in seawater by radiation-induced graft polymerization and chemical modifications. First, a commercially available 6-nylon fiber was irradiated with γ-rays. Second, an epoxy-group-containing vinyl monomer, glycidyl methacrylate, was graft-polymerized onto the γ-ray-irradiated nylon fiber. Third, the epoxy ring of the grafted polymer chain was reacted with triethylenediamine to obtain an anion-exchange fiber. Fourth, ferrocyanide ions, [Fe(CN) 6 ] 4 - , were bound to the anion-exchange group of the polymer chains. Finally, the ferrocyanide-ion-bound-fiber was placed in contact with cobalt chloride to precipitate insoluble cobalt ferrocyanide onto the polymer chains. Insoluble cobalt ferrocyanide was immobilized at the periphery of the fiber. However, the impregnation structure remains unclear. Here, we clarified the structure of insoluble cobalt ferrocyanide impregnated onto the polymer chain grafted onto the fiber to ensure the chemical and physical stability of the adsorptive fiber in

  2. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Han, Shunyu; Jiang, Nanzhe; Meng, Wan

    2014-01-01

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N 2 full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH 2 ) 6 –CH 3 groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups

  3. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji 133002 (China); Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Han, Shunyu; Jiang, Nanzhe [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Meng, Wan, E-mail: mengw@ybu.edu.cn [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China)

    2014-12-15

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N{sub 2} full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH{sub 2}){sub 6}–CH{sub 3} groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups.

  4. Half-sandwich group 4 metal siloxy and silsesquioxane complexes : Soluble model systems for silica-grafted olefin polymerization catalysts

    NARCIS (Netherlands)

    Duchateau, R; Cremer, U; Harmsen, RJ; Mohamud, SI; Abbenhuis, HCL; van Santen, RA; Meetsma, A; Thiele, SKH; van Tol, MFH; Kranenburg, M

    1999-01-01

    The cuboctameric hydroxysilsesquioxane (c-C5H9)(7)Si8O12(OH) (2), obtained after hydrolysis of (c-C5H9)(7)Si8O12Cl (1), and triphenylsilanol have been applied as model supports for silica-grafted olefin polymerization catalysts. The ligands were introduced on group 4 metals by either chloride

  5. BenzoDODA grafted polymeric resin—Plutonium selective solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ruhela, R., E-mail: riteshr@barc.gov.in [Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Panja, S., E-mail: surajit@barc.gov.in [Fuel Reprocessing Division, Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Dhami, P.S.; Gandhi, P.M. [Fuel Reprocessing Division, Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-15

    Highlights: • BenzoDODA grafted polymeric resin was synthesized and evaluated for sorption of Pu(IV). • Fast sorption kinetics for ‘Pu(IV)’. • Ease of back extraction of ‘Pu’ form loaded resin. • Ease of recyclability and fair stability in HNO{sub 3} medium. - Abstract: A new ligand grafted polymeric resin (BenzoDODA SDVB) was synthesized by covalently attaching plutonium selective ligand (BenzoDODA) on to styrene divinyl benzene (SDVB) polymer matrix. BenzoDODA SDVB resin was evaluated for separation and recovery of plutonium(IV) from nitric acid medium. Sorption of Pu(IV) was found to decrease with the increase in nitric acid concentration, with very small sorption above 7.0 M HNO{sub 3}. Sorption kinetics was fast enough to achieve the equilibrium within 60 min of contact where the kinetic data fitted well to pseudo-second-order model. Sorption isotherm data fitted well to Langmuir model suggesting chemical interaction between the BenzoDODA moiety and plutonium(IV) ions. Sorption studies with some of representative radionuclides of high level waste showed that BenzoDODA SDVB is selective and therefore could be a promising solid sorbent for separation and recovery of plutonium. Further, the theoretical calculations done on BenzoDODA SDVB resin suggested Pu(NO{sub 3}){sub 4}·BenzoDODA (1:1) sorbed complex conformed to generally observed square antiprism geometry of the plutonium complexes, with contributions from oxygen atoms of four nitrate ions as well as from four oxygen atoms present in BenzoDODA (two phenolic ether oxygen atoms and two carbonyl oxygen atoms of amidic moiety).

  6. Synergistic effects of graft polymerization and polymer blending on the flexibility of xylan-based films.

    Science.gov (United States)

    Zhang, Xueqin; Liu, Chuanfu; Zhang, Aiping; Sun, Runcang

    2018-02-01

    To develop functional and sustainable films from xylan-based hemicelluloses, beechwood xylan was firstly modified with p-dioxanone (PDO) through ring-opening graft polymerization (ROGP) and then reinforced by poly(vinyl alcohol) (PVA) to fabricate xylan-graft-poly(p-dioxanone)/PVA (XGP/PVA) ternary composite films. FT-IR spectra proved the existence of intermolecular hydrogen bonding interactions between the hydroxyl groups of XGP and PVA. SEM analysis outlined the good compatibility between the XGP matrix and the PVA filler in blending films. From DSC data, the miscibility between XGP and PVA led to increase in the glass transition temperature (T g ) and the crystallinity (X c ) of XGP. In addition, XRD analysis also revealed the increased X c of XGP in the presence of PVA, which was consistent with the DSC results. TGA/DTG curves indicated that the addition of PVA improved the thermal stability of XGP. Tensile testing showed a dramatic increase in the elongation at break of films with the development of weight percent gain (WPG) of XGP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Polymer–clay nanocomposites via chemical grafting of ...

    Indian Academy of Sciences (India)

    The radical polymerization of the product with acrylonitrile (AN) as a vinyl monomer leads to chemical grafting of polyacrylonitrile onto montmorillonite surface. The homopolymer formed during polymerization was separated from the grafted organoclay by Soxhlet extraction. Chemical grafting of the polymer onto Cloisite 20A ...

  8. Polymer grafting surface as templates for the site-selective metallization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Peiyuan, E-mail: lipearpear@yahoo.cn [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Li, Xiangcheng [School of computer, electronics and information, Guangxi University, Nanning 530001 (China); Huo, Lini [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Chen, Jinhao [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Chen, Rui [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Na, Wei; Tang, Wanning; Liang, Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Su, Wei, E-mail: aaasuwei@yahoo.com.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2013-06-01

    We report a simple, low-cost and universal method for the fabrication of copper circuit patterns on a wide range of flexible polymeric substrates. This method relies on procedures to modify the polymeric substrates with grafted polymer template to form surface-bound N-containing groups, which can bind palladium catalysts that subsequently initiate the site-selective deposition of copper granular layer patterns. The fabrications of patterned copper films were demonstrated on three kinds of flexible polymeric films including poly(imide) (PI), poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) with minimum feature sizes of 200 μm. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM, SEM. Furthermore, the copper layered structure shows good adhesion with polymeric film. This method, which provides a promising strategy for the fabrication of copper circuit patterns on flexible polymeric substrates, has the potential in manufacturing conductive features adopted in various fields including modern electronics, opto-electronics and photovoltaic applications.

  9. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors.

    Science.gov (United States)

    Paniagua, Sergio A; Kim, Yunsang; Henry, Katherine; Kumar, Ritesh; Perry, Joseph W; Marder, Seth R

    2014-03-12

    A phosphonic acid is used as a surface initiator for the growth of polystyrene and polymethylmethacrylate (PMMA) from barium titanate (BTO) nanoparticles through atom transfer radical polymerization with activators regenerated by electron transfer. This results in the barium titanate cores embedded in the grafted polymer. The one-component system, PMMA-grafted-BTO, achieves a maximum extractable energy density of 2 J/cm(3) at a field strength of ∼220 V/μm, which exhibits a 2-fold increase compared to that of the composite without covalent attachment or the neat polymer. Such materials have potential applications in hybrid capacitors due to the high permittivity of the nanoparticles and the high breakdown strength, mechanical flexibility, and ease of processability due to the organic polymer. The synthesis, processing, characterization, and testing of the materials in capacitors are discussed.

  10. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  11. Surface Initiated Polymerizations via e-ATRP in Pure Water

    NARCIS (Netherlands)

    Hosseiny, Seyed Schwan; van Rijn, Patrick

    2013-01-01

    Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP) initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very

  12. Simultaneous radiation induced graft polymerization of N-vinyl-2-pyrrolidone onto polypropylene non-woven fabric for improvement of blood compatibility

    International Nuclear Information System (INIS)

    Li, Rong; Wang, Hengdong; Wang, Wenfeng; Ye, Yin

    2013-01-01

    In this study, N-vinyl-2-pyrrolidone (NVP) was grafted onto polypropylene non-woven fabric (PPNWF) through a simultaneous irradiation induced graft polymerization technique. Effect of the parameters of graft polymerization, i.e., monomer concentration, absorbed dose and dose rate, on the degree of grafting (DG) was investigated. The graft polymerization of NVP was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). A contact angle goniometry was used to test water contact angle (WCA) of original PPNWF and modified samples. The in vitro blood compatibility, including hemolysis, protein adsorption, platelet adhesion and activated partial thromboplastin time (APTT) of tested specimens, was evaluated. The results demonstrated that the hemocompatibility of PPNWF was improved via graft polymerization of NVP. - Highlights: • N-vinyl-2-pyrrolidone was grafted onto PPNWF via co-irradiation induced graft polymerization. • The grafting of PVP enhanced the hydrophilicity of PPNWF and the DG can be simply controlled. • The modified PPNWF possessed good blood compatibility

  13. Preirradiation Graft Polymerization of Styrene in a Poly(tetrafluoroethylene Film Investigated by Time-Resolved Small-Angle Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Hiroki Iwase

    2011-01-01

    Full Text Available Preirradiation graft polymerization of styrene in a poly(tetrafluoroethylene (PTFE film was examined by time-resolved small-angle neutron scattering (SANS. A crosslinked PTFE film, thickness of which is about 50 μm, was irradiated by γ-ray and immersed in a mixed solvent of styrene monomer and toluene. SANS elucidated that graft polymerization proceeds by two reaction processes (I and (II. In process (I at 0<<200 min, graft polymerization occurs at an interface between crystalline and amorphous PTFE domains and the grafted polystyrene segregates from PTFE, forming a thin layer with a sharp interface. In process (II at 200<<600 min, grafted PS layer starts to bridge between crystalline domains. At the end of process (II, 40% of total crystalline PTFE domain is covered by the grafted PS chains.

  14. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  15. Patterning of gold nanoparticles on fluoropolymer films by using patterned surface grafting and layer-by-layer deposition techniques.

    Science.gov (United States)

    Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Kwon, Oh-Sun; Shin, Kwanwoo

    2013-09-11

    The patterning of gold nanoparticles (GNPs) on the surface of a fluoropolymer substrate by using patterned surface grafting and layer-by-layer deposition techniques is described. The surface of a poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA) substrate was selectively implanted with 150 keV proton ions. Peroxide groups were successfully formed on the implanted PFA surface, and their concentration depended on the fluence. Acrylic acid was graft polymerized onto the implanted regions of the PFA substrate, resulting in well-defined patterns of poly(acrylic acid) (PAA) on the PFA substrate. The surface properties of the PAA-patterned PFA surface, such as chemical compositions, wettability, and morphology, were investigated. The surface analysis results revealed that PAA was definitely present on the implanted regions of the PFA surface, and the degree of grafting was dependent on three factors: fluence, grafting time, and monomer concentration. Furthermore, GNP patterns were generated on the prepared PAA-patterned PFA surface by layer-by-layer deposition of GNPs and poly(diallyldimethyl ammonium chloride). The multilayers of GNPs were deposited only onto the PAA-grafted regions separated by bare PFA regions, and the resulting GNP patterns exhibited good electrical conductivity.

  16. Microwave-assisted grafting polymerization modification of nylon 6 capillary-channeled polymer fibers for enhanced weak cation exchange protein separations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liuwei; Marcus, R. Kenneth, E-mail: marcusr@clemson.edu

    2017-02-15

    A weak cation exchange liquid chromatography stationary phase (nylon-COOH) was prepared by grafting polyacrylic acid on to native nylon 6 capillary-channeled polymer (C-CP) fibers via a microwave-assisted radical polymerization. To the best of our knowledge, this is the first study of applying microwave-assisted grafting polymerization to affect nylon material for protein separation. The C-CP fiber surfaces were characterized by attenuated total reflection (ATR) infrared spectroscopy and scanning electron microscope (SEM). The anticipated carbonyl peak at 1722.9 cm{sup −1} was found on the nylon-COOH fibers, but was not found on the native fiber, indicating the presence of the polyacrylic acid on nylon fibers after grafting. The nylon-COOH phase showed a ∼12× increase in lysozyme dynamic binding capacity (∼12 mg mL{sup −1}) when compared to the native fiber phase (∼1 mg mL{sup −1}). The loading capacity of the nylon-COOH phase is nearly independent of the lysozyme loading concentration (0.05–1 mg mL{sup −1}) and the mobile phase linear velocity (7.3–73 mm s{sup −1}). The reproducibility of the lysozyme recovery from the nylon-COOH (RSD = 0.3%, n = 10) and the batch-to-batch variability in the functionalization (RSD = 3%, n = 5) were also investigated, revealing very high levels of consistency. Fast baseline separations of myoglobin, α-chymotrypsinogen A, cytochrome c and lysozyme were achieved using the nylon-COOH column. It was found that a 5× increase in the mobile phase linear velocity (7.3-to-36.5 mm s{sup −1}) had little effect on the separation resolution. The microwave-assisted grafting polymerization has great potential as a generalized surface modification methodology across the applications of C-CP fibers. - Highlights: • A microwave-assisted grafting method to attach acrylic acid is described for the first time for chromatographic phases. • A high-density, weak cation exchange surface is created on a nylon

  17. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  18. Construction and surface/interface behavior of bio-functional surface layer by microwave-excited Ar/H2O plasma-induced polyethylene glycol polymerization

    Science.gov (United States)

    Shao, Z.; Ogino, A.; Nagatsu, M.

    2017-07-01

    Ar/H2O microwave-excited surface-wave plasma-induced grafting-polymerization and crosslinking technique was presented to construct a bio-functional surface layer. Optical emission spectroscopy was used to diagnose Ar/H2O plasma. The surface/interface behavior especially the aging effect of hydroxyl groups over the grafted PEG spacer layer was investigated by measuring water contact angle and X-ray photoelectron spectroscopy. The results demonstrate that the addition of water vapor into Ar plasma can optimize the concentration of hydroxyl functional groups on surface; grafted PEG spacer layer can provide a long-term hydrophilicity of PU films, and alleviate the aging effect of hydroxyl functional groups.

  19. Surface functionalization of polyamide fiber via dopamine polymerization

    Science.gov (United States)

    Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang

    2017-09-01

    The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.

  20. Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight.

    Science.gov (United States)

    Heinen, Silke; Weinhart, Marie

    2017-03-07

    For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 R g /l) of the latter coating was found to be lower than 1

  1. The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior

    Science.gov (United States)

    Rohman, Géraldine; Huot, Stéphane; Vilas-Boas, Maria; Radu-Bostan, Gabriela; Castner, David G.; Migonney, Véronique

    2015-01-01

    Poly(sodium styrene sulfonate) (pNaSS) was grafted onto poly(ε-caprolatone) (PCL) surfaces via ozonation and graft polymerization. The effect of ozonation and polymerization time, as well as the Mohr’s salt concentration in the grafting solution, on the degree of grafting was investigated. The degree of grafting was determined through toluidine blue staining. The surface chemical change was characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The result demonstrated that the grafting did not induce any degradation of PCL, and that pNaSS was grafted onto PCL as a thin and covalently stable layer. Furthermore, the modified PCL surface reveals a significant increase in the metabolic activity of fibroblastic cells, as well as a better cell spreading with higher adhesion strength. Consequently, bioactivity of PCL is greatly enhanced by immobilizing a thin layer of pNaSS onto its surface. The grafting of pNaSS is a promising approach to increase the bioactivity of PCL-based materials used in tissue engineering applications, such as ligament reconstruction. PMID:26155977

  2. Surface Grafting of Thermoresponsive Microgel Nanoparticles (Postprint)

    Science.gov (United States)

    2011-01-01

    was conducted via a surfactant- stabilized free - radical -precipitation polymerization in an aqueous environment in the presence of acrylic acid as a co...ronment in the presence of acrylic acid as a co- monomer and BIS as a cross-linker. Analyses indicated that the particles were composed of a densely...treatments, N-isopropylacrylamide (NIPAAM) copolymerization wi, hydrophobic epoxydized copolymer and copolymer/nan, capillary condensation

  3. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Directory of Open Access Journals (Sweden)

    Willy Zorzi

    2012-08-01

    Full Text Available This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.

  4. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Science.gov (United States)

    Poncin-Epaillard, Fabienne; Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Coudreuse, Arnaud; Legeay, Gilbert; El Moualij, Benaïssa; Zorzi, Willy

    2012-01-01

    This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions. PMID:24955631

  5. Dental Hetero-Graft Materials with Nano Hydroxyapatite Surface Treatment.

    Science.gov (United States)

    Kim, Dai-Hwan; Kim, Kyung-Il; Yoon, Seokyoung; Kim, Hyung-Jo; Ahn, Jin-Soo; Jun, Sang Ho; Kang, Ho Chang; Pang, Changhyun; Kim, Jaeyun; Cha, Hyung Joon; Han, Kwon-Hoon; Kim, Dong-Myong; Lee, Jung Heon

    2015-10-01

    We report the development of hydroxyapatite nanoparticle (HAp NP)-functionalized hetero-graft materials (HGMs) for dental applications. These HGMs were prepared by attaching platelet-, needle-, and sphere-shaped HAp NPs to the surface of xenograft materials through chemical conjugation. Although all three HAp NPs contributed to increase the surface area of bone graft material (BGM), the shape of the HAp NPs was a determining factor. Platelet HAp NPs were most effective, because they caused a 48.9% increase in BGM surface area whereas the influence of the spherical NP was only a 6.7% increase. This suggests that geometric factors regarding both the attached HAp NPs and graft material surface are essential in controlling the surface roughness of graft materials. Among the three HAp NPs, it was the platelet HAp NPs that helped to increase the efficacy of the BGM most significantly. Compared with BGM with no HAp NP attachment, HGM with platelet HAp NP ('platelet-HGM) treatment had ~46.1% higher cell attachment and proliferation rate. The MTT assay also showed that the HAp NP-treated hetero-graft materials had negligible cytotoxicity.

  6. [Surface grafting modification and stabilization of Kevlar fiber].

    Science.gov (United States)

    Zheng, Yu-ying; Fu, Ming-lian; Wang, Can-yao; Wang, Liang-en

    2005-11-01

    Chemical disposal was used to bring the activity group onto the surface of Kevlar fiber for the purpose of surface grafting modification. The interfacial constitution of the grafting of toluene-2,4-diisocyanate (TDI) onto Kevlar fiber was determined by Fourier transform infrared spectroscopy. In the mean time, hexyl-lactam stabilization and poly-glycol (400, PEG) stabilization on the grafted product were also studied. The effects of different nTDI:nPEG ratios on the production's interfacial constitution was analysed. It is concluded that the stabilization took place on the surface. The intensity of the bands relented at about 3300 cm(-1) and was reinforced at about 1700-1720 cm(-1) when the ratio of nTDI:nPEG = 1:3, but when the ratio is 1:1 and 1:2, the bands at about 3 300 and 1700-1720 cm(-1) are almost the same.

  7. Grafting of Polystyrene Chains at the Edge of Graphene Nanolayers by "Grafting Through" Approach Using Reversible Addition-Fragmentation Chain Transfer Polymerization

    Directory of Open Access Journals (Sweden)

    Hossein Roghani-Mamaqani

    2017-09-01

    Full Text Available Edge-functionalized graphene nanolayers with polystyrene chains were prepared by a “grafting through” reversible addition-fragmentation chain transfer (RAFT polymerization. For this purpose, double-bond containing modifier (MD was prepared. After edge-functionalization of graphene oxide (GO by two different amounts of MD and preparation of modified graphenes (LFG and HFG, RAFT polymerization of styrene was applied for preparation of functionalized GO with different densities of polystyrene chains. Fourier transform infrared spectroscopy showed that MD and polystyrene chains were grafted at the edge of GO. Gas chromatography showed that conversion decreased by the addition of modified GO content and also grafting density of MD. Number-average molecular weight and polydispersity index of polystyrene chains were derived from gel permeation chromatography. Increase of modified graphene content results in a decrease in molecular weight of attached polystyrene chains and also an increase in their PDI value. Increase of grafting density of MD results in decrease of molecular weight of polystyrene chains with no considerable variation in PDI value. Thermogravimetric analysis results showed that char residue is about 45.1 and 46.8% for LFG and HFG, respectively. The content of degradation ascribed to polystyrene increased with increase of grafting density of MD and decreased with increase of modified graphene content. X-ray diffraction results were used for evaluation of interlayer spacing of graphene layers after functionalization process and also study of nanocomposites structure. The results of scanning electron microscopy and transmission electron microscopy show that graphene layers with high clarity turned to opaque layers with lots of creases by oxidation and attachment of polystyrene chains.

  8. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    OpenAIRE

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 3 7 ∘ C storage in an incuba...

  9. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    Science.gov (United States)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  10. Surface coordination polymerization of ethylene by hydrozirconation-immobilized metallocene.

    Science.gov (United States)

    Zheng, Jun; Wang, Yanhui; Ye, Lin; Lin, Yichao; Tang, Tao; Zhang, Jidong

    2014-07-01

    Hydrozirconation on vinyl-terminated substrates (silicon wafer and nanosilica sphere) is employed as an efficient way for immobilization of zirconocene catalyst through Zr-C bonds, which is applied in surface coordination ethylene polymerization producing surface-tethered polyethylene (PE). The formation of Zr-C σ bond induced by hydrozirconation provides an initiator precursor for growing a layer of PE covalently linked onto substrates. The results from SEM, AFM, and TEM show that the surface polymerization is controlled by hydrozirconation. Surface pattern or core-shell structure with crystalline PE coating can be formed, when silicon wafer is selectively functionalized with vinyl-groups or vinyl-modified nanosilica is applied. It is believed that hydrozirconation for the synthesis of zirconocene initiator can be a versatile route to prepare polyolefin hybrid materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surface Initiated Polymerizations via e-ATRP in Pure Water

    Directory of Open Access Journals (Sweden)

    Seyed Schwan Hosseiny

    2013-10-01

    Full Text Available Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlled growth of the polymer chains leading towards a steady increase in film thickness. Electrochemical quartz crystal microbalance displayed a highly regular increase in surface confined mass only after the addition of the pre-copper catalyst which is reduced in situ and transformed into the catalyst. Even after isolation and washing of the modified electrode surface, reinitiation was achieved with retention of the controlled electrochemical ATRP reaction. This reinitiation after isolation proves the livingness of the polymerization. This approach has interesting potential for smart thin film materials and offers also the possibility of post-modification via additional electrochemical induced reactions.

  12. Superabsorbent Polymer Based on Sodium Carboxymethyl Cellulose Grafted Polyacrylic Acid by Inverse Suspension Polymerization

    Directory of Open Access Journals (Sweden)

    Pairote Klinpituksa

    2017-01-01

    Full Text Available A superabsorbent polymer (SAP based on graft copolymerization of sodium carboxymethyl cellulose and acrylic acid was prepared by inverse suspension polymerization using potassium persulfate as an initiator and N,N′-methylenebisacrylamide as a cross-linker. Experiments were performed at 70°C for 90 min but varying the concentrations of sodium carboxymethyl cellulose (NaCMC, acrylic acid (AA, potassium persulfate (KPS, and N,N′-methylenebisacrylamide (MBA, and also varying % neutralization of AA. The maximum swelling capacity for SAP was 544.95 g/g in distilled water and 44.0 g/g in 0.9% w/v NaCl solution. This near optimal SAP was prepared using 2.0 g/100 mL NaCMC, 1.0 mol/L AA with 70% neutralization, 0.014 mol/L KPS, and 0.01 mol/L MBA.

  13. Grafting of functionalized polymer on porous silicon surface using Grignard reagent

    Science.gov (United States)

    Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.

    2017-11-01

    Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).

  14. Collagen fiber with surface-grafted polyphenol as a novel support for Pd(0) nanoparticles: Synthesis, characterization and catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hao [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Wu Chao [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); He Qiang [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: sibitannin@vip.163.com [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2010-06-15

    The aim of this study is to use collagen fiber (CF) as a natural polymeric support to synthesize a novel palladium (Pd) nanoparticle catalyst. To achieve a stable immobilization of Pd on CF support, epigallocatechin-3-gallate (EGCG), a typical plant polyphenol, was grafted onto CF surface, acting both as dispersing and stabilizing agent for Pd nanoparticles. Scanning electron microscopy showed that this catalyst was in ordered fibrous state with high flexibility. The presence of EGCG grafted on CF and the interaction mechanism of Pd ions with support was investigated by X-ray photoelectron spectroscopy. X-ray diffraction and transmission electron microscopy offered evidence that the well-dispersed Pd nanoparticles were generated on the outer surface of CF. By using the hydrogenation of allyl alcohol as a model reaction, the synthesized catalyst presented remarkably improved activity, selectivity and reusability as compared with the Pd catalyst supported by CF without grafting of EGCG.

  15. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  16. Effect of Surface Treatment Condition of Aminosilane on Ethylene Polymerization of Supported Metallocene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yun; Lee, Jeong Suk; Ko, Young Soo [Kongju National University, Cheonan (Korea, Republic of)

    2015-02-15

    The effects of surface treatment method of unreacted N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS), N{sup 1}-(3-trimethoxysilylpropyl)diethylenetriamine (3NS), and 3-cyanopropyltriethoxysilane (1NCy) after grafting on the surface of silica and of the surface treatment temperature on ethylene polymerization were investigated. The Zr content of supported catalyst employing filtering method was higher than that of washing method, and the activities of supported catalysts prepared by washing method were higher than those of filtering methods significantly. Regardless of surface treatment methods the activities were in order by SiO{sub 2}/2NS/(n-BuCp){sub 2}ZrCl{sub 2}>SiO{sub 2}/1NCy/(n-BuCp){sub 2}ZrCl{sub 2}>SiO{sub 2}/3NS/(n-BuCp){sub 2}ZrCl{sub 2}. The ethylene polymerization activity was increased as the surface treatment temperature of aminosilane on silica increased.

  17. Modeling of ESD events from polymeric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kent Bryant

    2014-03-01

    Transient electrostatic discharge (ESD) events are studied to assemble a predictive model of discharge from polymer surfaces. An analog circuit simulation is produced and its response is compared to various literature sources to explore its capabilities and limitations. Results suggest that polymer ESD events can be predicted to within an order of magnitude. These results compare well to empirical findings from other sources having similar reproducibility.

  18. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    Science.gov (United States)

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of a water purifier for radioactive cesium removal from contaminated natural water by radiation-induced graft polymerization

    Science.gov (United States)

    Seko, Noriaki; Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Saiki, Seiichi; Ueki, Yuji

    2018-02-01

    Six years after the Fukushima-nuclear accident, the dissolved radioactive cesium (Cs) is now hardly detected in environmental natural waters. These natural waters are directly used as source of drinking and domestic waters in disaster-stricken areas in Fukushima. However, the possibility that some radioactive Cs adsorbed on soil or leaves will contaminate these natural waters during heavy rains or typhoon is always present. In order for the returning residents to live with peace of mind, it is important to demonstrate the safety of the domestic waters that they will use for their daily life. For this purpose, we have synthesized a material for selective removal of radioactive Cs by introducing ammonium 12-molybdophosphate (AMP) onto polyethylene nonwoven fabric through radiation-induced emulsion graft polymerization technique. Water purifiers filled with the grafted Cs adsorbent were installed in selected houses in Fukushima. The capability of the grafted adsorbent to remove Cs from domestic waters was evaluated for a whole year. The results showed that the tap water filtered through the developed water purifier contained no radioactive Cs, signifying the very effective adsorption performance of the developed grafted adsorbent. From several demonstrations, we have commercialized the water purifier named "KranCsair®". Furthermore, we have also developed a method for the mass production of the grafted nonwoven fabric. Using a 30 L grafting reactor, it was possible to produce the grafted nonwoven fabric with a suitable range of degree of grafting. When an irradiated roll of nonwoven trunk fabric with a length of 10 m and a width of 30 cm was set in the reactor filled with glycidyl methacrylate (GMA), AMP, Tween 80 monomer emulsion solution at 40 °C for 1 h, the difference of Dgs in the length and the width on roll of fabrics was negligible.

  20. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengchang; Liu, Pengqing, E-mail: liupq@scu.edu.cn; Zhao, Xiangsen; Xu, Jianjun, E-mail: xujj@scu.edu.cn

    2017-02-28

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  1. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    International Nuclear Information System (INIS)

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-01-01

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  2. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism

    International Nuclear Information System (INIS)

    Razali, M.A.A.; Ariffin, A.

    2015-01-01

    Graphical abstract: - Highlights: • Flocculation performance of cassava grafted polyDADMAC was studied. • Turbidity and TSS removal increased with increasing grafting percentage. • The grafted polymer showed good removal in acidic and neutral region. • Zeta potential results pointed to the charge neutralization mechanism. • Flocs increased with increasing grafting percentage and molecular weight. - Abstract: In this work, flocculation properties of cassava starch grafted polydiallyldimethylammonium chloride (polyDADMAC) with different grafting percentages were investigated. Flocculation performance was evaluated in simulated kaolin suspension. The grafting percentages used were 1.76 %, 14.84 %, and 21.98 %. The effectiveness of the flocculation was measured based on the reduction of the turbidity and total suspended solids (TSSs), zeta potential measurements, particle size, and atomic force microscopy imaging. Grafted polymers improved the removal rate of turbidity and TSS compared with gelatinized starch, and the removal rate increased with increasing grafting percentage and dosage

  3. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Ram Kumar, M.C.; Arun Kumar, A. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Padmanabhan, P.V.A. [PSN College of Engineering and Technology, Tirunelveli 627 152 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Bah, M.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, M.; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-05-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  4. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M.C.; Arun Kumar, A.; Padmanabhan, P.V.A.; Deshmukh, R.R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A.S.

    2016-01-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  5. Surface grafting of poly(L-glutamates). 3. Block copolymerization

    NARCIS (Netherlands)

    Wieringa, RH; Siesling, EA; Werkman, PJ; Vorenkamp, EJ; Schouten, AJ

    2001-01-01

    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(gamma -benzyl L-glutamate) (PBLG) as the A-block and poly(gamma -methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (,gamma -aminopropyl)triethoxysilane

  6. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Science.gov (United States)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  7. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    International Nuclear Information System (INIS)

    Deng Bo; Yu Yang; Zhang Bowu; Yang Xuanxuan; Li Linfan; Yu Ming; Li Jingye

    2011-01-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  8. Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties

    Directory of Open Access Journals (Sweden)

    Chin-Yen Chou

    2016-12-01

    Full Text Available In this study, a new type of temperature sensor device was developed. The circular electrode of the thermally sensitive sensor was modified with tetramethyltin (TMT and O2 plasma to form a thin SnOxCy conductive layer on the electrode surface. The nano-Au particles (AuNPs were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor made by mixing the treated AuNPs with N-isopropylacrylamide (NIPAAm solution and then applying UV-induced grafting polymerization of the NIPAAm-containing solution onto the electrode substrate. The composite hydrogels on the electrode introduce thermo-sensitive polymeric surface films for temperature sensing. Using the ambient environment resistance test to measure the resistance, the lower critical solution temperature (LCST of AuNPs mixed with NIPAAm hydrogel was found to be 32 °C. In common metallic materials, the resistance increased during environmental temperature enhancement. In this study, at ambient temperatures higher than the LCST, the electrode resistance decreases linearly due to the shrinkage structure with AuNPs contacting the circuit electrode.

  9. Preparation of Cation-Exchange Particle Designed for High-Speed Collection of Proteins by Radiation-Induced Graft Polymerization

    Science.gov (United States)

    Sekiya, Yuta; Shimoda, Yuichi; Umeno, Daisuke; Saito, Kyoichi; Furumoto, Goro; Shirataki, Hironobu; Shinohara, Naoyuki; Kubota, Noboru

    A cation-exchange polymer brush was immobilized onto a polyethylene-based particle with an average diameter of 35 μm by radiation-induced graft polymerization of glycidyl methacrylate and subsequent sulfonation with sodium sulfite. A lysozyme solution was forced to flow through a bed (height 2 cm, cross-sectional area 0.61 cm2) charged with the resultant cation-exchange particles at a space velocity ranging from 500 to 2300 h-1. From a viewpoint of equilibrium binding capacity and elution percentage of lysozyme, the dose of electron beam and the degree of GMA grafting were optimized to be 200 kGy and 100%, respectively. The bed exhibited a constant dynamic binding capacity of lysozyme 14 mg⁄mL irrespective of space velocity due to negligible diffusional mass-transfer resistance.

  10. Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment

    International Nuclear Information System (INIS)

    Zhen Weijun; Lu Canhui

    2012-01-01

    To improve the water resistance of thermoplastic poly(vinyl alcohol)/saponite nanocomposites (TPVA), a simple two-step method was developed for the covalent immobilization of atom transfer radical polymerization (ATRP) initiators on the TPVA surfaces enhanced by air dielectric barrier discharges (DBD) plasma treatment, and hydrophobic poly(methyl methacrylate) (PMMA) brushes were then grafted onto the surface of TPVA via surface-initiated atom transfer radical polymerization (SI-ATRP). The chemical composition, morphology and hydrophobicity of the modified TPVA surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The water resistance of the surface-functionalized PMMA was evaluated by the contact angle and water adsorption method. It was shown that air DBD plasma treatment activated the TPVA surface and accelerated the immobilization of ATRP initiator on the TPVA surface. Compared with TPVA control, TPVA modified by SI-ATRP can be grafted well-defined and covalently tethered network PMMA brushes onto the surface and the hydrophobicity of TPVA were significantly enhanced.

  11. Radiation induced emulsion graft polymerization of 4-vinylpyridine onto PE/PP nonwoven fabric for As(V) adsorption

    Science.gov (United States)

    Akkaş Kavaklı, Pınar; Kavaklı, Cengiz; Seko, Noriaki; Tamada, Masao; Güven, Olgun

    2016-10-01

    A novel nonwoven fabric adsorbent having 4-vinylpyridine functional groups was prepared by using radiation-induced emulsion graft polymerization method and grafting 4-vinylpyridine monomer onto a polyethylene-coated polypropylene nonwoven fabric (NWF) in aqueous emulsion solution. The grafting conditions of the 4-vinylpyridine monomer onto the NWF were optimised and 150% Dg VP-g-NWF was prepared using 30 kGy pre-irradiation dose, 5% VP monomer concentration and 0.5% (w/w) Tween 20 in aqueous emulsion. Grafted 4-vinylpyridine chains on the NWF were then quaternized for the preparation of QVP-g-NWF adsorbent. All fabric structures were characterized by using Fourier-transform infrared spectrometer, x-ray photoelectron spectrometer and scanning electron microscope. QVP-g-NWF adsorbent was used in batch adsorption experiments for As(V) ions by studying the pH, contact time, and initial As(V) ion concentration parameters. Results showed that QVP-g-NWF adsorbent has significant As(V) adsorption and experimental As(V) adsorption capacity was 98.04 mg As(V)/g polymer from 500 mg/L initial As(V) concentration at pH 7.00.

  12. An Engineering Scale Study on Radiation Grafting of Polymeric Adsorbents for Recovery of Heavy Metal Ions from Seawater

    International Nuclear Information System (INIS)

    Prasad, Tl; Saxena, Ak; Tewari, Pk; Sathiyamoorthy, D

    2009-01-01

    The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater

  13. Temperature-dependent conformational change of PNIPAM grafted chains at high surface density in water.

    Energy Technology Data Exchange (ETDEWEB)

    Satija, Sushil K. (National Institute of Standards and Technology, Gaithersburg, MD); Mendez, Sergio (University of New Mexico, Albuquerque, NM); Balamurugan, Sreelatha S. (University of New Mexico, Albuquerque, NM); Balamurugan, Subramanian (University of New Mexico, Albuquerque, NM); Kent, Michael Stuart; Yim, Hyun; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM)

    2003-07-01

    Poly(N-isopropylacrylamide) (PNIPAM) exhibits a lower critical solution temperature (LCST) of {approx}30 C in water that is attributed to alterations in the hydrogen-bonding interactions of the amide group. PNIPAM in various forms has been explored for a variety of applications including controlled drug delivery, solute separation, tissue culture substrates, and controlling the adsorption of proteins, blood cells, and bacteria. Grafting PNIPAM onto surfaces is a promising strategy for creating responsive surfaces, since the physical properties of PNIPAM are readily controlled by changing the temperature. Considerable effort has been devoted to studying variations in chain conformations with temperature (T) in PNIPAM-based materials. Kubota et al. studied conformational changes of PNIPAM free chains with temperature for molecular weights ranging from 1.63 x 10{sup 6} to 2.52 x 10{sup 7} g/mol (M{sub w}/M{sub n} > 1.3) in water using laser light scattering. They reported a decrease in the radius of gyration (R{sub g}) as the solution temperature increased above the LCST. The magnitude of the effect was more pronounced with increasing molecular weight, ranging up to a factor of two for the highest molecular weight sample. In a similar study, Wu et al. observed a decrease in R{sub g} of a factor of seven for a high molecular weight PNIPAM sample with very low polydispersity (M{sub w} = 1.3 x 10{sup 7} g/mol, M{sub w}/M{sub n} < 1.05). Regarding grafted PNIPAM chains, Kidoaki et al. recently employed an iniferter-based graft polymerization method to generate a dense, high molecular weight brush and reported changes in the thickness measured by AFM. The thickness of the grafted layer was obtained from AFM images of the boundary between grafted and nongrafted (ablated by laser light) regions. They found that the swollen film thickness decreased by a factor of {approx}2 with increasing temperature from 25 to 40 C for samples with a range of dry film thickness from 250 to

  14. Effect of Oxygen and Initiator Solubility on Admicellar Polymerization of Styrene on Silica Surfaces

    Directory of Open Access Journals (Sweden)

    Pohlee Cheah

    2017-01-01

    Full Text Available Although admicellar polymerization has been termed the surface analog of emulsion polymerization, previous reports utilizing free radical-initiated admicellar polymerization relied on high levels of the free radical initiator when compared to emulsion polymerization, likely due to the presence of oxygen in the reported admicellar polymerization systems. Admicellar polymerizations of styrene on the surface of precipitated silica initiated by either a water-soluble or a water-insoluble initiator were studied to determine the effect of dissolved oxygen and free radical initiator solubility on the kinetics, yield, and molecular weight of the polymer formed. Results show that the presence of oxygen reduces the polymer yield and limits molecular weight. The solubility of the initiator also affected the polymer formed in the admicellar polymerization of styrene. While monomer conversions and polymer yield were similar, the molecular weights of polymerizations initiated by a water-soluble initiator were higher than comparable polymerizations initiated by a water-insoluble initiator.

  15. Ultrahydrophobic surface modification of polymeric fibers and inorganic substrates

    Science.gov (United States)

    Ramaratnam, Karthik

    The wettability of a solid surface is a very important property, and is governed by both the chemical composition and the geometrical microstructure of the surface. Wettability and repellency are important properties of solid surfaces from both fundamental and practical aspects. The wettability of the solid surface is a characteristic property of materials and strongly depends on both the surface energy and the surface roughness. These properties may be approached by mimicking hydrophobic structures created by nature on lotus leaf surface. The lotus effect is based on surface roughness caused by different microstructures together with the hydrophobic properties of the epicuticular wax. The present study investigates the basic principles involved in the fabrication of lotus-like materials on both fibrous and inorganic substrates utilizing the two essential requirements, surface roughness and hydrophobicity. The surface roughness was created either by a porous or a bumpy profile while the hydrophobicity was achieved by grafting a non-fluorinated hydrophobic polymer. For the porous profiles, polymer blend systems showing phase separation were utilized whereas the bumpy profiles were achieved using nanoparticles such as calcium carbonate, silver, or silica particles. In the last part of the research, functionalization of silica nanoparticles was investigated and the development of a universal modification step to obtain the ultrahydrophobic property is reported. In this approach, the adsorption of the polymer and the nanoparticles to fibers has been optimized and the self-cleaning effect of these fabrics modified with silica nanoparticles has also been demonstrated.

  16. Chemical reactive filter paper prepared by radiation-induced graft polymerization - I

    International Nuclear Information System (INIS)

    Chelating filter papers with chemically bonded amidoxime groups were synthesized by radiation-induced grafting of acrylonitrile onto filter paper (W3) followed by chemical treatment with hydroxylamine. The effect of grafting conditions such as absorbed dose, dose rate, monomer concentration and filter paper thickness on the grafting yield was studied. It was found that the degree of grafting increases with increasing absorbed dose and dose rate, and then tends to level off at high doses. The order of the dependence of the initial grafting rate on the dose is found to be of 0.33. An increasing monomer concentration was accompanied by a significant increase in grafting. At high monomer concentration the initial rate of grafting is fast followed by a slow rate. The rate of grafting is controlled by the filter paper thickness and the diffusion of monomer into the interior of the filter paper. Mechanical properties of the prepared filter paper were improved over the ungrafted paper. The amidoxime filter papers were examined for adsorption of uranium concentration ranging between 10-100 ppm

  17. Grafting of Poly(methyl methacrylate Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP

    Directory of Open Access Journals (Sweden)

    Babu Kothandapani

    2008-01-01

    Full Text Available AbstractPoly(methyl methacrylate in the brush form is grown from the surface of magnetite nanoparticles by ambient temperature atom transfer radical polymerization (ATATRP using a phosphonic acid based initiator. The surface initiator was prepared by the reaction of ethylene glycol with 2-bromoisobutyrl bromide, followed by the reaction with phosphorus oxychloride and hydrolysis. This initiator is anchored to magnetite nanoparticles via physisorption. The ATATRP of methyl methacrylate was carried out in the presence of CuBr/PMDETA complex, without a sacrificial initiator, and the grafting density is found to be as high as 0.90 molecules/nm2. The organic–inorganic hybrid material thus prepared shows exceptional stability in organic solvents unlike unfunctionalized magnetite nanoparticles which tend to flocculate. The polymer brushes of various number average molecular weights were prepared and the molecular weight was determined using size exclusion chromatography, after degrafting the polymer from the magnetite core. Thermogravimetric analysis, X-ray photoelectron spectra and diffused reflection FT-IR were used to confirm the grafting reaction.

  18. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross......-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels...

  19. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  20. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  1. Radioactive strontium removal from seawater and groundwater with adsorptive fibers prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Goto, Shun-ichi; Kono, Michitaka; Kawai-Noma, Shigeko

    2015-01-01

    The Great East Japan Earthquake and the tsunami that followed caused the meltdown of three reactors of the TEPCO Fukushima Daiichi nuclear power station (NPS), resulting in the emission of radionuclides such as cesium-137 and strontium-90 to the environment. Radioactive strontium was detected in seawater and groundwater at concentrations of 1.8 × 10 2 and 5.5 × 10 5 Bq/L, respectively, on October 7th 2014. Nonradioactive strontium dissolves at a concentration of 8 mg/L in seawater. No adsorbent can distinguish radioactive strontium from nonradioactive strontium; therefore, the adsorbent must collect both ions which coexist with other alkaline-earth metal ions such as magnesium and calcium ions. Inorganic compounds and chelate-forming resins are candidate adsorbents for strontium removal. However, it is difficult to use these adsorbents to process a large volume of water contaminated with radionuclides because of their granule and bead forms. We have prepared two kinds of adsorptive fiber by radiation-induced graft polymerization and subsequent chemical modifications: (1) sodium-titanate-impregnated fiber (ST fiber) and (2) iminodiacetate-group-immobilized fiber (IDA fiber). The preparation scheme of the ST fiber consisted of four steps. First, a commercially available 6-nylon fiber was irradiated with γ-rays to produce radicals. Second, sodium styrene sulfate was graft-polymerized onto the irradiated fiber. Third, a titanium species [Ti(OH) 2 2+ ] was bound to the sulfonic acid group of the grafted polymer chain. Finally, the titanium species was converted into sodium titanate with sodium hydroxide, and the resulting precipitate was impregnated onto the fiber. On the other hand, the IDA fiber was prepared as follows. An epoxy-group-containing vinyl monomer, glycidyl methacrylate, was graft-polymerized onto a previously γ-ray-irradiated 6-nylon fiber. Subsequently, the epoxy group was converted into an iminodiacetate group as a chelate-forming group by a

  2. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  3. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification.

    Science.gov (United States)

    Zong, Guangxi; Chen, Hou; Qu, Rongjun; Wang, Chunhua; Ji, Naiyi

    2011-02-15

    A novel method of surface modification was developed via iron (III)-mediated atom transfer radical polymerization, with activators regenerated by electron transfer (ARGET ATRP) on the surfaces of polystyrene resin-supported N-chlorosulfonamide groups. The well-defined polyacrylonitrile (PAN) was grafted onto the surfaces of the polystyrene (PS). The graft reaction exhibited first-order kinetics with respect to the polymerization time in the low-monomer-conversion stage. The cyano group of PAN-g-PS was modified by NH(2)OH·HCl to yield amidoxime (AO) groups. The AO groups had been demonstrated to be an efficient Hg-specific sorbent, which can remove Hg(2+) from solutions. No interference arose from common metal ions, such as Pd(2+), Ag(+), and Cu(2+). Three adsorption-desorption cycles demonstrated that this resin is suitable for reuse without any considerable change in adsorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  5. Microfabrication of polymeric surfaces with extreme wettability using hot embossing

    Science.gov (United States)

    Falah Toosi, Salma; Moradi, Sona; Ebrahimi, Marzieh; Hatzikiriakos, Savvas G.

    2016-08-01

    Hot embossing was utilized to imprint topographical metallic patterns on the surfaces of thermoplastic polymers in order to create superhydrophobic and superoleophobic polymeric surfaces. The stainless steel (SS) micro/nano structured templates were fabricated using femtosecond laser ablation. The SS laser ablated templates were employed to imprint micron/submicron periodic structures onto the surface of high density polyethylene (HDPE), polylactic acid (PLA), and medical PVC at temperatures slightly above their melting points and pressures in the range of 3-12 MPa. Results have shown that the water contact angle (CA) of imprinted polymers increased to above 160° in the case of PLA and HDPE, while their water contact angle hysteresis (CAH) were significantly below 10°. In the case of medical-PVC, imprinting produced morphologies with high CA and high CAH (petal effect) due to the adhesion forces developed at the interface between the hydrophilic plasticizer of medical-PVC (TOTM) and water droplets. It is also noted that the re-entrant superoleophobic patterns created on HDPE through imprinting closely resemble the patterns found on the surface of filefish skin that is densely angled microfiber arrays. This bioinspired surface is highly capable of repelling both polar (water) and non-polar liquids of low surface tension and meets the superoleophobicity criteria.

  6. Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

    Science.gov (United States)

    Moreira, David; Park, Sung-hoon; Lee, Sangeui; Verma, Neil; Bandaru, Prabhakar R.

    2016-03-01

    Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano- roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.

  7. Dextran grafting on PTFE surface for cardiovascular applications

    Science.gov (United States)

    Michel, Eléonore C; Montaño-Machado, Vanessa; Chevallier, Pascale; Labbé-Barrère, Amélie; Letourneur, Didier; Mantovani, Diego

    2014-01-01

    The modification of biomaterial surfaces with biomolecules influences the biological response. In this work, caboxymethyldextrans (CMD) with different degrees of substitution have been grafted to surfaces by introduction of amino moieties directly onto the substrate surface. Polytetrafluoroethylene was selected as a model substrate for biomaterial as it is already largely used for cardiovascular clinical applications. Firstly, CMD polymers were characterized by FTIR, 1H-NMR, and conductimetric titration. Then, the coatings have been analyzed by XPS to confirm the grafting and determine the composition. Once characterized, biological performances of CMD coatings were investigated. The hemocompatibility was ascertained using the free hemoglobin method. The effects on endothelial and smooth muscle cell adhesion were also studied. Results indicated that CMD at a 0.2 substitution degree, significantly influenced the biological property of PTFE by exhibiting non-thrombogenic properties as well as enhancing endothelial cell adhesion along with limiting smooth muscle cell adhesion. This work suggested the creation of versatile pro-active biomaterials suitable for different biomedical applications. PMID:25482414

  8. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  9. Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine

    Science.gov (United States)

    Schaubroeck, David; Vercammen, Yannick; Van Vaeck, Luc; Vanderleyden, Els; Dubruel, Peter; Vanfleteren, Jan

    2014-06-01

    This paper reports on polydopamine and polyamine surface modifications of an etched epoxy cresol novolac (ECN) resin using the 'grafting to' method. Three different polyamines are used for the grafting reactions: branched polyethyleneimine (B-PEI), linear polyethyleneimine (L-PEI) and diethylenetriamine (DETA). These modifications are compared to control materials prepared via direct deposition of polyamines. The stability of the modifications toward a concentrated hydrochloric acid (HCl) environment is evaluated. The modified surfaces are characterized with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectroscopy (TOF-S-SIMS).

  10. Synthesis of thermally responsive cylindrical molecular brushes via a combination of nitroxide-mediated radical polymerization and “grafting onto” strategy

    Czech Academy of Sciences Publication Activity Database

    Gromadzki, Daniel; Jigounov, Alexander; Štěpánek, Petr; Makuška, R.

    2010-01-01

    Roč. 46, č. 4 (2010), s. 804-813 ISSN 0014-3057 R&D Projects: GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : nitroxide-mediated radical polymerization * grafting onto * thermally responsive cylindrical brushes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.518, year: 2010

  11. Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Gold

    NARCIS (Netherlands)

    Péter, M.; Lammertink, Rob G.H.; Hempenius, Mark A.; Vancso, Gyula J.

    2005-01-01

    Poly(ferrocenyldimethylsilane)s with various degrees of polymerization and featuring a thiol end group were chemically end-grafted onto gold substrates by self-assembly, forming redox-active monolayers. The monolayers were characterized by contact angle measurements, Fourier transform infrared

  12. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol

    Directory of Open Access Journals (Sweden)

    Kei Saito

    2016-01-01

    Full Text Available A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane copper(I complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst.

  13. Graft copolymers and high-molecular-weight star-like polymers by atom transfer radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Masař, Bohumil; Janata, Miroslav; Látalová, Petra; Netopilík, Miloš; Vlček, Petr; Toman, Luděk

    2006-01-01

    Roč. 100, č. 5 (2006), s. 3662-3672 ISSN 0021-8995 R&D Projects: GA AV ČR IAA4050009 Institutional research plan: CEZ:AV0Z40500505 Keywords : graft copolymers * star polymers * ATRP Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.306, year: 2006

  14. Tailoring Surface Roughness by Grafting Nanoparticles to Random Copolymer Films

    Science.gov (United States)

    Caporizzo, Matthew; Ezzibdeh, Rami; Composto, Russell

    2013-03-01

    The effect of random copolymer composition on surface attachment and sinking of amine functionalized silica nanoparticles (d =45 nm) is investigated. Films of poly(styrene-ran-tert-butyl acrylate) (StBA) with 37% tBA are converted to poly(S-ran-acrylic acid) (SAA) by annealing for 15h at temperatures ranging from 135C to 200C. The conversion of the tBA ranges from under 10% to 100% and is monitored by ellipsometry and ATR-FTIR. At complete conversion (25 wt% AA), SAA forms nano-phase separated domains that result in particle aggregation within AA rich domains. At lower AA conversion, a disordered polymer morphology leads to grafting sites which are randomly distributed. NPs graft from nearly a complete monolayer to multilayers depending the percent of AA. Both the rate of NP attachment and the maximum loading of NPs into the film scale with the fraction of AA; this behavior is attributed to a reduction in the energetic barrier for the particle to sink into the film with increased swelling (more hydrophilic). A particularly attractive outcome of this systematic study is that optically transparent films with controlled roughness can be routinely prepared. Such films are of interest for investigating biomolecular adsorption and superhydrophobic, clear, non-fouling coatings. Supported by NSF DMR08-32802.

  15. Conformation and hydration of surface grafted and free polyethylene oxide chains in solutions

    Science.gov (United States)

    Dahal, Udaya; Wang, Zilu; Dormidontova, Elena

    Due to the wide application of polyethylene oxide (PEO), ranging from biomedicine to fuel cells, it is one of the most studied polymers in the scientific world. In order to elucidate detailed molecular-level insights on the impact of surface grafting on PEO conformation, we performed atomistic molecular dynamics simulations of PEO chains in solution and grafted to a flat gold surface in different solvents. We examined the hydration as well as conformation of the free chain compared to the grafted polymer in pure water and mixed solvents. We find that grafted chains are stiffer and have a stronger tendency to form helical structures in isobutyric acid or mixture of isobutyric acid and water solution than the free chains in corresponding solutions. For grafted chains exposed to pure water the random coil conformation is retained at low grafting density, but becomes stretched and more dehydrated as the grafting density or temperature increases. This research is supported by NSF (DMR-1410928).

  16. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution.

    Science.gov (United States)

    Wei, Yu-Ting; Zheng, Yu-Ming; Chen, J Paul

    2011-05-17

    In this study, an adsorptive membrane was prepared for efficient boron removal. Poly(glycidyl methacrylate) was grafted on the surfaces of the regenerated cellulose (RC) membrane via surface-initiated atom transfer radical polymerization, and N-methylglucamine was used to further react with epoxide rings to introduce polyhydroxyl functional groups, which served as the major binding sites for boron. The pristine and modified membranes were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), dynamic water contact angle measurement, and scanning electron microscopy. It was shown that the designed functional groups were successfully grafted onto the RC membrane, and surface modification contributed to higher boron binding capability. The optimal pH range for boron adsorption was 4-8. Under a neutral pH condition, the maximum adsorption capacity of the modified membrane was determined to be 0.75 mmol/g, which was comparable with those of commercial resins. Studies of electrolyte influence indicated the formation of inner-sphere surface complexes on the membrane surface. The ATR-FTIR and XPS analyses showed that secondary alcohol and tertiary amine groups were mainly involved in boron adsorption, and tetrahedral boron complexes were found on the membrane surface.

  17. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    Science.gov (United States)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  18. Straightforward approach to graft bioactive polysaccharides onto polyurethane surfaces using an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Bigot, Sandra [Normandie Université, INSA de Rouen, CNRS UMR 6270 FR 3038, Avenue de l’université BP08, 76801 Saint-Etienne du Rouvray (France); Louarn, Guy [Institut des Matériaux Jean Rouxel (IMN), UMR 6502, CNRS-Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes (France); Kébir, Nasreddine, E-mail: nasreddine.kebir@insa-rouen.fr [Normandie Université, INSA de Rouen, CNRS UMR 6270 FR 3038, Avenue de l’université BP08, 76801 Saint-Etienne du Rouvray (France); Burel, Fabrice [Normandie Université, INSA de Rouen, CNRS UMR 6270 FR 3038, Avenue de l’université BP08, 76801 Saint-Etienne du Rouvray (France)

    2014-09-30

    Graphical abstract: - Highlights: • Development of a facile chemical process for PU surface derivatization. • Direct grafting of seaweed polysaccharides onto isothiocyanated PU surface. • Use of a selected ionic liquid as solvent and catalyst. - Abstract: Surface properties directly affect the performance of a material in a biological environment. In this study, the goal was to develop a simple procedure allowing the grafting of antibacterial polysaccharides onto biomedical grade polyurethanes (e.g. Tecothane{sup ®}). Thus, a straightforward chemical pathway involving an isothiocyanate–alcohol reaction in an ionic liquid (IL) was developed. PU isothiocyanted surfaces (PU–NCS) were first prepared by reacting p-phenylene diisothiocyanate with the surface urethane groups. Then, unmodified bioactive seaweed polysaccharides were directly grafted onto the surface, in mild conditions. The selected IL, i.e. 1-ethyl-3-methyl imidazolium phosphate, was of particular interest since this liquid worked as solvent for p-phenylene diisothiocyanate and the polysaccharides and as catalyst for the grafting reactions. Successful grafting of the different polysaccharides was attested by changes in the surface functional groups, using X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) showed that polysaccharide grafting, slightly increased the surface roughness from 1.9 to more than 7 nm. Contact angle with water decreased from 88° (for native PU) to around 75° after polysaccharide grafting, attesting a more hydrophilic surface. This procedure would be transposed to the grafting onto PU surfaces of any macromolecule of interest bearing hydroxyl, thiol or amine groups.

  19. Radiation grafting of methacrylate onto carbon nanofiber surface

    International Nuclear Information System (INIS)

    Evora, M.C.; Klosterman, D.; Lafdi, K.; Li, L.

    2011-01-01

    Radiation can be used to modify and improve the properties of materials. Electron beam irradiation has potential application in modifying the structure of carbon fibers in order to produce useful defects in the graphite structure and create reactive sites. In this study, vapor grown carbon nano fibers (VGCF) were irradiated with a high energy (3 MeV) electron beam in air to dose of 1000 kGy to create active sites and added to methyl methacrylate (MMA) dissolved in water/methanol (50% V). The irradiated samples were analyzed by X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy to assess the impact on surface and bulk properties. Oxygen was readily incorporated enhancing the dispersion of VGCF. Raman spectroscopy analyses indicated that the sample irradiated and preirradiated grafted sample with MMA had the intensity ratio increased. (author)

  20. Modification of polyetherurethane for biomedical application by radiation induced grafting. II. Water sorption, surface properties, and protein adsorption of grafted films

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1984-01-01

    A series of polyetherurethane films grafted by means of gamma radiation with hydrophilic or reactive monomers (2-hydroxyethyl methacrylate, 2,3-epoxypropyl methacrylate, 2,3-dihydroxypropyl methacrylate, and acrylamide) and partially chemically modified were subjected to various physico-chemical investigation methods involving water sorption, contact angle, and protein adsorption measurements. From contact angle data the interfacial free energy gamma sw between grafted films and water was calculated. It was found that the water uptake of grafted films increases with grafting yield or, in the case of grafted and afterwards chemically modified films, with reaction yield; the diffusion coefficient of water in the modified films also increases with grafting yield. Contact angle studies revealed all grafted films to have surfaces more hydrophilic than the ungrafted trunk polymer. The degree of hydrophilicity--especially of HEMA-grafted films--strongly depends on grafting conditions. For some grafted samples with high surface hydrophilicity very low interfacial free energies approaching zero were measured. The study of the competitive adsorption of bovine serum albumin, gamma-globulin, and fibrinogen from a synthetic protein solution onto modified films showed that the adsorption of albumin increases markedly with increasing grafting yields, whereas the fibrinogen and gamma-globulin adsorption only slightly increases. A correlation between interfacial free energy and protein adsorption in the sense of the minimum interfacial free energy hypothesis was found only for samples with grafting yields below 5%. At higher grafting yields the increased surface area complicates the analysis

  1. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases.

    Science.gov (United States)

    Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M

    2017-05-22

    Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.

  2. Bulk and surface characterization of novel photoresponsive polymeric systems

    Science.gov (United States)

    Venkataramani, Shivshankar

    interconversion of the two spectral states by laser light at room temperature. We have investigated the potential relationship between the surface morphology and photochromic behavior. Our AFM studies reveal dramatic anisotropic surface eruptions on the crystals and films when polymerized by sp{60}Co gamma-radiation in the presence of air. Also the role of mechanical strains in the crystal chemistry in relation to the observation of eruptions is discussed. The PDAs mentioned above are known to exhibit thermochromic phase transitions near 125sp°C and a previous report of photochromism showed that photochromic behavior in PDA-PUDO crystals was observed at an elevated temperature of 115sp°C. A number of asymmetric PDAs were made with a lesser degree of hydrogen bonding, and systematic characterization has shown them to exhibit chromic phase transitions closer to room temperatures. Another aspect of this dissertation has been the surface characterization of the formation of erasable surface relief gratings on azobenzene based polymer films by AFM. AFM has been used to determine the pitch and amplitude of the gratings with a great degree of accuracy. It has also been a very important tool to distinguish the effect of polarization conditions on the grating formation process. In addition to probing the surface relief patterns under various optical recording conditions and on different types of polymer films, it has been demonstrated that the AFM is a very important technique in characterizing such surface relief structures with great accuracy and with minimal sample preparation. (Abstract shortened by UMI.)

  3. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  4. Radiation grafted polymeric sorbents using 10 MeV electron beam - for recovery of valuable elements from seawater

    International Nuclear Information System (INIS)

    Prasad, T.L.; Goswami, D.; Tewari, P.K.

    2013-01-01

    India with a vast coastline of around 7500 km has a large stake in exploiting the valuable elements locked in seawater. This requires selective recovery of the target metal ions from multicomponent ionic system and the separation process must be able to operate in-situ without altering chemical compositions of seawater. Radiation grafted sorbent have opened up the avenue for achieving tailor made surfaces and thereby selectivity for different heavy metal ions of interest. Surface modifications for incorporation of required functional groups on the polymer back bone have been carried out using Electron Beam (EB) irradiation. Metal Chelate Embedded Polymers (MCEP) are specially synthesized for uranium extraction from seawater using radiation grafting techniques using higher GSM (Grammer per Square Meter) polypropylene substrate materials. The grafting levels observed and their physical and mechanical characteristics are presented in this paper. In-field trials have been carried out by submerging the irradiated and oximated tokens for different durations of up to 16 days at Trombay estuary. Normal tidal movement is used for contacting the submerged tokens with water body

  5. Obtention of cationic polymeric membranes by radiation-induced grafting method

    International Nuclear Information System (INIS)

    Marin H E, H.

    1994-01-01

    Radiation-induced grafting of LDPE with the monomers, acrylic acid and methacrylic acid, has been studied. The grafting was made with several presentations of LDPE (foil, powder and pellets) by direct method using a Co 60 gamma rays. The irradiation was carried out in vacuum at room temperature at different doses (0.02 kGy - 0.2 kGy) with a rate dose of 0.8632 kGy/h. The graft yield was measured by the relation of initial and final weights. The variations of the LDPE structure was followed by infrared absorption spectroscopy and the results showed that there was important variations in LDPE structure when the dose increases. The tensile strong properties of the copolymers were investigated and it was found that the structure of LDPE was modified by the presence of chains of poly (acrylic) and poly (methacrylic) acid and this was reflected in the tensile properties of the polymer. A trial has been made in order to use the powder presentation of the copolymer like ion exchange resin first we measured volumetrically the quantity of milliequivalents per gram of carboxylic groups by titration 5 ml. of a solution 0.1 N of NaOH, which was 48 h. in contact with the copolymer, with a solution 0.1 N of HCl and we found that the quantity of milliequivalents enhance according with the irradiation dose. Finally, we made ion exchange experiments by passing a solution containing Ca +2 ions through ion exchange columns packed with the copolymer the results showed that these copolymers has good properties in retaining Ca +2 ions. We conclude that these copolymers can be used for ion exchange process however final conditions must be improved. (Author)

  6. Radiation-induced graft polymerization of polystyrene onto polypropylene/polypropylene nonwoven fabric (PE/PP NWF) for adsorption of lead (II) ions

    International Nuclear Information System (INIS)

    Opimo, Kimberly Cyrelle B.

    2014-03-01

    Synthetic polyethylene/polypropylene nonwoven fabric (PE/PP NWF) was modified using radiation-induced graft polymerization of polystyrene by gamma rays from cobalt-60 source at an absorbed dose of 2, 5, 10, 15, 20 and 25kGy and constant dose rate of 6kGy per hour. Polystyrene (PS) was grafted onto PE/PP for lead (II) ion adsorption purpose by simultaneous irradiation process. The effect of absorbed dose and monomer concentration on degree of grafting (Dg) was studied and optimum grafting conditions were established. Irradiated samples at an absorbed dose of 25kGy and monomer concentration of 15% (wt/wt) PS gave the highest Dg and were found to be the most suitable for absorption test. Samples were treated with sulfuric acid first before it undertakes batch adsorption. The concentration of the lead solution after batch adsorption was determined by an Atomic Absorption Spectrophotometer (AAS) and it was found out that the ability of the sulfonated PE/PP NWF to absorb lead ions was much greater compared to the un-grafted PE/PP. Grafted and sulfonated PE/PP NWFs were characterized using Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM). Successful grafting of polystyrene on PE/PP NWFs was verified by the results obtained from the tests. (author)

  7. Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Macdonald, Thomas; Gibson, Christopher T.; Constantopoulos, Kristina; Shapter, Joseph G.; Ellis, Amanda V.

    2012-01-01

    Here we demonstrate the covalent attachment of vertically aligned (VA) acid treated single-walled carbon nanotubes (SWCNTs) onto a silicon substrate via dicyclohexylcarbodiimide (DCC) coupling chemistry. Subsequently, the pendant carboxyl moieties on the sidewalls of the VA-SWCNTs were derivatized to acyl chlorides, and then finally to bis(dithioester) moieties using a magnesium chloride dithiobenzoate salt. The bis(dithioester) moieties were then successfully shown to act as a chain transfer agent (CTA) in the reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in a surface initiated “grafting-from” process from the VA-SWCNT surface. Atomic force microscopy (AFM) verified vertical alignment of the SWCNTs and the maintenance thereof throughout the synthesis process. Finally, Raman scattering spectroscopy and AFM confirmed polystyrene functionalization.

  8. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  9. Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water

    Science.gov (United States)

    2014-01-01

    Magnetic nanoparticles (MNPs) were modified with 3-Mercaptopropytrimethoxysiline (MPTMS) and grafted with allyl glycidyl ether for coupling with beta naphtol as a method to form a novel nano-adsorbent to remove two poly aromatic hydrocarbons (PAHs) from contaminated water. The modified MNPs were characterized by transmission electron microscopy, infrared spectroscopy and thermogravimetric analysis. Results showed that the modified MNPs enhanced the process of adsorption. Tests were done on the adsorption capacity of the two PAHs on grafted MNPs; factors applied to the tests were temperature, contact time, pH, salinity and initial concentration of PAHs. Results revealed that adsorption equilibrium was achieved in 10 min, and the maximum adsorption capacity was determined as 4.15 mg/g at pH = 7.0 and 20°C. The equilibrium adsorption data of the two PAHs by the modified MNPs were analyzed by Langmuir, Freundlich and Temkin models. Equilibrium adsorption data was determined from the Langmuir, Freundlich and Temkin constants from tests under conditions of pH = 7 and temperature 20°C. Analysis of the adsorption-desorption process indicated that the modified MNPs had a high level of stability and good reusability. Magnetic separation in these tests was fast and this shows that the modified MNPs have great potential to be used as a new adsorbent for the two PAHs removal from contaminated water in water treatment. PMID:25101170

  10. On surface-initiated atom transfer radical polymerization using diazonium chemistry to introduce the initiator layer

    DEFF Research Database (Denmark)

    Iruthayaraj, Joseph; Chernyy, Sergey; Lillethorup, Mie

    2011-01-01

    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying...

  11. Enhancement of nitric oxide release and hemocompatibility by surface chirality of D-tartaric acid grafting

    Science.gov (United States)

    Han, Honghong; Wang, Ke; Fan, Yonghong; Pan, Xiaxin; Huang, Nan; Weng, Yajun

    2017-12-01

    Nitric Oxide (NO) generation from endogenous NO-donors catalyzed by diselenide modified biomaterials has been reported. Here we reported surface chirality by L-tartaric acid and D-tartaric acid grafting on the outermost showed a significant impact on diselenide modified biomaterials, which modulated protein adsorption, NO release and anti-platelet adhesion properties. D-tartaric acid grafted surface showed more blood protein adsorption than that of L-surfaces by QCM analysis, however, ELISA analysis disclosed less fibrinogen denatured on the D surfaces. Due to the surface ratio of selenium decreasing, NO release catalyzed by L-tartaric acid grafting on the outermost significantly decreased in comparison to that of only selenocystamine immobilized surfaces. While NO release catalyzed by D-tartaric acid grafting on the outermost didn't decrease and was similar with that of selenocystamine immobilized surfaces. Surface chirality combined with NO release had synergetic effects on platelet adhesion, and it showed the lowest number of platelets adhered on the D-tartaric acid grafted surfaces. Thus surface chirality from D-tartaric acid grafting enhanced hemocompatibility of the surface in this study. Our work provides new insights into engineering novel blood contacting biomaterials by taking into account surface chirality.

  12. Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst.

    Science.gov (United States)

    Bigot, Sandra; Louarn, Guy; Kébir, Nasreddine; Burel, Fabrice

    2013-11-06

    Seaweed antibacterial polysaccharides were grafted onto poly(vinylchloride) (PVC) surfaces using an original click chemistry pathway. PVC isothiocyanate surfaces (PVC-NCS) were first prepared by nucleophilic substitution of the chloride groups by isothiocyanate groups in DMSO/water medium. Then, unmodified Ulvan, Fucan, Laminarin or Zosterin was directly grafted onto the PVC-NCS surface using 1-ethyl-3-methyl imidazolium phosphate, an ionic liquid, as solvent and catalyst. To attest the grafting effectiveness, the new PVC surfaces were well characterized by AFM, XPS and contact angle measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Preparation of porous adsorbers and supports most favorable for separation by using radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Saito, Kyoichi

    2014-01-01

    Various functional groups such as chelate-forming and ion-exchange groups were introduced into the poly-glycidyl methacrylate chain grafted onto a commercially available porous hollow-fiber membrane with a thickness of approximately 1 mm, an average pore size of 0.4 µm, and a porosity of 70%. Permeation of a target metal-ion or protein solution driven by a transmembrane pressure enables us to minimize the diffusional mass-transfer resistance of metal ions or proteins to the functional groups. Considerable degree of GMA grafting and molar conversion of the epoxy group into the functional group provide a higher functional group density of the porous hollow-fiber membrane than for conventional adsorbents. First, metal ions and proteins were transported to the chelating and ion-exchange groups, respectively, of the graft chain. The higher the permeation rate of the target solution is, the higher the overall adsorption rate of the target ions or proteins onto the modified porous hollow-fiber membrane becomes. In addition, proteins were bound to the ion-exchange polymer brush in multilayers because the polymer brush extends from the pore surface towards the pore interior due to its mutual electrostatic repulsion. Second, replacement adsorption was observed in a binary system of metal ions or proteins during the permeation of the solution through the membrane with a membrane thickness of approximately 1 mm. Third, chiral resolution of DL-tryptophan was demonstrated using albumin-multilayered porous hollow-fiber membranes. (author)

  14. Preparation and Characterization of Polymer-Grafted Montmorillonite-Lignocellulose Nanocomposites by In Situ Intercalative Polymerization

    Directory of Open Access Journals (Sweden)

    Tavengwa Bunhu

    2016-01-01

    Full Text Available Lignocellulose-clay nanocomposites were synthesized using an in situ intercalative polymerization method at 60°C and a pressure of 1 atm. The ratio of the montmorillonite clay to the lignocellulose ranged from 1 : 9 to 1 : 1 (MMT clay to lignocelluloses, wt%. The adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD. FTIR results showed that the polymers were covalently attached to the nanoclay and the lignocellulose in the nanocomposites. Both TEM and XRD analysis showed that the morphology of the materials ranged from phase-separated to intercalated nanocomposite adsorbents. Improved thermal stability, attributable to the presence of nanoclay, was observed for all the nanocomposites. The nanocomposite materials prepared can potentially be used as adsorbents for the removal of pollutants in water treatment and purification.

  15. Flexible particle array structures by controlling polymer graft architecture.

    Science.gov (United States)

    Choi, Jihoon; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2010-09-15

    Surface-initiated atom-transfer radical polymerization is used to synthesize particle brushes with controlled fraction of extended and relaxed conformations of surface-grafted chains. In the semidilute brush limit, the grafting of polymeric ligands is shown to facilitate the formation of ordered yet plastic-compliant particle array structures in which chain entanglements give rise to fracture through a polymer-like crazing process that dramatically increases the toughness and flexibility of the particle assembly.

  16. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study.

    Science.gov (United States)

    Boujemaoui, Assya; Cobo Sanchez, Carmen; Engström, Joakim; Bruce, Carl; Fogelström, Linda; Carlmark, Anna; Malmström, Eva

    2017-10-11

    In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (M n,c ∼ 56 000 g mol -1 ). Poly(ε-caprolactone) (PCL) nanocomposites reinforced with unmodified and modified CNCs in different weight percentages (0.5, 1, and 3 wt %) were prepared via melt extrusion. The resulting composites were evaluated by UV-vis, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and tensile testing. All materials resulted in higher transparency, greater thermal stability, and stronger mechanical properties than unfilled PCL and nanocomposites containing unmodified CNCs. The degradation temperature of PCL reinforced with grafted CNCs was higher than that of micelle-modified CNCs, and the latter was higher than that of latex-adsorbed CNCs with a long PBMA chain length. The results clearly indicate that covalent grafting is superior to

  17. Investigating the conformation of polymeric dispersant molecules on nanoparticle surface

    International Nuclear Information System (INIS)

    Yasin, S.; Luckham, P.F.; Iqbal, T

    2016-01-01

    Block copolymers are widely used as stabilizers in industrial dispersions. These polymers adsorb on surfaces by an anchor chain and extend by a hydrophilic chain. Scaling model or de Gennes theory has been used to determine the grafting density of the block copolymers. By implementing this theory to the block copolymers, conformation of the polymer molecules as a function of distance between adjacent anchor chains can be determined. The scaling model was applied to a selection of block copolymers (PE/F 103, PE/F 108, NPE1800, Triton X100, Triton X405, Lugalvan BNO12, Hypermer LP1, Hypermer B246 and OLOA 11000) in this study. The cross sectional area sc, distance s (square root of sc) and the Flory radius (end to end dimension of polymer), Rf, for all the polymers was determined. The cross sectional area per PEO (Poly Ethylene Oxide) chain (nm2) was found to be increasing with the size of stabilizing chain. Triton X100 and Lugalvan BNO12 has the smaller stabilizing chains so occupy smaller cross sectional areas whereas PE/F108 and triton X405 have larger number of PEO units and occupy a larger cross sectional area. This shows that stabilizing chain regulates the adsorption amounts that are lower in case of lower number of EO units. The application of de Gennes theory to experimental results suggested brush configuration of adsorbed polymer molecules in case of PE/F 103, PE/F 108, Triton X100, Triton X405, NPE1800, Lugalvan BNO12, Hypermer B246 and OLOA 11000. Whereas, Hypermer LP1 is more likely found to be adsorbed on graphitic carbon black in loops and trains. (author)

  18. The synthesis of a new type adsorbent for the removal of toxic gas by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Okamoto, Jiro; Sugo, Takanobu

    1990-01-01

    A new type of adsorbent containing sulfuric acid group for the removal of ammonia gas was synthesized by radiation-induced graft polymerization of styrene onto fibrous and nonwoven type polypropylene followed by sulufonation with chlorosulfonic acid. The rate of the adsorption of ammonia gas by H-type adsorbent is independent of the ion-exchange capacity. The amount of ammonia gas adsorbed by the chemical adsorption was dependent on the ion-exchange capacity of H-type fibrous adsorbent and was kept constant value in spite of the equilibrium pressure of ammonia gas. Cu(II)- and Ni(II)-types fibrous adsorbent were prepared by the ion exchange reaction of Na-type fibrous adsorbent with metal nitrate solutions. Although, the rate of adsorption of ammonia gas by metal-type fibrous adsorbent is lower than that of H-type adsorbent, the amount of ammonia gas adsorbed increases compared to H-type adsorbent with the same ion exchange capacity. It was related to the highest coordination number of metal ion. The ratio of the number of ammonia molecules adsorbed chemically and the number of metal ion adsorbed in fibrous adsorbent was 4 for Cu-type and 6 for Ni-type fibrous adsorbent, respectively. (author)

  19. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.

    Science.gov (United States)

    Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-03-09

    Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Simultaneously and separately immobilizing incompatible dual-enzymes on polymer substrate via visible light induced graft polymerization

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Ma, Yuhong; Yang, Wantai

    2018-04-01

    Developing facile and mild strategy to construct multi-enzymes immobilization system has attracted considerable attentions in recent years. Here a simple immobilization strategy called visible light induced graft polymerization that can simultaneously and separately encapsulate two kinds of enzymes on one polymer film was proposed. Two incompatible enzymes, trypsin and transglutaminase (TGase) were selected as model dual-enzymes system and simultaneously immobilized on two sides of low-density polyethylene (LDPE) film. After immobilization, it was found that more than 90% of the enzymes can be embedded into dual-enzymes loaded film without leakage. And the activities of both separately immobilized enzymes were higher than the activities of mixed co-immobilized enzymes or the sequential immobilized ones. This dual-enzymes loaded film (DEL film) showed excellent recyclability and can retain >87% activities of both enzymes after 4 cycles of utilization. As an example, this DEL film was used to conjugate a prodrug of cytarabine with a target peptide. The successful preparation of expected product demonstrated that the separately immobilized two enzymes can worked well together to catalyze a two-step reaction.

  1. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  2. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xianmei; Yuan, Jiang, E-mail: bioalchem@yahoo.com; Chen, Shuangchun; Li, Pengfei; Li, Li, E-mail: lili3@njnu.edu.cn; Shen, Jian

    2014-03-01

    Poly (ethylene terephthalate) (PET) has been widely adopted as a scaffold biomaterial, but further hemocompatibility improvement is still needed for wide biomedical applications. Inspired by the composition of adhesive proteins in mussels, we propose to use self-polymerized dopamine to form a surface-adherent polydopamine layer onto PET sheet, followed by Michael addition with N,N-dimethylethylenediamine (DMDA) to build tertiary amine, and final zwitterions(sulfobetaine and carboxybetaine) construction through ring-opening reaction. Physicochemical properties of substrates were demonstrated by water contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The hemocompatibility was evaluated by platelet adhesion, hemolytic, and protein adsorption. The results showed that the zwitterions immobilized PET endowed with improved resistance to nonspecific protein adsorption and platelet adhesion as well as nonhemolytic. The zwitterions with desirable hemocompatibility can be readily tailored to catheter for various biomedical applications. - Highlights: • We first used self-polymerized dopamine to form a thin and surface-adherent polydopamine layer onto PET film. • Then, DMDA was attached to the PET surface by Michael addition. • Sulfobetaine and carboxybetaine were finally constructed through ring-opening reaction. • The modify PET endowed with improved resistance to nonspecific protein adsorption and platelet adhesion.

  3. Preparation and single molecule structure of electroactive polysilane end-grafted on a crystalline silicon surface

    Science.gov (United States)

    Furukawa, Kazuaki; Ebata, Keisuke

    2000-12-01

    Electrically active polysilanes of poly(methylphenylsilane) (PMPS) and poly[bis(p-n-butylphenyl)silane] (PBPS), which are, respectively, known as a good hole transporting material and a near-ultraviolet electroluminescent material, are end-grafted directly on a crystalline silicon surface. The single polysilane molecules are clearly distinguished one from the other on the surface by means of atomic force microscopy observations. End-grafted single molecules of PMPS are observed as dots while end-grafted PBPS appear as worms extending for more than 100 nm on the crystalline silicon surface.

  4. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation

    KAUST Repository

    Zhang, Ning

    2012-04-17

    Molecular brushes of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-iso-propenyl-2-oxazoline to form the backbone and subsequent living cationic ring-opening polymerization of 2-n- or 2-iso-propyl-2-oxazoline for pendant chain grafting. In situ kinetic studies indicate that the initiation efficiency and polymerization rates are independent from the number of initiator functions per initiator molecule. This was attributed to the high efficiency of oxazolinium salt and the stretched conformation of the backbone, which is caused by the electrostatic repulsion of the oxazolinium moieties along the macroinitiator. The resulting molecular brushes showed thermoresponsive properties, that is, having a defined cloud point (CP). The dependence of the CP as a function of backbone and side chain length as well as concentration was studied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine.

    Science.gov (United States)

    Dong, Aixue; Fan, Xuerong; Wang, Qiang; Yu, Yuanyuan; Cavaco-Paulo, Artur

    2015-08-01

    Enzymatic grafting of synthetic molecules onto lignins provides a mild and eco-friendly alternative for the functionalization of lignocellulosic materials. In this study, laccase-mediated grafting of octadecylamine (OA) onto lignin-rich jute fabrics was investigated for enhancing the surface hydrophobicity. First, the lignins in jute fabrics were isolated and analyzed in the macromolecular level by MALDI-TOF MS, (1)H NMR, (13)C NMR, and HSQC-NMR. Then, the surface of jute fabrics was characterized by FT-IR, XPS, and SEM. Subsequently, the nitrogen content of jute fabrics was determined by the micro-Kjeldahl method, and the grafting percentage (Gp) and grafting efficiency (GE) of the enzymatic reaction were calculated. Finally, the surface hydrophobicity of the jute fabrics was estimated by contact angle and wetting time measurements. The results indicate that the OA monomers were successfully grafted onto the lignin moieties on the jute fiber surface by laccase with Gp and GE values of 0.712% and 10.571%, respectively. Moreover, the modified jute fabrics via OA-grafting showed an increased wetting time of 18.5 min and a contact angle of 116.72°, indicating that the surface hydrophobicity of the jute fabrics increased after the enzymatic grafting modification with hydrophobic OA molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    Science.gov (United States)

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Immobilization of poly(MPC) brushes onto titanium surface by combining dopamine self-polymerization and ATRP: Preparation, characterization and evaluation of hemocompatibility in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenyong; Yang, Ping; Li, Jingan; Li, Shiqi; Li, Peichuang; Zhao, Yuancong, E-mail: Zhaoyc7320@163.com; Huang, Nan

    2015-09-15

    Graphical abstract: The functional surface containing rich amino and hydroxyl groups was obtained by simple and easily dopamine self-polymerization. Poly (MPC) brushes were successfully immobilized on titanium surface by combining acylation reaction and ATRP. This chemical and biomimetic modified titanium surface effectively inhibits platelet adhesion and activation. - Highlights: • Polydopamine coating provides amino and hydroxyl groups for second reactivity. • Poly(MPC) brushes covalently immobilized on coating by surface initiated ATRP. • In vitro hemocompatibility of biomimetic modified Ti was better than unmodified. - Abstract: Poly(2-methacryloyloxyethyl phosphorylcholine(MPC)) has been studied in many biomedical fields because of good biocompatibility, such as hemocompatibility, inhibiting protein adhesion, antifouling, and so on. To achieve good hemocompatibility of titanium (Ti) surface, bio-inspired poly(MPC) brushes were grafted from Ti substrate covalently. In this work, the surface of Ti was first coated with polydopamine, and got a surface bearing −NH{sub 2} and −OH groups which could be bridged with poly(MPC) via atom transfer radical polymerization. Water contact angle decreased to 51.3° when titanium grafted with poly(MPC) brushes. The data of Infrared Spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that poly(MPC) was successfully grafted onto the surface of titanium. Platelet-rich plasma (PRP) adhesion test and lactate dehydrogenase (LDH) assay showed that the number of platelets adhered on the surface of modified-titanium was much less than that of unmodified titanium and platelets did not aggregate and distort. Thus, the simple and chemical method of immobilization of poly(MPC) brushes has potential application for improving hemocompatibility for cardiovascular stent and some other biomaterials.

  8. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric

    International Nuclear Information System (INIS)

    Ikram, Saiqa; Kumari, Mamta; Gupta, Bhuvanesh

    2011-01-01

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was investigated on polypropylene nonwoven fabric to develop a thermosensitive material. The grafting was carried out using methanol, acetone and butanone as homopolymerization inhibitor in the reaction medium. Butanone was observed to give the maximum grafting. It was observed that the grafting is significantly influenced by the reaction conditions, such as radiation dose, monomer concentration, monomer ratio, solvent composition and reaction temperature. The degree of grafting increased as the AA and NIPAAm concentration in the reaction medium increased. The degree of grafting increased as the AA fraction in the NIPAAm/AA mixture increased. The temperature dependence of the grafting process is very much governed by the thermosensitive nature of the grafted chains right from the stage when initial grafting has taken place.

  9. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Saiqa; Kumari, Mamta [Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025 (India); Gupta, Bhuvanesh, E-mail: bgupta@textile.iitd.ernet.i [Department of Textile Technology, Indian Institute of Technology, New Delhi-110016 (India)

    2011-01-15

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was investigated on polypropylene nonwoven fabric to develop a thermosensitive material. The grafting was carried out using methanol, acetone and butanone as homopolymerization inhibitor in the reaction medium. Butanone was observed to give the maximum grafting. It was observed that the grafting is significantly influenced by the reaction conditions, such as radiation dose, monomer concentration, monomer ratio, solvent composition and reaction temperature. The degree of grafting increased as the AA and NIPAAm concentration in the reaction medium increased. The degree of grafting increased as the AA fraction in the NIPAAm/AA mixture increased. The temperature dependence of the grafting process is very much governed by the thermosensitive nature of the grafted chains right from the stage when initial grafting has taken place.

  10. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Science.gov (United States)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  11. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization.

    Science.gov (United States)

    Yuan, Weizhong; Yuan, Jinying; Zhang, Fengbo; Xie, Xuming

    2007-04-01

    Well-defined ethyl cellulose-graft-poly(epsilon-caprolactone) (EC-g-PCL) graft copolymers were successfully synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) with an ethyl cellulose (EC) initiator and a tin 2-ethylhexanoate (Sn(Oct)2) catalyst in xylene at 120 degrees C. Then, novel ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) (EC-g-PCL-b-PLLA) graft-block copolymers were prepared by ROP of L-lactide (L-LA) with a hydroxyl-terminated EC-g-PCL macroinitiator and Sn(Oct)2 catalyst in bulk at 120 degrees C. Various graft and block lengths of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were obtained by adjusting the molar ratios of CL monomer to EC and the L-LA monomer to CL. The thermal properties and crystalline morphologies of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were different from those of linear PCL. The in vitro degradation rate of EC-g-PCL-b-PLLA was faster than those of linear PCL and EC-g-PCL due to the presence of PLLA blocks.

  12. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Lv, J.C.; Zhou, Q.Q.; Ma, Z.P.; Qi, Z.M.; Chen, J.Y.; Liu, G.L.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Lu, Z.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); Zhang, W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 (China)

    2017-02-28

    Highlights: • A new means for multifunctional cotton fabrics by PIVPGP of AA and AgNPs synthesis. • Surface modification by PIVPGP of AA had a positive effect on AgNPs loading. • Antibacterial, self-cleaning and thermal stability were greatly improved. • AgNP loaded cotton fabric exhibited excellent laundering durability. • Mechanism of AgNPs in situ synthesis on cotton fabrics by PIVPGP of AA was proposed. - Abstract: A practical and ecological method for preparing the multifunctional cotton fabrics with excellent laundering durability was explored. Cotton fabrics were modified by plasma induced vapor phase graft polymerization (PIVPGP) of acrylic acid (AA) and subsequently silver nanoparticles (AgNPs) were in situ synthesized on the treated cotton fabrics. The AgNP loaded cotton fabrics were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), antibacterial activity, self-cleaning activity, thermal stability and laundering durability, respectively. SEM observation and EDX, XPS and XRD analysis demonstrated the much more AgNPs deposition on the cotton fabrics modified by PIVPGP of AA. The AgNP loaded cotton fabrics also exhibited better antibacterial activity, self-cleaning activity, thermal stability and laundering durability. It was concluded that the surface modification of the cotton fabrics by PIVPGP of AA could increase the loading efficiency and binding fastness of AgNPs on the treated cotton fabrics, which could fabricate the cotton fabrics with durable multifunction. In addition, the mechanism of in situ synthesis of AgNPs on the cotton fabrics modified by PIVPGP of AA was proposed.

  13. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    Science.gov (United States)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  14. Immobilization of microbial cells on cellulose-polymer surfaces by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Streptomyces phaeochromogens cells were immobilized on cellulose-polymer surfaces by radiation polymerization using hydrophilic monomers and paper. The enzyme activity of immobilized cell sheets was higher than that of immobilized cell composites obtained by the usual radiation polymerization technique. The enzyme activity of the sheets was affected by monomer concentration, the thickness of paper, and the degree of polymerization of paper. The copolymerization of hydroxyethyl methacrylate and methoxytetraethyleneglycol methacrylate in the sheets led to a further increase of the enzyme activity due to the increase of the hydrophilicity of the polymer matrix. The Michaelis constant of the sheets from low monomer concentration was close to that of intact cells

  15. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha

    2016-03-30

    Novel well–defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methylide to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macroinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN3) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

  16. Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization

    Directory of Open Access Journals (Sweden)

    Guillaume Moreira

    2013-08-01

    Full Text Available The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF or N,N-dimethylacetamide (DMA with 5 to 10 wt % of lithium salts (LiCl or LiBr, and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose and in the presence of lithium salts (LiBr or LiCl in DMF or DMA.Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion.Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of

  17. Grafting of alumina on SBA-15: Effect of surface roughness

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Šiklová, Helena; Čejka, Jiří

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9837-9842 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alumina-grafted materials * SBA-15 * Nitrogen adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  18. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    Science.gov (United States)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  19. Plasma polymerization surface modification of Carbon black and its effect in elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, Rabin; Dierkes, Wilma K.; Talma, Auke; Ooij, W.J.; Noordermeer, Jacobus W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known

  20. Polystyrene grafted onto high-cis-1,4 polybutadiene backbone via 'living' radical polymerization with 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO radical

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available A stable nitroxide radical (2,2,6,6-tetramethylpiperidinyl-1-oxy, TEMPO was employed to a grafting polymerization of styrene onto the high-cis-1,4 polybutadiene (PB rubber initiated by 1,1-bis(tert-butylperoxycyclohexane (DP275B. The influence of TEMPO/DP275B ratio on the reaction progress, molecular structure, mechanical performance and fracture behavior of the toughened polystyrenes (PS was systematically characterized. The results showed that a moderate amount of TEMPO used is favorable to the morphology and properties of the as-prepared products, which fracture with a semi-ductile mode. While increasing TEMPO dosage, both rubber grafting and particle size distribution become weaker, and as a result the material also tends to be very brittle and unstable under impact.

  1. Physical properties of agave cellulose graft polymethyl methacrylate

    International Nuclear Information System (INIS)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-01-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm −1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one

  2. Physical properties of agave cellulose graft polymethyl methacrylate

    Science.gov (United States)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm-1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  3. Synthesis of dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization.

    Science.gov (United States)

    Zeinali, Elnaz; Haddadi-Asl, Vahid; Roghani-Mamaqani, Hossein

    2018-01-01

    Free and cellulose nanocrystals (CNCs)-grafted block copolymers of acrylic acid and N-isopropylacrylamide with various poly(N-isopropylacrylamide) (PNIPAAm) block lengths as dual temperature- and pH-sensitive materials were synthesized by reversible addition-fragmentation chain transfer polymerization via an R-approach method. Controlling lower critical solution temperature (LCST) of the products by changing the PNIPAAm block length, addition of CNC, and variation of pH was studied. The free and CNC-grafted block copolymers were analyzed by Fourier transform infrared and proton nuclear magnetic resonance. LCST of copolymers was measured by dynamic light scattering using their hydrodynamic diameters. The block copolymers reversibly form core-corona structure with PNIPAAm as core and poly(acrylic acid) (PAA) as shell above LCST at higher pH values. LCST point shifts to higher temperatures by increasing pH and CNC content and also lowering PNIPAAm block length. By decreasing pH below 4 at certainly low temperatures, PAA becomes core and PNIPAAm forms corona. Thermal behavior of the CNC-grafted polymers was studied by thermal gravimetric analysis and differential scanning calorimetry. Morphology of the polymer-grafted CNC was examined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 231-243, 2018. © 2017 Wiley Periodicals, Inc.

  4. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies.

    Science.gov (United States)

    Yuan, Hua; Chi, Hai; Yuan, Weizhong

    2016-08-20

    Novel and well-defined graft copolymer with block copolymer side chain, ethyl cellulose-graft-(poly(ε-caprolactone)-block-poly(N,N-dimethylaminoethylmeth acrylate)) (EC-g-(PCL-b-PDMAEMA)) with a lower critical solution temperature (LCST) was successfully synthesized via the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). EC-g-(PCL-b-PDMAEMA) copolymers with various PCL-b-PDMAEMA block lengths were obtained by adjusting the molar ratios of the N,N-dimethylaminoethyl methacrylate monomer to ε-caprolactone. The EC-g-(PCL-b-PDMAPS) with an upper critical solution temperature (UCST) was obtained via facile quaternization reaction of PDMAEMA with 1,3-propane sultone. EC-g-(PCL-b-PDMAEMA) and EC-g-(PCL-b-PDMAPS) micelle solutions showed opposite thermoresponsiviness and hydrophilic-hydrophobic surface. Moreover, the tunable crystalline morphologies could be obtained from these graft copolymers through changing the polymer structure and PDMAEMA contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Deposition of a thin electro-polymerized organic film on iron surface

    International Nuclear Information System (INIS)

    Lecayon, Gerard

    1980-01-01

    We use an electrochemical method to prepare a polymerized thin film, obtained from acrylonitrile in a solution of acetonitrile and tetraethylammonium perchlorate. The films are deposited on oxidized iron electrodes, with a surface area varying from a few mm to several cm, their thickness ranges from ten A to thousand A. This result is obtained by controlling the evolution of reactions: duplication, hydrogenation, polymerization which occur during the electrochemical reduction of acrylonitrile. The choice of suitable experimental conditions enhances the polymerization and increases the adherence of the polymer on the electrode. The usual methods of surface studies: S.E.M., A.E.S., S.I.M.S., permit the characterization of the electrode surface and the chemical composition of the deposit films. The molecular structure of polymer, and its evolution under aging or heating was studied by infrared multi-reflection spectroscopy. Very good correlation exists between the electrochemical characteristic: I = f(t), the initial surface state of the electrodes, and the homogeneity of the electro-polymerized films. Diagrams corresponding to mechanisms of different stages of electro-polymerization are proposed. (author) [fr

  6. Enhancing both the mechanical and chemical properties of paper sheet by graft co-polymerization with acrylonitrile/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    H.M. Abd El Salam

    2014-09-01

    Full Text Available The chemical graft copolymerization reaction of acrylonitrile (AN and methyl methacrylate (MMA binary mixture onto paper sheet was performed. The effect of initiator concentration, monomer concentration and temperature on the reaction rate was studied. The reaction rate equation of the graft copolymerization reaction is found to be RP = K2 [Initiator]0.795[Monomer]2.007. The apparent activation energy (Ea of the copolymerization reaction is found to be 75.01 kJ/mol. The infrared characteristic absorption bands for cellulosic paper structure and the paper gr-AN-MMA are investigated. Tensile break load, porosity and burst strength were measured for the grafted and pure paper sheet. It was found that the mechanical properties are improved by grafting copolymerization. The chemical resistance of the graft product against a strong acid a strong alkali, polar and nonpolar solvents was investigated. It was found that the resistance to these chemicals is enhanced by grafting.

  7. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices

    NARCIS (Netherlands)

    Goncalves, Sara; Leiros, Ana; Van Kooten, Theo; Dourado, Fernando; Rodrigues, Ligia R.

    2013-01-01

    Poly(dimethyl siloxane) (PDMS) was surface-polymerized with poly(ethylene glycol)methacrylate (PEGMA) by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous media at room temperature. Modification of the PDMS surface followed a three-step procedure: (i) PDMS surface

  8. Improvement of polymer stability by radiation grafting

    International Nuclear Information System (INIS)

    Ranogajec, F.; Mlinac-Misak, M.

    1999-01-01

    Losses of the stabilizer due to extractability or volatility immediately affect ultimate performance of polymer product. A new approach to increase the persistence of the stabilizer in the final product is to chemically bind it to the polymer backbone. Radiation grafting or crosslinking could be an efficient method for this, when the stabilizer is polymerizable. By a mutual gamma irradiation method, photoprotector 2-hydroxy-4-(3-methacryloxy-2- hydroxy-propoxy) benzophenone (HMB) has been readily grafted to low density polyethylene (LDPE) in benzene, tetrahydrofuran and methanol solution, respectively. Surface grafting occurs in a methanol solution of stabilizer, while in benzene and tetrahydrofuran solutions of stabilizer, grafting proceeds more or less in the inner parts of the polymeric film as well. The grafted LDPE film in methanol and tetrahydrofuran (containing 1 w/w % of grafted HMB), 1 w/w % blended HMB with LDPE and nongrafted LDPE film, were all exposed to accelerated aging and natural weathering and their spectral changes, expressed by the carbonyl index, were then compared. The change of elongation at break and tensile strength were measured in the course of aging. UV stability tests on aged films and change in mechanical properties indicate a pronounced protective effect achieved by grafted stabilizer. Grafting in methanol solution appears to be an efficient photostabilization treatment and the most economical with respect to the consumption of monomer, the grafting yield being less than 0.5%. Surface grafting is an efficient photostabilization method since grafted stabilizer is chemically bound to a polymeric surface and in this way the problem of evaporation of blended stabilizers during the prolonged use of polymeric materials is eliminated. (author)

  9. PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts.

    Science.gov (United States)

    Karrer, L; Duwe, J; Zisch, A H; Khabiri, E; Cikirikcioglu, M; Napoli, A; Goessl, A; Schaffner, T; Hess, O M; Carrel, T; Kalangos, A; Hubbell, J A; Walpoth, B H

    2005-10-01

    Patency failure of small vascular synthetic grafts is still a major problem for coronary and peripheral revascularization. Thus, three new surface coatings of small synthetic grafts were tested in an acute pig model to evaluate their thrombogenicity (extracorporeal arterio-venous shunt) and in a chronic rat model to evaluate the tissue reaction they induced (subcutaneous implantation). In five domestic pigs (25-30 kg) an extracorporeal femoro-femoral arterio-venous shunt model was used. The study protocol included first a non-heparinized perfusion sequence followed by graft perfusion after 10,000 UI iv heparin. Grafts were perfused for 3 and 9 minutes. The following coatings were tested on ePTFE grafts: poly-propylene sulphide (PPS)--poly-ethylene glycol (PEG) (wet and dry applications) as well as carbon. Two sets of control were used, one dry and one wet (vehicle only). After perfusion grafts were examined by scanning electron microscopy for semi-quantitative assessment (score 0-3) of cellular and microthrombi deposition. To assess tissue compatibility, pieces of each material were implanted subcutaneously in 16 Wistar rats. At 2, 4, 8, 12 weeks four animals each were sacrificed for semi-quantitative (score 0-3) histologic evaluation of tissue reaction. In the pig model, cellular deposition and microthrombi formation increased over time. In non- heparinized animals, the coatings did not improve the surface characteristics, since they did not prevent microthrombi formation and cellular deposition. In heparinized animals, thrombogenicity was lowest in coated grafts,especially in PPS -PEG dry (pPPS-PEG dry, but this difference was not statistically significant vs.controls. In the rat model,no significant differences of the tissue reaction could be shown between materials. While all coatings failed to add any benefit for lowering tissue reaction, surface coating with PPS -PEG (dry application) reduced thrombogenicity significantly (in heparinized animals) and thus

  10. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors.

    Science.gov (United States)

    Liu, Xia; Huang, Renliang; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2014-08-13

    Antifouling surfaces capable of reducing nonspecific protein adsorption from natural complex media are highly desirable in surface plasmon resonance (SPR) biosensors. A new protein-resistant surface made through the chemical grafting of easily available hyaluronic acid (HA) onto gold (Au) substrate demonstrates excellent antifouling performance against protein adsorption. AFM images showed the uniform HA layer with a thickness of ∼10.5 nm on the Au surface. The water contact angles of Au surfaces decreased from 103° to 12° with the covalent attachment of a carboxylated HA matrix, indicating its high hydrophilicity mainly resulted from carboxyl and amide groups in the HA chains. Using SPR spectroscopy to investigate nonspecific adsorption from single protein solutions (bovine serum albumin (BSA), lysozyme) and complex media (soybean milk, cow milk, orange juice) to an HA matrix, it was found that ultralow or low protein adsorptions of 0.6-16.1 ng/cm(2) (e.g., soybean milk: 0.6 ng/cm(2)) were achieved on HA-Au surfaces. Moreover, anti-BSA was chosen as a model recognition molecule to characterize the immobilization capacity and the antifouling performance of anti-BSA/HA surfaces. The results showed that anti-BSA/HA sensor surfaces have a high anti-BSA loading of 780 ng/cm(2), together with achieving the ultralow (<3 ng/cm(2) for lysozyme and soybean milk) or low (<17 ng/cm(2) for cow milk and 10% blood serum) protein adsorptions. Additionally, the sensor chips also exhibited a high sensitivity to BSA over a wide range of concentrations from 15 to 700 nM. Our results demonstrate a promising antifouling surface using extremely hydrophilic HA as matrix to resist nonspecific adsorption from complex media in SPR biosensors.

  11. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  12. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  13. Growth and decay of surface charges in grafts of Teflon in electrets states

    International Nuclear Information System (INIS)

    Spinelli, I.M.M.

    1971-01-01

    The greatest problem founded in a cardiovascular implant is the thrombus formation. Teflon grafts were used in electret state for prothesis in vena cava of dogs. To put these grafts in an electret state a corona discharge in air was used and homocharge was formed predominantly. To measure the formed surface charge the oscillating capacitor technique was used. In the electret state the grafts have showed an initial density of charge of 10- 8 C/cm 2 and the charge decay and time decay of the samples were measured under many conditions. We found two activation energies, E 2 =0.17 e V and E 3 =1.12 e V, due to rapid and slow decay, respectively. The charged grafts were sterilized with ethilene gas oxide and this process apparently did not influence the charges

  14. Modification of macroporous membranes by graft co-polymerization induced by pre-irradiation with an electron accelerator

    International Nuclear Information System (INIS)

    Grasselli, M.; Yoshii, Fumio

    1999-01-01

    Glycidyl methacrylate (GMA) and N,N-dimethylacrylamide (DMAA) have been co-grafted on hollow fiber membranes of macroporous polyethylene. Grafted copolymers have been obtained with different ratios of the monomers (molar ratio between 0 and 2 DMAA/GMA). The properties of the modified membranes are studied

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization.

    Science.gov (United States)

    Li, Junwei; Yoon, Soon Joon; Hsieh, Bao-Yu; Tai, Wanyi; O'Donnell, Matthew; Gao, Xiaohu

    2015-12-09

    Despite broad applications ranging from electronics to biomedical sensing and imaging, a long-standing problem of conducting polymers is the poor resistance to dedoping, which directly affects their signature electrical and optical properties. This problem is particularly significant for biomedical uses because of fast leaching of dopant ions in physiological environments. Here, we describe a new approach to engineer multimodal core-shell nanoparticles with a stably doped conductive polymer shell in biological environments. It was achieved by making a densely packed polymer brush rather than changing its molecular structure. Polyaniline (PANI) was used as a model compound due to its concentrated near-infrared (NIR) absorption. It was grafted onto a magnetic nanoparticle via a polydopamine intermediate layer. Remarkably, at pH 7 its conductivity is ca. 2000× higher than conventional PANI nanoshells. Similarly, its NIR absorption is enhanced by 2 orders of magnitude, ideal for photothermal imaging and therapy. Another surprising finding is its nonfouling property, even outperforming polyethylene glycol. This platform technology is also expected to open exciting opportunities in engineering stable conductive materials for electronics, imaging, and sensing.

  17. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    Science.gov (United States)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  18. Protein Compatible Polymer Brushes on Polymeric Substrates Prepared by Surface-Initiated Transfer Radica Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    have been made with model systems of poly(ether ether ketone) (PEEK) films as they can easily be functionalized [1]. Moreover, the inert material polypropylene has successfully beel! activated using a photochemical method [2]. Different polymers including PEG-like matenals have been investigated...... when the PEEK films were modified. The surface roughness should either be unchanged or decreased as it 'will affect the protein adsorption [3]. 1. O. Noiset, C. Henneuse, Y.-J. Schneider, J. Marchand-Brynaert Macromolecules 30 (1997) 540-548 2. J. Huang, H. Murata, R.R. Koepsel, A.J. Russell, K...

  19. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Energy Technology Data Exchange (ETDEWEB)

    Cuiqin, Fang; Jinxian, Wu [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Julin, Wang, E-mail: wjl@mail.buct.edu.cn [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tao, Zhang [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  20. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    International Nuclear Information System (INIS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-01-01

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  1. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  2. The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates

    Science.gov (United States)

    Memos, George; Lidorikis, Elefterios; Kokkoris, George

    2018-02-01

    The surface roughness developed during plasma etching of polymeric substrates is critical for a variety of applications related to the wetting behavior and the interaction of surfaces with cells. Toward the understanding and, ultimately, the manipulation of plasma induced surface roughness, the interplay between surface charging and microscale roughness of polymeric substrates is investigated by a modeling framework consisting of a surface charging module, a surface etching model, and a profile evolution module. The evolution of initially rough profiles during plasma etching is calculated by taking into account as well as by neglecting charging. It is revealed, on the one hand, that the surface charging contributes to the suppression of root mean square roughness and, on the other hand, that the decrease of the surface roughness induces a decrease of the charging potential. The effect of charging on roughness is intense when the etching yield depends solely on the ion energy, and it is mitigated when the etching yield additionally depends on the angle of ion incidence. The charging time, i.e., the time required for reaching a steady state charging potential, is found to depend on the thickness of the polymeric substrate, and it is calculated in the order of milliseconds.

  3. Growth of phenylene vinylene thin films via surface polymerization by ion-assisted deposition

    NARCIS (Netherlands)

    Wroble, Amanda T.; Wildeman, Jurjen; Anunskis, Daniel J.; Hanley, Luke

    2008-01-01

    Surface polymerization by ion-assisted deposition was used to grow phenylene vinylene films (SPIAD-PPV) using the evaporation of 2methoxy-5-(2'-ethylhexyloxy)-1,4-bis((4',4 ''-bisstyryl) benzene) (MEH-OPV5) and the simultaneous deposition of non-mass-selected 10-200 eV thiophene or acetylene ions.

  4. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...... or AGET SI ATRP and uses of said polymer coating....

  5. Synthesis and characterization of acrylamide-N-isopropyl acrylamide copolymer grafts on silicone rubber substrates

    Science.gov (United States)

    Uenoyama, Satoshi; Hoffman, Allan S.

    Radiation grafting has been used to modify the surface composition of a polymeric biomaterial without changing its mechanical properties. The graft copolymer surface modifications may result in significant changes in protein and cell adhesion to the surface, and thus in the overall biological response to the foreign material. In this paper we present a study of the radiation grafting of an unusual monomer, N-isopropyl acrylamide, and its copolymers with acrylamide, onto silicone rubber. This graft system may be able to influence protein adsorption and cell interactions in a unique fashion due to the special hydrophilic/hydrophobic balance and the unusual hydration character of the grafted copolymer.

  6. Weatherability Evaluation of Nanocomposite Polymeric Treatments for Surface Protection of Construction Materials

    Science.gov (United States)

    Scarfato, Paola; Letizia Fariello, Maria; Di Maio, Luciano; Incarnato, Loredana

    2010-06-01

    In this work the protective efficacy and stability against UV weathering of polymeric nanocomposites for concrete (CLS) surface protection have been evaluated. In particular, nanocomposite hybrids were prepared dispersing a commercial organomodified montmorillonite (Cloisite 30B) in two different polymeric matrices, one based on fluoroelastomers (Fluoline CP), the other on silane and siloxane (Antipluviol S). The obtained systems were characterized by several techniques (SAXD, DSC, TGA, FT-IR, contact angle measurements, colorimetry), before and after accelerated aging due to UV exposure, in order to evaluate the effect of the nanoscale dispersion of the organoclay on the properties and the UV stability of the treatments.

  7. Weatherability Evaluation of Nanocomposite Polymeric Treatments for Surface Protection of Construction Materials

    International Nuclear Information System (INIS)

    Scarfato, Paola; Letizia Fariello, Maria; Di Maio, Luciano; Incarnato, Loredana

    2010-01-01

    In this work the protective efficacy and stability against UV weathering of polymeric nanocomposites for concrete (CLS) surface protection have been evaluated. In particular, nanocomposite hybrids were prepared dispersing a commercial organomodified montmorillonite (Cloisite 30B) in two different polymeric matrices, one based on fluoroelastomers (Fluoline CP), the other on silane and siloxane (Antipluviol S). The obtained systems were characterized by several techniques (SAXD, DSC, TGA, FT-IR, contact angle measurements, colorimetry), before and after accelerated aging due to UV exposure, in order to evaluate the effect of the nanoscale dispersion of the organoclay on the properties and the UV stability of the treatments.

  8. 1-Hexene Polymerization Using Ziegler-Natta Catalytic System with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaheriyan

    2017-07-01

    Full Text Available The effects of process conditions and their interactions on the catalyst activity in 1-hexene polymerization were studied with design of experiments by response surface methodology (RSM using a commercial Ziegler-Natta (ZN catalyst in the form of TiCl4/MgCl2/Di-n-butyl phthalate. The effect of different operational variables on the catalyst activity was examined by performing the primary experiments of 1-hexene polymerization.  Among different operational variables, three variables including monomer concentration, polymerization temperature and cocatalyst/catalyst molar ratio (Al/Ti were considered as the main parameters which affected the catalyst activity in the 1-hexene polymerization. The Box-Behnken model with three main parameters in three level responses for each factor was applied to analyze the parameter relationships. After demonstrating the reproducibility of the experimental results, the statistical analysis of experimental data showed that the monomer concentration and Al/Ti molar ratio affected the catalyst activity significantly. It was found that, at room temperature, by increasing the monomer concentration from 80.0 mmol to 239.9 mmol, the activity of the studied ZN catalyst increased from 75.2 to 265.1 gpoly(1-hexene/gcat. In addition, by changing the Al/Ti ratio from 45.9 to 136.8, the catalyst activity increased from 145.2 to 265.1 gpoly(1-hexene/gcat. The maximum activity of catalyst was obtained at the polymerization temperature around 25°C, and by increasing the temperature the activity of studied catalyst decreased. Based on the RSM, the best polymerization condition was obtained at a polymerization temperature of about 35°C, Al/Ti ratio of 136.8, and monomer concentration of 239.9 mmol, which resulted in maximum productivity of the catalyst.

  9. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  10. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    Science.gov (United States)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  11. Preparation of high surface area and high conductivity polyaniline nanoparticles using chemical oxidation polymerization technique

    Science.gov (United States)

    Budi, S.; Yusmaniar; Juliana, A.; Cahyana, U.; Purwanto, A.; Imaduddin, A.; Handoko, E.

    2018-03-01

    In this work, polyaniline nanoparticles were synthesized using a chemical oxidation polymerization technique. The ammonium peroxydisulfate (APS)/aniline ratio, APS dropping time, and polymerization temperature were optimized to increase the surface area and conductivity of the polyaniline.The Fourier-transform infrared (FTIR) spectrum confirmed the formation of emeraldine salt polyaniline. X-ray diffraction (XRD) patterns indicated that amorphous and crystalline phases of the polyaniline were formed with crystallinity less than 40%. Scanning electron microscope (SEM) micrographs showed that the finest nanoparticles with uniform size distribution were obtained at the polymerization temperature of 0°C. A surface area analyzer (SAA) showed that the highest Brunauer-Emmett-Teller surface area (SBET ) of 42.14 m2/gwas obtained from an APS/aniline ratio of 0.75 with a dropping time of 0 s at a polymerization temperature of 0°C. A four-point probe measurement conducted at 75–300K indicated relatively high conductivity of the semiconductor characteristic of the polyaniline.

  12. Surface Modification of Polyvinylidene Fluoride (PVDF) Membranes by Low-Temperature Plasma with Grafting Styrene

    Science.gov (United States)

    Chen, Jian; Li, Jiding; Chen, Cuixian

    2009-02-01

    In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m2·h) to 23 kg/(m2·h) and the solute rejection to increase from 73% to 92%.

  13. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  14. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  15. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Wan, Qing; Jiang, Ruming; Mao, Liucheng; Zeng, Guangjian; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-06-01

    developed as a new adsorbent for the removal of anionic dyes from aqueous solution. - Graphical abstract: Cationic polymers functionalized silica nanocomposites have been fabricated through the combination of mussel inspired surface initiated atom transfer radical polymerization and utilized for removal of Congo red. - Highlights: • Surface grafting of SiO{sub 2} nanoparticles. • Synthesis of SiO{sub 2} based polymer nanocomposites through polydopamine-mediated SI-ATRP. • This surface modification strategy is rather facile and universal. • SiO{sub 2} nanocomposites showed enhanced adsorption capability.

  16. Grafting of Single, Stimuli-Responsive Poly(ferrocenylsilane) Polymer Chains to Gold Surfaces

    NARCIS (Netherlands)

    Zou, S(han); Ma, Y.; Hempenius, Mark A.; Schönherr, Holger; Vancso, Gyula J.

    2004-01-01

    Redox-responsive poly(ferrocenylsilane) (PFS) polymer molecules were attached individually to gold surfaces for force spectroscopy experiments on the single molecule level. By grafting ethylenesulfide-functionalized PFS into the defects of preformed self-assembled monolayers (SAMs) of different

  17. Surface characteristics changes in polymeric material by swift ion beam

    Science.gov (United States)

    Abdul-Kader, A. M.; El-Gendy, Y. A.

    2018-03-01

    In this work, polyethylene (PE) samples were subjected to 9 MeV Cl+2 ions with fluences ranging from 1 × 1013 to 5 × 1014 ion/cm2. Rutherford back scattering spectrometry (RBS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy and Vicker's micro-hardness (Hv) techniques were used to investigate the compositional transformation, changes in the structure, optical and surface hardness of bombarded samples. The adhesion parameters were analyzed using the contact angle measurements. The obtained results showed that the ion irradiation caused a decrease in the crystallinity of polyethylene and increase in absorption of oxygen on the polymer surface as well. The absorption edge shifted towards the red shift as Cl-ion fluence increases. It was found that the hardness and adhesion parameters increase with increasing the ion beam fluence.

  18. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  19. Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers

    Directory of Open Access Journals (Sweden)

    U. Eranka Illangakoon

    2017-10-01

    Full Text Available The selection of a solvent or solvent system and the ensuing polymer–solvent interactions are crucial factors affecting the preparation of fibers with multiple morphologies. A range of poly(methylmethacrylate fibers were prepared by pressurised gyration using acetone, chloroform, N,N-dimethylformamide (DMF, ethyl acetate and dichloromethane as solvents. It was found that microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent. These observations are explained on the basis of the physical properties of the solvents and mechanisms of pore formation. The formation of porous fibers is caused by many solvent properties such as volatility, solubility parameters, vapour pressure and surface tension. Cross-sectional images show that the nanopores are only on the surface of the fibers and they were not inter-connected. Further, the results show that fibers with desired nanopores (40–400 nm can be prepared by carefully selecting the solvent and applied pressure in the gyration process.

  20. Gamma-ray co-irradiation induced graft polymerization of NVP and SSS onto polypropylene non-woven fabric and its blood compatibility

    Science.gov (United States)

    Li, Rong; Wang, Hengdong; Wang, Wenfeng; Ye, Yin

    2013-10-01

    Sodium styrenesulfonate was grafted onto PPNWF via γ-ray co-irradiation method with the existence of N-vinyl-2-pyrrolidone. The effect of absorbed dose, dose rate and concentration of binary monomer on the degree of grafting was investigated. The surface chemical change was characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The wettability was characterized through the measurement of adsorption percentage of water and phosphate buffer solution (PBS). The result demonstrated that the grafted poly(NVP-co-SSS) chains can improve the hydrophilicity of PPNWF. Furthermore, the modified PPNWF has good blood compatibility, such as low hemolysis rate, low platelet adhesion and effectively extending the blood coagulation times. Consequently, hydrophilicity and hemocompatibility of PPNWF were greatly enhanced by the immobilization of poly(NVP-co-SSS) chains.

  1. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  2. Engineered biomimicry: polymeric replication of surface features found on insects

    Science.gov (United States)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  3. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity.

    Science.gov (United States)

    Nhi, Bui Dinh; Akhmadullin, Renat Maratovich; Akhmadullina, Alfiya Garipovna; Samuilov, Yakov Dmitrievich; Aghajanian, Svetlana Ivanova

    2013-12-16

    We investigate the physicomechanical properties of polymeric heterogeneous catalysts of transition-metal oxides, specifically, the specific surface area, elongation at break, breaking strength, specific electrical resistance, and volume resistivity. Digital microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive analysis are used to study the surfaces of the catalysts. The experimental results show that polymeric heterogeneous catalysts of transition-metal oxides exhibit high stability and can maintain their catalytic activity under extreme reaction conditions for long-term use. The oxidation mechanism of sulfur-containing compounds in the presence of polymeric heterogeneous catalysts of transition-metal oxides is confirmed. Microstructural characterization of the catalysts is performed by using X-ray computed tomography. The activity of various catalysts in the oxidation of sulfur-containing compounds is determined. We demonstrate the potential application of polymeric heterogeneous catalysts of transition-metal oxides in industrial wastewater treatment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi, E-mail: takeuchi@gold.kobe-u.ac.jp

    2016-08-15

    Highlights: • Three hydrophilic crosslinked polymers were examined for protein adsorption. • All polymers showed low nonspecific adsorption of negatively charged proteins. • Poly(MMPC) showed the lowest adsorption for positively charged proteins. • Poly(MMPC) is able to reduce nonspecific adsorption of a wide range of proteins. - Abstract: We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N′-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6′-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.

  5. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  6. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.

    Science.gov (United States)

    Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights

  7. [Effects of soil surface mulching on the growth and physiological characteristics of grafted and non-grafted cucumbers in solar greenhouse].

    Science.gov (United States)

    Zhai, Sheng; Liang, Yinli; Wang, Juyuan; Dai, Quanhou; Du, Sheni; You, Haixia; Chen, Jiarui

    2006-06-01

    This paper studied the effects of wheat straw mulching, plastic film mulching, and wheat straw plus plastic film mulching on the growth and physiological characteristics of grafted and non-grafted Cucumis sativus in solar greenhouse. The results showed that compared with the control, the plant height, stem diameter, photosynthetic rate, and root vitality of grafted C. sativus under wheat straw plus plastic film mulching, plastic film mulching, and wheat straw mulching were increased by 91, 71 and 57 cm, 0.127, 0.086 and 0.111 cm, 2.63, 2.08 and 1.36 micromol x m(-2) x s(-1), and 0.98, 0.48 and 0.8 mg TTC x g(-1) FW, respectively, while non-grafted C. sativus had a less increment. The chlorophyll content of grafted C. sativus under wheat straw plus plastic film mulching and wheat straw mulching was 1.8% and 3.15% higher than the control, respectively, but that under plastic film mulching was 3.8% less than the control. Soil surface mulching increased the dry weight per plant, early yield, and total yield. Under wheat straw plus plastic film mulching, plastic film mulching, and wheat straw mulching, the individual yield of grafted C. sativus was 16%, 5.3% and 3.4% higher than that of non-grafted C. sativus, respectively.

  8. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    Science.gov (United States)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  9. Diazonium salt derivatives of osmium bipyridine complexes: Electrochemical grafting and characterisation of modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, David J. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Jenkins, Peter [School of Chemistry, National University of Ireland, Galway (Ireland); Polson, Matthew I.J. [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Baronian, Keith H.R. [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Downard, Alison J., E-mail: alison.downard@canterbury.ac.n [MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)

    2011-02-01

    Osmium bipyridine complexes were directly grafted to carbon electrodes through electroreduction of the diazonium salts [Os(bpy-ph-N{sub 2}{sup +}){sub 3}](PF{sub 6}){sub 5} (1) and [Os(bpy-ph-N{sub 2}{sup +}){sub 2}Cl{sub 2}](PF{sub 6}){sub 2} (2). Growth of the films was not self-limiting as is usually found for grafting from diazonium salts. It appears that electron hopping through the bipyridine ligands of the immobilised complexes enables film growth to continue at a constant rate during grafting by potential cycling. The surface concentrations of deposited films were measured electrochemically and the film thicknesses were measured by depth-profiling using the atomic force microscope. Films up to 42 nm thick were prepared with no evidence for slowing of film growth. The grafted films exhibited high stability when repetitively cycled through the Os{sup 2+/3+} couple and electron transfer rate constants of 11.4 s{sup -1} and 35.4 s{sup -1} were measured in ACN and PBS, respectively, for the Os{sup 2+/3+} couple of the film grafted from 1.

  10. Grafted polymers layers: neutral chains to charged chains; Couches de polymeres greffes: des chaines neutres aux chaines chargees

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Y.

    1995-09-29

    This work concerns an experimental study, by small angle neutrons scattering, of neutral or charged grafted polymers layers structures. The method consisted in exploiting the acknowledges got on neutral brushes, to reach the problem of grafted polyelectrolyte layers. The difficulty of charged layers making has been, until this day, an important obstacle to the experimental study of these systems. It has been partially resolved in the case of sodium sulfonate polystyrene layers, and allowed to study their structure. (N.C.). 72 refs., 74 figs., 24 tabs.

  11. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Science.gov (United States)

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-02-01

    An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young's modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler-matrix interface, in-situ polymerization combined with chemical grafting modification was a good choice to prepare graphene/PVA nanocomposite with excellent mechanical properties.

  12. Temporin-SHa peptides grafted on gold surfaces display antibacterial activity.

    Science.gov (United States)

    Lombana, Andres; Raja, Zahid; Casale, Sandra; Pradier, Claire-Marie; Foulon, Thierry; Ladram, Ali; Humblot, Vincent

    2014-07-01

    Development of resistant bacteria onto biomaterials is a major problem leading to nosocomial infections. Antimicrobial peptides are good candidates for the generation of antimicrobial surfaces because of their broad-spectrum activity and their original mechanism of action (i.e. rapid lysis of the bacterial membrane) making them less susceptible to the development of bacterial resistance. In this study, we report on the covalent immobilisation of temporin-SHa on a gold surface modified by a thiolated self-assembled monolayer. Temporin-SHa (FLSGIVGMLGKLF amide) is a small hydrophobic and low cationic antimicrobial peptide with potent and very broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts and parasites. We have analysed the influence of the binding mode of temporin-SHa on the antibacterial efficiency by using a covalent binding either via the peptide NH2 groups (random grafting of α- and ε-NH2 to the surface) or via its C-terminal end (oriented grafting using the analogue temporin-SHa-COOH). The surface functionalization was characterised by IR spectroscopy (polarisation modulation reflection absorption IR spectroscopy) while antibacterial activity against Listeria ivanovii was assessed by microscopy techniques, such as atomic force microscopy and scanning electron microscopy equipped with a field emission gun. Our results revealed that temporin-SHa retains its antimicrobial activity after covalent grafting. A higher amount of bound temporin-SHa is observed for the C-terminally oriented grafting compared with the random grafting (NH2 groups). Temporin-SHa therefore represents an attractive candidate as antimicrobial coating agent. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  13. Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanes.

    Science.gov (United States)

    Bally-Le Gall, Florence; Hussal, Christoph; Kramer, Joshua; Cheng, Kenneth; Kumar, Ramya; Eyster, Thomas; Baek, Amy; Trouillet, Vanessa; Nieger, Martin; Bräse, Stefan; Lahann, Joerg

    2017-09-27

    We report a new class of functionalized polylutidine polymers that are prepared by chemical vapor deposition polymerization of substituted [2](1,4)benzeno[2](2,5)pyridinophanes. To prepare sufficient amounts of monomer for CVD polymerization, a new synthesis route for ethynylpyridinophane has been developed in three steps with an overall yield of 59 %. Subsequent CVD polymerization yielded well-defined films of poly(2,5-lutidinylene-co-p-xylylene) and poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene). All polymers were characterized by infrared reflection-absorption spectroscopy, ellipsometry, contact angle studies, and X-ray photoelectron spectroscopy. Moreover, ζ-potential measurements revealed that polylutidine films have higher isoelectric points than the corresponding poly-xylylene surfaces owing to the nitrogen atoms in the polymer backbone. The availability of reactive alkyne groups on the surface of poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene) coatings was confirmed by spatially controlled surface modification by means of Huisgen 1,3-dipolar cycloaddition. Compared to the more hydrophobic poly-p-xylylyenes, the presence of the heteroatom in the polymer backbone of polylutidine polymers resulted in surfaces that supported an increased adhesion of primary human umbilical vein endothelial cells (HUVECs). Vapor-based polylutidine coatings are a new class of polymers that feature increased hydrophilicity and increased cell adhesion without limiting the flexibility in selecting appropriate functional side groups. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure of polymeric nanoparticles in surfactant-stabilized aqueous dispersions of high-molar-mass hydrophobic graft copolymers

    Czech Academy of Sciences Publication Activity Database

    Hajduová, J.; Procházka, K.; Raus, Vladimír; Šlouf, Miroslav; Krzyžánek, Vladislav; Garamus, V. M.; Štěpánek, M.

    2014-01-01

    Roč. 456, 20 August (2014), s. 10-17 ISSN 0927-7757 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 ; RVO:68081731 Keywords : nanoprecipitation * graft copolymer * light scattering Subject RIV: EA - Cell Biology; JA - Electronics ; Optoelectronics, Electrical Engineering (UPT-D) Impact factor: 2.752, year: 2014

  15. Rapid in Vitro Quantification of S. aureus Biofilms on Vascular Graft Surfaces

    Directory of Open Access Journals (Sweden)

    Monika Herten

    2017-12-01

    Full Text Available Objectives: Increasing resistance of microorganisms and particularly tolerance of bacterial biofilms against antibiotics require the need for alternative antimicrobial substances. S. aureus is the most frequent pathogen causing vascular graft infections. In order to evaluate the antimicrobial efficacy, quantification of the bacterial biofilms is necessary. Aim of the present study was the validation of an in vitro model for quantification of bacterial biofilm on vascular graft surfaces using three different assays.Methods: Standardized discs of vascular graft material (Dacron or PTFE or polystyrene (PS as control surface with 0.25 cm2 surface area were inoculated with 10−3 diluted overnight culture of three biofilm-producing S. aureus isolates (BEB-029, BEB-295, SH1000 in 96-well PS culture plates. After incubation for 4 and 18 h, the biofilm was determined by three different methods: (a mitochondrial ATP concentration as measure of bacterial viability (ATP, (b crystal violet staining (Cry, and (c vital cell count by calculation of colony-forming units (CFU. The experiments were performed three times. Quadruplicates were used for each isolate, time point, and method. In parallel, bacterial biofilms were documented via scanning electron microscopy.Results: All three methods could quantify biofilms on the PS control. Time needed was 0:40, 13:10, and 14:30 h for ATP, Cry, and CFU, respectively. The Cry assay could not be used for vascular graft surfaces due to high unspecific background staining. However, ATP assay and CFU count showed comparable results on vascular graft material and control. The correlations between ATP and CFU assay differed according to the surface and incubation time and were significant only after 4 h on Dacron (BEB-029, p = 0.013 and on PS (BEB-029, p < 0.001. Between ATP and Cry assay on PS, a significant correlation could be detected after 4 h (BEB-295, p = 0.027 and after 18 h (all three strains, p < 0.026. The

  16. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide nanoparticles through our novel method. For this purpose, the surface of TiO2 nanoparticle was treated with 3-aminopropyl triethoxy silane, a silane coupling agent, and then these functionalized nanoparticles was reacted with ±-chloro phenyl acetyl chloride. The chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2, 2, 6, 6-tetramethyl piperidine. These modified TiO2 nanoparticles were then dispersed in styrene (St monomers to carry out the in situ free radical polymerization.

  17. Versatile procedure for site-specific grafting of polymer brushes on patchy particles via atom transfer radical polymerization (ATRP)

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G P; Kegel, Willem K.

    2016-01-01

    We report the preparation of chemically anisotropic colloidal dumbbells of which one lobe is functionalized with chemical handles in the form of chlorine groups. The chlorines are easily converted to azides and subsequently to active initiators for Atom Transfer Radical Polymerization (ATRP) by

  18. Controlled modification of the structure of polymer surfaces by chemically grafting inorganic species

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo Lambert

    1999-01-01

    Full Text Available Many chemical and physical methods, such as plasma, e-beam, sputtering, CVD and others, have been used to modify the structure of polymer surfaces by depositing thin inorganic films. Most of these techniques are based upon the use of high energy sources that ultimately can damage either chemically or physically polymer surfaces. Moreover, these methods are usually not versatile enough to allow the design of structurally and chemically tailored surfaces through the control of the distribution of chemical functionalities throughout the surface. In this work, inorganic species were introduced onto polymer substrates in a controlled manner by performing a sequence of chemical reactions at the surface. Sulfonation followed by silanization reactions were used to graft alkoxysilane species at the surface of poly(aryl sulfones. The heterogeneous chemical modification of poly(aryl sulfones was monitored by FTIR-ATR (Attenuated Total Reflection - FTIR. Model compounds were used to study the chemical reactions occurring during the grafting procedure. The results showed that the developed procedure can allow a controlled introduction of inorganic species onto polymer surfaces. Furthermore, in order to prove that this procedure enables the deposition of specific chemical functionalities onto polymer surfaces that can be used to create chemically and structurally tailored surfaces, silicate films were deposited on previously silanated PAS bioactive glass composites. In vitro tests showed that the surface modified composite can enhance the rates of hydroxy-carbonate-apatite precipitation.

  19. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  20. Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite.

    Science.gov (United States)

    Karaj-Abad, Saber Ghasemi; Abbasian, Mojtaba; Jaymand, Mehdi

    2016-11-05

    For the first time, nitroxide-mediated polymerization (NMP) was used for synthesis of graft and block copolymers using cellulose (Cell) as a backbone, and polystyrene (PSt) and poly(methyl metacrylate) (PMMA) as the branches. For this purpose, Cell was acetylated by 2-bromoisobutyryl bromide (BrBiB), and then the bromine group was converted to 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl group by a substitution nucleophilic reaction to afford a macroinitiator (Cell-TEMPOL). The macroinitiator obtained was subsequently used in controlled graft and block copolymerizations of St and MMA monomers to yield Cell-g-PSt and Cell-g-(PMMA-b-PSt). The chemical structures of all samples as representatives were characterized by FTIR and (1)H NMR spectroscopies. In addition, Cell-g-(PMMA-b-PSt)/organophilic montmorillonite nanocomposite was prepared through a solution intercalation method. TEM was used to evaluate the morphological behavior of the polymer-clay system. It was demonstrated that the addition of small percent of organophilic montmorillonite (O-MMT; 3wt.%) was enough to improve the thermal stability of the nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric

    International Nuclear Information System (INIS)

    Barsbay, Murat; Kavakli, Pinar Akkas; Gueven, Olgun

    2010-01-01

    A novel polymeric ligand exchanger (PLE) was prepared for the removal of phosphate ions from water. 2,2'-dipyridylamine (DPA), a bidentate ligand forming compound with high coordination capacity with a variety of metal ions was bound to glycidyl methacrylate (GMA) grafted polypropylene/polyethylene (PP/PE) nonwoven fabric synthesized by radiation-induced grafting technique. DPA attachment on epoxy ring of GMA units was tested in different solvents, i.e. methanol, ethanol, dioxane and dimethylsulfoxide (DMSO). The highest amount of modification was achieved in dioxane. In order to prepare the corresponding PLE for the removal of phosphate, DPA-immobilized fabric was loaded with Cu(II) ions. Phosphate adsorption experiments were performed in batch mode at different pH (5-9) and phosphate concentrations. The fabric was found to be effective for the removal of phosphate ions. At every stage of preparation and use, the nonwoven fabric was characterized by thermal (i.e. DSC and TGA) and spectroscopic (FTIR) methods. Competitive adsorption experiments were also carried out using two solutions with different concentration levels at pH 7 to see the effect of competing ions. Phosphate adsorption was found to be effective and selective from solutions having trace amounts of competitive anions. It is expected that the novel PLE synthesized can be used for the removal of phosphate ions in low concentrations over a large range of pH.

  2. Surface modification of polymeric substrates by plasma-based ion implantation

    Science.gov (United States)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10-3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function.

  3. Surface-Initiated Atom Transfer Radical Polymerization and Electrografting Technique as a Means For Attaining Tailor-Made Polymer Coatings

    DEFF Research Database (Denmark)

    Chernyy, Sergey

    2012-01-01

    of the solution ATRP conditions and extending those conditions to the SI-ATRP. As a result, the new acetone/methyl methacrylate medium was found to be optimal for MMA polymerization both in the solution and on the surface. The reaction mixture was studied thoroughly; in addition to ex-situ techniques......Atom transfer radical polymerization initiated from a surface of various substrates (SI-ATRP) has become a progressively popular technique for obtaining thin polymer films with predetermined properties. The present work addresses the main features of SI-ATRP with respect to the controllability......, rates of polymerization, suitable monomers, reaction mixture compositions etc. An alternative potential-driven polymerization approach is discussed, although to a smaller extent. Chapter 1 provides an overview of controlled/living polymerization techniques with an accent made on ATRP. Different...

  4. Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose.

    Science.gov (United States)

    Yao, Xuelin; Qi, Xiaodong; He, Yuling; Tan, Dongsheng; Chen, Feng; Fu, Qiang

    2014-02-26

    In the present work, a series of thermoplastic polyurethane (TPU)/microfibrillated cellulose (MFC) nanocomposites were successfully synthesized via in situ polymerization. TPU was covalently grafted onto the MFC by particular association with the hard segments, as evidenced by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The adequate dispersion and network structure of MFC in the TPU matrix and the strong interfacial interaction through covalent grafting and hydrogen bonding between MFC and TPU resulted in significantly improved mechanical properties and thermostability of the prepared nanocomposites. The tensile strength and elongation-at-break of the nanocomposite containing only 1 wt % MFC were increased by 4.5-fold and 1.8-fold compared with that of neat TPU, respectively. It was also very interesting to find that the glass transition temperature (Tg) of TPU was decreased significantly with the introduction of MFC, indicating potential for low-temperature resistance applications. Most importantly, compared with TPU nanocomposites reinforced with other nanofillers, the TPU/MFC nanocomposites prepared in this work exhibited excellent transparency and higher reinforcing efficiency.

  5. Development of Polymeric Coatings for Antifouling Applications

    Science.gov (United States)

    Toumayan, Edward Philip

    Fouling, or the deposition of unwanted material onto a surface, is a serious problem that can impair the function of submerged structures, such as marine-going vessels and underwater equipment. Water filtration membranes are particularly susceptible to fouling due to their microstructure and high water pressure operating conditions. For this reason, there has been considerable interest in developing fouling-resistant, or "antifouling" coatings for membranes, specifically coatings that mitigate fouling propensity while maintain high water flux. Polymer coatings have garnered significant interest in antifouling literature, due to their synthetic versatility and variety, and their promising resistance to a wide range of foulants. However, antifouling research has yet to establish a consistent framework for polymer coating synthesis and fouling evaluation, making it difficult or impossible to compare previously established methodologies. To this end, this work establishes a standardized methodology for synthesizing and evaluating polymer antifouling coatings. Specifically, antifouling coatings are synthesized using a grafting-from polymerization and fouling propensity is evaluated by quartz crystal microbalance with dissipation (QCM-D). Using this framework, a number of different surface functionalization strategies are compared, including grafting-to and grafting-from polymerization. A number of different surface functionalization strategies, including grafting-to and grafting-from, were investigated and the fouling performance of these films was evaluated. Primarily, sulfobetaine methacrylate, and poly(ethylene oxide) methacrylate monomers were investigated, among others. Grafting-to, while advantageous from a characterization standpoint, was ultimately limited to low grafting densities, which did not afford a significant improvement in fouling resistance. However, the higher grafting densities achievable by grafting-from did indicate improved fouling resistance. A

  6. Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release.

    Science.gov (United States)

    Saini, Seema; Belgacem, Naceur; Mendes, Joana; Elegir, Graziano; Bras, Julien

    2015-08-19

    Contact active surfaces are an innovative tool for developing antibacterial products. Here, the microfibrillated cellulose (MFC) surface was modified with the β-lactam antibiotic benzyl penicillin in aqueous medium to prepare antimicrobial films. Penicillin was grafted on the MFC surface using a suspension of these nanofilaments or directly on films. Films prepared from the penicillin-modified MFC were characterized by Fourier transform infrared spectroscopy, contact angle measurements, elemental analysis, and X-ray photoelectron spectroscopy and tested for antibacterial activity against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Penicillin-grafted MFC films exhibited successful killing effect on Gram-positive bacteria with 3.5-log reduction whereas bacteriostatic efficiency was found in penicillin-grafted MFC suspension. The zone of inhibition test and leaching dynamic assay demonstrated that penicillin was not diffused into the surrounding media, thus proving that the films were indeed contact active. Thus, penicillin can be chemically bound to the modified substrate surface to produce promising nonleaching antimicrobial systems.

  7. Outcome of application of amniotic membrane graft in ocular surface disorders.

    Science.gov (United States)

    Ashraf, Nargis Nizam; Adhi, Muhammad Idrees

    2017-07-01

    To determine the outcome of application of amniotic graft in ocular surface disorders. This cross-sectional study was conducted at Dow University of Health Sciences, Karachi, from January 2010 to December 2012, and comprised patients with ocular surface disorders. Patients' presenting symptoms and signs were recorded. Previously harvested and frozen amniotic graft was applied in different types of ocular surface disorders, such as corneal ulcers, pterygium, keratomalacia, Steven-Johnson syndrome, etc. Following the surgery, patients were assessed for improvement in symptoms and signs related to epithelialisation in corneal ulcers.. Of the 50 patients, 30(60%) were male and 20(40%) female. The overall mean age was 40±19.3 years (range: 9 months to 80 years). Out of the 18(36%) cases of pterygium, there was recurrence in 5(27.7%) cases. There were 26(52%) patients of corneal ulcers, of whom re-epithelialisation occurred in 21(80.7%) patients. Amniotic membrane grafting was found to be a safe procedure for ocular surface disorders.

  8. The Synthesis and Characterization of Hydroxyapatite-β-Alanine Modified by Grafting Polymerization of γ-Benzyl-L-glutamate-N-carboxyanhydride

    OpenAIRE

    Shan, Yukai; Qin, Yuyue; Chuan, Yongming; Li, Hongli; Yuan, Minglong

    2013-01-01

    In this study, hydroxyapatite (HAP) was surface-modified by the addition of β-alanine (β-Ala), and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG) was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtaine...

  9. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  10. Interface nano-confined acoustic waves in polymeric surface phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Travagliati, Marco, E-mail: marco.travagliati@iit.it [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Nardi, Damiano [JILA and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States); Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco, E-mail: francesco.banfi@unicatt.it [i-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia (Italy); Gusev, Vitalyi [LAUM, UMR-CNRS 6613, Université du Maine, av. O. Messiaen, 72085 Le Mans (France); Pingue, Pasqualantonio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Piazza, Vincenzo [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2015-01-12

    The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.

  11. Improvement of the polymer stability by radiation grafting

    International Nuclear Information System (INIS)

    Ranogajec, F.; Mlinac-Misak, M.

    2004-01-01

    Losses of the stabilizer due to extractability or volatility immediately affect the ultimate performance of polymer products. A new approach to increase the persistence of the stabilizer in the final product is to chemically bind it to the polymer backbone. Radiation grafting or crosslinking could be an efficient method for this, when the stabilizer is polymerizable. By a mutual gamma irradiation method photoprotector 2-hydroxy-4-(3-methacryloxy-2-hydroxy-propoxy) benzophenone has been readily grafted to low-density polyethylene in benzene, tetrahydrofuran and methanol solution, respectively. Surface grafting occurs in a methanol solution of stabilizer, while in benzene and tetrahydrofuran solutions of the stabilizer, grafting proceeds more or less in the inner parts of the polymeric film as well. UV stability tests and changes in the mechanical properties of artificially and naturally aged films indicate pronounced protective effect achieved by the grafted stabilizer. Surface grafting is an efficient photostabilization method since the grafted stabilizer is chemically bound to a polymeric surface and in this way the problem of evaporation of blended stabilizers during the prolonged use of polymeric materials is eliminated

  12. Surface modification of TiO2 nanotubes by grafting with APTS coupling agents

    Science.gov (United States)

    Phan Duong, Hong; Le, Minh Duc; Dao, Hung Cuong; Chen, Chia-Yun

    2017-10-01

    Titanium dioxide nanotubes (TNTs) have been considered the promising nanostructures employed for many practical applications such as biomedical, photonic and optoelectronic devices. Nevertheless, strong aggregation of TNTs within various aqueous media significantly hindered their practical utilizations and the capability of dispersing TNTs in the desired solvents are urgent to be improved. Therefore, in this study, the methodic investigations have been performed on the grafted modification of 3-aminopropyl triethoxysilane (APTS) on the surfaces of synthesized TNTs. A preliminary study was carried out to evaluate the influences of key parameters, including the concentrations of coupling agents, temperatures and the reaction durations, on the grafting efficiency of the aminosilane using Statistical design of experiments (DoE) methodology. TNTs with approximately 10–20 nm in diameter were prepared with the controlled hydrothermal treatment of commercialized P25 particles. The obtained products were revealed by the modern physicochemical systems including x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. The additions of silane agent, reaction temperature and time have been adjusted to reveal the influences of the grafting efficiency (from 2.5 to 7.8 wt %) by thermal gravimetric analysis (TGA). Analysis of Fourier transform infrared spectroscopy (FTIR) has confirmed the successful link of Ti–O–Si chemical bonds on the grafted TNTs.

  13. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  14. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    Science.gov (United States)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  15. Mechanochemistry at Solid Surfaces: Polymerization of Adsorbed Molecules by Mechanical Shear at Tribological Interfaces.

    Science.gov (United States)

    Yeon, Jejoon; He, Xin; Martini, Ashlie; Kim, Seong H

    2017-01-25

    Polymerization of allyl alcohol adsorbed and sheared at a silicon oxide interface is studied using tribo-tests in vapor phase lubrication conditions and reactive molecular dynamics simulations. The load dependences of product formation obtained from experiments and simulations were consistent, indicating that the atomic-scale processes observable in the simulations were relevant to the experiments. Analysis of the experimental results in the context of mechanically assisted thermal reaction theory, combined with the atomistic details available from the simulations, suggested that the association reaction pathway of allyl alcohol molecules induced by mechanical shear is quite different from chemically induced polymerization reactions. Findings suggested that some degree of distortion of the molecule from its equilibrium state is necessary for mechanically induced chemical reactions to occur and such a distortion occurs during mechanical shear when molecules are covalently anchored to one of the sliding surfaces.

  16. Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Qingshan

    2008-01-01

    Full Text Available Abstract Thermosensitive nanocables consisting of Au nanowire cores and poly(N-isopropylacrylamide sheaths (denoted as Au/PNIPAAm were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP. The formation of PNIPAAm sheath was verified by Fourier transform infrared (FTIR and hydrogen nuclear magnetic resonance (1H NMR spectroscopy. Transmission electron microscope (TEM results confirmed the core/shell structure of nanohybrids. The thickness and density of PNIPAAm sheaths can be adjusted by controlling the amount of cross-linker during the polymerization. Signature temperature response was observed from Au/cross-linked-PNIPAAm nanocables. Such smart nanocables show immense potentials as building blocks for novel thermosensitive nanodevices in future.

  17. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.

    Science.gov (United States)

    Sonati, Srinivasulu; Bhutoria, Savita; Prabhakaran, Muthuchidambaran; Acharya, Seetharama A

    2018-02-01

    A new variant of HbS, HbS-Einstein with a deletion of segment α 23-26 in the B-helix, has been assembled by semisynthetic approach. B-helix of the α chain of cis αβ-dimer of HbS plays dominant role in the quinary interactions of deoxy HbS dimer. This B-helix is the primary scaffold that provides the orientation for the side chains of contact residues of this intermolecular contact domain. The design of HbS-Einstein has been undertaken to map the influence of perturbation of molecular surface topology and the flexibility of surface residues in the polymerization. The internal deletion exerts a strong inhibitory influence on Val-6 (β)-dependent polymerization, comparable to single contact site mutations and not for complete neutralization of Val-6(β)-dependent polymerization. The scaffold modification in cis-dimer is inhibitory, and is without any effect when present on the trans dimer. The flexibility changes in the surface topology in the region of scaffold modification apparently counteracts the intrinsic polymerization potential of the molecule. The inhibition is close to that of Le Lamentin mutation [His-20 (α) → Gln] wherein a mutation engineered without much change in flexibility of the contact domain. Interestingly, the chimeric HbS with swine-human chimeric α chain with multiple non-conservative mutations completely inhibits the Val-6(β)-dependent polymerization. The deformabilities of surface topology of chimeric HbS are comparable to HbS in spite of the multiple contact site mutations in the α-chain. We conclude that the design of antisickling Hbs for gene therapy of sickle cell disease should involve multiple mutations of intermolecular contact sites.

  18. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vatanpour, Vahid, E-mail: vahidvatanpour@khu.ac.ir; Zoqi, Naser

    2017-02-28

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  19. Clinical analysis of amniotic membrane patches and grafts for acute ocular surface burn

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-01-01

    Full Text Available AIM: To investigate the effect and value of amniotic membrane patches and grafts for acute ocular surface burn at different degrees.METHODS: A retrospective analysis of 28 cases(28 eyesaffected by ocular chemical or thermal burn with different degree were included in our hospital from March 2007 to March 2012. Amniotic membrane patched was undergone in 13 eyes with fresh amnion that the patients corneal burns degree Ⅱ or Ⅲ with partial limbal buns at degree Ⅳ. Amniotic membrane grafts was performed in 15 eyes with fresh amnion that the patients all corneal burns at degree Ⅲ with the whole limbal necrosis without severe eyelid defect. The follow-up time ranged 6~24mo. The postoperative visual acuity, the condition of amniotic membrane transplant, renovation of cornea and complications were observed. RESULTS: Postoperative corrected visual acuity was improved in 20 eyes(71%, it was not changed in 5 eyes(18%, the visual acuity declined in 3 eyes(11%. The amniotic membrane survived in 23 eyes and the survival rate was up to 82%. The cornea of 4 eyes recovered to transparent, nebula emceed in 8 eyes eventually, corneal macula emerged in 10 eyes, 4 eyes ended up with leukoma, 2 eyes developed corneal melting after therapy, then received lamellar keratoplasty. Corneal surface become epithelization after amnion patches or grafts, but any of them have recurrent epithelial erosion, and become stable epithalization after repeat operation.CONCLUSION: Amniotic membrane patches and grafts is an effective method to deal with acute ocular surface burn.

  20. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    Science.gov (United States)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  1. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    Science.gov (United States)

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Successful grafting of isolated molecular Cr7Ni rings on Au(111) surface

    Science.gov (United States)

    Corradini, V.; Moro, F.; Biagi, R.; de Renzi, V.; Del Pennino, U.; Bellini, V.; Carretta, S.; Santini, P.; Milway, V. A.; Timco, G.; Winpenny, R. E. P.; Affronte, M.

    2009-04-01

    We deeply investigated the properties of submonolayer distributions of isolated molecular Cr7Ni rings deposited on Au(111) by liquid phase. X-ray absorption spectra measured at the Cr and NiL2,3 edges show that the grafting of the Cr7Ni rings onto the gold surface does not affect the oxidation state and the local symmetry of the Cr and Ni sites. The circular dichroism shows a change in sign of the Ni magnetic moment. This is due to a reduction in the exchange coupling constants that, however, preserves the structure of the low-energy levels of the grafted rings, as corroborated by spin-Hamiltonian simulations and comparison with measurements on bulk sample. Density-functional theory calculations show that the Ni-Cr bond gets weaker with slight ring distortion suggesting possible explanation for the observed magnetic behavior. These results show that complex magnetic molecules can be grafted onto surfaces, and that changes in their magnetic behavior must be examined in individual cases.

  3. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.

    Science.gov (United States)

    Antoniraj, M Gover; Ayyavu, Mahesh; Henry, Linda Jeeva Kumari; Nageshwar Rao, Goutham; Natesan, Subramanian; Sundar, D Sathish; Kandasamy, Ruckmani

    2018-03-01

    Biodegradable materials like chitosan (CH) and methoxy polyethylene glycol (mPEG) are widely being used as drug delivery carriers for various therapeutic applications. In this study, copolymer (CH-g-mPEG) of CH and carboxylic acid terminated mPEG was synthesized by carbodiimide-mediated acid amine reaction. The resultant hydrophilic copolymer was characterized by Fourier transform infrared spectroscopy and 1 H NMR studies, revealing its relevant functional bands and proton peaks, respectively. Blank polymeric nanoparticles (B-PNPs) and 5-fluorouracil loaded polymeric nanoparticles (5-FU-PNPs) were formulated by ionic gelation method. Furthermore, folic acid functionalized FA-PNPs and FA-5-FU-PNPs were prepared for folate receptor-targeted drug delivery. FA-5-FU-PNPs were characterized by particle size, zeta potential, and in vitro drug release studies, resulting in 197.7 nm, +29.9 mv, and sustained drug release of 88% in 24 h, respectively. Cytotoxicity studies were performed for FA-PNPs and FA-5-FU-PNPs in MCF-7 cell line, which exhibited a cell viability of 80 and 41%, respectively. In vitro internalization studies were carried out for 5-FU-PNPs and FA-5-FU-PNPs which demonstrated increased cellular uptake of FA-5-FU-PNPs by receptor-mediated transport. Significant (p drug delivery, thereby influencing better therapeutic effect.

  4. ATRP grafting from cellulose fibers to create block-copolymer grafts.

    Science.gov (United States)

    Carlmark, Anna; Malmström, Eva E

    2003-01-01

    Cellulose fibers, in the form of a conventional filter paper, have been modified by reacting the hydroxyl groups on the fiber surface with 2-bromoisobutyryl bromide, followed by grafting using ATRP conditions. The papers were first grafted with methyl acrylate (MA), rendering the paper very hydrophobic as reported in an earlier work. The papers were analyzed by gravimetry, FT-IR, ESCA, and AFM. To verify that the polymerization from the surface was "living", a second layer of another, hydrophilic, polymer, 2-hydroxyethyl methacrylate (HEMA), was grafted upon the PMA layer, creating a block-copolymer graft from the fibers. After the layer of PHEMA had been attached, contact angle measurements were no longer possible, because of the absorbing nature of PHEMA-grafted layer. This indicates that a copolymer had indeed been formed on the surface. FT-IR showed a large increase in carbonyl content after the PHEMA-grafting, which further proves that a layer of PHEMA was attached to the PMA layer. This goes to show that the hydrophilic/hydrophobic behavior of a cellulose surface can be tailored by the use of "living"/controlled radical polymerization methods such as ATRP.

  5. Characterization of the silicon nanopillar-surface filled and grafted with nanomaterials

    International Nuclear Information System (INIS)

    He, Yuan; Che, Xiangchen; Que, Long

    2014-01-01

    This paper reports the characterization of the silicon nanopillar-surface filled and grafted with nanomaterials. Usually a silicon nanopillar-surface contains nanopillars and air among them. The air is not a good medium to absorb and trap the incoming photons. In order to improve this capability, the air should be replaced with other material. To this end, copper sulfide–gold (CuS–Au) core–shell nanostructures and silver nanoplates are used as two representative substitutes for air among the nanopillars. Experiments find that the reflectance of the nanomaterial-coated nanopillar-surface can be reduced at least 50% compared to that of the bare nanopillar-surface. Different nanomaterial-coated nanopillar-surface can tune the optical reflectance and absorption profile, thereby trapping photons in different wavelength ranges. (paper)

  6. Characterization of conducting polymer films grown via surface polymerization by ion-assisted deposition

    Science.gov (United States)

    Tepavcevic, Sanja

    2006-04-01

    Optimization of photonic and electronic devices based on conductive polymers, such as polythiophene and polyphenyl, requires the development of processing methods that can control both film chemistry and morphology on the nanoscale. One such method is explored in this thesis: surface polymerization by ion-assisted deposition (SPIAD). Polythiophene and polyphenyl thin films are grown on a silicon surface by SPIAD which uses hyperthermal, mass-selected thiophene cations coincident with alpha-thermal beam of aterthiophene (3T) or p-terphenyl (3P) neutrals. Mass spectrometry and x-ray photoelectron spectroscopy are used to verify polymerization of both 3T and 3P. The optimal conditions for the most efficient polymerization reaction and film growth are found by varying ion/neutral ratio and ion energy. The electronic structures of these films are probed by ultraviolet photoelectron spectroscopy (UPS) and polarized near-edge x-ray absorption fine structure spectroscopy (NEXAFS). The conducting polymer films formed by SPIAD display new valence band features resulting from a reduction in both their band gap and barrier to hole injection. These changes in film electronic structure result from an increase in the electron conjugation length and other changes in film structure induced by SPIAD. Scanning electron microscopy and x-ray diffraction are used to demonstrate that SPIAD can control the overall polythiophene and polyphenyl film morphology through the mediation of adsorption, diffusion, sublimation (desorption), and other thermal film growth events by ion-induced processes including polymerization, sputtering, bond breakage, and energetic mixing. Predicting the electronic properties, growth mechanism and morphology of the SPIAD films should be possible through computer simulations of the controlling phenomenon. Study with first principles density functional theory-molecular dynamics (DFT-MD) simulations indicates that polymerization and fragmentation of ions and

  7. Preparation of PTFE-based fuel cell membranes by combining latent track formation technology with graft polymerization

    Science.gov (United States)

    Yoshida, Masaru; Kimura, Yosuke; Chen, Jinhua; Asano, Masaharu; Maekawa, Yasunari

    2009-12-01

    Swift heavy 56 MeV 15N 3+ ions were generated with particle fluences of 0, 3×10 6, 3×10 7, 3×10 8, 3×10 9 ions/cm 2 to form a latent track zone in a 25-μm-thick film of polytetrafluoroethylene (iPTFE). Styrene (St) was then grafted onto the iPTFE films by UV-irradiation or pre-γ-irradiation, and after sulfonation iPTFE-based proton-conducting membranes were obtained, here called, iPTFE-g(UV)-PStSA and iPTFE-g(γ)-PStSA membranes, respectively, which had a straight cylindrical damage zone around the ion path. The degree of grafting was found to be about 7.5% with a particle fluence of 3×10 7 ions/cm 2 and with either the UV-method or the γ-method. The ion-exchange capacity, proton conductivity in the thickness direction, MeOH permeability, tensile strength and elongation at break of the obtained iPTFE-g(UV)-PStSA membrane were 0.50 mmol/g, 0.06 S/cm, 0.15×10 -6 cm 2/s, 50 MPa and 600%, in contrast to 0.06 mmol/g, 0.06 S/cm, 0.35×10 -6 cm 2/s, 19 MPa and 210% for the iPTFE-g(γ)-PStSA membrane, respectively. In comparison, the Nafion 112 measured in our laboratory exhibited an ion-exchange capacity of 0.91 mmol/g, a proton conductivity of 0.06 S/cm, a MeOH permeability of 1.02×10 -6 cm 2/s, a tensile strength of 35 MPa and an elongation at break of 295%. It can be concluded from these data that the lower crossover of MeOH, the same proton conductibility, the lower ion-exchange capacity, and the superior mechanical properties of the UV-grafted proton-conducting membranes compared to the Nafion make them promising materials for widespread application in direct methanol fuel cells. On the other hand, the tests of mechanical strength showed that the PTFE base film is subject to degradation by the ion-beam irradiation as well as the γ-irradiation.

  8. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Zangi, Sepideh [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Ehsan [Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  9. Review of some research work on surface modification and polymerizations by non-equilibrium plasma in Turkey

    International Nuclear Information System (INIS)

    Akovali, Guneri

    2004-01-01

    Non equilibrium plasma studies in Turkey can be considered as organized on two different lines: surface modification studies and plasma polymerization studies. Plasma surface modification studies: In different laboratories in Turkey the modification of materials' surfaces by plasma covers a wide spectra, for example: fibers (Carbon (CF) and polyacrylonitrile (PAN)), fabrics (PET/Cotton and PET/PA), biomaterials-food oriented (PU), denture Acrylic matrix, plasmochemical modification of a (PE and PP) film surface by several selected silicon and tin containing monomers, polymer blends and composites, recycled rubber and epoxy systems, etc. Plasma polymerization studies: This topic is accomplished by a great number of projects, for instance: plasma initiation polymerization and copolymerization of Styrene and MMA, Plasma-initiated polymerizations of Acrylamide (AA), kinetics of polymer deposition of several selected saturated hydrocarbons, silanization treatments by hexamethyldisilazane (HDMS), Plasma initiated polymerization (PIP) of allyl alcohol and 1-propano, (PSP) and (PIP) studies related to activated charcoal are done to explore their applications in haemoperfusion, an amperometric alcohol single-layer electrode is prepared by (EDA) plasma polymerization, preparation of mass sensitive immuno sensors and single layer multi enzyme electrodes by plasma polymerisation technique, etc

  10. Surface-Initiated Atom Transfer Radical Polymerization from Electrospun Mats: An Alternative to Nafion

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Dimitrov, Ivaylo; Tynelius, Oskar

    2017-01-01

    Proton exchange membranes for fuel cell applications are synthesized by surface-initiated(SI) atom transfer radical polymerization (ATRP). Poly(vinylidene fluoride-co-chlorotrifluoroethylene)is electrospun into 50 μm thick mat, which is then employed as multifunctionalinitiator for copper......-mediated SI ATRP of 4-styrene sulfonic acid sodium salt. Fine-tuning ofthe ATRP conditions allows adjustment of the membrane’sion exchange capacity by varying the loading of the graftedionomer. Structure and composition of the membranes areinvestigated by spectroscopic means and thermogravimetricanalysis...

  11. Effect of surface modification of fiber post using dopamine polymerization on interfacial adhesion with core resin

    Science.gov (United States)

    Li, Yan; Chen, Qian; Yi, Mi; Zhou, Xuegang; Wang, Xinzhi; Cai, Qing; Yang, Xiaoping

    2013-06-01

    The purpose of this study is to evaluate the effects of surface modification of fiber posts using dopamine polymerization on their interfacial adhesion with core resins. The fiber posts were surface-coated with polydopamine via the oxidization polymerization of dopamine in aqueous solution. Two commercial composite resins (3M ESPE and paracore) were used to build up the cores around the post heads (modified and unmodified). Pull-out tests were conducted, and the maximum failure load (N) and the failure modes were recorded to compare the interfacial adhesion between fiber post and resin core. The results demonstrated that the tensile forces needed to damage the retention of fiber post increased from 228.6 ± 10.9 N to 276.3 ± 14.7 N in the 3M ESPE group, from 216.5 ± 17.4 N to 277.2 ± 14.3 N in the paracore group, when polydopamine-coated fiber posts were applied. No significant difference had been found between the different resin groups. The observation of the surface morphology of both fiber posts and cores after adhesive failure clearly confirmed that the presence of polydopamine interlayer had acted as a binder to bond fiber post and resin together. This study would be valuable for endodontically treatments to reduce the chances of detachment of resin core from the fiber post or dislodgement of fiber posts from the canal.

  12. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-12-01

    Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  13. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    Science.gov (United States)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  14. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  15. Stabilization of Foam Lamella Using Novel Surface-Grafted Nanocellulose-Based Nanofluids.

    Science.gov (United States)

    Wei, Bing; Li, Hao; Li, Qinzhi; Wen, Yangbing; Sun, Lin; Wei, Peng; Pu, Wanfen; Li, Yibo

    2017-05-30

    To solve the potential risk of present oilfield chemistries to subterranean environment, our group contributes to the development of "green" petroleum production processes. This proof-of-concept research studied the well-defined nanocellulose-based nanofluids, i.e., original (NC), AMPS grafted (NC-KY), and AMPS and hydrophobic chains grafted (NC-KYSS), in stabilizing foam lamella for potential use in enhanced oil recovery (EOR). The data showed that the collaboration of the surface-functional nanocellulose considerately improved the foam stability particularly in the presence of hydrocarbons due to the thickened foam film coupled with the molecular interactions at interior lamella. Since the grafted AMPS and alkyl chains, NC-KYSS noticeably enhanced foam quality compared against NC and NC-KY. With the increase in gas pressure, the lamella stabilizing effect of NC-KYSS became increasingly significant. The coflowing behaviors of foam with oleic phase in porous media were examined in a five-spot visualization micromodel (15 cm × 15 cm × 1 cm) and identified using a digital analysis method. The defoaming/destabilizing effect of hydrocarbons was fairly notable in porous media, causing the foam to finger through the formed "oil bank". However, a tough displacement front was constructed when the surfactant synergized with NC-KYSS due to the stabilized foam lamella and 12% of incremental oil recovery was produced.

  16. Selective Dispersive Solid Phase Extraction of Ser-traline Using Surface Molecularly Imprinted Polymer Grafted on SiO2/Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Faezeh Khalilian

    2017-01-01

    Full Text Available A surface molecularly imprinted dispersive solid phase extraction coupled with liquid chromatography–ultraviolet detection is proposed as a selective and fast clean-up technique for the determination of sertraline in biological sample. Surface sertraline-molecular imprinted polymer was grafted and synthesized on the SiO2/graphene oxide surface. Firstly SiO2 was coated on synthesized graphene oxide sheet using sol-gel technique. Prior to polymerization, the vinyl group was incorporated on to the surface of SiO2/graphene oxide to direct selective polymerization on the surface. Methacrylic acid, ethylene glycol dimethacrylate and ethanol were used as monomer, cross-linker and progen, respectively. Non-imprinted polymer was also prepared for comparing purposes. The properties of the molecular imprinted polymer were characterized using field emission-scanning electron microscopy and Fourier transform infrared spectroscopy methods. The surface molecular imprinted polymer was utilized as an adsorbent of dispersive solid phase extraction for separation and preconcentration of sertraline. The effects of the different parameters influencing the extraction efficiency, such as sample pH were investigated and optimized. The specificity of the molecular imprinted polymer over the non-imprinted polymer was examined in absence and presence of competitive drugs. Sertraline calibration curve showed linearity in the ranges 1–500 µg L-1. The limits of detection and quantification under optimized conditions were obtained 0.2 and 0.5 µg L-1. The within-day and between-day relative standard deviations (n=3 were 4.3 and 7.1%, respectively. Furthermore, the relative recoveries for spiked biological samples were above 92%.

  17. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  18. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko

    2013-01-01

    This work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer on the pol......This work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer...... on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic...... studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP...

  19. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces.

    Science.gov (United States)

    Castelino, Kenneth; Kannan, Balaji; Majumdar, Arun

    2005-03-01

    The surface grafting density of biomolecules is an important factor for quantitative assays using a wide range of biological sensors. We use a fluorescent measurement technique to characterize the immobilization density of thiolated probe DNA on gold and hybridization efficiency of target DNA as a function of oligonucleotide length and salt concentration. The results indicate the dominance of osmotic and hydration forces in different regimes of salt concentration, which was used to validate previous simulations and to optimize the performance of surface-stress based microcantilever biosensors. The difference in hybridization density between complementary and mismatched target sequences was also measured to understand the response of these sensors in base-pair mismatch detection experiments. Finally, two different techniques for immobilizing proteins on gold were considered and the surface densities obtained in both cases were compared.

  20. Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: Synthesis, characterization and benefits of RAFT mediation

    International Nuclear Information System (INIS)

    Kodama, Yasko; Barsbay, Murat; Güven, Olgun

    2014-01-01

    Polyethylene/polypropylene (PE/PP) nonwoven fabrics were functionalized by γ-initiated RAFT mediated grafting of 2-hydroxyethyl methacrylate (HEMA), and the characterization of the grafted samples was carried out using various techniques. FTIR and XPS analysis showed an increase in the oxygenated content till a certain degree of grafting. The results implied a grafting process following the concept of ‘front mechanism’. The initial grafting occurred on the topmost surface layer, and then moved further into the bulk of the polymer matrix. Reversible addition-fragmentation chain transfer (RAFT) mediated grafting yielded a better controlled grafting when compared to those obtained in conventional grafting. - Highlights: • PHEMA was grafted to PE/PP nonwoven fabric via the RAFT polymerization. • Diffusion-controlled grafting was observed in compliance with ‘front mechanism’. • FTIR, XPS, SEM, TGA and contact angle measurements were used for characterization

  1. Hydrophilic film polymerized on the inner surface of PMMA tube by an atmospheric pressure plasma jet

    Science.gov (United States)

    Yin, Mengmeng; Huang, Jun; Yu, Jinsong; Chen, Guangliang; Qu, Shanqing

    2017-07-01

    Polymethyl methacrylate (PMMA) tube is widely used in biomedical and mechanical engineering fields. However, it is hampered for some special applications as the inner surface of PMMA tube exhibts a hydrophobic characteristic. The aim of this work is to explore the hydrophilic modification of the inner surface of the PMMA tubes using an atmospheric pressure plasma jet (APPJ) system that incorporates the acylic acid monomer (AA). Polar groups were grafted onto the inner surface of PMMA tube via the reactive radicals (•OH, •H, •O) generated in the Ar/O2/AA plasma, which were observed by the optical emission spectroscopy (OES). The deposition of the PAA thin layer on the PMMA surface was verified through the ATR-FTIR spectra, which clearly showed the strengthened stretching vibration of the carbonyl group (C=O) at 1700 cm-1. The XPS data show that the carbon ratios of C-OH/R and COOH/R groups increased from 9.50% and 0.07% to 13.49% and 17.07% respectively when a discharge power of 50 W was used in the APPJ system. As a result, the static water contat angle (WCA) of the modified inner surface of PMMA tube decreased from 100° to 48°. Furthermore, the biocompatibility of the APP modified PMMA tubes was illustrated by the study of the adhesion of the cultured MC3T3-E1 osteocyte cells, which exhibted a significantly enhanced adhesion density.

  2. Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology

    Directory of Open Access Journals (Sweden)

    Rasheed Uthman Owolabi

    2018-01-01

    Full Text Available A satisfactory model for predicting monomer conversion in free radical polymerization has been a challenge due to the complexity and rigors associated with classical kinetic models. This renders the usage of such model an exciting endeavour in the academia but not exactly so in industrial practice. In this study, the individual and interactive effects of three processing conditions (reaction temperature, reaction time and initiator concentration on monomer conversion in the solution polymerization of styrene using acetone as solvent was investigated in a batch reactor through the central composite design (CCD model of response surface methodology (RSM for experimental design, modelling and process optimization. The modelled optimization conditions are: reaction time of 30 min, reaction temperature of 120 °C, and initiator concentration of 0.1135 mol/l, with the corresponding monomer conversion of 76.82% as compared to the observed conversion of 70.86%. A robust model for predicting monomer conversion that is very suitable for routine industrial usage is thus obtained.

  3. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  4. PETMA-g-PETMA-b-PS 'palm tree' graft copolymer: A new polymeric architecture obtained via RAFT and ROP process;Copolimero PETMA-PS-G-P(PSMA) do tipo 'palma': nova arquitetura polimerica obtida via processo RAFT e ROP

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula P.; Silva, Eduardo de O. da; Petzhold, Cesar L., E-mail: poli_pps@yahoo.com.b [Universidade Federal do Rio Grande do Sul (IQ/UFRS), Porto Alegre, RS (Brazil). Dept. de Quimica Organica. Lab. de Sintese e Polimeros

    2009-07-01

    Block copolymer with pendant thiirane moiety PETMA-b-PS is the base for a new class of 'palm tree' graft copolymers, which can show interesting properties. ETMA can be polymerized through ring opening polymerization with Lewis bases as initiator, e.g., Br- and tertiary amines. We used this reaction as a way to graft a copolymer PETMA-b-PS possessing 5% of ETMA unities, with chains having poly(propylene sulfide), obtained by graft from method. Produced materials were characterized through H1 NMR, SEC and DSC. (author)

  5. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  6. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  7. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    Science.gov (United States)

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    Science.gov (United States)

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene.

  9. Simple preparation of thiol-ene particles in glycerol and surface functionalization by thiol-ene chemistry (TEC) and surface chain transfer free radical polymerization (SCT-FRP)

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Chiaula, Valeria; Pinelo, Manuel

    2018-01-01

    functionalization of excess thiol groups via photochemical thiol-ene chemistry (TEC) resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization (SCT-FRP) was used for the first time to introduce a thicker polymer layer on the particle surface. The application potential...

  10. Real-time monitoring of the progress of polymerization reactions directly on surfaces at open atmosphere by ambient mass spectrometry.

    Science.gov (United States)

    Nørgaard, Asger W; Vaz, Boniek G; Lauritsen, Frants R; Eberlin, Marcos N

    2010-12-15

    The progress of an on-surface polymerization process involving alkyl and perfluoroalkyl silanes and siloxanes was monitored in real-time via easy ambient sonic spray ionization mass spectrometry (EASI-MS). When sprayed on surfaces, the organosilicon compounds present in commercially available nanofilm products (NFPs) react by condensation to form a polymeric coating. A NFP for coating of floor materials (NFP-1) and a second NFP for coating tiles and ceramics (NFP-2) were applied to glass, filter paper or cotton surfaces and the progress of the polymerization was monitored by slowly scanning the surface. Via EASI(+)-MS monitoring, significant changes in the composition of hydrolysates and condensates of 1H,1H,2H,2H-perfluorooctyl triisopropoxysilane (NFP-1) and hexadecyl triethoxysilane (NFP-2) were observed over time. The abundances of the hydrolyzed species decreased compared with those of the non-hydrolysed species for both NFP-1 and NFP-2 and the heavier oligomers became relatively more abundant over a period of 15-20 min. A similar tendency favouring the heavier oligomers was observed via EASI(-)-MS. This work illustrates the potential of ambient mass spectrometry for the direct monitoring of polymerization reactions on surfaces. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Industrial application of electron beams for grafting and vulcanization

    International Nuclear Information System (INIS)

    Keizo Makuuchi

    1994-01-01

    The topics discussed are radiation graft polymerization; industrial application of radiation grafting - ion exchange membrane for a battery separator, ammonia adsorbent, non-flammable PE (polyethylene) foam; R and D on radiation grafting, radiation vulcanization of natural rubber

  12. Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces: Influence of PEO chain length, grafting density, and temperature : Influence of PEO chain length, grafting density, and temperature

    NARCIS (Netherlands)

    Norde, Willem; Gage, D.

    2004-01-01

    Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective

  13. Plasma Polymerized Thin Films of Maleic Anhydride and 1,2-methylenedioxybenzene for Improving Adhesion to Carbon Surfaces

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Goutianos, Stergios; Kingshott, Peter

    2007-01-01

    Low power 2-phase AC plasma polymerization has been used to surface modify glassy carbon substrates that are used as an experimental model for carbon fibers in reinforced composites. In order to probe the role of carboxylic acid density on the interfacial adhesion strength a combination...

  14. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  15. Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting.

    Science.gov (United States)

    Huo, Shuaidong; Chen, Shizhu; Gong, Ningqiang; Liu, Juan; Li, Xianlei; Zhao, Yuanyuan; Liang, Xing-Jie

    2017-01-18

    Ultrasmall nanoparticles provide us with essential alternatives for designing more efficient nanocarriers for drug delivery. However, the fast clearance of ultrasmall nanoparticles limits their application to some extent. One of the most frequently used compound to slow the clearance of nanocarriers and nanodrugs is PEG, which is also approved by FDA. Nonetheless, few reports explored the effect of the PEGylation of ultrasmall nanoparticles on their behavior in vivo. Herein, we investigated the impact of different PEG grafting level of 2 nm core sized gold nanoparticles on their biological behavior in tumor-bearing mice. The results indicate that partial (∼50%) surface PEGylation could prolong the blood circulation and increase the tumor accumulation of ultrasmall nanoparticles to a maximum extent, which guide us to build more profitable small-sized nanocarriers for drug delivery.

  16. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  17. Polymeric ionic liquid modified graphene oxide-grafted silica for solid-phase extraction to analyze the excretion-dynamics of flavonoids in urine by Box-Behnken statistical design.

    Science.gov (United States)

    Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong

    2016-07-22

    A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.

  18. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  19. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer

    Science.gov (United States)

    Koodaryan, Roodabeh

    2016-01-01

    PURPOSE Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). RESULTS The bond strength values of A and S were significantly higher than those of N (Pdenture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin. PMID:28018569

  20. Role of Extracellular Polymeric Substances in the Surface Chemical Reactivity of Hymenobacter aerophilus, a Psychrotolerant Bacterium▿

    Science.gov (United States)

    Baker, M. G.; Lalonde, S. V.; Konhauser, K. O.; Foght, J. M.

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa ∼6.5), phosphoryl/amine (pKa ∼7.9), and amine/hydroxyl (pKa ∼9.9). EPS and WC both possess carboxyl groups (pKa ∼5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells. PMID:19915039

  1. Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium.

    Science.gov (United States)

    Baker, M G; Lalonde, S V; Konhauser, K O; Foght, J M

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa approximately 6.5), phosphoryl/amine (pKa approximately 7.9), and amine/hydroxyl (pKa approximately 9.9). EPS and WC both possess carboxyl groups (pKa approximately 5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells.

  2. Surface functionalized SiO2nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye.

    Science.gov (United States)

    Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Monodispersed SiO 2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO 2 samples. The adsorption performance of the functionalized SiO 2 (donated as SiO 2 -PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO 2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO 2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO 2 -PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hydrophobic thiol-ene surfaces fabricated via plasma activation and photo polymerization

    Science.gov (United States)

    Champathet, P.; Ervithayasuporn, V.; Osotchan, T.; Dangtip, S.

    2017-09-01

    Alumina, such as glazed alumina for electrical insulator, operated in an open field subjects to a very harsh condition; resulting in lifetime shortening. Coating hydrophobic layer on alumina surface can help prolonging its lifetime. In this study, 25 ×25 mm alumina sheets were used as substrates. The hydrophobic composite polymers were prepared from (3-mercaptopropyl)trimethoxysilane(MPTMS), 2,4,6,8-tetramethyl-2,4,6,8tetravinylcyclotetra siloxane(TMTVSi), pentaerythritoltetra(3-mercaptopropionate)(PETMP), 2,2-dimethoxy-2-phe nylaceto phenone(photoinitiator) and heptadecafluorodecylmethacrylate(HEFDMA) via the thiol-ene reaction. The alumina sheets were first activated by dielectric-barrier discharge plasma to improve its adhesion. All the polymers were found to optimize at the ratio of (MPTMS:TMTVSi:PETMP:HDFDMA) to 4:2:1:2 for coating on the alumina substrate. To enhance polymerization, 2,2-dimethoxy-2-phenylaceto phenome was also used as a photoinitiator A proper mixing sequence in the thiol-ene reaction results in film with excellent surface retention after prolong soaking in solvent such as acetone. FTIR shows that S-H and C=C functional groups have significantly changed after photopolymerization and thermally cured. The static contact angle increase from mere 53.0°±1.5° of the uncoated substrate to 120.0°±1.2° after coating. SEM shows the film with clear appearance of a few-micron thick. Under AFM, the coated surface roughness was about 9.3 nm with evenly distributed spikes of a few nanometer in height. The cross-cut test also confirmed the film was very smooth and none of the square of the films detached.

  4. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    Science.gov (United States)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  5. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.

    Science.gov (United States)

    Wang, Yan; Xiao, Yan; Huang, Xiujuan; Lang, Meidong

    2011-08-15

    Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technical was successfully employed to modify hydroxyapatite (HAP) nanoparticles with poly(methyl methacrylate) (PMMA). The peroxide initiator moiety for reverse ATRP was covalently attached to the HAP surface through the surface hydroxyl groups. Reverse ATRP of methyl methacrylate (MMA) from the initiator-functionalized HAP was carried out, and the end bromide groups of grafted PMMA initiated ATRP of MMA subsequently. Fourier transformation infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM) were employed to confirm the grafting and to characterize the nanoparticle structure. The grafted PMMA gave HAP nanoparticles excellent dispersibility in MMA monomer. As the amount of grafted PMMA increased, the dispersibility of surface-grafted HAP and the compressive strength of HAP/PMMA composites were improved. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Some Theoretical and Experimental Insights on the Mechanistic Routes Leading to the Spontaneous Grafting of Gold Surfaces by Diazonium Salts.

    Science.gov (United States)

    Berisha, Avni; Combellas, Catherine; Kanoufi, Frédéric; Decorse, Philippe; Oturan, Nihal; Médard, Jérôme; Seydou, Mahamadou; Maurel, François; Pinson, Jean

    2017-09-05

    The spontaneous grafting of diazonium salts on gold may involve the carbocation obtained by heterolytic dediazonation and not necessarily the radical, as usually observed on reducing surfaces. The mechanism is addressed on the basis of DFT calculations and experiments carried out under conditions where the carbocation and the radical are produced selectively. The calculations indicate that the driving force of the reaction leading from a gold cluster, used as a gold model surface, and the carbocation to the modified cluster is higher than that of the analogous reaction starting from the radical. The experiments performed under conditions of heterolytic dediazonation show the formation of thin films on the surface of gold. The grafting of a carbocation is therefore possible, but a mechanism where the cleavage of the Ar-N bond is catalyzed by the surface of gold cannot be excluded.

  7. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Chunning [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zheng, Xiaoyan [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-15

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for

  8. Modification Of Poly(glycidyl Methacrylate) Grafted Onto Crosslinked Pvc With Tertiary Amine Group And Use For Removing Acidic Dyes From Water

    OpenAIRE

    Yorgun, Gülden

    2009-01-01

    In this study, glycidylmethacrylate is grafted onto partially dehydrochlorinated poly(vinyl chloride) (DHPVC) using ATRP method and polymerization kinetics of the reaction is studied. Then, the polymeric resin was interacted with excess of diethylamine, giving a tertiary amine containing sorbent. Surface initiated polymerizations have been widely used to overcome inadequate properties of poly(vinylchloride) (PVC). Epoxy group is one of the most important type to be integrated into polymers. T...

  9. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  10. The Synthesis and Characterization of Hydroxyapatite-β-Alanine Modified by Grafting Polymerization of γ-Benzyl-L-glutamate-N-carboxyanhydride

    Directory of Open Access Journals (Sweden)

    Yukai Shan

    2013-11-01

    Full Text Available In this study, hydroxyapatite (HAP was surface-modified by the addition of β-alanine (β-Ala, and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtained by the catalytic hydrogenation of HAP-PBLG. In the process of HAP modification, the morphology changes from rod to sheet and from flake to needle. The effect of BLG-NCA concentration on the character of hydroxyapatite-β-alanine-poly(γ-benzyl-L-glutamate (HAP-PBLG was investigated. The existence of amino acids on the HAP surfaces was confirmed in the resulting Fourier transform infrared (FTIR spectra. The resulting powder X-ray diffraction patterns indicated that the crystallinity of HAP decreased when the ratio of BLG-NCA/HAP-NH2 increased to 20/1. Transmission electron microscopy (TEM indicated that the particle size of HAP-PBLG decreased significantly and that the resulting particles appeared less agglomerated relative to that of the HAP-NH2 crystals. Furthermore, 1H-NMR spectra and FTIR spectra revealed that hydroxyapatite-β-alanine-poly (L-glutamic acid (HAP-PLGA was able to successfully bear carboxylic acid groups on its side chains.

  11. The synthesis and characterization of hydroxyapatite-β-alanine modified by grafting polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride.

    Science.gov (United States)

    Shan, Yukai; Qin, Yuyue; Chuan, Yongming; Li, Hongli; Yuan, Minglong

    2013-11-13

    In this study, hydroxyapatite (HAP) was surface-modified by the addition of β-alanine (β-Ala), and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG) was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtained by the catalytic hydrogenation of HAP-PBLG. In the process of HAP modification, the morphology changes from rod to sheet and from flake to needle. The effect of BLG-NCA concentration on the character of hydroxyapatite-β-alanine-poly(γ-benzyl-L-glutamate) (HAP-PBLG) was investigated. The existence of amino acids on the HAP surfaces was confirmed in the resulting Fourier transform infrared (FTIR) spectra. The resulting powder X-ray diffraction patterns indicated that the crystallinity of HAP decreased when the ratio of BLG-NCA/HAP-NH2 increased to 20/1. Transmission electron microscopy (TEM) indicated that the particle size of HAP-PBLG decreased significantly and that the resulting particles appeared less agglomerated relative to that of the HAP-NH₂ crystals. Furthermore, ¹H-NMR spectra and FTIR spectra revealed that hydroxyapatite-β-alanine-poly (L-glutamic acid) (HAP-PLGA) was able to successfully bear carboxylic acid groups on its side chains.

  12. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    Science.gov (United States)

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. © 2011 American Chemical Society

  13. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  14. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology.

    Science.gov (United States)

    Xu, Chao; Wang, Jingjing; Yang, Tilong; Chen, Xia; Liu, Xunyue; Ding, Xingcheng

    2015-05-05

    The amidoximated chitosan-grafted polyacrylonitrile (CTS-g-PAO) was prepared for the adsorption of uranium from water. The effects of pH, concentration of uranium and the solid-liquid ratio on the adsorption of uranium by CTS-g-PAO were optimized using Doehlert design of response surface methodology (RSM). The adsorption capacity and removal efficiency achieved 312.06 mg/g and 86.02%, respectively. The adsorption process attained equilibrium only in 120 min. More than 80% of the absorbed uranium could be desorbed by 0.1 mol/l HCl or EDTA-Na, and CTS-g-PAO could be reused at least 3 times. The CTS-g-PAO and U(VI) ions formed a chelate complex due to FTIR spectral analysis. The surface morphology of CTS-g-PAO was also investigated by SEM. The adsorption process was better described by Langmuir isotherm and pseudo second order kinetic model. Results obtained indicated that CTS-g-PAO was very promising in adsorption of uranium from water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    Science.gov (United States)

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction.

    Science.gov (United States)

    Minet, Isabelle; Hevesi, Laszlo; Azenha, Manuel; Delhalle, Joseph; Mekhalif, Zineb

    2010-04-23

    We report on the fabrication and performances of a solid-phase microextraction (SPME) fiber based on a stainless steel wire coated with a covalently attached polyacrylonitrile (PAN)/multi-walled carbon nanotubes (MWCNTs) composite. This new coating is obtained by atom transfer radical polymerization (ATRP) of acrylonitrile mixed with MWCNTs. ATRP is initiated from 11-(2-bromo-2-methylpropionyloxy)-undecyl-phosphonic acid molecules grafted on the wire surface via the phosphonic acid group. The extraction performances of the fibers are assessed on different classes of compounds (polar, non-polar, aromatic, etc.) from water solutions by headspace extraction. The optimization of the parameters affecting the extraction efficiency of the target compounds was studied as well as the reproducibility and the repeatability of the fiber. The fibers sustain more than 200 extractions during which they remain chemically stable and maintain good performances (detection limits lower than 2 microg/l, repeatability, etc.). Considering their robustness together with their easy and inexpensive fabrication, these fibers could constitute promising alternatives to existing products. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors.

    Science.gov (United States)

    Han, Ning; Pang, Liang; Xu, Jun; Hyun, Hyesun; Park, Jinho; Yeo, Yoon

    2017-05-01

    To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to β-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.

  18. Preparation, characterization and in vitro release study of a glutathione-dependent polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan.

    Science.gov (United States)

    Gong, Xiao-Yu; Yin, Yi-Hua; Huang, Zhi-Jun; Lu, Bo; Xu, Pei-Hu; Zheng, Hua; Xiong, Fu-Liang; Xu, Hai-Xing; Xiong, Xiong; Gu, Xing-Bao

    2012-10-15

    In this work, an amphiphilic polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan (PTA-g-CMCS) was designed and synthesized. In aqueous solution, this grafted polymer can self-assemble into spherical micelles with a size ranging from 104 to 285 nm and zeta potential ranging from -12.3 to -20.1 mV. For the release study, less than 24% of 6-Mercaptopurine (6-MP) was released from PTA-g-CMCS1 in the media containing 2 and 100 μM glutathione (GSH), whereas 37%, 54% and 75% of 6-MP was released from the media with GSH of 1, 2 and 10mM, respectively. Besides, pH and drug content of the polymeric prodrug only presented slight influence on the 6-MP release. MTT assay demonstrated that this system had higher inhibition ratio on HL-60 cells (human promyelocytic leukemia cells) in the presence of GSH and lower cytotoxicity on mouse fibroblast cell line (L929). Therefore, this nano-sized system is glutathione-dependent, and it can be employed as a potential carrier for the controlled release of 6-MP. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. PVDF multifilament yarns grafted with polystyrene induced by γ-irradiation: Influence of the grafting parameters on the mechanical properties

    International Nuclear Information System (INIS)

    Marmey, P.; Porte, M.C.; Baquey, Ch.

    2003-01-01

    The development of alternative prosthetic materials for cardiovascular applications has found growing interest due to the failure to date to be able to implement functional patent small diameter vascular grafts (diameter <5 mm). For instance, the successful implantation of small diameter polyester (PET) and expanded polytetrafluoroethylene (PTFEe) vascular grafts has not been achieved in humans. Our strategy is to work with a new multifilament yarns biomaterial, produced from polyvinylidene fluoride (PVDF), which shows suitable mechanical properties, such as a lower tensile modulus than PET and PTFEe. The required biological properties sought for (i.e. low thrombogenicity) could be achieved by 'heparin-like' surface modification treatments in order to modify the thrombogenicity levels of the polymeric materials [Ann. Biomed. Eng. 7 (1979) 429]. A four step method is necessary to achieve this 'heparin-like' surface transformation [J. Biomed. Mater. Res. 52 (2000) 119]. The first step consists in grafting polystyrene onto the PVDF surface by γ irradiation. The purpose of this study was to evaluate the influence of grafting parameters on the mechanical properties: (i) γ-ray irradiation time and (ii) grafting time of styrene monomers, which polymerize and form polystyrene bound to the PVDF surface

  20. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    Science.gov (United States)

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces.

    Science.gov (United States)

    Seo, Ji-Hun; Tsutsumi, Yusuke; Kobari, Akinori; Shimojo, Masayuki; Hanawa, Takao; Yui, Nobuhiko

    2015-02-07

    A Velcro-like poly(ethylene glycol) (PEG) interface was prepared in order to control the friction dynamics of material surfaces. Graft- and loop-type PEGs were formed on mirror-polished Ti surfaces using an electrodeposition method with mono- and di-amine functionalized PEGs. The friction dynamics of various combinations of PEG surfaces (i.e., graft-on-graft, loop-on-loop, graft-on-loop, and loop-on-graft) were investigated by friction testing. Here, only the Velcro-like combinations (graft-on-loop and loop-on-graft) exhibited a reversible friction behavior (i.e., resetting the kinetic friction coefficient and the reappearance of the maximum static friction coefficient) during the friction tests. The same tendency was observed when the molecular weights of loop- and graft-type PEGs were tested at 1 k and 10 k, respectively. This indicates that a Velcro-like friction behavior could be induced by simply changing the conformation of PEGs, which suggests a novel concept of altering polymer surfaces for the effective control of friction dynamics.

  2. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    Directory of Open Access Journals (Sweden)

    Rogerio Amaral Tupinambá

    Full Text Available ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO polymer films were deposited on conventional (n = 10 and self-ligating (n = 10 stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p 0.05. Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film.

  3. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    Science.gov (United States)

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p 0.05). Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film. PMID:28902253

  4. Preparation and Grafting Functionalization of Self-Assembled Chitin Nanofiber Film

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-07-01

    Full Text Available Chitin is a representative biomass resource comparable to cellulose. Although considerable efforts have been devoted to extend novel applications to chitin, lack of solubility in water and common organic solvents causes difficulties in improving its processability and functionality. Ionic liquids have paid much attention as solvents for polysaccharides. However, little has been reported regarding the dissolution of chitin with ionic liquids. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr, dissolved chitin in concentrations up to ~4.8 wt % and the higher contents of chitin with AMIMBr gave ion gels. When the ion gel was soaked in methanol for the regeneration of chitin, followed by sonication, a chitin nanofiber dispersion was obtained. Filtration of the dispersion was subsequently carried out to give a chitin nanofiber film. A chitin nanofiber/poly(vinyl alcohol composite film was also obtained by co-regeneration approach. Chitin nanofiber-graft-synthetic polymer composite films were successfully prepared by surface-initiated graft polymerization technique. For example, the preparation of chitin nanofiber-graft-biodegradable polyester composite film was achieved by surface-initiated graft polymerization from the chitin nanofiber film. The similar procedure also gave chitin nanofiber-graft-polypeptide composite film. The surface-initiated graft atom transfer radical polymerization was conducted from a chitin macroinitiator film derived from the chitin nanofiber film.

  5. Upcycling of polypropylene waste by surface modification using radiation-induced grafting

    Science.gov (United States)

    Hassan, Muhammad Inaam ul; Taimur, Shaista; Yasin, Tariq

    2017-11-01

    In this work, upcycling of polypropylene waste into amidoxime functionalized polypropylene adsorbent was studied using radiation-induced grafting technique. Polypropylene waste (PPw) was resulted from accelerated thermal ageing of polypropylene (PP). Bulk grafting of acrylonitrile (AN) onto PPw was achieved by simultaneous radiation grafting method using gamma rays. Degree of grafting of AN on PPw is affected by absorbed dose and dose rate. The acrylonitrile groups of grafted PPw were chemically converted into amidoxime functionality. Both the acrylonitrile-grafted PP waste and its amidoxime product were investigated by FTIR, XRD, SEM-EDX and TGA techniques. The prepared amidoxime adsorbent with amidoxime group density of 8.06 mmol/g was used for removal of copper ions from aqueous solutions. The effects of various physicochemical conditions such as: solution pH, adsorbent content, initial metal ion concentration and time on adsorption were studied to maximize adsorption of metal ion. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were applied to study the kinetics of adsorption. Maximum Langmuir adsorption capacity of 208.3 mg/g at pH 5.0 with optimum contact time of 120 min was observed. Utilization of PP waste and its comparable adsorption capacity with existing radiation grafted polymer-based adsorbents provide a new, cheap and cost effective system.

  6. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2011-11-15

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.

  7. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml −1 , compared with the free Ce6 value of 29.85 μg ml −1 . Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  8. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  9. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  10. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    Science.gov (United States)

    Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan

    2017-07-01

    Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as -COOH, C-OH, and -CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization treated WTR increased 11.03% and 13.36%, and the flexural strength increased 9.65% and 7.31%, respectively. A decrease in the compressive strength also occurred but was inconspicuous. A tight interface bonding for ethanol LTP polymerization treated WTR with cement matrix was observed via an SEM image.

  11. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    Science.gov (United States)

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2017-10-01

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.

  12. Modification of the properties of acetate fibers by radiation grafting of sorbed acrylonitrile

    International Nuclear Information System (INIS)

    Yuldashev, A.; Sadykov, M.U.; Temirov, A.D.; Yunusov, M.Yu.; Abdullaeva, M.I.

    1989-01-01

    In the present study, the authors investigated the possibility of modifying the properties of acetate fibers (AF) by grafting small amounts (1-3.5%) of polyacrylonitrile from the sorption layer. It should be noted that in the authors' opinion, this method of conducting graft polymerization on the surface of fibers is the most suitable, as acetate fibers relatively rapidly dissolve in liquid acrylonitrile and the shape of the article is lost. In studying radiation graft polymerization of acrylonitrile sorbed on acetate fibers, an increase in the conversion of the monomer and radiochemical yield was found with an increase in the sorption of the acrylonitrile. The possibility of significantly improving the operating properties of acetate and triacetate fibers by grafting of small amounts of acrylonitrile from the sorbed state was demonstrated

  13. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    Energy Technology Data Exchange (ETDEWEB)

    Xiaowei, Cheng [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu (China); School of Material Science and Engineering, Southwest Petroleum University, Chengdu (China); Sheng, Huang [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu (China); School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu (China); Xiaoyang, Guo, E-mail: guoxiaoyangswpi@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu (China); School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu (China); Wenhui, Duan, E-mail: wenhui.duan@monash.edu [Department of Civil Engineering, Monash University, Clayton, Melbourne 3800 (Australia)

    2017-07-01

    Highlights: • The crumb waste tire rubber (WTR) was modified by plasma polymerization of ethanol. • Hydrophilic groups were introduced onto WTR surface and improved its hydrophilia. • The functionalized crumb WTR was applied in oil-well cement. • The mechanical properties of modified oil-well cement were intensively enhanced. - Abstract: Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as –COOH, C–OH, and –CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization

  14. Instability in the Peeling of a Polymeric Filament from a Rigid Surface

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    2000-01-01

    The 3D Lagrangian integral method is used to simulate the effects of the rheology on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates.It is shown that strain hardening materials with a negative second normal stress...... difference undergo the instability at a highter critical Hencky strain compared to materials with zero second normal stress difference. Furthermore it is demonstrated that strain hardening in itself playes a key role in the development of the instability in polymeric materials....

  15. Graft Copolymerization Of Methyl Methacrylate Onto Agave Cellulose

    International Nuclear Information System (INIS)

    Noor Afizah Rosli; Ishak Ahmad; Ibrahim Abdullah; Farah Hannan Anuar

    2014-01-01

    The grafting polymerization of methyl methacrylate (MMA) and Agave cellulose was prepared and the grafting reaction conditions were optimized by varying the reaction time and temperature, and ratio of monomer to cellulose. The resulting graft copolymers were characterized by Fourier transform infrared, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy (SEM). The experimental results showed that the optimal conditions were at a temperature of 45 degree Celsius for 90 min with ratio monomer to cellulose at 1:1 (g/ g). An additional peak at 1738 cm -1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted cellulose, respectively. Grafting of MMA onto cellulose enhanced its thermal stability and SEM observation further furnished evidence of grafting MMA onto Agave cellulose with increasing cellulose diameter and surface roughness. (author)

  16. Mixed nano/micro-sized calcium phosphate composite and EDTA root surface etching improve availability of graft material in intrabony defects: an in vivo scanning electron microscopy evaluation.

    Science.gov (United States)

    Gamal, Ahmed Y; Iacono, Vincent J

    2013-12-01

    The use of nanoparticles of graft materials may lead to breakthrough applications for periodontal regeneration. However, due to their small particle size, nanoparticles may be eliminated from periodontal defects by phagocytosis. In an attempt to improve nanoparticle retention in periodontal defects, the present in vivo study uses scanning electron microscopy (SEM) to evaluate the potential of micrograft particles of β-tricalcium phosphate (β-TCP) to enhance the binding and retention of nanoparticles of hydroxyapatite (nHA) on EDTA-treated and non-treated root surfaces in periodontal defects after 14 days of healing. Sixty patients having at least two hopeless periodontally affected teeth designated for extraction were randomly divided into four treatment groups (15 patients per group). Patients in group 1 had selected periodontal intrabony defects grafted with nHA of particle size 10 to 100 nm. Patients in group 2 were treated in a similar manner but had the affected roots etched for 2 minutes with a neutral 24% EDTA gel before grafting of the associated vertical defects with nHA. Patients in group 3 had the selected intrabony defects grafted with a composite graft consisting of equal volumes of nHA and β-TCP (particle size 63 to 150 nm). Patients in group 4 were treated as in group 3 but the affected roots were etched with neutral 24% EDTA as in group 2. For each of the four groups, one tooth was extracted immediately, and the second tooth was extracted after 14 days of healing for SEM evaluation. Fourteen days after surgery, all group 1 samples were devoid of any nanoparticles adherent to the root surfaces. Group 2 showed root surface areas 44.7% covered by a single layer of clot-blended grafted particles 14 days following graft application. After 14 days, group 3 samples appeared to retain fibrin strands devoid of grafted particles. Immediately extracted root samples of group 4 had adherent graft particles that covered a considerable area of the root surfaces

  17. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen

    Energy Technology Data Exchange (ETDEWEB)

    Al Meslmani, Bassam, E-mail: almeslmanib@yahoo.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mahmoud, Gihan, E-mail: mahmoudg@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, 11795 Cairo (Egypt); Strehlow, Boris, E-mail: strehlo4@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mohr, Eva, E-mail: mohr@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Leichtweiß, Thomas, E-mail: Thomas.leichtweiss@phys.chemie.uni-giessen.de [Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany); Bakowsky, Udo, E-mail: ubakowsky@aol.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany)

    2014-10-01

    Short-term patency of polyethylene terephthalate (PET) cardiovascular grafts is determined mainly by the inherent thrombogenicity and improper endothelialization following grafts implantation. The aim of the present study was to immobilize heparin to develop thrombus resistant grafts. Additionally, collagen was co-immobilized to enhance the host cell compatibility. The synthetic woven and knitted forms of crimped PET grafts were surface modified by Denier reduction to produce functional carboxyl groups. The produced groups were used as anchor sites for covalent immobilization of heparin or co-immobilization of heparin/collagen by the end-point method. The modified surface was characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biological activity of immobilized molecules was investigated in vitro using direct blood coagulation test, and “platelet deposition under flow condition. Furthermore, the biocompatibility of modified grafts with host cells was assessed using L929 cell as model. All modified grafts showed significant resistance against fibrin and clot formation. The number of deposited platelets on heparin-immobilized woven and knitted grafts obviously decreased by 3 fold and 2.8 fold per unit surface area respectively, while the heparin/collagen co-immobilized grafts showed only a decrease by 1.7 and 1.8 fold compared to unmodified PET. Heparin-immobilized grafts reported no significant effect on L929 cells adhesion and growth (P > 0.05), conversely, collagen co-immobilization considerably increased cell adhesion almost ∼ 1.3 fold and 2 fold per unit surface area for woven and knitted grafts respectively. Our results emphasize that immobilization of heparin minimized the inherent thrombogenicity of the PET grafts. The simultaneous co-immobilization of collagen supported host cell adhesion and growth required for the grafts biocompatibility. - Highlight: • Heparin and collagen were co-immobilized on

  18. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces

    NARCIS (Netherlands)

    Gomez-Suarez, C; Pasma, J; van der Borden, AJ; Wingender, J; Flemming, HC; Busscher, HJ; van der Mei, HC

    In this study, the role of extracellular polymeric substances (EPS) in the initial adhesion of EPS-producing Pseudomonas aeruginosa SG91 and SG81R1, a non-EPS-producing strain, to substrata with different hydrophobicity was investigated. The release of EPS by SG81 was concurrent with a decrease in

  19. A mild method of amine-type adsorbents syntheses with emulsion graft polymerization of glycidyl methacrylate on polyethylene non-woven fabric by pre-irradiation

    Science.gov (United States)

    Ma, Hongjuan; Yao, Side; Li, Jingye; Cao, Changqing; Wang, Min

    2012-09-01

    A mild pre-irradiation method was used to graft glycidyl methacrylate (GMA) onto polyethylene (PE) non-woven fabric (NF). The polymer was irradiated by electron beam in air atmosphere at room temperature. The degree of grafting (Dg) was determined as a function of reaction time, absorbed dose, monomer concentration and temperature. After 30 kGy irradiation, with 5% GMA, surfactant Tween 20 (Tw-20) of 0.5% at 55 °C for 15 min, the trunk polymer was made grafted with a Dg of 150%. Selected PE-g-PGMA of different Dg was modified with aminated compounds such as ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA). The obtained amine-type adsorbents were prepared to remove copper and uranium ions from solution. It was shown that at least 90% of copper and 60% of uranium with the initial concentration from 3 to 1000 ppb can be removed from water.

  20. Polymer on Top: Current Limits and Future Perspectives of Quantitatively Evaluating Surface Grafting.

    Science.gov (United States)

    Michalek, Lukas; Barner, Leonie; Barner-Kowollik, Christopher

    2018-03-07

    Well-defined polymer strands covalently tethered onto solid substrates determine the properties of the resulting functional interface. Herein, the current approaches to determine quantitative grafting densities are assessed. Based on a brief introduction into the key theories describing polymer brush regimes, a user's guide is provided to estimating maximum chain coverage and-importantly-examine the most frequently employed approaches for determining grafting densities, i.e., dry thickness measurements, gravimetric assessment, and swelling experiments. An estimation of the reliability of these determination methods is provided via carefully evaluating their assumptions and assessing the stability of the underpinning equations. A practical access guide for comparatively and quantitatively evaluating the reliability of a given approach is thus provided, enabling the field to critically judge experimentally determined grafting densities and to avoid the reporting of grafting densities that fall outside the physically realistic parameter space. The assessment is concluded with a perspective on the development of advanced approaches for determination of grafting density, in particular, on single-chain methodologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Science.gov (United States)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  2. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  3. Surface grafting of a dense and rigid coordination polymer based on tri-para-carboxy-polychlorotriphenylmethyl radical and copper acetate

    KAUST Repository

    Mugnaini, Verónica

    2013-01-01

    The step-by-step method is here presented as suitable to anchor on appropriately functionalized gold surfaces a metal-organic coordination polymer based on a non-planar trigonal tri-para-carboxy-polychlorotriphenylmethyl radical derivative and copper acetate. The structural characteristics of the grafted coordination polymer are derived during the step-wise growth from the real time changes in refractive index and oscillation frequency. The film thickness, as measured by scanning force microscopy, combined with the mass uptake value from the quartz crystal microbalance, are used to estimate an average density of the grafted metal-organic coordination polymer that suggests the formation of a dense and rather rigid thin film. This journal is © 2013 The Royal Society of Chemistry.

  4. The effect of pore diameter in the arrangement of chelating species grafted onto silica surfaces with application to uranium extraction

    International Nuclear Information System (INIS)

    Charlot, A.; Cuer, F.; Grandjean, A.

    2017-01-01

    A series of five silica supports with different pore diameters were functionalized in two steps by post-grafting, producing three types of material: (1) initial supports with pores smaller than 4 nm are heterogeneously functionalized because of steric effects; (2) when the pores range from 5 to 20 nm in diameter, a homogeneous organic monolayer is grafted onto the silica skeleton; and (3) when the pores are larger than 30 nm, an organic multilayer covalently linked to the surface is obtained. These hybrid materials were then used to extract uranium from a sulphuric solution. Our results show that the efficiency, capacity and selectivity of the extraction can be controlled through the effect the initial pore size has on the organic structures that form therein. After regeneration moreover, these materials can be reused with the same efficiency. (authors)

  5. Grafting polymer coatings onto the surfaces of carbon nanotube forests and yarns via a photon irradiation process

    International Nuclear Information System (INIS)

    Deng Fei; Rujisamphan, N.; Liu Chang; Ismat Shah, S.; Ni Chaoying; Maezono, Yoshinari; Hawkins, Stephen C.; Huynh, Chi P.

    2012-01-01

    Surface activation of carbon nanotubes (CNTs) as forests and yarns, depolytmerization of candidate polymers, and uniform deposition and re-polymerization onto the activated CNTs are simultaneously achieved by exposing CNTs and polymer targets to light with a narrow wavelength distribution from a vacuum ultraviolet lamp. Both polystyrene and poly (methyl methacrylate) are deposited onto the surface of CNTs in the CNT-forest and yarn in a N 2 environment for 30 min during which the polymer uniformly coats the carbon nanotubes. X-ray photoelectron spectroscopy data reveal that covalent bonding occurs at the CNT-polymer interface.

  6. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  7. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    International Nuclear Information System (INIS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-01-01

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF 4 ) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF 4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF 4 (f H ) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO x nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF 2 bonding, and SiO x were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can

  8. Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application

    Science.gov (United States)

    Lan, Yan; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Chen, Longwei; Yang, Guangjie; Nagatsu, M.; Meng, Yuedong

    2011-10-01

    Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluoroethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.

  9. ?Grafting to? of RAFTed Responsive Polymers to Glass Substrates by Thiol?Ene and Critical Comparison to Thiol?Gold Coupling

    OpenAIRE

    Biggs, Caroline I.; Walker, Marc; Gibson, Matthew I.

    2016-01-01

    Surface-grafted polymers have been widely applied to modulate biological interfaces and introduce additional functionality. Polymers derived from reversible addition?fragmentation transfer (RAFT) polymerization have a masked thiol at the ?-chain end providing an anchor point for conjugation and in particular displays high affinity for gold surfaces (both flat and particulate). In this work, we report the direct grafting of RAFTed polymers by a ?thiol?ene click? (Michael addition) onto glass s...

  10. A mild method of amine-type adsorbents syntheses with emulsion graft polymerization of glycidyl methacrylate on polyethylene non-woven fabric by pre-irradiation

    International Nuclear Information System (INIS)

    Ma Hongjuan; Yao Side; Li Jingye; Cao Changqing; Wang Min

    2012-01-01

    A mild pre-irradiation method was used to graft glycidyl methacrylate (GMA) onto polyethylene (PE) non-woven fabric (NF). The polymer was irradiated by electron beam in air atmosphere at room temperature. The degree of grafting (D g ) was determined as a function of reaction time, absorbed dose, monomer concentration and temperature. After 30 kGy irradiation, with 5% GMA, surfactant Tween 20 (Tw-20) of 0.5% at 55 °C for 15 min, the trunk polymer was made grafted with a D g of 150%. Selected PE-g-PGMA of different D g was modified with aminated compounds such as ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA). The obtained amine-type adsorbents were prepared to remove copper and uranium ions from solution. It was shown that at least 90% of copper and 60% of uranium with the initial concentration from 3 to 1000 ppb can be removed from water. - Highlights: ► GMA is successfully grafted onto PE non-woven fabric with a more mild pre-irradiation way air atmosphere at room temperature. ► With a D g of 150%, it is modified by aminated compounds. ► The material can be used in the removal of copper and uranium ions from solution.

  11. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base.

    Science.gov (United States)

    Shinawi, Lana Ahmed

    2017-05-01

    The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits.

  12. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base

    Science.gov (United States)

    Shinawi, Lana Ahmed

    2017-01-01

    Background The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. Aim To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. Methods This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. Results ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. Conclusion CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits. PMID:28713496

  13. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  14. Combination of "living" nitroxide-mediated and photoiniferter-induced "grafting from" free-radical polymerizations: from branched copolymers to unimolecular micelles and microgels

    Czech Academy of Sciences Publication Activity Database

    Gromadzki, Daniel; Filippov, Sergey K.; Netopilík, Miloš; Makuška, R.; Jigounov, A.; Pleštil, Josef; Horský, Jiří; Štěpánek, Petr

    2009-01-01

    Roč. 45, č. 6 (2009), s. 1748-1758 ISSN 0014-3057 R&D Projects: GA AV ČR IAA400500703; GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : controlled "living" radical polymerization * branched copolymers * conformation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.310, year: 2009

  15. Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor

    Science.gov (United States)

    Sobaszek, Michał; Dominik, Magdalena; Burnat, Dariusz; Bogdanowicz, Robert; Stranak, Viteszlav; Sezemsky, Petr; Śmietana, Mateusz

    2017-04-01

    This work presents an optical fiber sensors based on lossy-mode resonance (LMR) phenomenon supported by indium tin oxide (ITO) thin overlay for investigation of electro-polymerization effect on ITO's surface. The ITO overlays were deposited on core of polymer-clad silica (PCS) fibers using reactive magnetron sputtering (RMS) method. Since ITO is electrically conductive and electrochemically active it can be used as a working electrode in 3-electrode cyclic voltammetry setup. For fixed potential applied to the electrode current flow decrease with time what corresponds to polymer layer formation on the ITO surface. Since LMR phenomenon depends on optical properties in proximity of the ITO surface, polymer layer formation can be monitored optically in real time. The electrodeposition process has been performed with Isatin which is a strong endogenous neurochemical regulator in humans as it is a metabolic derivative of adrenaline. It was found that optical detection of Isatin is possible in the proposed configuration.

  16. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2014-01-01

    Full Text Available Iron core gold shell nanoparticles grafted with Methotrexate (MTX and indocyanine green (ICG were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid (PSMA to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2 via the magnetic hyperthermia mechanism and the release of MTX.

  17. Surface grafting of poly (L-glutamates). 1. Synthesis and characterization

    NARCIS (Netherlands)

    Wieringa, RH; Siesling, EA; Geurts, PFM; Werkman, PJ; Vorenkamp, EJ; Erb, [No Value; Stamm, M; Schouten, AJ

    2001-01-01

    The ring-opening polymerization of N-carboxyanhydrides (NCA) of gamma -benzyl L-glutamate andy-methyl L-glutamate from (gamma -aminopropyl)triethoxysilane (APS) pretreated substrates such as silicon wafers and quartz slides was investigated. FT-IR transmission spectroscopy, circular dichroism

  18. Effect of CaCO₃/HCl pretreatment on the surface modification of chitin gel beads via graft copolymerization of 2-hydroxy ethyl methacrylate and 4-vinylpyridine.

    Science.gov (United States)

    Yalinca, Zulal; Mohammed, Dana Ali Kader; Hadi, Jihad M; Yilmaz, Elvan

    2016-01-01

    Although chitin, poly(N-acetylglucosamine), possesses considerable potential as a biomaterial, it has not been as thoroughly studied as its derivative chitosan. In this study, the potential of chitin gel beads has been evaluated for surface modification via vinyl polymer grafting. Grafting behavior of two well-established vinyl monomers, namely 2-hydroxyethylmethacrylate (HEMA) and 4-vinylpyridine (4-VP) were investigated using cerium (IV) ammonium nitrate as the redox initiator with the aim of obtaining chemically functionalized more hydrophilic chitin surfaces. The intractable nature of chitin, which is one of its primary drawbacks as a grafting substrate was overcome by applying a CaCO3 treatment during bead preparation. The maximum grafting percentage of poly(HEMA) onto chitin bead without CaCO3 treatment was found to be 65%, while the value for CaCO3 treated chitin beads was 515%. The maximum grafting yield of poly(4-VP) on to CaCO3 treated chitin powder was 380% at optimum conditions. The grafting system was extensively characterized before and after grafting by FT-IR, SEM, C-13 NMR and XRD analyses. Significant improvement on the swelling capacities of chitin based gel beads in aqueous acidic, basic and neutral media was obtained. An account of the pros and cons of the system has been presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Influence of polyester gauze on evaporation capacity and healing of the surface of microskin graft wound after escharectomy].

    Science.gov (United States)

    Chen, Jiong; Tang, Zhi-Jian; Xia, Zhao-Fan; Zheng, Xu-Dong; Zhang, Li-Cheng

    2009-01-13

    To investigate the influence of polyester gauze on evaporation capacity and its clinical effect after escharectomy of deep burn wound and micro-skin grafting. Twenty patients with deep burn admitted within 24 hours after injury underwent escharectomy and Meek skin grafting. Two surfaces of wound with the area of about 1% as the whole wound surface were used, one covered by Meek skin graft and polyester gauze as inner dressing (polyester gauze group), and the other covered by split-thickness skin sheet 0.3 mm x 0.3 mm in size and vaseline oil gauze as inner dressing (vaseline oil gauze group). Five days after skin grafting, the evaporation capacities of the surface of inner dressing, wound surface without dressing (nude wound), and normal skin near the wound were tested by evaporation test equipment. The complete healing time and survival rate of skin sheet in both groups were observed. The degree of pain during dressing change was evaluated with visual analog scale. The evaporation capacity of the inner dressing surface of polyester gauze group was (24.8 +/- 5.2) ml x h(-1) x m(-2), significantly lower than those of the vaseline oil gauze group [(35.4 +/- 5.0) ml x h(-1) x m(-2), P 0.05]. The evaporation capacity of the inner dressing surface of vaseline oil gauze group was significantly lower than nude wound [(40.7 +/- 3.6) ml x h(-1) x m(-2), P 0.05). The wound healing rates on days 10, 15, and 20 of the polyester gauze group were 80% +/- 20%, 96% +/- 7%, and 100% respectively, all significantly higher than those of the vaseline oil gauze group (70% +/- 33%, 81% +/- 21%, and 97% +/- 11% respectively, all P < 0.01). The complete healing time of the polyester gauze group was (13.6 +/- 1.9) days, significantly shorter than that of the vaseline oil gauze group [(16.7 +/- 2.6) days, P < 0.01]. The pain scores during dressing change 5 and 10 days after grafting of the polyester gauze group were (3.2 +/- 0.8) and (4.9 +/- 0.4) respectively, both significantly lower than

  20. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  1. Simple Preparation of Thiol-Ene Particles in Glycerol and Surface Functionalization by Thiol-Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT-FRP).

    Science.gov (United States)

    Hoffmann, Christian; Chiaula, Valeria; Yu, Liyun; Pinelo, Manuel; Woodley, John M; Daugaard, Anders E

    2018-01-01

    Thiol-ene (TE)-based polymer particles are traditionally prepared via emulsion polymerization in water (using surfactants, stabilizers, and cosolvents). Here, a green and simple alternative is presented with excellent control over particle size, while avoiding the addition of stabilizers. Glycerol is applied as a dispersing medium for the preparation of off-stoichiometric TE microparticles, where sizes in the range of 40-400 µm are obtained solely by changing the mixing speed of the emulsions prior to crosslinking. Control over surface chemistry is achieved by surface functionalization of excess thiol groups via photochemical thiol-ene chemistry resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization is used for the first time to introduce a thicker polymer layer on the particle surface. The application potential of the system is demonstrated by using functional particles as adsorbent for metal ions and as a support for immobilized enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancement of mechanical properties of poly(vinyl chloride with polymethyl methacrylate-grafted halloysite nanotube

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Halloysite nanotubes(HNTs grafted with Polymethyl methacrylate(PMMA were synthesized via radical polymerization. The properties of PMMA-grafted HNTs were characterized by transmission electron microscopy (TEM, fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA and X-ray photoelectron spectroscopy (XPS. The results showed that PMMA grafted to the surfaces of HNTs successfully. Then, PVC/PMMA-grafted HNTs nanocomposites were prepared by melt compounding. The morphology, mechanical properties and thermal properties of the nanocomposites were investigated. PMMA-grafted HNTs can effectively improve the toughness, strength and modulus of PVC. The glass transition and thermal decomposition temperatures of PVC phase in PVC/PMMA-grafted HNTs nanocomposites are shifted toward slightly higher temperatures. The grafted HNTs were uniformly dispersed in PVC matrix as revealed by TEM photos. The fracture surfaces of the nanocomposites exhibited plastic deformation feature indicating ductile fracture behaviors. The improvement of toughness of PVC by PMMA-grafted HNTs was attributed to the improved interfacial bonding by grafting and the toughening mechanism was explained according to the cavitation mechanism.

  3. Pre-irradiation induced preparation of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate on PE non-woven fabric

    International Nuclear Information System (INIS)

    Ma, H.; Yao, S.; Li, J.; Wang, M.

    2011-01-01

    Complete text of publication follows. A mild pre-irradiation method was used to graft glycidyl methacrylate (GMA) onto polyethylene (PE) non-woven fabric. The polymer was irradiated by electron beam at a voltage of 1.8 MeV and a current of 2 mA in air atmosphere at room temperature. The degree of grafting (D g ) was determined as a function of reaction time, irradiation dose, monomer concentration and temperature. After 30 kGy irradiation, with 5% GMA, the surfactant Tw-20 of 0.5% at 55 deg C for 15 min, the trunk polymer was made grafted at a D g of 150%. Selected PE-g-PGMA of different D g s was modified with such compounds as ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tetraethylene pentamine (TEPA). The obtained amine-type adsorbents were prepared specialty for the further removal of copper and uranium from solution. It was shown that at least 90% 1 ppm copper and 60% uranium with the initial concentration from 3 to 1000 ppb can be removed from water.

  4. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using......Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...

  5. Surface Decoration on Polymeric Gate Dielectrics for Flexible Organic Field-Effect Transistors via Hydroxylation and Subsequent Monolayer Self-Assembly.

    Science.gov (United States)

    Yan, Yan; Huang, Long-Biao; Zhou, Ye; Han, Su-Ting; Zhou, Li; Sun, Qijun; Zhuang, Jiaqing; Peng, Haiyan; Yan, He; Roy, V A L

    2015-10-28

    A simple photochemical reaction based on confined photocatalytic oxidation (CPO) treatment and hydrolysis was employed to efficiently convert C-H bonds into C-OH groups on polymeric material surfaces, followed by investigation of monolayer self-assembly decoration on polymeric dielectrics via chemical bonding for the organic field-effect transistors (OFETs) applications. This method is a low temperature process and has negligible etching effect on polymeric dielectric layers. Various types of self-assembled monolayers have been tested and successfully attached onto the hydroxylated polymeric dielectric surfaces through chemical bonding, ensuring the stability of decorated functional films during the subsequent device fabrication consisting of solution processing of the polymer active layer. With the surface decoration of functional groups, both n-type and p-type polymers exhibit enhanced carrier mobilities in the unipolar OFETs. In addition, enhanced and balanced mobilities are obtained in the ambipolar OFETs with the blend of polymer semiconductors. The anchored self-assembled monolayers on the dielectric surfaces dramatically preclude the solvent effect, thus enabling an improvement of carrier mobility up to 2 orders of magnitude. Our study opens a way of targeted modifications of polymeric surfaces and related applications in organic electronics.

  6. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    Science.gov (United States)

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments.

    Science.gov (United States)

    GhavamiNejad, Amin; Hashmi, Saud; Joh, Han-Ik; Lee, Sungho; Lee, Youn-Sik; Vatankhah-Varnoosfaderani, Mohammad; Stadler, Florian J

    2014-05-14

    Poly N-isopropyl acrylamide (PNI) radically polymerized in aqueous solution in the presence of graphene oxide (GO) can significantly change the properties of the resulting solution from a regular polymer solution to a soft solid with a GO content of only 0.176 wt% (3 wt% with respect to PNI). However, these properties require the presence of both grafting and supramolecular interactions between polymer chains and hydrophilic groups on GO (-OH, -COOH), proven by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction and spectroscopy (XRD) and Raman spectra. While very low GO-contents (below 0.05 wt%) only lead to a labile structure, which can be disassembled by shear, higher contents yield composites with solid-like characteristics. This is clearly evident from the rheological behaviour, which changes significantly at a GO content around 0.15 wt%. Intensive shearing destroys the weak network, which cannot reform quickly at lower GO-concentrations, while at intermediate concentrations, restructuring is fast. GO-contents of 0.176 wt% lead to a material behaviour, which almost perfectly recovers from small deformations (creep and creep recovery compliance almost match) but larger deformations lead to permanent damage to the sample.

  8. Utilization of recycled polypropylene-acrylate grafted nonwoven for the removal of oil from water.

    Science.gov (United States)

    Li, Shaoning; Wei, Junfu; Wang, Lei; Wang, Ao; Yang, Hang; Nie, Yuexia

    2012-09-01

    To solve water pollution caused by oil spillage, a new sorbent was prepared by radiation-induced graft polymerization. Acrylate monomer was introduced to polypropylene nonwoven and hydrophobic groups were introduced by the grafting method. The grafting degree of sorbent was determined as a function of monomer concentration and solvent solubility for monomer. Fourier transform-infrared spectra and static contact angle measurements were used to characterize the chemical changes of the polypropylene nonwoven surface. The grafted sorbent showed a fast sorption rate and a maximum sorption capacity of 13.56 g/g for diesel oil, while the original polypropylene nonwoven was only 7.48 g/g. In addition, retention measurement and the reusability test were conducted to evaluate the suitability of the polypropylene-acrylate grafted nonwoven for the treatment of oil spillage.

  9. Advances in radiation grafting

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.A.; Kamal, H.; Kandeel, K.A.

    2001-01-01

    Graft copolymerization is an attractive means for modifying base polymers because grafting frequently results in the superposition of properties relating to the backbone and pendent chains. Among the various methods for initiating the grafting reaction, ionizing radiation is the cleanest and most versatile method of grafting available. Ion-exchange membranes play an important role in modern technology, especially in separation and purification of materials. The search for improved membrane composition has considered almost every available polymeric material because of its great practical importance. Grafting of polymers with a mixture of monomers is important since different types of chains containing different functional groups are included. A great deal is focused on the waste treatment of heavy and toxic metals from wastewater because of the severe problems of environmental pollution. Functionalized polymers suitable for metal adsorption with their reactive functional groups such as carboxylic and pyridine groups suitable for waste treatment were prepared by radiation grafting method. More reactive chelating groups were further introduced to the grafted copolymer through its functional groups by chemical treatments with suitable reagents. The advances of radiation grafting and possible uses are briefly discussed

  10. Advances in radiation grafting

    Science.gov (United States)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H. A.; Kamal, H.; Kandeel, K. A.

    2001-12-01

    Graft copolymerization is an attractive means for modifying base polymers because grafting frequently results in the superposition of properties relating to the backbone and pendent chains. Among the various methods for initiating the grafting reaction, ionizing radiation is the cleanest and most versatile method of grafting available. Ion-exchange membranes play an important role in modern technology, especially in separation and purification of materials. The search for improved membrane composition has considered almost every available polymeric material because of its great practical importance. Grafting of polymers with a mixture of monomers is important since different types of chains containing different functional groups are included. A great deal is focused on the waste treatment of heavy and toxic metals from wastewater because of the severe problems of environmental pollution. Functionalized polymers suitable for metal adsorption with their reactive functional groups such as carboxylic and pyridine groups suitable for waste treatment were prepared by radiation grafting method. More reactive chelating groups were further introduced to the grafted copolymer through its functional groups by chemical treatments with suitable reagents. The advances of radiation grafting and possible uses are briefly discussed.

  11. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties

    International Nuclear Information System (INIS)

    Gao, Baojiao; Fang, Li; Men, Jiying; Zhang, Yanyan

    2013-01-01

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH = 1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH = 7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. Highlights: ► A metronidazole colon-specific drug delivery was constituted using grafted polymeric microspheres. ► Grafted polymeric microspheres CPVA-g-PSSS were prepared via surface-initiated graft-polymerization. ► The release of the drug-carrying microspheres is highly pH-sensitive. ► The drug-carrying microspheres display an excellent colon-specific drug delivery behavior

  12. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051, People' s Republic of China (China); Fang, Li [School of Chemistry and Chemical engineering, Shanxi University, Taiyuan 030006 (China); Men, Jiying; Zhang, Yanyan [Department of Chemical Engineering, North University of China, Taiyuan 030051, People' s Republic of China (China)

    2013-04-01

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH = 1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH = 7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. Highlights: ► A metronidazole colon-specific drug delivery was constituted using grafted polymeric microspheres. ► Grafted polymeric microspheres CPVA-g-PSSS were prepared via surface-initiated graft-polymerization. ► The release of the drug-carrying microspheres is highly pH-sensitive. ► The drug-carrying microspheres display an excellent colon-specific drug delivery behavior.

  13. Entropic solvation force between surfaces modified by grafted chains: a density functional approach

    Directory of Open Access Journals (Sweden)

    O. Pizio

    2010-01-01

    Full Text Available The behavior of a hard sphere fluid in slit-like pores with walls modified by grafted chain molecules composed of hard sphere segments is studied using density functional theory. The chains are grafted to opposite walls via terminating segments forming pillars. The effects of confinement and of "chemical" modification of pore walls on the entropic solvation force are investigated in detail. We observe that in the absence of adsorbed fluid the solvation force is strongly repulsive for narrow pores and attractive for wide pores. In the presence of adsorbed fluid both parts of the curve of the solvation force may develop oscillatory behavior dependent on the density of pillars, the number of segments and adsorption conditions. Also, the size ratio between adsorbed fluid species and chain segments is of importance for the development of oscillations. The choice of these parameters is crucial for efficient manipulation of the solvation force as desired for pores of different width.

  14. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  15. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  16. Quantitative Analysis of Polyacrylamide Grafted on Polylactide Film Surfaces Employing Spectroscopic Techniques.

    Science.gov (United States)

    Rahman, Mijanur; Opaprakasit, Pakorn

    2017-11-01

    Standard techniques for quantitative measurement of polyacrylamide (PAm) contents grafted on polylactide (PLA) film substrates, P(LA- g-Am- co-MBAm), which are commonly used as cell culture substrates or scaffolds, and pH-sensitive absorbents have been developed with X-ray photoelectron (XPS), proton-nuclear magnetic resonance ( 1 H-NMR), and Fourier transform infrared (FT-IR) spectroscopy. The techniques are then applied to examine P(LA- g-Am- co-MBAm) samples prepared from two separate photo-initiator/co-initiator systems. Efficiency and accuracy of the techniques are compared. The results from all techniques are in good agreement, indicating high analysis precisions, although FT-IR technique provides additional advantages, in terms of short analysis time, ease of sample preparation, and accessibility of a machine. The results indicate that the riboflavin (RF) initiator system has higher grafting efficiency than its camphorquinone (CQ) counterpart. These standard techniques can be applied in the analysis of these materials and further modified for quantitative analysis of other grafting systems.

  17. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Daisuke Nobezawa

    2017-01-01

    Full Text Available The force driving the retrograde flow of actin cytoskeleton is important in the cellular activities involving cell movement (e.g., growth cone motility in axon guidance, wound healing, or cancer metastasis. However, relative importance of the forces generated by actin polymerization and myosin II in this process remains elusive. We have investigated the retrograde movement of the poly-D-lysine-coated bead attached with the optical trap to the edge of lamellipodium of Swiss 3T3 fibroblasts. The velocity of the attached bead drastically decreased by submicromolar concentration of cytochalasin D, latrunculin A, or jasplakinolide, indicating the involvement of actin turnover. On the other hand, the velocity decreased only slightly in the presence of 50 μM (−-blebbistatin and Y-27632. Comparative fluorescence microscopy of the distribution of actin filaments and that of myosin II revealed that the inhibition of actin turnover by cytochalasin D, latrunculin A, or jasplakinolide greatly diminished the actin filament network. On the other hand, inhibition of myosin II activity by (−-blebbistatin or Y-27632 little affected the actin network but diminished stress fibers. Based on these results, we conclude that the actin polymerization/depolymerization plays the major role in the retrograde movement, while the myosin II activity is involved in the maintenance of the dynamic turnover of actin in lamellipodium.

  18. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues

    Science.gov (United States)

    Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu

    2018-03-01

    Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.

  19. Environmental application of radiation grafting

    International Nuclear Information System (INIS)

    Tamada, Masao

    2007-01-01

    Adsorbent having high selectivity against a certain metal ion was synthesized by means of radiation-induced graft polymerization for the purpose of environmental application. The resulting adsorbents were utilized for the removal of toxic metal from scallop waste and the collection of uranium from seawater. As a novel application of grafting, the biodegradability of poly-hydroxybutylate was controlled by grafting. The biodegradability could be depressed by the graft chain and then recovered by external stimuli such as thermal and chemical treatments. (author)

  20. Localization of Polystyrene Particles on the Surface of Poly(N-isopropylacrylamide-co-methacrylic acid) Microgels Prepared by Seeded Emulsion Polymerization of Styrene.

    Science.gov (United States)

    Kobayashi, Chiaki; Watanabe, Takumi; Murata, Kazuyoshi; Kureha, Takuma; Suzuki, Daisuke

    2016-02-16

    Composite microgels with polystyrene nanoparticles were synthesized by seeded emulsion polymerization of styrene in the presence of pH- and temperature-responsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels as seeds. In particular, the core microgels maintained their swelled state as the pH was increased to 10 during seeded emulsion polymerization conducted at an elevated temperature. Furthermore, we tuned the swelling degree of the core microgels at pH 10 by changing the amount of methacrylic acid incorporated during the synthesis of the core microgels. Unlike deswollen microgels, during the seeded emulsion polymerization, the swollen microgels were covered with a monolayer of non-close-packed polystyrene particles on their surface, as confirmed by electron microscopy. A possible mechanism for the seeded emulsion polymerization of styrene in the presence of swollen microgels under alkaline conditions is proposed.

  1. Ocular Surface and Tear Film Characteristics in a Sclerodermatous Chronic Graft-Versus-Host Disease Mouse Model.

    Science.gov (United States)

    He, Jingliang; Yamane, Mio; Shibata, Shinsuke; Fukui, Masaki; Shimizu, Eisuke; Yano, Tetsuya; Mukai, Shin; Kawakami, Yutaka; Li, Shaowei; Tsubota, Kazuo; Ogawa, Yoko

    2018-04-01

    To report the characteristics of the ocular surface in a previously established sclerodermatous chronic graft-versus-host disease (cGVHD) mouse model. The ocular surface features and tear film parameters of the mouse model were assessed by histopathology, immunohistochemistry, electron microscopy, quantitative polymerase chain reaction, and flow cytometry. The mice exhibited loss of body weight and decreased tear secretion (P < 0.001), mimicking the clinical features of patients with cGVHD. Ocular examination demonstrated significant corneal epithelial staining, conjunctival (P < 0.001), and eyelid (P = 0.015) fibrosis compared with the control mice. The density of both goblet cells (P = 0.043) and microvilli was lower (P < 0.001), and the microvilli were shorter (P = 0.007) in the conjunctiva of cGVHD mice than those of the controls. The immunohistochemical studies demonstrated greater expression of CD45, CD4, and CD8 cells in the conjunctiva and eyelid tissues compared with the controls (P < 0.05 for all). In addition, reduced Forkhead box P3 (Foxp3)+ cells were found in both the peripheral blood (P < 0.001) and conjunctiva (P = 0.042) of cGVHD mice compared with the controls. The constellation of these findings suggests that the sclerodermatous cGVHD mouse model well recapitulates ocular manifestations of cGVHD in humans. This model can be used to study the mechanisms involved in the pathogenesis and treatment of chronic ocular graft-versus-host disease.

  2. Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted