WorldWideScience

Sample records for surface functionalized barium

  1. Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish.

    Science.gov (United States)

    Čulić-Viskota, Jelena; Dempsey, William P; Fraser, Scott E; Pantazis, Periklis

    2012-09-01

    To address the need for a bright, photostable labeling tool that allows long-term in vivo imaging in whole organisms, we recently introduced second harmonic generating (SHG) nanoprobes. Here we present a protocol for the preparation and use of a particular SHG nanoprobe label, barium titanate (BT), for in vivo imaging in living zebrafish embryos. Chemical treatment of the BT nanoparticles results in surface coating with amine-terminal groups, which act as a platform for a variety of chemical modifications for biological applications. Here we describe cross-linking of BT to a biotin-linked moiety using click chemistry methods and coating of BT with nonreactive poly(ethylene glycol) (PEG). We also provide details for injecting PEG-coated SHG nanoprobes into zygote-stage zebrafish embryos, and in vivo imaging of SHG nanoprobes during gastrulation and segmentation. Implementing the PROCEDURE requires a basic understanding of laser-scanning microscopy, experience with handling zebrafish embryos and chemistry laboratory experience. Functionalization of the SHG nanoprobes takes ∼3 d, whereas zebrafish preparation, injection and imaging setup should take approximately 2-4 h.

  2. Work Function Calculation For Hafnium- Barium System

    Directory of Open Access Journals (Sweden)

    K.A. Tursunmetov

    2015-08-01

    Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.

  3. Adsorption behaviors of surface active reagents on barium ferrite magnetic fine particles; Barium ferrite jisei biryushi eno hymen shorizai kyuchaku

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, M.; Otani, T.; Masuko, T. [Yamagata University, Yamagata (Japan). Faculty of Engineering

    1998-06-10

    The adsorption mode of lecithin (dioleoylphosphatidylcholine) or [3-(methacryloyloxy)propyl] trimethoxysilane (MPS) onto barium ferrite magnetic particles has been investigated by measurements of changes in solution concentration of the surfactant. Both adsortion isotherms of the surface active reagents on barium ferrite particles indicated to be of the Langmuir type. The occupied areas per one molecule on the surface of barium ferrite particles were estimated to be about 70 angstrom{sup 2}/molecule for lecithin and 22 angstrom{sup 2}/molecule for MPS at their saturated adsorption. In X-ray photoelectron spectroscopy (XPS) measurements for the adsorbed lecithin layer, the peak position in the binding energy distribution for the P (2p) photoelectron was observed to shift into slightly higher values with increasing amount of adsorbed lecithin. This implies that dipole-dipole interactions among the lecithin molecules become stronger because of increased high molecular packing in the adsorption layers. However, the peak position for the Si (2p) photoelectron remains almost unchanged due to slight interaction among the adsorbing functional groups onto the particles. 16 refs., 16 figs., 3 tabs.

  4. Interactions between nitrogen molecules and barium atoms on Ru (0001) surface

    International Nuclear Information System (INIS)

    Zhao Xinxin; Mi Yiming; Xu Hongxia; Wang Lili; Ren Li; Tao Xiangming; Tan Mingqiu

    2011-01-01

    We had performed first principles calculations on interactions between nitrogen molecules and barium atoms on Ru (0001) surface using density function theory methods. It was shown that effects of barium atoms weakened the bond strength of nitrogen molecules. The bond length of nitrogen molecule increases from 0.113 nm on Ru (001)-N 2 to 0.120 nm on Ru (001)-N 2 /Ba surface. While stretch vibrational frequency of nitrogen molecule decreased from 2222 cm -1 and charge transfer toward nitrogen molecule increased from 0.3 e to 1.1 e. Charge was mainly translated from 6 s orbitals of barium atoms to 4 d orbitals of substrate, which enhanced the hybridization between 4 d and 2 π orbitals and increased the dipole moment of 5 σ and d π orbitals of nitrogen molecule. The molecular dipole moment of nitrogen molecule was increased by -0.136 e Anstrom. It was suggested that barium had some characters to be an electronic promoter on the process of activating nitrogen molecules on Ru (0001) surface. (authors)

  5. Barium fluoride surface preparation, analysis and UV reflective coatings at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Wuest, C.R.

    1992-01-01

    Lawrence Livermore National Laboratory (LLNL) has begun a program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of barium fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. These lapped surfaces have been shown to be crystalline using Rutherford Back-scattering (RBS). Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL's Nova Laser. These fixtures allow as many as five 25--50 cm long barium fluoride crystals to be polished and lapped at a time with the necessary tolerances for the 16,000 crystal Barium Fluoride Calorimeter. In addition, results will be presented on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum

  6. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  7. Depletion of barium and radium-226 in Black Sea surface waters over the past thirty years

    International Nuclear Information System (INIS)

    Kenison Falkner, K.K.; Edmond, J.M.; O'Neill, D.J.; Todd, J.F.; Moore, W.S.

    1991-01-01

    The nearly landlocked waters of the Black Sea support a valuable fishery, but are also particularly vulnerable to anthropogenic disturbance. Here we use dissolved barium and radium-226 as tracers, to investigate the biogeochemical health of the sea. Both elements are brought to surface waters by vertical mixing of deeper, enriched waters, and by rivers; these inputs should ordinarily be balanced by outflow of surface waters at the Bosphorus, and by biologically mediated removal of 226 Ra-bearing barite. We show, however, that surface-water inventories have been substantially depleted over the past few decades: recent (1988-89) barium concentrations were 1.6 times lower than in 1958 and 1967. These observations suggest that steady-state cycling of these elements has been perturbed by increased primary productivity, presumably fuelled by nutrients from industry and agricultural runoff, and to a lesser extent by decreased fluvial sediment loads owing to extensive impoundment of rivers in the region. (author)

  8. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  9. Structure and Dynamics of Water on Aqueous Barium Ion and the {001} Barite Surface

    International Nuclear Information System (INIS)

    Stack, Andrew G.; Rustad, James R.

    2007-01-01

    The structure of water and its dynamics affect a number of fundamental properties of an interface. Yet, these properties are often inaccessible experimentally and computational studies including solvent are comparatively few. Here, we estimate the structure and kinetics of water exchange of aqueous barium ions and barium ions within the {001} barite surface using molecular dynamics and the reactive flux method. For the aqueous ion, the Ba-O distance to water in the first hydration shell was found to be 280 pm with a coordination number of 8.3, and the best estimate of the exchange rate constant is 4.8 x 10 9 s -1 , closely matching experimental estimates. For the barite surface, the first shell water distance was 282 pm, with a coordination number of 0.9 and the best estimate of the rate constant for exchange is 1.7 x 10 10 s -1 , 3.5 times faster than that of the aqueous ion.

  10. Barium concentrations and speciation in surface waters collected from an active barium mining area in Guizhou Province, southwestern China.

    Science.gov (United States)

    Lu, Qinhui; Xu, Xiaohang; Xu, Zhidong; Liang, Longchao; Shang, Lihai; Xiao, Dean; Zhang, Sensen; Jiang, Yuping; Qiu, Guangle

    2018-03-01

    Barium (Ba) is a toxic element and can cause serious health effects. Humans have experienced increased exposure to Ba due to its intensive usage in industrial areas and daily life. Anthropogenic activities of Ba mining and the manufacture of Ba containing products introduce the element into surrounding areas, posing environmental concerns. Concentrations of total Ba (TBa) and dissolved Ba (DBa) in water samples collected from active Ba mines in Tianzhu, east Guizhou Province, southwestern China were measured to show the regional dispersion of Ba contamination. Aqueous Ba species in water were calculated using the PHREEQC program. The results showed that TBa and DBa concentrations ranged from 6.7 to 483.1 μg/L and from 7.5 to 222.7 μg/L, respectively. TBa concentrations presented a high average value of 126.6 μg/L and greatly exceeded the reported common value of 10 μg/L Ba in surface water set by the Ministry of Environment Protection of China. PHREEQC results indicated that Ba species in water were present as Ba 2+ , BaSO 4 , BaHCO 3 , BaCO 3 , and BaOH + . The distribution of Ba species in water is controlled by pH and total organic carbon (TOC), and the lower pH (pH < 7) the higher the dissolved fractions. The log K d values (K d , dissolved-particulate distribution coefficients) varied from 2.41 to 6.32. Significant correlations were observed among Ba 2+ and K + , Na + , Cl - , NO 3 - , with Pearson correlation coefficients of 0.425, 0.531, 0.853, 0.612, and 0.329, respectively (p < 0.01). Elevated Ba concentrations in water indicated that the Ba contamination and its distribution pattern in local aquatic ecosystems are derived from Ba mining sites in the Tianzhu area.

  11. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors.

    Science.gov (United States)

    Paniagua, Sergio A; Kim, Yunsang; Henry, Katherine; Kumar, Ritesh; Perry, Joseph W; Marder, Seth R

    2014-03-12

    A phosphonic acid is used as a surface initiator for the growth of polystyrene and polymethylmethacrylate (PMMA) from barium titanate (BTO) nanoparticles through atom transfer radical polymerization with activators regenerated by electron transfer. This results in the barium titanate cores embedded in the grafted polymer. The one-component system, PMMA-grafted-BTO, achieves a maximum extractable energy density of 2 J/cm(3) at a field strength of ∼220 V/μm, which exhibits a 2-fold increase compared to that of the composite without covalent attachment or the neat polymer. Such materials have potential applications in hybrid capacitors due to the high permittivity of the nanoparticles and the high breakdown strength, mechanical flexibility, and ease of processability due to the organic polymer. The synthesis, processing, characterization, and testing of the materials in capacitors are discussed.

  12. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  13. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  14. Generation of H-, H2(v double-prime), and H atoms by H2+ and H3+ ions incident upon barium surfaces

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1989-01-01

    The generation of vibrationally excited molecules by electron excitation collisions and the subsequent generation of negative ions by dissociative attachment to these molecules has become a standard model for volume source operation. These processes have been supplemented recently by the demonstration of atom-surface recombination to form vibrationally excited molecules, and enhanced negative ion formation by protons incident upon barium electrodes. In this paper we consider the additional processes of molecular vibrational excitation generated by recombination of molecular ions on the electrode surfaces, and negative ion formation by vibrationally excited molecules rebounding from low work-function electrodes. 10 refs., 4 figs

  15. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    Science.gov (United States)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  16. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Cadore, Solange

    2015-01-01

    Barium can be found in waters up to 1 mg L -1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L -1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  17. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  18. A theoretical investigation of the influence of the surface effect on the ferroelectric property of strained barium titanate film

    Science.gov (United States)

    Fang, Chao; Liu, Wei Hua

    2017-07-01

    The influence of the surface effect on the ferroelectric property of strained barium titanate film has been investigated. In this study, based on time-dependent Ginsburg-Landau-Devonshire thermodynamic theory, the surface effects have been simulated by introducing a surface constant, which leads to the strained BaTiO3 film consisting of inner tetragonal core and gradient lattice strain layer. Further, surface effects produce a depolarization field which has a dominant effect on the ferroelectric properties of the films. The spontaneous polarization, dielectric properties and ferroelectric hysteresis loop of BaTiO3 film are calculated under different boundary conditions. Theoretical and experimental results for strained BaTiO3 film are compared and discussed.

  19. Characterisation of Functional Surfaces

    DEFF Research Database (Denmark)

    Lonardo, P.M.; De Chiffre, Leonardo; Bruzzone, A.A.

    2004-01-01

    Characterisation of surfaces is of fundamental importance to control the manufacturing process and the functional performance of the part. Many applications concern contact and tribology problems, which include friction, wear and lubrication. This paper presents the techniques and instruments for...

  20. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  1. Molecular structures of (3-aminopropyl)trialkoxysilane on hydroxylated barium titanate nanoparticle surfaces induced by different solvents and their effect on electrical properties of barium titanate based polymer nanocomposites

    International Nuclear Information System (INIS)

    Fan, Yanyan; Wang, Guanyao; Huang, Xingyi; Bu, Jing; Sun, Xiaojin; Jiang, Pingkai

    2016-01-01

    Graphical abstract: - Highlights: • The silanization on the surface of hydroxylated barium titanate nanoparticles was introduced by using two kinds of trialkoxysilanes with different solvents (toluene and ethanol), respectively. • Solvents have more remarkable impact on the dielectric properties of the subsequent BT/PVDF nanocomposites than the types of silanes. • The solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. - Abstract: Surface modification of nanoparticles by grafting silane coupling agents has proven to be a significant approach to improve the interfacial compatibility between inorganic filler and polymer matrix. However, the impact of grafted silane molecular structure after the nanoparticle surface modification, induced by the utilized solvents and the silane alkoxy groups, on the electrical properties of the corresponding nanocomposites, has been seldom investigated. Herein, the silanization on the surface of hydroxylated barium titanate (BT-OH) nanoparticles was introduced by using two kinds of trialkoxysilane, 3-aminopropyltriethoxysilane (AMEO) and 3-aminopropyltrimethoxysilane (AMMO), with different solvents (toluene and ethanol), respectively. Solid-state 13 C, 29 Si nuclear magnetic resonance (NMR) spectroscopy and high-resolution X-ray photoelectron spectroscopy (XPS) were employed to validate the structure differences of alkoxysilane attachment to the nanoparticles. The effect of alkoxysilane structure attached to the nanoparticle surface on the dielectric properties of the BT based poly(vinylidene fluoride) (PVDF) nanocomposites were investigated. The results reveal that the solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. Nevertheless, the alkoxy groups of silane show a marginal influence on the dielectric properties of the nanocomposites. These research results provide

  2. Barite (Barium)

    Science.gov (United States)

    Johnson, Craig A.; Piatak, Nadine M.; Miller, M. Michael; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Barite (barium sulfate, BaSO4) is vital to the oil and gas industry because it is a key constituent of the mud used to drill oil and gas wells. Elemental barium is an additive in optical glass, ceramic glazes, and other products. Within the United States, barite is produced mainly from mines in Nevada. Imports in 2011 (the latest year for which complete data were available) accounted for 78 percent of domestic consumption and came mostly from China.Barite deposits can be divided into the following four main types: bedded-sedimentary; bedded-volcanic; vein, cavity-fill, and metasomatic; and residual. Bedded-sedimentary deposits, which are found in sedimentary rocks with characteristics of high biological productivity during sediment accumulation, are the major sources of barite production and account for the majority of reserves, both in the United States and worldwide. In 2013, China and India were the leading producers of barite, and they have large identified resources that position them to be significant producers for the foreseeable future. The potential for undiscovered barite resources in the United States and in many other countries is considerable, however. The expected tight supply and rising costs in the coming years will likely be met by increased production from such countries as Kazakhstan, Mexico, Morocco, and Vietnam.Barium has limited mobility in the environment and exposed barium in the vicinity of barite mines poses minimal risk to human or ecosystem health. Of greater concern is the potential for acidic metal-bearing drainage at sites where the barite ores or waste rocks contain abundant sulfide minerals. This risk is lessened naturally if the host rocks at the site are acid-neutralizing, and the risk can also be lessened by engineering measures.

  3. Investigation of chemically modified barium titanate beads as surface-enhanced Raman scattering (SERS) active substrates for the detection of benzene thiol, 1,2-benzene dithiol, and rhodamine 6G.

    Science.gov (United States)

    Onuegbu, Jonathan; Fu, Anqie; Glembocki, Orest; Pokes, Shaka; Alexson, Dimitri; Hosten, Charles M

    2011-08-01

    SERS active surfaces were prepared by depositing silver films using Tollen's reaction on to barium titanate beads. The SERS activity of the resulting surfaces was probed using two thiols (benzene thiol and 1,2-benzene dithiol) and rhodamine 6G. The intensity of the SERS signal for the three analytes was investigated as a function of silver deposition time. The results indicate that the SERS intensity increased with increasing thickness of the silver film until a maximum signal intensity was achieved; additional silver deposition resulted in a decrease in the SERS intensity for all of the studied molecules. SEM measurement of the Ag coated barium titanate beads, as a function of silver deposition time, indicate that maximum SERS intensity corresponded with the formation of atomic scale islands of silver nanoparticles. Complete silver coverage of the beads resulted in a decreased SERS signal and the most intense SERS signals were observed at deposition times of 30 min for the thiols and 20 min for rhodamine 6G. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Some aspects of the behavior of barium, bismuth and strontium on silicon surfaces studied by TXRF

    International Nuclear Information System (INIS)

    Kilian, G.; Kolbesen, B.O.; Pamler, W.; Unger, E.; Hoepfner, A.

    2000-01-01

    Current dielectric film materials (SiO 2 , SiO 2 /Si 3 N 4 ) are one of the limiting factors for the scaling of microelectronic devices in the sub-quartermicron regime, in particular regarding the storage capacitor of dynamic random access memories (DRAMs). Alternative materials comprise films with high ε such as BaSrTiO 3 (BST) or films with ferroelectric behavior such as PbZrTiO 3 (PZT) or SrBi 2 Ta 2 O 9 (SBT). In order to integrate ferroelectric and high ε films into standard CMOS technology it is necessary to investigate possible detrimental effects on performance and reliability. In case of SBT, very little is known about the effect of Ba, Bi and Sr contamination on silicon device technology. Therefore, some aspects of their adsorption, desorption and diffusion behavior at room and higher temperature in inert (N 2 ) and oxidising (O 2 ) ambient have been studied by monitoring the Ba, Bi and Sr concentrations on silicon surfaces by total reflection x-ray fluorescence analysis (TXRF). Ba and Sr are incorporated in the existing or growing oxide during RTA. If O 2 is present the growing oxide on the silicon surface forms a barrier which forces the Bi to diffuse into the bulk. Hence, cross contamination due to gas phase transport may occur in the case of Bi under N 2 atmosphere but is of no concern in the case of Ba and Sr. (author)

  5. Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers.

    Science.gov (United States)

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2014-05-28

    We have successfully developed hybrid piezoelectric paper through fiber functionalization that involves anchoring nanostructured BaTiO3 into a stable matrix with wood cellulose fibers prior to the process of making paper sheets. This is realized by alternating immersion of wood fibers in a solution of poly(diallyldimethylammonium chloride) PDDA (+), followed by poly(sodium 4-styrenesulfonate) PSS (-), and once again in PDDA (+), resulting in the creation of a positively charged surface on the wood fibers. The treated wood fibers are then immersed in a BaTiO3 suspension, resulting in the attachment of BaTiO3 nanoparticles to the wood fibers due to a strong electrostatic interaction. Zeta potential measurements, X-ray diffraction, and microscopic and spectroscopic analysis imply successful functionalization of wood fibers with BaTiO3 nanoparticles without altering the hydrogen bonding and crystal structure of the wood fibers. The paper has the largest piezoelectric coefficient, d33 = 4.8 ± 0.4 pC N(-1), at the highest nanoparticle loading of 48 wt % BaTiO3. This newly developed piezoelectric hybrid paper is promising as a low-cost substrate to build sensing devices.

  6. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    Science.gov (United States)

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  7. BARIUM RECOVERY PROCESS

    Science.gov (United States)

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  8. Barium enema (image)

    Science.gov (United States)

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  9. Esophagram (Barium Swallow Study)

    Science.gov (United States)

    ... drink 1 to 2 cups of barium. The barium is a contrast material that makes liquids show up on the ... MRI Intravenous Contrast Information MRI with or without Contrast Small Bowel Follow Through (SBFT) Tailored Barium Swallow Study The Upper GI Study (GI Series) ...

  10. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    Science.gov (United States)

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  11. Vicinal surfaces for functional nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)], E-mail: tegenkamp@fkp.uni-hannover.de

    2009-01-07

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF{sub 2}, MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. (topical review)

  12. Tailored Barium Swallow Study

    Science.gov (United States)

    ... Different textures of food are often given. The barium is a contrast material that makes the food and liquid show ... MRI Intravenous Contrast Information MRI with or without Contrast Small Bowel Follow Through (SBFT) Tailored Barium Swallow Study The Upper GI Study (GI Series) ...

  13. Electrooptic modulation in thin film barium titanate plasmonic interferometers.

    Science.gov (United States)

    Dicken, Matthew J; Sweatlock, Luke A; Pacifici, Domenico; Lezec, Henri J; Bhattacharya, Kaushik; Atwater, Harry A

    2008-11-01

    We demonstrate control of the surface plasmon polariton wavevector in an active metal-dielectric plasmonic interferometer by utilizing electrooptic barium titanate as the dielectric layer. Arrays of subwavelength interferometers were fabricated from pairs of parallel slits milled in silver on barium titanate thin films. Plasmon-mediated transmission of incident light through the subwavelength slits is modulated by an external voltage applied across the barium titanate thin film. Transmitted light modulation is ascribed to two effects, electrically induced domain switching and electrooptic modulation of the barium titanate index.

  14. Nanoparticles of barium induce apoptosis in human phagocytes.

    Science.gov (United States)

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Colostrum was collected from 24 clinically healthy women (aged 18-35 years). Cell viability, superoxide release, intracellular Ca(2+) release, and phagocyte apoptosis were analyzed in the samples. Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.

  15. Aspiration of Barium Contrast

    OpenAIRE

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient’s medical fil...

  16. Effect of sodium bicarbonate pretreatment on barium coating of mucosa during double contrast barium meal

    International Nuclear Information System (INIS)

    Kinnunen, J.; Toetterman, S.; Kaila, R.; Pietilae, J.; Linden, H.; Tervahartiala, P.

    1983-01-01

    The radiographic pattern of the areae gastricae is produced by barium lying in the intersecting furrows of the gastric mucosal surface. However, if the mucus layer on the gastric mucosa is thick, it interferes with the barium coating of the areae gastricae during double contrast barium meal. As sodium bicarbonate decreases the viscosity of mucus and thus may make the gastric mucus layer thinner, it was evaluated as a pretreatment agent in a routine double contrast upper-gastrointestinal study to improve the visualization of the areae gastricae. In a single blind study, 53 of 106 patients took sodium bicarbonate water mixtures at bedtime the day before and on the morning of the examination. According to the results of the present study mucolysis induced by the used doses of sodium bicarbonate does not significantly affect micromucosal visualization during double-contrast barium meal. (orig.) [de

  17. Study of surfaces and morphologies of proteic sol–gel derived barium aluminate nanopowders: An experimental and computational study

    International Nuclear Information System (INIS)

    Rezende, M.V. dos S.; Arrouvel, C.; Parker, S.C.; Rey, J.F.Q.; Valerio, M.E.G.

    2012-01-01

    BaAl 2 O 4 nanoparticles samples were prepared by sol–gel proteic route. The preparation of the precursor mixture and the formation of the ceramic product were monitored using TG/DTA, X-ray diffraction (XRD), electron microscopy (SEM, TEM). The results show that sol–gel proteic route is a reliable method for the synthesis of pure BaAl 2 O 4 powders and that irregular hexagonal facetted nanoparticles are observed. Atomistic modeling was used to calculate the structures and energies of 24 (hkl) surfaces and to evaluate morphologies of BaAl 2 O 4 at the thermodynamic and pseudo-kinetic equilibrium. The calculations show that the two most stable surfaces are the (001) and (011) with a surface energy of 1.33 J m −2 and 1.36 J m −2 respectively and that the predicted morphologies are in accord with experiment. -- Highlights: ► Experimental and atomistic simulation techniques to study surfaces and morphologies of pure hexagonal BaAl 2 O 4 phase. ► The irregular hexagonal facetted nanoparticles are observed. ► The kinetic morphology is elongated with a hexagonal termination. ► The most stable surfaces are the (001) and (011) with a surface energy of 1.33 J m −2 .

  18. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Vilchis G, J.

    2013-01-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N 2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  19. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  20. Observed Barium Emission Rates

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  1. Aspiration of Barium Contrast

    Directory of Open Access Journals (Sweden)

    Cristina Fuentes Santos

    2014-01-01

    Full Text Available The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient’s medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test.

  2. Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: Comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN).

    Science.gov (United States)

    Sarve, Antaram; Sonawane, Shriram S; Varma, Mahesh N

    2015-09-01

    The present study estimates the prediction capability of response surface methodology (RSM) and artificial neural network (ANN) models for biodiesel synthesis from sesame (Sesamum indicum L.) oil under ultrasonication (20 kHz and 1.2 kW) using barium hydroxide as a basic heterogeneous catalyst. RSM based on a five level, four factor central composite design, was employed to obtain the best possible combination of catalyst concentration, methanol to oil molar ratio, temperature and reaction time for maximum FAME content. Experimental data were evaluated by applying RSM integrating with desirability function approach. The importance of each independent variable on the response was investigated by using sensitivity analysis. The optimum conditions were found to be catalyst concentration (1.79 wt%), methanol to oil molar ratio (6.69:1), temperature (31.92°C), and reaction time (40.30 min). For these conditions, experimental FAME content of 98.6% was obtained, which was in reasonable agreement with predicted one. The sensitivity analysis confirmed that catalyst concentration was the main factors affecting the FAME content with the relative importance of 36.93%. The lower values of correlation coefficient (R(2)=0.781), root mean square error (RMSE=4.81), standard error of prediction (SEP=6.03) and relative percent deviation (RPD=4.92) for ANN compared to those R(2) (0.596), RMSE (6.79), SEP (8.54) and RPD (6.48) for RSM proved better prediction capability of ANN in predicting the FAME content. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples.

    Science.gov (United States)

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  4. Doping of graphite by an alkaline-earth metal to reduce the work function

    NARCIS (Netherlands)

    Baturin, AS; Nikolski, KN; Knyazev, AI; Tchesov, RG; Sheshin, EP

    2004-01-01

    A technique for reducing the work function of a field-emission graphite cathode by doping it by an alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface is proposed. Field-emission tests show that the operating voltage of the doped cathode is

  5. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO 3 single crystals has been studied by means of 18 O 2 / 16 O 2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The

  6. Functionals of finite Riemann surfaces

    CERN Document Server

    Schiffer, Menahem

    1954-01-01

    This advanced monograph on finite Riemann surfaces, based on the authors' 1949-50 lectures at Princeton University, remains a fundamental book for graduate students. The Bulletin of the American Mathematical Society hailed the self-contained treatment as the source of ""a plethora of ideas, each interesting in its own right,"" noting that ""the patient reader will be richly rewarded."" Suitable for graduate-level courses, the text begins with three chapters that offer a development of the classical theory along historical lines, examining geometrical and physical considerations, existence theo

  7. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  8. Spectral K-edge subtraction imaging of experimental non-radioactive barium uptake in bone.

    Science.gov (United States)

    Panahifar, Arash; Samadi, Nazanin; Swanston, Treena M; Chapman, L Dean; Cooper, David M L

    2016-12-01

    To evaluate the feasibility of using non-radioactive barium as a bone tracer for detection with synchrotron spectral K-edge subtraction (SKES) technique. Male rats of 1-month old (i.e., developing skeleton) and 8-month old (i.e., skeletally mature) were orally dosed with low dose of barium chloride (33mg/kg/day Ba 2+ ) for 4weeks. The fore and hind limbs were dissected for imaging in projection and computed tomography modes at 100μm and 52μm pixel sizes. The SKES method utilizes a single bent Laue monochromator to prepare a 550eV energy spectrum to encompass the K-edge of barium (37.441keV), for collecting both 'above' and 'below' the K-edge data sets in a single scan. The SKES has a very good focal size, thus limits the 'crossover' and motion artifacts. In juvenile rats, barium was mostly incorporated in the areas of high bone turnover such as at the growth plate and the trabecular surfaces, but also in the cortical bone as the animals were growing at the time of tracer administration. However, the adults incorporated approximately half the concentration and mainly in the areas where bone remodeling was predominant and occasionally in the periosteal and endosteal layers of the diaphyseal cortical bone. The presented methodology is simple to implement and provides both structural and functional information, after labeling with barium, on bone micro-architecture and thus has great potential for in vivo imaging of pre-clinical animal models of musculoskeletal diseases to better understand their mechanisms and to evaluate the efficacy of pharmaceuticals. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Chelating ligands for nanocrystals' surface functionalization

    NARCIS (Netherlands)

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-01-01

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild

  10. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... single-contrast lower GI series, which uses only barium a double-contrast or air-contrast lower GI series, which uses ... to evenly coat the large intestine with the barium. If you are having a double-contrast lower GI series, the radiologist will inject air ...

  11. Barium toxicosis in a dog.

    Science.gov (United States)

    Adam, Fiona H; Noble, Peter J M; Swift, Simon T; Higgins, Brent M; Sieniawska, Christine E

    2010-09-01

    A 2-year-old 14.9-kg (32.8-lb) neutered female Shetland Sheepdog was admitted to the University of Liverpool Small Animal Teaching Hospital for evaluation of acute collapse. At admission, the dog was tachypneic and had reduced limb reflexes and muscle tone in all limbs consistent with diffuse lower motor neuron dysfunction. The dog was severely hypokalemic (1.7 mEq/L; reference range, 3.5 to 5.8 mEq/L). Clinical status of the dog deteriorated; there was muscle twitching, flaccid paralysis, and respiratory failure, which was considered a result of respiratory muscle weakness. Ventricular arrhythmias and severe acidemia (pH, 7.18; reference range, 7.35 to 7.45) developed. Intoxication was suspected, and plasma and urine samples submitted for barium analysis had barium concentrations comparable with those reported in humans with barium toxicosis. Analysis of barium concentrations in 5 control dogs supported the diagnosis of barium toxicosis in the dog. Fluids and potassium supplementation were administered IV. The dog recovered rapidly. Electrolyte concentrations measured after recovery were consistently unremarkable. Quantification of plasma barium concentration 56 days after the presumed episode of intoxication revealed a large decrease; however, the plasma barium concentration remained elevated, compared with that in control dogs. To our knowledge, this case represented the first description of barium toxicosis in the veterinary literature. Barium toxicosis can cause life-threatening hypokalemia; however, prompt supportive treatment can yield excellent outcomes. Barium toxicosis is a rare but important differential diagnosis in animals with hypokalemia and appropriate clinical signs.

  12. Selective functionalization of patterned glass surfaces

    NARCIS (Netherlands)

    Ploetz, E.; Visser, B.; Slingenbergh, W.; Evers, K.; Martinez-Martinez, D.; Pei, Y. T.; Feringa, B. L.; De Hosson, J. Th. M.; Cordes, T.; van Dorp, W. F.

    2014-01-01

    Tailored writing and specific positioning of molecules on nanostructures is a key step for creating functional materials and nano-optical devices, or interfaces for synthetic machines in various applications. We present a novel approach for the selective functionalization of patterned glass surfaces

  13. Formation of nanocrystalline barium titanate in benzyl alcohol at room temperature.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Vijselaar, Wouter J C; Stawski, Tomasz M; ten Elshof, Johan E

    2014-12-15

    Nanocrystalline barium titanate (8-10 nm crystallite size) was prepared at temperatures of 23-78 °C through reaction of a modified titanium alkoxide precursor in benzyl alcohol with barium hydroxide octahydrate. The room temperature formation of a perovskite phase from solution is associated with the use of benzyl alcohol as solvent medium. The formation mechanism was elucidated by studying the stability and interaction of each precursor with the solvent and with each other using various experimental characterization techniques. Density functional theory (DFT) computational models which agreed well with our experimental data could explain the formation of the solid phase. The stability of the Ti precursor was enhanced by steric hindrance exerted by phenylmethoxy ligands that originated from the benzyl alcohol solvent. Electron microscopy and X-ray diffraction indicated that the crystallite sizes were independent of the reaction temperature. Crystal growth was inhibited by the stabilizing phenylmethoxy groups present on the surface of the crystallites.

  14. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  15. On barium oxide solubility in barium-containing chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V. [Ural Federal Univ., Yekaterinburg (Russian Federation). Inst. of High Temperature Electrochemistry

    2016-11-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl{sub 2}-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl{sub 2}-MCl systems.

  16. Adsorption of Wine Constituents on Functionalized Surfaces.

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A

    2016-10-18

    The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  17. Adsorption of Wine Constituents on Functionalized Surfaces

    Directory of Open Access Journals (Sweden)

    Agnieszka Mierczynska-Vasilev

    2016-10-01

    Full Text Available The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  18. Simplified assessment of segmental gastrointestinal transit time with orally small amount of barium

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Weitang; Zhang, Zhiyong; Liu, Jinbo; Li, Zhen; Song, Junmin; Wu, Changcai [Department of Colorectal Surgery, The First Affiliated Hospital and Institute of Clinical Medicine, Zhengzhou University, 450052 Zhengzhou (China); Wang, Guixian, E-mail: guixianwang@hotmail.com [Department of Colorectal Surgery, The First Affiliated Hospital and Institute of Clinical Medicine, Zhengzhou University, 450052 Zhengzhou (China)

    2012-09-15

    Objective: To determine the effectiveness and advantage of small amount of barium in the measurement of gastrointestinal transmission function in comparison with radio-opaque pallets. Methods: Protocal 1: 8 healthy volunteers (male 6, female 2) with average age 40 ± 6.1 were subjected to the examination of radio-opaque pellets and small amount of barium with the interval of 1 week. Protocol 2: 30 healthy volunteers in group 1 (male 8, female 22) with average age 42.5 ± 8.1 and 50 patients with chronic functional constipation in group 2 (male 11, female 39) with average age 45.7 ± 7.8 were subjected to the small amount of barium examination. The small amount of barium was made by 30 g barium dissolved in 200 ml breakfast. After taking breakfast which contains barium, objectives were followed with abdominal X-ray at 4, 8, 12, 24, 48, 72, 96 h until the barium was evacuated totally. Results: Small amount of barium presented actual chyme or stool transit. The transit time of radio-opaque pallets through the whole gastrointestinal tract was significantly shorter than that of barium (37 ± 8 h vs. 47 ± 10 h, P < 0.05) in healthy people. The transit times of barium in constipation patients were markedly prolonged in colon (61.1 ± 22 vs. 37.3 ± 11, P < 0.01) and rectum (10.8 ± 3.7 vs. 2.3 ± 0.8 h, P < 0.01) compared with unconstipated volunteers. Transit times in individual gastrointestinal segments were also recorded by using small amount of barium, which allowed identifying the subtypes of constipation. Conclusion: The small amount barium examination is a convenient and low cost method to provide the most useful and reliable information on the transmission function of different gastrointestinal segments and able to classify the subtypes of slow transit constipation.

  19. Simplified assessment of segmental gastrointestinal transit time with orally small amount of barium

    International Nuclear Information System (INIS)

    Yuan, Weitang; Zhang, Zhiyong; Liu, Jinbo; Li, Zhen; Song, Junmin; Wu, Changcai; Wang, Guixian

    2012-01-01

    Objective: To determine the effectiveness and advantage of small amount of barium in the measurement of gastrointestinal transmission function in comparison with radio-opaque pallets. Methods: Protocal 1: 8 healthy volunteers (male 6, female 2) with average age 40 ± 6.1 were subjected to the examination of radio-opaque pellets and small amount of barium with the interval of 1 week. Protocol 2: 30 healthy volunteers in group 1 (male 8, female 22) with average age 42.5 ± 8.1 and 50 patients with chronic functional constipation in group 2 (male 11, female 39) with average age 45.7 ± 7.8 were subjected to the small amount of barium examination. The small amount of barium was made by 30 g barium dissolved in 200 ml breakfast. After taking breakfast which contains barium, objectives were followed with abdominal X-ray at 4, 8, 12, 24, 48, 72, 96 h until the barium was evacuated totally. Results: Small amount of barium presented actual chyme or stool transit. The transit time of radio-opaque pallets through the whole gastrointestinal tract was significantly shorter than that of barium (37 ± 8 h vs. 47 ± 10 h, P < 0.05) in healthy people. The transit times of barium in constipation patients were markedly prolonged in colon (61.1 ± 22 vs. 37.3 ± 11, P < 0.01) and rectum (10.8 ± 3.7 vs. 2.3 ± 0.8 h, P < 0.01) compared with unconstipated volunteers. Transit times in individual gastrointestinal segments were also recorded by using small amount of barium, which allowed identifying the subtypes of constipation. Conclusion: The small amount barium examination is a convenient and low cost method to provide the most useful and reliable information on the transmission function of different gastrointestinal segments and able to classify the subtypes of slow transit constipation

  20. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.

    2008-01-01

    and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was rated...... qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P ... barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5%) polyps

  1. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Martirosyan, K.S.; Galstyan, E.; Hossain, S.M.; Wang Yiju; Litvinov, D.

    2011-01-01

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m 2 /g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO 2 . The activation energy for carbon combustion synthesis of BaFe 12 O 19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H c ∼3000 Oe and M s ∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  2. Response Surface Modeling Using Multivariate Orthogonal Functions

    Science.gov (United States)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  3. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S

    1986-01-01

    sulphate helps to connect the intracellular cytoskeleton to the extracellular matrix in focal adhesions. This evidence includes: the co-localization of actin and heparan sulphate proteoglycan during the process of cell spreading, and in isolated focal adhesions; biochemical analyses of a hydrophobic......Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface...

  4. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  5. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  6. Statistical properties of barium stars

    International Nuclear Information System (INIS)

    Hakkila, J.E.

    1986-01-01

    Barium stars are G- and K-giant stars with atmospheric excesses of s-process elements, and a broadband spectral depression in the blue portion of the spectrum. The strength of the λ4554 Ball line is used as a classification parameter known as the Barium Intensity. They have a mean absolute magnitude of 1.0 and a dispersion of 1.2 magnitudes (assuming a Gaussian distribution in absolute magnitude) as measured from secular and statistical parallaxes. These stars apparently belong to a young-disk population from analyses of both the solar reflex motion and their residual velocity distribution, which implies that they have an upper mass limit of around three solar masses. There is no apparent correlation of barium intensity with either luminosity or kinematic properties. The barium stars appear to be preferentially distributed in the direction of the local spiral arm, but show no preference to associate with or avoid the direction of the galactic center. They do not appear related to either the carbon or S-stars because of these tendencies and because of the stellar population to which each type of star belongs. The distribution in absolute magnitude combined with star count analyses implies that these stars are slightly less numerous than previously believed. Barium stars show infrared excesses that correlate with their barium intensities

  7. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  8. Permanent isolation surface barrier: Functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release.

  9. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  10. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  11. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  12. Barium nucleosynthesis in the disk

    Energy Technology Data Exchange (ETDEWEB)

    Twarog, B.A.

    1981-11-15

    The history of Ba production in the disk is discussed, particularly with regard to the apparent constancy of the production rate of Ba relative to Fe over the lifetime of the disk. An infall model of the chemical evolution of Ba/Fe within the disk is constructed under the assumption that the mass function and star formation rate are independent of time and Ba is produced as purely a secondary element. The model not only satisfies the present constraints for the disk, but produces a (Ba/H)-(Fe/H) relation which is consistent with the available observational data. It is shown that the apparent constancy of the Ba/Fe ratio is an artifact of (1) an inadequate and insufficiently accurated data sample, and (2) secondary production of Ba within the disk which is 20 to 80 times less efficient relative to Fe than the production ratio for the halo. The model predicts that stars formed during the transition period between halo and disk should show a Ba/Fe excess relative to the Sun of about a factor of 2. It is concluded that the possible sources of the Ba/Fe overproduction in the halo relative to the disk are incompatible with present theoretical limits on the mass ranges for iron and barium production by stars.

  13. Chelating ligands for nanocrystals' surface functionalization.

    Science.gov (United States)

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  14. Photoexcited-carrier transport in barium strontium titanate/strontium titanate heterostructures

    Science.gov (United States)

    Yan, H.; Wang, J. Y.; Zhang, Z. T.; Yang, B.; Chen, C. L.; Jin, K. X.

    2017-09-01

    Photoexcited-carrier transport properties at the surface and the interface of barium strontium titanate/strontium titanate heterostructures are reported. Under a 365 nm light irradiation, the surfaces of barium strontium titanate films exhibit a metal-to-insulator transition, while the interfaces favor the metallic conduction with increasing temperatures. By analyzing, we consider that these results might be attributed to the intrinsic features of strontium titanate and the polarization state of barium strontium titanate films under the irradiation. Our results would contribute to further understanding of the photocarrier effect at the interface and demonstrate great potential applications in optoelectronic devices of all-oxide heterostructures.

  15. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... No: 2010-8568] INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-149 (Third Review)] Barium... determination to conduct a full five-year review concerning the antidumping duty order on barium chloride from... antidumping duty order on barium chloride from China would be likely to lead to continuation or recurrence of...

  16. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... COMMISSION Barium Chloride From China Determination On the basis of the record\\1\\ developed in the subject... order on barium chloride from China would be likely to lead to continuation or recurrence of material... Barium Chloride from China: Investigation No. 731-TA-149 (Third Review). By order of the Commission...

  17. Rb-Sr age and content of potassium, rubidium strontium, barium, and rare earths in surface material from the Sea of Fertility

    Science.gov (United States)

    Allegre, C. J.; Birck, J. L.; Loubet, M.; Provost, A.

    1974-01-01

    The Luna 16 automatic station returned from the Sea of Fertility a 35 cm long column of lunar surface material. 1 g of the Luna 16 lunar surface material, taken at a depth of 22 cm, consists of fine material: surface material and fine fragments of rocks from 1 to 4 mm in diameter. Analyses made on 17 mg of the fine lunar surface material are presented. The results obtained for the Luna 16 surface material are plotted on the diagram of the isotopic evolution of strontium and show that this surface material is most depleted of radiogenic Sr-87 of all the known lunar surface materials and that the point characterizing Lunar 16 lies somewhat to the right of the line corresponding to an age of 4.6 billion years.

  18. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  19. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining

    International Nuclear Information System (INIS)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R.

    2009-01-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO 3 formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  20. Surface modification using peptide functionalized bilayers

    Science.gov (United States)

    Stroumpoulis, Dimitrios

    Engineering materials that are capable of supporting cell and tissue growth is a challenging task that involves identifying and incorporating biological signals into the material surfaces or scaffolds. One approach towards bioactivity in materials is to mimic the function of the extracellular matrix (ECM) by displaying adhesion promoting oligopeptides. Supported planar bilayers (SPB) are a good platform to study molecular interactions at interfaces, since transmembrane proteins and peptides can be incorporated in a biologically relevant environment with precise control over their concentration and presentation. SPBs can be formed on flat surfaces using the Langmuir-Blodgett (LB) technique or alternatively from vesicle solutions. The fusion of vesicles with solid substrates offers simplicity and enhanced bilayer deposition rates over the LB method, whereas it can also be used with convex and enclosed surfaces. Ellipsometry and a mass transport model were used to investigate the kinetics of SPB formation on silicon dioxide surfaces from 100 nm diameter 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles. For the range of concentrations studied, 0.025 to 0.380 mg/ml, a monotonic increase in the ellipsometric signal with time was observed until saturation and the adsorption rate constant was calculated. Further, a Monte Carlo model was used to simulate the SPB formation process and the computational results were successfully fit to the experimental data. Lipid vesicles displaying RGD peptide amphiphiles were fused onto glass coverslips to control the ability of these surfaces to support cell adhesion and growth. Cell adhesion was prevented on phosphatidylcholine bilayers in the absence of RGD, whereas cells adhered and spread in the presence of accessible RGD amphiphiles. This specific interaction between cells and RGD peptides was further explored in a concentration dependent fashion by creating a surface composition array using a microfluidic device. For the

  1. In vitro experiments for the development of a high density (HD) barium sulfate contrast medium

    International Nuclear Information System (INIS)

    Klein, J.

    1986-01-01

    In vitro experiments with the high-density (HD) barium meal Falibaryt HD are described. Several charges of BaSO 4 were tested together with certain additives influencing dispersion, stability of the suspension, flowability, surface tension etc. Particle size spectra were measured by the manufacturer, VEB Fahlberg-List. With a simple PVC test plate containing several grooves simulating small details (areae gastricae) the diagnostic capabilities of the HD contrast medium were evaluated in an in vitro test. The developed barium meal Falibaryt HD is in its physical and chemical parameters comparable with Prontobario-HD, one of the best HD barium meals. (author)

  2. Preferential affinity of calcium ions to charged phosphatidic acid surface from a mixed calcium/barium solution: X-ray reflectivity and fluorescence studies.

    Science.gov (United States)

    Bu, Wei; Flores, Kevin; Pleasants, Jacob; Vaknin, David

    2009-01-20

    X-ray reflectivity and fluorescence near total reflection experiments were performed to examine the affinities of divalent ions (Ca(2+) and Ba(2+)) from aqueous solution to a charged phosphatidic acid (PA) surface. A phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphate, DMPA), spread as a monolayer at the air/water interface, was used to form and control the charge density at the interface. We find that, for solutions of the pure salts (i.e., CaCl(2) and BaCl(2)), the number of bound ions per DMPA at the interface is saturated at concentrations that exceed 10(-3) M. For 1:1 Ca(2+)/Ba(2+) mixed solutions, we find that the bound Ca(2+)/Ba(2+) ratio at the interface is 4:1. If the only property determining charge accumulation near PA were the ionic charges, the concentration of mixed Ca(2+)/Ba(2+) at the interface would equal that of the bulk. Our results show a clear specific affinity of PA for Ca compared to Ba. We provide some discussion on this issue as well as some implications for biological systems. Although our results indicate an excess of counterion charge with respect to the surface charge, that is, charge inversion, the analysis of both reflectivity and fluorescence do not reveal an excess of co-ions (namely, Cl(-) or I(-)).

  3. Large Flexoelectric Anisotropy in Paraelectric Barium Titanate.

    Science.gov (United States)

    Narvaez, Jackeline; Saremi, Sahar; Hong, Jiawang; Stengel, Massimiliano; Catalan, Gustau

    2015-07-17

    The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above T(C) and up to T*≈200-225 °C. Above T*, however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

  4. Large Flexoelectric Anisotropy in Paraelectric Barium Titanate

    Science.gov (United States)

    Narvaez, Jackeline; Saremi, Sahar; Hong, Jiawang; Stengel, Massimiliano; Catalan, Gustau

    2015-07-01

    The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above TC and up to T*≈2 00 - 2 2 5 °C . Above T* , however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

  5. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full Text Available We describe a case of bilateral inhalation and alveolarisation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-oesophageal cleft. We review the literature on barium aspiration, its consequences and make recommendations for management.

  6. Barium as a potential indicator of phosphorus in agricultural runoff.

    Science.gov (United States)

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p barium (p barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Sulphate removal from industrial effluents through barium sulphate precipitation

    CSIR Research Space (South Africa)

    Swanepoel, H

    2011-11-01

    Full Text Available surface wetland g Gas HiPRO Hi recovery Precipitating Reverse Osmosis l Liquid MBO Magnesium Barium Oxide ORP Oxidation-reduction potential RO Reverse osmosis s Solid SANAS South African National Accreditation System SANS... South African National Standards SEM Scanning electron microscopy SF wetland Subsurface flow wetland SPARRO Slurry precipitation and recycle reverse osmosis SRO Seeded reverse osmosis TDS Total Dissolved Solids WHO World Health...

  8. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity

    DEFF Research Database (Denmark)

    Saei, Amir Ata; Yazdani, Mahdieh; Lohse, Samuel E.

    2017-01-01

    can greatly enhance subsequent therapeutic effects of NPs while diminishing their adverse side effects. In this review, we will focus on the effect of surface functionality on the cellular uptake and the transport of NPs by various subcellular processes.......Engineered nanoparticles (NPs) have opened new frontiers in therapeutics and diagnostics in recent years. The surface functionality of these nanoparticles often predominates their interactions with various biological components of human body, and proper selection or control of surface functionality...

  9. Stainless steel and polyethylene surfaces functionalized with silver nanoparticles.

    Science.gov (United States)

    Fialho, José Fq; Naves, Emiliane Aa; Bernardes, Patrícia C; Ferreira, Deusmaque C; Dos Anjos, Letícia D; Gelamo, Rogério V; de Sá, João Pn; de Andrade, Nélio J

    2018-01-01

    The antimicrobial effects of a stainless steel surface and a polyethylene surface functionalized with silver nanoparticles on the adhesion of different bacteria and the changes in physical and chemical characteristics of these surfaces that influence biofilm formation were evaluated. The functionalized surfaces of polyethylene and stainless steel were more hydrophobic than the control ones. The bacterial surfaces were hydrophilic. The adhesion of all bacteria was thermodynamically favorable (ΔG adhesion functionalized and control. The numbers of adhered cells of Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescens were not significantly different (p > 0.05) between the control and functionalized surfaces, reaching values compatible with biofilm formation. Analysis of atomic absorption spectrometry using water and reconstituted skim milk as simulants showed no release of Ag from the functionalized surfaces. In conclusion, the surfaces that were functionalized with silver nanoparticles were modified in hydrophobicity, roughness, and did not avoid bacterial adhesion. Additional studies of surfaces functionalized with silver nanoparticles should be conducted addressing the adsorption technique of silver nanoparticles on the stainless steel surface as well as in the preparation of the polyethylene surface to allow the contact of microorganism with the antimicrobial agent.

  10. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Hinrichs, Karsten

    2013-01-01

    Ellipsometry is the method of choice to determin the properties of surfaces and thin films. It provides comprehensive and sensitive characterization in a contactless and non-invasive measurements. This book gives a state-of-the-art survey of ellipsometric investigations of organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces.

  11. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  12. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...... and resampling. This is illustrated by searching for meta-GGA type functionals that outperform current meta-GGAs while allowing for error estimation....

  13. Barium-Dispenser Thermionic Cathode

    Science.gov (United States)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  14. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  15. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    International Nuclear Information System (INIS)

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10 -3 at 193 nm, 7.6 x 10 - 4 at 248 nm, 6.1 x 10 -4 at 308 nm, and 4.0 x 10 -4 at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values

  16. Functional superhydrophobic surfaces made of Janus micropillars.

    Science.gov (United States)

    Mammen, Lena; Bley, Karina; Papadopoulos, Periklis; Schellenberger, Frank; Encinas, Noemí; Butt, Hans-Jürgen; Weiss, Clemens K; Vollmer, Doris

    2015-01-21

    We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging.

  17. The use of hydrophobins to functionalize surfaces

    NARCIS (Netherlands)

    Scholtmeijer, K; Janssen, M.I.; van Leeuwen, M.B.M.; van Kooten, T.G.; Hektor, H.; Wosten, H.A B

    2004-01-01

    The physiochemical nature of surfaces can be changed by small proteins which are secreted by filamentous fungi. These proteins, called hydrophobins, are characterized by the presence of eight conserved cysteine residues and a typical hydropathy pattern. Upon contact with a hydrophilic–hydrophobic

  18. Influence of Magnetron Effect on Barium Hexaferrite Thin Layers

    International Nuclear Information System (INIS)

    Hassane, H.; Chatelon, J.P.; Rousseau, J.J; Siblini, A.; Kriga, A.

    2011-01-01

    In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the m agnetron area , one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area. (author)

  19. Synthesis of Barium Titanate Piezoelectric Ceramics for Multilayer Actuators (MLAs

    Directory of Open Access Journals (Sweden)

    Biglar Mojtaba

    2017-12-01

    Full Text Available In this paper the characteristics of BaTiO3 ceramics synthesized by solid state method is presented. In order to receive the monophase ceramics the double activation and calcination were applied. A spray drier was used to granulate the powder of BaTiO3. Isostatic and uniaxial pressing were applied to manufacture the barium titanate pellets. The properties of fabricated BaTiO3 ceramics were determined at different stages of production. After the sintering phase, the hardness, the bending strength, the fracture toughness, and the coefficient of thermal expansion of barium titanate sinter were estimated. The BaTiO3 powder is characterized by spherical grains and the average size of 0.5 μm. The small value of the specific surface area of granulate ensured good properties of material mouldability and finally allowed to receive sinters of high density.

  20. Surface-functionalized mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  1. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  2. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  3. Easier to swallow: pictorial review of structural findings of the pharynx at barium pharyngography.

    Science.gov (United States)

    Tao, Ting Y; Menias, Christine O; Herman, Thomas E; McAlister, William H; Balfe, Dennis M

    2013-01-01

    Barium pharyngography remains an important diagnostic tool in the evaluation of patients with dysphagia. Pharyngography can not only help detect functional abnormalities but also help identify a wide spectrum of structural abnormalities in children and adults. These structural abnormalities may reflect malignant or nonmalignant oropharyngeal, hypopharyngeal, or laryngeal processes that deform or alter normal coated mucosal surfaces. Therefore, an understanding of the normal appearance of the pharynx at contrast material-enhanced imaging is necessary for accurate detection and interpretation of abnormal findings. Congenital malformations are more typically identified in the younger population; inflammatory and infiltrative diseases, trauma, foreign bodies, and laryngeal cysts can be seen in all age groups; and Zenker and Killian-Jamieson diverticula tend to occur in the older population. Squamous cell carcinoma is by far the most common malignant process, with contrast-enhanced imaging findings that depend on tumor location and morphology. Treatments of head and neck cancers include total laryngectomy and radiation therapy, both of which alter normal anatomy. Patients are usually evaluated immediately after laryngectomy to detect complications such as fistulas; later, pharyngography is useful for identifying and characterizing strictures. Deviation from the expected posttreatment appearance, such as irregular narrowing or mucosal nodularity, should prompt direct visualization to evaluate for recurrence. Contrast-enhanced imaging of the pharynx is commonly used in patients who present with dysphagia, and radiologists should be familiar with the barium pharyngographic appearance of the normal pharyngeal anatomy and of some of the processes that alter normal anatomy. © RSNA, 2013.

  4. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    an immunomicroarray for systematic studies of the binding properties of 10 different micro-/nano-sized streptavidin-functionalized beads to a biotin substrate immobilized on SiO2 with or without surface modification SiO2 surface cleaning, immobilized substrate concentration and surface blocking conditions were...

  5. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  6. The spectral function for Mott insulating surfaces

    CERN Document Server

    Manuel, L O; Feiguin, A E; Trumper, A E

    2003-01-01

    We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the sq root 3 x sq root 3 triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low-energy features of magnetic origin with a reduced dispersion approx 10-40 meV compared with the centre-of-mass spectra bandwidth approx 0.2-0.3 eV. Remarkably, we find that the quasiparticle (QP) signal survives only around the magnetic Goldstone modes. Our findings position these silicon surfaces as new candidates for investigation in the search for non-conventional QP excitations.

  7. The spectral function for Mott insulating surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, L O [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis (2000) Rosario (Argentina); Gazza, C J [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis (2000) Rosario (Argentina); Feiguin, A E [Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA (United States); Trumper, A E [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis (2000) Rosario (Argentina)

    2003-05-07

    We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the {radical}3 x{radical} 3 triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low-energy features of magnetic origin with a reduced dispersion {approx}10-40 meV compared with the centre-of-mass spectra bandwidth {approx}0.2-0.3 eV. Remarkably, we find that the quasiparticle (QP) signal survives only around the magnetic Goldstone modes. Our findings position these silicon surfaces as new candidates for investigation in the search for non-conventional QP excitations.

  8. The spectral function for Mott insulating surfaces

    International Nuclear Information System (INIS)

    Manuel, L O; Gazza, C J; Feiguin, A E; Trumper, A E

    2003-01-01

    We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the √3 x√ 3 triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low-energy features of magnetic origin with a reduced dispersion ∼10-40 meV compared with the centre-of-mass spectra bandwidth ∼0.2-0.3 eV. Remarkably, we find that the quasiparticle (QP) signal survives only around the magnetic Goldstone modes. Our findings position these silicon surfaces as new candidates for investigation in the search for non-conventional QP excitations

  9. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    März, Thomas

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  10. Container Surface Evaluation by Function Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-03

    Container images are analyzed for specific surface features, such as, pits, cracks, and corrosion. The detection of these features is confounded with complicating features. These complication features include: shape/curvature, welds, edges, scratches, foreign objects among others. A method is provided to discriminate between the various features. The method consists of estimating the image background, determining a residual image and post processing to determine the features present. The methodology is not finalized but demonstrates the feasibility of a method to determine the kind and size of the features present.

  11. A new double contrast barium enema

    International Nuclear Information System (INIS)

    Park, Jun Sang; Cho, Won Sik; Lee, Sung Woo; Lee, Mun Gyu; Jeon, Jeong Dong; Jaun, Woo Ki; Han, Chung Yul

    1987-01-01

    A new technic of the barium enema was proposed for the better colonic double contrast study with the average 204ml of 50w/v% barium, applied to 109 serial patients. The barium was introduced to sigmoid colon, and then pushed to a mid transverse colon by the air insufflation through an enema syringe, a new device. An advance to cecum is accomplished by the air insufflation and/or the position change of the patient. The barium transfer method was developed for the best spot film exposure, through colon, by the position change of the patient, the tilting of the x-ray table and the air insufflation with the enema syringe. The mean angle of the x-ray table tilted was -10 .deg. at the beginning the barium enema till the barium sent past the splenic flexure, -15 . deg. for the best lateral view of rectum and -18 .deg. for the bet prone PA view of rectosigmoid colon. This was a simple, better and economic double contrast barium enema for the cooperative patients

  12. Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water.

    Science.gov (United States)

    Zhang, Jia; Wang, Yong; Xu, Xiaowen; Yang, Xiurong

    2011-10-07

    A colorimetric probe based on 2-mercaptosuccinic acid-functionalized gold nanoparticles has been developed to exhibit selectivity towards Ca(2+), Sr(2+), and Ba(2+) ions over other metallic cations under specified conditions and finds its practical application in detecting Ca(2+) levels in water.

  13. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    Kinnunen, J.; Pietilae, J.; Ahovuo, J.; Mankinen, P.; Tervahartiala, P.

    1989-01-01

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  15. Surface functionalization of silicone rubber for permanent adhesion improvement.

    Science.gov (United States)

    Roth, Jan; Albrecht, Victoria; Nitschke, Mirko; Bellmann, Cornelia; Simon, Frank; Zschoche, Stefan; Michel, Stefan; Luhmann, Claudia; Grundke, Karina; Voit, Brigitte

    2008-11-04

    The surface properties of poly(dimethyl siloxane) (PDMS) layers screen printed onto silicon wafers were studied after oxygen and ammonia plasma treatments and subsequent grafting of poly(ethylene -alt-maleic anhydride) (PEMA) using X-ray photoelectron spectroscopy (XPS), roughness analysis, and contact angle and electrokinetic measurements. In the case of oxygen-plasma-treated PDMS, a hydrophilic, brittle, silica-like surface layer containing reactive silanol groups was obtained. These surfaces indicate a strong tendency for "hydrophobic recovery" due to the surface segregation of low-molecular-weight PDMS species. The ammonia plasma treatment of PDMS resulted in the generation of amino-functional surface groups and the formation of a weak boundary layer that could be washed off by polar liquids. To avoid the loss of the plasma modification effect and to achieve stabilization of the mechanically instable, functionalized PDMS top layer, PEMA was subsequently grafted directly or after using gamma-APS as a coupling agent on the plasma-activated PDMS surfaces. In this way, long-time stable surface functionalization of PDMS was obtained. The reactivity of the PEMA-coated PDMS surface caused by the availability of anhydride groups could be controlled by the number of amino functional surface groups of the PDMS surface necessary for the covalent binding of PEMA. The higher the number of amino functional surface groups available for the grafting-to procedure, the lower the hydrophilicity and hence the lower the reactivity of the PEMA-coated PDMS surface. Additionally, pull-off tests were applied to estimate the effect of surface modification on the adhesion between the silicone rubber and an epoxy resin.

  16. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  17. A Kind of Nanofluid Consisting of Surface-Functionalized Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Xuefei

    2010-01-01

    Full Text Available Abstract A method of surface functionalization of silica nanoparticles was used to prepare a kind of stable nanofluid. The functionalization was achieved by grafting silanes directly to the surface of silica nanoparticles in silica solutions (both a commercial solution and a self-made silica solution were used. The functionalized nanoparticles were used to make nanofluids, in which well-dispersed nanoparticles can keep good stability. One of the unique characteristics of the nanofluids is that no deposition layer forms on the heated surface after a pool boiling process. The nanofluids have applicable prospect in thermal engineering fields with the phase-change heat transfer.

  18. Effect of mucolytic pretreatment on gastric mucosal coating with barium sulfate in the rat

    International Nuclear Information System (INIS)

    Lindgren, I.; Nevalainen, T.; Maeki, J.; Soederstroem, K.-O.

    1980-01-01

    Freshly prepared isolated rat stomachs were used to examine the adherence of barium sulfate particles to the mucosal surface by scanning electron microscopy. The stomachs were pretreated with sodium bicarbonate alone or in connection with N-acetyl-L-cysteine and then treated with barium sulfate specially designed for double contrast examination of the stomach. The best adhesion of the contrast medium was obtained when the mucosa was pretreated with both the alkaline and mucolytic agent indicating that, for the optimum adherence of the contrast medium, the mucosal surface must be as clean as possible. (Auth.)

  19. Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes.

    Science.gov (United States)

    Hsieh, Chia-Lung; Grange, Rachel; Pu, Ye; Psaltis, Demetri

    2010-03-01

    The second harmonic generation (SHG) active nanocrystals have been demonstrated as attractive imaging probes in nonlinear microscopy due to their coherent, non-bleaching and non-blinking signals with a broad flexibility in the choice of excitation wavelength. For the use of these nanocrystals as biomarkers, it is essential to prepare a chemical interface for specific labeling. We developed a specific labeling scheme for barium titanate (BaTiO3) nanocrystals which we use as second harmonic radiation imaging probes. The specificity was achieved by covalently coupling antibodies onto the nanocrystals. We demonstrate highly specific labeling of the nanocrystal conjugates in an antibody microarray and also the membrane proteins of live biological cells in vitro. The development of surface functionalization and bioconjugation of SHG active nanocrystals provides the opportunities of applying them to biological studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Radiation losses in microwave K{sub u} region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Talwinder [Department of Physics, Lovely Professional University, Phagwara 144411 (India); Kumar, Sachin [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Narang, S.B. [Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005 (India); Srivastava, A.K., E-mail: srivastava_phy@yahoo.co.in [Department of Physics, Lovely Professional University, Phagwara 144411 (India)

    2016-12-15

    Nanocomposites of substituted barium hexaferrite and barium titanate embedded in a polymer were synthesized via emulsion polymerization. The study was performed by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy, a vibrating sample magnetometer and a vector network analyzer. It is found that maximum radiation loss occur at 16.09 GHz (−14.23 dB) frequency owing to the combined effect of conducting polymer, suitable dielectric and magnetic material. This suggests that prepared material is suitable for radiation losses. Micro structural study reveals the presence of all the phases of the compounds comprises composite. Benzene ring absorption band (at 1183 cm{sup −1}) in FT-IR spectra illustrates the presence of polymer. Surface morphology reveals the presence of array of particles encapsulated by the polymer. - Highlights: • Composites having polymer, barium titanate and hexaferrite have been successfully prepared. • Effective radiation absorption and losses have been achieved. • Magnetic properties have made an impact on shielding effectiveness.

  1. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement.

    Science.gov (United States)

    Jammalamadaka, Uday; Tappa, Karthik; Weisman, Jeffery A; Nicholson, James Connor; Mills, David K

    2017-01-01

    Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons.

  2. Time requirement for barium reduction in intussusception

    International Nuclear Information System (INIS)

    Hwang, Hye Eun; Kim, Seung Ho; Kang, In Young; Park, Byoung Lan; Kim, Byoung Geun

    1988-01-01

    During the period between January 1985 and December 1987, barium reduction was performed in 146 cases of intussusception who were admitted to Kwangju Christian Hospital. The results were as follows: 1. Success rate to the symptom duration is relatively constant. 2. The success rate in infants with severe dehydration was 50% but it was gradually increased in infants with moderate dehydration and in infants with mild dehydration, 83.3% and 100% respectively. 3. The success rate of 12 cases in severely dehydrated infants with positive dissection sign was 16.7%. 4. The success rate of 15 cases in moderately dehydrated infants with positive dissection sign was 66.7%. 5. The average time requirement for barium reduction was 58.3 minutes. No serious complications were noted during barium reduction, except mild vomiting. 6. With above results, it is desirable that barium reduction should be performed according to the patient's physical status and radiologic findings.

  3. Barium Isotopes in Single Presolar Grains

    Science.gov (United States)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  4. Barium appendicitis after upper gastrointestinal imaging.

    Science.gov (United States)

    Novotny, Nathan M; Lillemoe, Keith D; Falimirski, Mark E

    2010-02-01

    Barium appendicitis (BA) is a rarely seen entity with fewer than 30 reports in the literature. However, it is a known complication of barium imaging. To report a case of BA in a patient whose computed tomography (CT) scan was initially read as foreign body ingestion. An 18-year-old man presented with right lower quadrant pain after upper gastrointestinal imaging 2 weeks prior. A CT scan was obtained of his abdomen and pelvis that revealed a finding that was interpreted as a foreign body at the area of the terminal ileum. A plain X-ray study of the abdomen revealed radiopaque appendicoliths. Pathology confirmed the diagnosis of barium appendicitis. BA is a rare entity and the pathogenesis is unclear. Shorter intervals between barium study and presentation with appendicitis usually correlate with fewer complications. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. An experimental study on barium peritonitis in rats

    International Nuclear Information System (INIS)

    Kang, Heung Sik; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Barium sulfate is universally used contrast media in gastrointestinal roentgenology, and spillage of barium into peritoneal cavity can occur. The references on effect of barium sulfate in the peritoneal cavity have been scattered and the results are varied. In 80 rats, body weight of 130 gm to 150 gm, sterile pure barium, sterile commercial barium, intestinal content, and mixed pure barium and intestinal content were experimentally injected into the peritoneal cavity. Consecutive weekly laparotomy and microscopic examination were done for 4 weeks. The results are as followings: 1. Mind inflammatory reaction and mild adhesion after sterile pure barium injection. 2. Mild inflammatory reaction and moderate adhesion after sterile commercial barium injection. 3. Acute peritonitis and abscess formation after intestinal content injection. 4. High mortality due to severe acute peritonitis, and severe adhesion in survivors after injection of both pure barium and intestinal content.

  6. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  7. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  8. Functionalized surfaces and nanostructures for nanotechnological applications

    Science.gov (United States)

    2003-01-01

    CMOS roadmap in sight at around 10 nm, combined with the uncertainly principal's limit of Von Neuman electronics at 2 nm, that merely making things smaller will not help us. Replacing CMOS transistors on a one for one basis with some type of nano device would have the effect of drastically increasing fabrication costs, while offering only a marginal improvement over current technologies. However, nanotechnology offers us a way out of this technological and financial cul-de-sac by building devices from the bottom up. Techniques such as self assembly, perhaps assisted by templates created by nano imprint lithography, a notable European success, combined with our understanding of the workings of polymers and molecules such as Rotoxane at the nanoscale open up a whole new host of possibilities. Whether it is avoiding Moore's second law by switching to plastic electronics, or using molecular electronics, our understanding of the behaviour of materials on the scale of small molecules allows a variety of alternative approaches, to produce smarter, cheaper devices. The new understandings will also allow us to design new architectures, with the end result that functionality will become a more valid measure of performance than transistor density or operations per second. 8. Nanotechnology is new It often comes as a surprise to learn that the Romans and Chinese were using nanoparticles thousands of years ago. Similarly, every time you light a match, fullerenes are produced. Degusssa have been producing carbon black, the substance that makes car tyres black and improves the wear resistance of the rubber, since the 1920s. Of course they were not aware that they were using nanotechnology, and as they had no control over particle size, or even any knowledge of the nanoscale they were not using nanotechnology as currently defined. What is new about nanotechnology is our ability to not only see, and manipulate matter on the nanoscale, but our understanding of atomic scale interactions

  9. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  10. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  11. Low work function of the Ca2N surface

    NARCIS (Netherlands)

    Uijttewaal, M.A.; de Wijs, G. A.; Groot, R.A. de

    2004-01-01

    Polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. First-principles calculations demonstrate that the work function of the (1000) surface of the compound Ca2N is half an eV lower than that of the elemental metal

  12. Piezotransistive GaN microcantilevers based surface work function measurements

    Science.gov (United States)

    Bayram, Ferhat; Khan, Digangana; Li, Hongmei; Maksudul Hossain, Md.; Koley, Goutam

    2018-04-01

    Surface work function (SWF) measurements using a piezotransistive III–nitride cantilever has been demonstrated on multiple surfaces. The minimum detectable surface potential change of 10 mV was achieved with a signal to noise ratio of 3. This method was applied to determine the surface potential changes due to exposure of 5 ppm NO2 in graphene and In2O3 thin film, simultaneously with conductivity changes. The potentiometric measurements yielded 100 and 80 mV potential changes in SWFs of graphene and In2O3 respectively, which matches very well with experimental data published earlier indicating the efficacy of this readily miniaturizable measurement technique.

  13. Superhydrophobic surfaces: from natural to biomimetic to functional.

    Science.gov (United States)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2011-01-15

    Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly' wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar to a simple copying or duplicating of biological structures. In this feature article, we review the recent studies in both natural superhydrophobic surfaces and biomimetic superhydrophobic surfaces, and highlight some of the recent advances in the last four years, including the various smart routes to construct rough surfaces, and a lot of chemical modifications which lead to superhydrophobicity. We also review their functions and applications to date. Finally, the promising routes from biomimetic superhydrophobic surfaces in the next are proposed. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  15. Warming barium sulfate improves esophageal leak detection in pig model.

    Science.gov (United States)

    Raman, Vignesh; MacGlaflin, Caitlyn E; Moodie, Karen L; Kaiser, Larry R; Erkmen, Cherie P

    2015-12-01

    Barium esophagograms have poor sensitivity in detecting leaks. We hypothesized that heating barium would decrease viscosity, facilitate extravasation, and enhance its sensitivity in detecting esophageal leaks. We characterized the viscosity of barium at increasing temperatures. We measured the radiopacity of barium at 25°C and 50°C. We determined the smallest diameter defect in esophagus that barium can detect by perforating a porcine esophageal segment with angiocatheters of various diameters, injecting barium at 25°C, and observing extravasation of contrast. We repeated this with barium heated to 30°C, 40°C, 50°C, and 70°C. To determine the ability of barium to detect a staple line leak, we perforated a stapled esophageal segment by air insufflation, injected barium at different temperatures, and monitored extravasation. We used Visipaque, a water-soluble contrast agent, for comparison in all experiments. The viscosity of barium decreased with increasing temperature. The radiopacity of barium did not change with increasing temperature and was higher than that of Visipaque (P detectable leak decreased from 2.1 mm with barium at 25°C to 1.3 mm at 40°C and 1.1 mm with Visipaque (P leak detection increased from 0% for barium at 25°C to 80% (P = 0.02) with barium at 40°C. There was no significant difference in sensitivity between barium at 40°C and Visipaque. Barium warmed to 40°C offers the best sensitivity of esophageal leak detection without compromising radiopacity. Barium at 40°C may be the optimum choice for swallow study to detect esophageal leaks. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  17. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    International Nuclear Information System (INIS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Blázquez, O.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Hernández, S.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Garrido, B.

    2016-01-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  18. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  19. Environmental consequences of the placement of radium-barium sludge in tailings areas

    International Nuclear Information System (INIS)

    Huck, P.M.; Brown, J.R.; Multimaki, G.; Murphy, K.L.

    1982-01-01

    A preliminary evaluation was made of the implications of placing radium-barium sludge in tailings areas. The study was restricted to a consideration of possible increases in the quantities of radionuclides escaping to the environment through either groundwater or surface water, considering the types of tailings treated and the effluent treatment systems currently operating in Canada. It was concluded that the placement of radium/barium sludge in tailings areas should not adversely affect the long-term stability of the radionuclides in the tailings or sludge, based on geochemical inorganic reactions

  20. Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization

    Directory of Open Access Journals (Sweden)

    Peter Dubruel

    2011-01-01

    Full Text Available In the present work, the immobilization of gelatin as biopolymer on two types of implantable biomaterials, polyimide and titanium, was compared. Both materials are known for their biocompatibility while lacking cell-interactive behavior. For both materials, a pre-functionalization step was required to enable gelatin immobilization. For the polyimide foils, a reactive succinimidyl ester was introduced first on the surface, followed by covalent grafting of gelatin. For the titanium material, methacrylate groups were first introduced on the Ti surface through a silanization reaction. The applied functionalities enabled the subsequent immobilization of methacrylamide modified gelatin. Both surface modified materials were characterized in depth using atomic force microscopy, static contact angle measurements, confocal fluorescence microscopy, attenuated total reflection infrared spectroscopy and X-ray photo-electron spectroscopy. The results indicated that the strategies elaborated for both material classes are suitable to apply stable gelatin coatings. Interestingly, depending on the material class studied, not all surface analysis techniques are applicable.

  1. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  2. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  3. Surface functionalization of polyamide fiber via dopamine polymerization

    Science.gov (United States)

    Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang

    2017-09-01

    The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.

  4. Barium ferrite nanoparticles prepared by self-propagating low ...

    Indian Academy of Sciences (India)

    Administrator

    temperature combustion method using ... talline barium ferrite. Keywords. Barium ferrite; self-propagating combustion method; magnetic property; X-ray diffraction; morphology. 1. Introduction .... known that γ-Fe2O3 is a cubic spinel, whose chemical.

  5. Meromorphic functions and cohomology on a Riemann surface

    International Nuclear Information System (INIS)

    Gomez-Mont, X.

    1989-01-01

    The objective of this set of notes is to introduce a series of concepts of Complex Analytic Geometry on a Riemann Surface. We motivate the introduction of cohomology groups through the analysis of meromorphic functions. We finish by showing that the set of infinitesimal deformations of a Riemann surface (the tangent space to Teichmueller space) may be computed as a Cohomology group. (author). 6 refs

  6. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification characteristics. Keywords. Barium ferrite; sintering aid; densification. 1.

  7. Erosion resistance of bionic functional surfaces inspired from desert scorpions.

    Science.gov (United States)

    Zhiwu, Han; Junqiu, Zhang; Chao, Ge; Li, Wen; Ren, Luquan

    2012-02-07

    In this paper, a bionic method is presented to improve the erosion resistance of machine components. Desert scorpion (Androctonus australis) is a typical animal living in sandy deserts, and may face erosive action of blowing sand at a high speed. Based on the idea of bionics and biologic experimental techniques, the mechanisms of the sand erosion resistance of desert scorpion were investigated. Results showed that the desert scorpions used special microtextures such as bumps and grooves to construct the functional surfaces to achieve the erosion resistance. In order to understand the erosion resistance mechanisms of such functional surfaces, the combination of computational and experimental research were carried out in this paper. The Computational Fluid Dynamics (CFD) method was applied to predict the erosion performance of the bionic functional surfaces. The result demonstrated that the microtextured surfaces exhibited better erosion resistance than the smooth surfaces. The further erosion tests indicated that the groove surfaces exhibited better erosion performance at 30° injection angle. In order to determine the effect of the groove dimensions on the erosion resistance, regression analysis of orthogonal multinomials was also performed under a certain erosion condition, and the regression equation between the erosion rate and groove distance, width, and height was established.

  8. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  9. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  10. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...... amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  11. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  13. Synthesis of nanosized barium titanate/epoxy resin composites and ...

    Indian Academy of Sciences (India)

    Barium titanate/epoxy resin composites have been synthesized and tested for microwave absorption/ transmission. Nanocrystalline barium titanate (BaTiO3 or BT) ... Anechoic chamber; barium titanate; electromagnetic interference and compatibility; epoxy resin ..... electromagnetic waves, the two port calibrations have been.

  14. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  15. Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite.

    Science.gov (United States)

    Ross, Ryan D; Roeder, Ryan K

    2011-10-01

    Gold nanoparticles (Au NPs) have been investigated for a number of biomedical applications, including drug and gene delivery vehicles, thermal ablation therapy, diagnostic sensors, and imaging contrast agents. Surface functionalization with molecular groups exhibiting calcium affinity can enable targeted delivery of Au NPs to calcified tissue, including damaged bone tissue. Therefore, the objective of this study was to investigate the binding affinity of functionalized Au NPs for targeted delivery to bone mineral, using hydroxyapatite (HA) crystals as a synthetic analog in vitro. Au NPs were synthesized to a mean particle size of 10-15 nm and surface functionalized with either L-glutamic acid, 2-aminoethylphosphonic acid, or alendronate, which exhibit a primary amine for binding gold opposite carboxylate, phosphonate, or bisphosphonate groups, respectively, for targeting calcium. Bisphosphonate functionalized Au NPs exhibited the most rapid binding kinetics and greatest binding affinity to HA, followed by glutamic acid and phosphonic acid. All functional groups reached complete binding after 24 h. Equilibrium binding constants in de-ionized water, determined by nonlinear regression of Langmuir isotherms, were 3.40, 0.69, and 0.25 mg/L for bisphosphonate, carboxylate, and phosphonate functionalized Au NPs, respectively. Functionalized Au NPs exhibited lower overall binding in fetal bovine serum compared to de-ionized water, but relative differences between functional groups were similar. Copyright © 2011 Wiley Periodicals, Inc.

  16. Preparation and characterization of nanofibers barium strontium titanate using electrospinning route

    International Nuclear Information System (INIS)

    Faraco, B.S.; Engel, A.B.; Alves, A.K.; Bergmann, C.P.

    2011-01-01

    The barium strontium titanate (BST) is a ferroelectric material well known for exhibiting a ferroelectric transition temperature that can be adjusted by varying the Ba /Sr ratio. The reduction of the Curie point can be achieved by the substitution of strontium for barium. Due to the combination of interesting properties, such as high crystallographic orientation of grains and high thermal stability, ferroelectric fibers have attracted considerable interest for their potential use as functional ceramic fibers in the reinforcement of ceramics and metals. The electrospinning process is an effective method for the preparation of nano ceramic fibers with uniform diameter and having different composition. The objective of this work was to product and to characterize the structure and morphology of barium strontium titanate nanofibers made using the electrospinning method. (author)

  17. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    Science.gov (United States)

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  18. Curves and surfaces represented by polynomial support functions

    DEFF Research Database (Denmark)

    Sir, Z.; Gravesen, Jens; Juttler, B.

    2008-01-01

    This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximat...

  19. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    well as applications. One of the special interests of SiNWs is that their surfaces can be easily modified to act as both elec- ... functionalized the SiNWs via nanoscale Joule heat- ing. 23. Shir et al investigated the oxidation of silicon nanowires. 24 .... cording to Vegard's law. 29. Figure 5b presents a TEM image of one single.

  20. Bio-inspired functional surfaces for advanced applications

    DEFF Research Database (Denmark)

    Malshe, Ajay; Rajurkar, Kamlakar; Samant, Anoop

    2013-01-01

    , are being evolved to a higher state of intelligent functionality. These surfaces became more efficient by using combinations of available materials, along with unique physical and chemical strategies. Noteworthy physical strategies include features such as texturing and structure, and chemical strategies...

  1. Scattering function for a model of interacting surfaces

    International Nuclear Information System (INIS)

    Colangelo, P.; Gonnella, G.; Maritan, A.

    1993-01-01

    The two-point correlation function of an ensemble of interacting closed self-avoiding surfaces on a cubic lattice is analyzed in the disordered phase, which corresponds to the paramagnetic region in a related spin formulation. Mean-field theory and Monte Carlo simulations predict the existence of a disorder line which corresponds to a transition from an exponential decay to an oscillatory damped behavior of the two-point correlation function. The relevance of the results for the description of amphiphilic systems in a microemulsion phase is discussed. The scattering function is also calculated for a bicontinuous phase coexisting with the paramagnetic phase

  2. Surface functionalization of detonation nanodiamonds by phosphonic dichloride derivatives.

    Science.gov (United States)

    Presti, Charlene; Alauzun, Johan G; Laurencin, Danielle; Mutin, P Hubert

    2014-08-05

    A new method for the functionalization of detonation nanodiamonds (DNDs) is proposed, on the basis of surface modification with phosphonic dichloride derivatives. DNDs were first modified by phenylphosphonic dichloride, and the grafting modes and hydrolytic stability under neutral conditions were investigated using (1)H, (13)C, and (31)P solid state NMR spectroscopy, Fourier transform infrared spectroscopy, as well as elemental analysis. Then, in order to illustrate the possibilities offered by this method, DNDs functionalized by mesityl imidazolium groups were obtained by postmodification of DNDs modified by 12-bromododecylphosphonic dichloride. The oxidative thermal stability of the functionalized DNDs was investigated using thermogravimetric analysis.

  3. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas.

    Science.gov (United States)

    Li, Yang; Wang, Cong; Yao, Zhao; Kim, Hong-Ki; Kim, Nam-Young

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology.

  4. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites; Adsorcion de Pb(II) presente en solucion acuosa sobre hidroxiapatitas de calcio, estroncio y bario

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis G, J.

    2013-07-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N{sub 2} physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  5. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  6. Silver nanoprisms self-assembly on differently functionalized silica surface

    Science.gov (United States)

    Pilipavicius, J.; Chodosovskaja, A.; Beganskiene, A.; Kareiva, A.

    2015-03-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs.

  7. Minimal models on Riemann surfaces: The partition functions

    International Nuclear Information System (INIS)

    Foda, O.

    1990-01-01

    The Coulomb gas representation of the A n series of c=1-6/[m(m+1)], m≥3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius) 2 of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.)

  8. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  9. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  10. Barium enema with reference to rectal biopsy for the diagnosis and ...

    African Journals Online (AJOL)

    Background: Hirschsprung disease is congenital disease caused by a lack of ganglion cells in the distal bowel wall which results in functional obstruction of the aganglionic segment due to failure of relaxation during peristalsis. Barium enema is the best imaging modality to diagnose Hirschsprung disease but the gold ...

  11. Usage of analytical diagnostics when evaluating functional surface material defects

    Directory of Open Access Journals (Sweden)

    R. Frischer

    2015-10-01

    Full Text Available There are occurring defects due to defects mechanisms on parts of production devices surfaces. Outer defects pronouncement is changing throw the time with unequal speed. This variability of defect’s mechanism development cause that is impossible to evaluate technical state of the device in any moment, without the necessary underlying information. Proposed model is based on analytical diagnostics basis. Stochastic model with usage of Weibull probability distribution can assign probability of function surface defect occurrence on the operational information in any moment basis. The knowledge of defect range limiting moment, then enable when and in what range will be necessary to make renewal.

  12. Plant Surfaces: Structures and Functions for Biomimetic Innovations

    Science.gov (United States)

    Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin

    2017-04-01

    An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology

  13. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    High temperature impedance spectroscopy of barium stannate, BaSnO3. SHAIL UPADHYAY. Department of Physics, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 29 May 2012; revised 14 July 2012. Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a ...

  14. Impurities in barium titanate posistor ceramics

    Czech Academy of Sciences Publication Activity Database

    Korniyenko, S. M.; Bykov, I. P.; Glinchuk, M. J.; Laguta, V. V.; Belous, A. G.; Jastrabík, Lubomír

    2000-01-01

    Roč. 239, - (2000), s. 1209-1218 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z1010914 Keywords : barium titanate phase transition * ESR * positive temperature coefficient of resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.547, year: 2000

  15. Magneto-optical trapping of barium

    NARCIS (Netherlands)

    De, S.; Dammalapati, U.; Jungmann, K.; Willmann, L.

    Laser cooling and trapping of the heavy alkaline-earth-metal element barium has been achieved based on the strong 6s(2) (1)S(0)-6s6p (1)P(1) transition. The excited state decays to a large fraction into metastable D states. Two schemes were implemented where three additional laser-driven transitions

  16. Scattering lengths of calcium and barium isotopes

    NARCIS (Netherlands)

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca

  17. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: April 9, 2010. FOR FURTHER INFORMATION CONTACT: Amy...

  18. Barium Transport Process in Impregnated Dispenser Cathodes.

    Science.gov (United States)

    1982-01-25

    Coupon Indicating Initial Discontinuity in Bariumn Coverage 17 ...... .... aru apo Hae Cuo ......... GsLie ifuso ..4... Fig. 5. SAI! Barium ’tap of a...monitoring. Electronics Research Laboratory: Microelectronics. GaAs low-noise and pover devices, semiconductor lasers. electromagnetic and optical propagation...phenomena, quantum electronics, laser comunications, lidar, and electro-optics; communication sciences, applied electronics, semiconductor crystal

  19. Electrical characterization of zirconium substituted barium titanate ...

    Indian Academy of Sciences (India)

    Nyquist (Cole–Cole) plots show both inter and intra grain boundary ... Ferroelectrics; barium zirconate titanate; complex impedance spectroscopy. ... The impedance plots in the complex plane appear in the form of succe- ssion of semicircles representing electrical phenomena due to the bulk material, grain boundary effect ...

  20. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate cement

    Directory of Open Access Journals (Sweden)

    Jammalamadaka U

    2017-06-01

    Full Text Available Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate (PMMA bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons. Keywords: barium, bone cement, halloysite, imaging, PMMA, sintering

  1. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  2. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  3. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  4. Nanodrop on a nanorough solid surface: Density functional theory considerations

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2008-07-01

    The density distributions and contact angles of liquid nanodrops on nanorough solid surfaces are determined on the basis of a nonlocal density functional theory. Two kinds of roughness, chemical and physical, are examined. The former considers the substrate as a sequence of two kinds of semi-infinite vertical plates of equal thicknesses but of different natures with different strengths for the liquid-solid interactions. The physical roughness involves an ordered set of pillars on a flat homogeneous surface. Both hydrophobic and hydrophilic surfaces were considered. For the chemical roughness, the contact angle which the drop makes with the flat surface increases when the strength of the liquid-solid interaction for one kind of plates decreases with respect to the fixed value of the other kind of plates. Such a behavior is in agreement with the Cassie-Baxter expression derived from macroscopic considerations. For the physical roughness on a hydrophobic surface, the contact angle which a drop makes with the plane containing the tops of the pillars increases with increasing roughness. Such a behavior is consistent with the Wenzel formula developed for macroscopic drops. For hydrophilic surfaces, as the roughness increases the contact angle first increases, in contradiction with the Wenzel formula, which predicts for hydrophilic surfaces a decrease of the contact angle with increasing roughness. However, a further increase in roughness changes nonmonotonously the contact angle, and at some roughness, the drop disappears and only a liquid film is present on the surface. It was also found that the contact angle has a periodic dependence on the volume of the drop.

  5. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    International Nuclear Information System (INIS)

    Fernandes, J.P.; Duarte, G.W.; Caldart, C.; Kniess, C.T.; Montedo, O.R.K.; Rocha, M.R.; Riella, H.G.; Fiori, M.A.

    2015-01-01

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound

  6. Synthesis, characterization, and selective surface functionalization of structured nanoparticles

    OpenAIRE

    Hofmann, Andreas

    2010-01-01

    In this thesis, open questions in the field of nanomaterials are investigated and answered. These topics are focused on the study of doping agents in the crystal lattice of semiconductor nanoparticles, the use of oleic acid coated iron oxide nanoparticles for applications in biological systems, and the regioselective surface functionalization of gold nanoparticles for a controlled linkage of single particles. In order to better understand the spin properties of dopants in the core of sem...

  7. Sortase A-mediated functionalization of nanobodies toward surface coupling

    OpenAIRE

    TA, Duy Tien; STEEN REDEKER, Erik; GUEDENS, Wanda; ADRIAENSENS, Peter

    2013-01-01

    The conserved LPETG motif, at which sortase A-catalyzed transpeptidation occurs, is engineered at the C-terminal region of the variable domain of single-domain heavy chain antibody (or nanobody) against Vascular Cell Adhesion Molecule 1 (VCAM1). The recombinant nanobody can then subsequently be ligated, under sortase A catalysis, to a variety of oligoglycine containing targets, including material surfaces, contrast labeling molecules and molecules functionalized for specific chemical coupling...

  8. Functionalization of the hydroxyapatite nanoparticles surface: source of new applications

    International Nuclear Information System (INIS)

    Rojas Sanchez, Leonardo

    2012-01-01

    The surface of the nano-calcium hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is reacted with stearic acid, succinic anhydride, succinimide and 2 a minoetil dihydrogenphosphate. Introduction of different functional groups is given onto the surface. An ionic interaction is identified by infrared spectroscopy and Raman between the carboxylate groups of the resulting organic molecules and calcium of the hydroxyapatite. The formation of a P-O-P pyrophosphate type bond has been for 2-aminoethyl dihydrogen phosphate with hydroxyapatite groups. Hydroxyapatite phase was remained in all cases after the reaction as demonstrated by diffraction of x-ray in powder. The amount of spiked molecules is quantified by analysis of thermal degradation which together with the determination of the surface area by BET isotherms of nitrogen adsorption. A degree of surface coverage is estimated by the organic molecules. A maximum percentage of 71% is obtained for the functionalization with succinic anhydride, followed by 57% for the reaction with stearic acid. Dilute suspensions of different materials were prepared for which in phosphate buffer solution have presented two populations around 2 and 5 μm in diameter for the modified particles. The ζ-Potential of various materials was determined occurring a variation in the potential of the unmodified hydroxyapatite. The particles with physicochemical properties different of the starting hydroxyapatite were obtained, this has expanded the range of application of the material. (author) [es

  9. Surface functionalization with strontium-containing nanocomposite coatings via EPD.

    Science.gov (United States)

    Ma, Kena; Huang, Dan; Cai, Jing; Cai, Xinjie; Gong, Lingling; Huang, Pin; Wang, Yining; Jiang, Tao

    2016-10-01

    Metal orthopedic implants still face challenges in some compromised conditions, partly due to bio-inertness. The present study aimed to functionalize metallic implants with organic-inorganic nanocomposite (strontium-containing chitosan/gelatin) coatings through a simple single-step electrophoretic deposition under mild conditions. The surface characterization and in vitro cellular response were studied and compared with chitosan/gelatin (CS/G) coatings. SEM images suggested the inorganic nanoparticles may be encapsulated within or mixed with organic polymers. The XRD patterns showed that strontium carbonate was generated in the coatings. The TEM images revealed strontium-containing nanoparticles were released from the coatings in PBS. The continuous release after the initial burst release ensured the enduring effects of the functionalized surface. The tensile bond strength of the coatings to the substrates increased after the addition of strontium. In vitro cellular study confirmed that strontium-containing coatings supported the proliferation of MC3T3-E1 cells and exhibited excellent ability to enhance the differentiation of such pre-osteoblasts. Therefore, such organic-inorganic nanocomposite coatings are a promising candidate to functionalize orthopedic implant surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  11. A Conjectural Generating Function for Numbers of Curves on Surfaces

    Science.gov (United States)

    Göttsche, Lothar

    I give a conjectural generating function for the numbers of δ-nodal curves in a linear system of dimension δ on an algebraic surface. It reproduces the results of Vainsencher [V] for the case δ &\\le 6 and Kleiman-Piene [K-P] for the case δ &\\le 8. The numbers of curves are expressed in terms of five universal power series, three of which I give explicitly as quasimodular forms. This gives in particular the numbers of curves of arbitrary genus on a K3 surface and an abelian surface in terms of quasimodular forms, generalizing the formula of Yau-Zaslow for rational curves on K3 surfaces. The coefficients of the other two power series can be determined by comparing with the recursive formulas of Caporaso-Harris for the Severi degrees in 2. We verify the conjecture for genus 2 curves on an abelian surface. We also discuss a link of this problem with Hilbert schemes of points.

  12. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  13. Orthogonal chemical functionalization of patterned gold on silica surfaces.

    Science.gov (United States)

    Palazon, Francisco; Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane; Chevolot, Yann; Cloarec, Jean-Pierre

    2015-01-01

    Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge.

  14. Orthogonal chemical functionalization of patterned gold on silica surfaces

    Directory of Open Access Journals (Sweden)

    Francisco Palazon

    2015-12-01

    Full Text Available Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica was demonstrated by X-ray photoelectron spectroscopy (XPS as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM. These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors is a major challenge.

  15. Analysis III analytic and differential functions, manifolds and Riemann surfaces

    CERN Document Server

    Godement, Roger

    2015-01-01

    Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular fun...

  16. Barium titanate core--gold shell nanoparticles for hyperthermia treatments.

    Science.gov (United States)

    FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio

    2013-01-01

    The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core-gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0-100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core-gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice.

  17. Synthesis of Barium Titanate Using Deep Eutectic Solvents.

    Science.gov (United States)

    Boston, Rebecca; Foeller, Philip Y; Sinclair, Derek C; Reaney, Ian M

    2017-01-03

    Novel synthetic routes to prepare functional oxides at lower temperatures are an increasingly important area of research. Many of these synthetic routes, however, use water as the solvent and rely on dissolution of the precursors, precluding their use with, for example, titanates. Here we present a low-cost solvent system as a means to rapidly create phase-pure ferroelectric barium titanate using a choline chloride-malonic acid deep eutectic solvent. This solvent is compatible with alkoxide precursors and allows for the rapid synthesis of nanoscale barium titanate powders at 950 °C. The phase and morphology were determined, along with investigation of the synthetic pathway, with the reaction proceeding via BaCl 2 and TiO 2 intermediates. The powders were also used to create sintered ceramics, which exhibit a permittivity maximum corresponding to a tetragonal-cubic transition at 112 °C, as opposed to the more conventional temperature of ∼120 °C. The lower-than-expected value for the ferro- to para-electric phase transition is likely due to undetectable levels of contaminants.

  18. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Science.gov (United States)

    FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio

    2013-01-01

    The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice. PMID:23847415

  19. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  20. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    Science.gov (United States)

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  1. Bionanohybrid based on bioplastic and surface-functionalized carbon nanotubes.

    Science.gov (United States)

    Singh, Ravina; Ray, Suprakas Sinha

    2010-12-01

    A bionanohybrid consisting of biodegradable/biocompatible poly(butylene succinate) (PBS) and surface-oxidized carbon nanotubes (o-CNTs) was prepared via melt-mixing method. The inherent properties of PBS were concurrently improved by the incorporation of a small amount of o-CNTs. For example, at room temperature, elongation at break increased from approximately 21.2% for pure PBS to approximately 55.1% for the nanohybrid and an increase of about approximately 150% in the value of toughness with moderate improvement in tensile modulus and strength. The dynamic mechanical properties of PBS also increased significantly after nanocomposite formation with o-CNTs. Electron microscopy and Raman spectroscopy were used to investigate the mechanical properties and improvement mechanism of surface-functionalized o-CNTs containing PBS nanohybrid.

  2. Toward spatial control of gold nanorod surface functionalization

    Science.gov (United States)

    Eller, Jonathan R.

    Gold nanorods (GNRs) show much promise for applications in biological, optoelectronic and energy applications. The resonant generation of a localized surface plasmon resonance (LSPR) at the GNR surface results in interesting optical properties and unique interactions with molecules. Combined with their biocompatibility, ease of synthesis and facile surface functionalization, these anisotropic metal particles are excellent scaffolds for the study of the interactions between nanoscale surfaces and their chemical/biological environments. Regardless of the application, however, GNR utility will not be fully realized until the chemical nature of the surface is understood and controlled. GNRs can enhance various photophysical properties of molecules. In the case of two-photon absorption (TPA), cross-section enhancements have been shown to increase with strong distance-dependence. Here, a dual approach for the conjugation of a TPA chromophore to GNRs is presented, relying on layer-by- layer (LbL) polymer wrapping and direct thiol coating of the same parent chromophore structure. Together, these approaches allow for estimated chromophore-particle distances from products in the synthesis of site- selective silica-coated GNRs is demonstrated, and the thickness tunability of the resulting core-shell materials is investigated. The redox state of methoxy- terminated poly(ethylene glycol) thiol attached to GNRs is shown to be relevant in guiding the deposition of silica, providing an important insight into the design of anisotropic composite nanomaterials. Surface-initiated Atom transfer radical polymerization (SI-ATRP) is a popular method for grafting polymers from a surface. We demonstrate our ability to grow poly(N-isopropylacrylamide) (PNIPAM) shells on the GNR surface, toward a "smart" thermoresponsive polymer shell. The role of ligand choice, molar ratio of monomer to initiator and polymerization on presence and control of shell thickness are investigated. The introduction

  3. Swarm formation control utilizing elliptical surfaces and limiting functions.

    Science.gov (United States)

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  4. Deflocculants for Tape Casting Barium Titanate.

    Science.gov (United States)

    1983-07-01

    are discussed in detail by Mitchell and Smith (2). The measurement of free and bound water was performed by titration to an electrometric end point by...the dead- stop ( biamperometric ) technique using a Fisher Model 391 aquametry apparatus. The fundamental theory behind this technique is reviewed p in... Titrations were performed at 25 ± 10C. "i 9 For insoluble materials, such as the barium titanate powder, the solid was added to the pyridine solvent

  5. Holographic partition functions and phases for higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Maxfield, Henry; Ross, Simon F; Way, Benson

    2016-01-01

    We describe a numerical method to compute the action of Euclidean saddle points for the partition function of a two-dimensional holographic CFT on a Riemann surface of arbitrary genus, with constant curvature metric. We explicitly evaluate the action for the saddles for genus two and map out the phase structure of dominant bulk saddles in a two-dimensional subspace of the moduli space. We discuss spontaneous breaking of discrete symmetries, and show that the handlebody bulk saddles always dominate over certain non-handlebody solutions. (paper)

  6. Symposium Supramolecular Assemblies on Surface: Nanopatterning, Functionality and Reactivity

    Science.gov (United States)

    2016-05-19

    modules, steer their organisational and dynamic behaviour , and afford novel functions using well-defined homogenous surfaces, textured and sp2...three electron oxidations of singleIndiana University 11:00 AM 11:30 AM Frida 30 Beton, Peter Supramolecular  organisation  on layered semiconductors and...change in oxidation state of the metal. See J. Am. Chem. Soc. 136, 9862 (2014). 1841 - Supramolecular organisation on layered semiconductors and

  7. Fabrication of Bioactive Surfaces by Functionalization of Electroactive and Surface-Active Block Copolymers

    Directory of Open Access Journals (Sweden)

    Omotunde Olubi

    2014-08-01

    Full Text Available Biofunctional block copolymers are becoming increasingly attractive materials as active components in biosensors and other nanoscale electronic devices. We have described two different classes of block copolymers with biofuctional properties. Biofunctionality for block copolymers is achieved through functionalization with appropriate biospecific ligands. We have synthesized block copolymers of electroactive poly(3-decylthiophene and 2-hydroxyethyl methacrylate by atom transfer radical polymerization. The block copolymers were functionalized with the dinitrophenyl (DNP groups, which are capable of binding to Immunoglobulin E (IgE on cell surfaces. The block copolymers were shown to be redox active. Additionally, the triblock copolymer of α, ω-bi-biotin (poly(ethylene oxide-b-poly (styrene-b-poly(ethylene oxide was also synthesized to study their capacity to bind fluorescently tagged avidin. The surface-active property of the poly(ethylene oxide block improved the availability of the biotin functional groups on the polymer surfaces. Fluorescence microscopy observations confirm the specific binding of biotin with avidin.

  8. Analysis and design of functional micro/nano structured surfaces

    Science.gov (United States)

    Xu, Zhenzhen; Kong, Lingbao; Xu, Min

    2016-03-01

    In recent years, more and more attention has been paid to the bionic structure and functional materials. The theoretical research and fabricating ways of the Super-hydrophobic surface have sound achievements. However, the existing methods largely depend on the precision of the equipment and complex chemical substances, and it is hard to ensure the consistence of the material surface. Therefore, construction of microstructure on the surface of the material by using the method of mechanical processing to make the scale of the Super-hydrophobic surface to promote the popularization and application of Super-hydrophobic surface is of great significance. In order to put forward the innovative microstructure and to provide theoretical basis for the subsequent mechanical processing, based on the analysis of the classical theory of Super-hydrophobic, the super-hydrophobic film was by sol gel method. To explore the effects of different ratio of materials on the hydrophobicity, a micro/nano-structured super-hydrophobic coating was obtained by coating a film improved by hexamethyldisilazane (HMDS) after a film improved by polyethylene glycol (PEG) was coated. The microstructure of bilayer films is analyzed, and the double-layer film structure is simplified to design two kinds of microstructure models. For the design of the two models based on the Wenzel and Cassie equations, a roughness factor is adopted to establish the quantitative relationship between the contact angle and the microstructure parameters, and the microstructure parameters is also analyzed by using MATLAB software, and hence the optimized microstructure parameters is obtained.

  9. Frog tongue surface microstructures: functional and evolutionary patterns

    Science.gov (United States)

    Gorb, Stanislav N

    2016-01-01

    Summary Frogs (Lissamphibia: Anura) use adhesive tongues to capture fast moving, elusive prey. For this, the tongues are moved quickly and adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However, despite the general notions about its importance for a successful contact with the prey, little is known about the surface structure of frog tongues. Previous studies focused almost exclusively on species within the Ranidae and Bufonidae, neglecting the wide diversity of frogs. Here we examined the tongue surface in nine different frog species, comprising eight different taxa, i.e., the Alytidae, Bombinatoridae, Megophryidae, Hylidae, Ceratophryidae, Ranidae, Bufonidae, and Dendrobatidae. In all species examined herein, we found fungiform and filiform papillae on the tongue surface. Further, we observed a high degree of variation among tongues in different frogs. These differences can be seen in the size and shape of the papillae, in the fine-structures on the papillae, as well as in the three-dimensional organization of subsurface tissues. Notably, the fine-structures on the filiform papillae in frogs comprise hair-like protrusions (Megophryidae and Ranidae), microridges (Bufonidae and Dendrobatidae), or can be irregularly shaped or absent as observed in the remaining taxa examined herein. Some of this variation might be related to different degrees of adhesive performance and may point to differences in the spectra of prey items between frog taxa. PMID:27547606

  10. BARIUM REDUCTION OF INTUSSUSCEPTION IN INFANCY

    Science.gov (United States)

    Denenholz, Edward J.; Feher, George. S.

    1955-01-01

    Barium enema reduction was used as the initial routine treatment in 29 infants with intussusception. In 22 of them the intussusception was reduced by this means. In three of eight patients operated upon the intussusception was found to be reduced. Four of the remaining five patients had clinical or x-ray evidence of complications before reduction by barium enema was attempted. Twenty-one of the patients, all of whom were observed in private practice, were treated without admission to the hospital. After reduction, these patients were observed closely by the clinician. None of these patients showed clinical or x-ray signs of complications before reduction. Certain clinical and roentgen criteria must be satisfied before it can be concluded that reduction by barium enema is complete. If there are clinical signs of complications with x-ray evidence of small bowel obstruction, only a very cautious attempt at hydrostatic reduction should be made. As the time factor is generally a reliable clinical guide to reducibility, the late cases should be viewed with greater caution. Long duration of symptoms, however, is not per se a contraindication to an attempt at hydrostatic reduction. PMID:13230908

  11. Functional coordination polymers and MOFs from reactions of the lanthanides and barium with azole ligands. Synthesis and characterization with a focus on structure determination from X-ray powder diffraction data; Funktionale Koordinationspolymere und MOFs aus Reaktionen der Lanthanide und des Bariums mit Azol-Liganden. Synthese und Charakterisierung mit dem Fokus der Strukturbestimmung anhand von Roentgenpulverbeugungsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Jens-Christoph

    2012-07-01

    This thesis deals with the synthesis and characterization of coordination polymers and MOFs of the lanthanides and barium with different azolic N-heterocycles. A total of 18 new organic-inorganic hybrid materials, as well as a series of co-doped compounds is presented. Besides the structural characterization of these materials from X-ray diffraction powder data, the focus of the investigations is on the thermal and photoluminescence spectroscopic properties. The lanthanides La - Lu, except Eu and Pm, can be reacted with 1H-1,2,3-triazole to give the series of the isotypic dense 3D-MOFs {sup 3}{sub ∞}[Ln(Tz{sup *}){sub 3}]. Investigation of the photoluminescence properties of these compounds reveals a broad range of different luminescence phenomena, including the first observation of an intrinsic inner-filter effect of the Ln{sup 3+}-ions. The structure of this isotypic series of compounds was solved and refined from X-ray powder diffraction data. A 2D-polymorph of these compounds {sup 2}{sub ∞}[Ln(Tz{sup *}){sub 3}], is observed for Ln = Sm, Tb and was characterized by single crystal data. The reaction of Eu with 1H-benzotriazole yields the 1D-coordination polymer {sup 1}{sub ∞}[Eu(Btz){sub 2}(BtzH){sub 2}], which is the first example of a divalent rare earth benzotriazolate. Analysis of the thermal properties reveals the transformation to the 3D-MOF {sup 3}{sub ∞}[Eu(Btz){sub 2}] at higher temperatures. The structure of this material was also solved from X-ray powder diffraction data. Investigation of the photoluminescence properties of the co-doped compounds {sup 3}{sub ∞}[Ba{sub 1-x}Eu{sub x}(Im){sub 2}], which were obtained from reaction of the salt-like hydrides BaH{sub 2} and EuH{sub 2} with imidazole, show that the synthesis of luminescent MOF materials by co-doping of non-luminescent networks with luminescence centers is possible. The structure of these materials was solved from X-ray powder diffraction data of the undoped compound {sup 3}{sub

  12. Effects of Barium Concentration on Oropharyngeal Swallow Timing Measures

    OpenAIRE

    Stokely, Shauna L.; Molfenter, Sonja M.; Steele, Catriona M.

    2013-01-01

    Videofluoroscopy is commonly used for evaluating oropharyngeal swallowing but requires radiopaque contrast (typically barium). Prior studies suggest that some aspects of swallowing, including timing measures of oral and pharyngeal bolus transit, vary depending on barium concentration. The aim of our study was to identify timing differences in healthy swallowing between “thin” (40 % w/v concentration) and “ultrathin” (22 % w/v concentration) barium solutions. Twenty healthy adults (Ten women; ...

  13. Contrast characteristics of barium preparations and the timing of exposure

    OpenAIRE

    渋谷, 光一; 中桐, 義忠; 東, 義晴; 杉田, 勝彦; 小橋, 高郎; 大倉, 保彦; 丹谷, 延義; 三上, 泰隆; 平木, 祥夫

    1995-01-01

    We studied the relationship between the contrast characteristics of barium suspension and timing of exposure. We poured several kinds of barium preparations on the phantom manufactured by ourselves, and took X-ray pictures continuously by a DSA system. We analyzed each of the characteris-tics of the contrast. The time which was reguired for the contrast to reach the peak (Contrast Peak Time ; CPT) was unrelated with the kind of barium preparations used. It depended on the viscosity of the con...

  14. Barium peritonitis following upper gastrointestinal series: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Su Jin; Hwang, Ji Young; Kim, Yong Jin; Hong, Seong Sook [Soonchunhyang University College of Medicine, Seoul Hospital, Seoul (Korea, Republic of)

    2017-06-15

    We report a rare case of barium peritonitis following an upper gastrointestinal (GI) series and its imaging findings in a 74-year-old female. Barium peritonitis is a rare but life-threatening complication of GI contrast investigation. Therefore, clinical awareness of barium peritonitis as a complication of GI tract contrast investigation would help to prevent such a complication and manage the patients properly.

  15. Ultrasonic de-agglomeration of barium titanate powder.

    Science.gov (United States)

    Marković, S; Mitrić, M; Starcević, G; Uskoković, D

    2008-01-01

    BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders.

  16. Effects of barium concentration on oropharyngeal swallow timing measures.

    Science.gov (United States)

    Stokely, Shauna L; Molfenter, Sonja M; Steele, Catriona M

    2014-02-01

    Videofluoroscopy is commonly used for evaluating oropharyngeal swallowing but requires radiopaque contrast (typically barium). Prior studies suggest that some aspects of swallowing, including timing measures of oral and pharyngeal bolus transit, vary depending on barium concentration. The aim of our study was to identify timing differences in healthy swallowing between "thin" (40 % w/v concentration) and "ultrathin" (22 % w/v concentration) barium solutions. Twenty healthy adults (Ten women; mean age = 31 years) each performed a series of three noncued 5-ml swallows each of ultrathin and thin liquid barium solutions in videofluoroscopy. Timing measures were compared between barium concentrations using a mixed-model ANOVA. The measures of interest were stage transition duration, pharyngeal transit time, and duration of upper esophageal sphincter opening. Significant differences were observed in the timing measures of swallowing with respect to barium concentration. In all cases, longer durations were seen with the higher barium concentration. Barium concentration influences timing parameters in healthy swallowing, even between ultrathin and thin concentrations. Clinicians need to understand and control for the impact of different barium stimuli on swallowing physiology.

  17. History and challenges of barium titanate: Part II

    Directory of Open Access Journals (Sweden)

    Vijatović M.M.

    2008-01-01

    Full Text Available Barium titanate is the first ferroelectric ceramics and a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties. Barium titanate is a member of a large family of compounds with the general formula ABO3 which is called perovskite. Barium titanate can be prepared using different methods. The synthesis method depends on the desired characteristics for the end application and the method used has a significant influence on the structure and properties of barium titanate materials. In this review paper, in Part II the properties of obtained materials and their application are presented.

  18. History and challenges of barium titanate: Part I

    Directory of Open Access Journals (Sweden)

    Vijatović M.M.

    2008-01-01

    Full Text Available Barium titanate is the first ferroelectric ceramics and a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties. Barium titanate is a member of a large family of compounds with the general formula ABO3 called perovskites. Barium titanate can be prepared using different methods. The synthesis method depends on the desired characteristics for the end application. The used method has a significant influence on the structure and properties of barium titanate materials. In this review paper, Part I contains a study of the BaTiO3 structure and frequently used synthesis methods.

  19. Impact of the barium enema examination on patient management

    International Nuclear Information System (INIS)

    Chen, Y.M.; Ott, D.J.; Munitz, H.A.; Gelfand, D.W.

    1986-01-01

    The records of 214 patients who underwent barium enema examinations were reviewed. Indications for the examination, radiographic efficacy, and patient outcome were correlated to determine the impact of barium enema examination on patient management. The most frequent indications were rectal bleeding (33%), abdominal pain (31%), and anemia (17%). Diverticulosis (30%), polyps (10%), and malignancies (12%) were the most common abnormalities detected. The sensitivity of barium enema examination for detecting neoplasms was 89%. The effects on patient management were as follows: serious pathology was excluded (64%); a diagnosis was made that changed therapy (24%); existing therapy was continued (10%); additional studies were ordered (2%). No serious lesion was missed on barium enema examination

  20. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  1. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    Science.gov (United States)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  2. Postural Stability Margins as a Function of Support Surface Slopes.

    Directory of Open Access Journals (Sweden)

    Aviroop Dutt-Mazumder

    Full Text Available This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe Down, 0° Flat and 10°, 20°, 25° Facing (Toe Up and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length had least motion at the baseline (0° Flat platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  3. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  4. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  5. Improving the Performance of Semiconductor Sensor Devices Using Surface Functionalization

    Science.gov (United States)

    Rohrbaugh, Nathaniel W.

    As production and understanding of III-nitride growth has progressed, this class of material has been used for its semiconducting properties in the fields of computer processing, microelectronics, and LEDs. As understanding of materials properties has advanced, devices were fabricated to be sensitive to environmental surroundings such as pH, gas, or ionic concentration. Simultaneously the world of pharmaceuticals and environmental science has come to the age where the use of wearable devices and active environmental sensing can not only help us learn more about our surroundings, but help save lives. At the crossroads of these two fields work has been done in marrying the high stability and electrical properties of the III-nitrides with the needs of a growing sensor field for various environments and stimuli. Device architecture can only get one so far, and thus the need for well understood surface functionalization techniques has arisen in the field of III-nitride environmental sensing. Many existing schemes for functionalization involve chemistries that may be unfriendly to a biological environment, unstable in solution, or expensive to produce. One possible solution to these issues is the work presented here, which highlights a surface modification scheme utilizing phosphonic acid based chemistry and biomolecular attachment. This dissertation presents a set of studies and experiments quantifying and analyzing the response behaviors of AlGaN/GaN field effect transistor (FET) devices via their interfacial electronic properties. Additional investigation was done on the modification of these surfaces, effects of stressful environmental conditions, and the utility of the phosphonic acid surface treatments. Signals of AlGaN/GaN FETs were measured as IDrain values and in the earliest study an average signal increase of 96.43% was observed when surfaces were incubated in a solution of a known recognition peptide sequence (SVSVGMKPSPRP). This work showed that even without

  6. Exchange interactions in barium hexaferrite

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Rusz, J.

    2005-01-01

    Roč. 71, č. 18 (2005), 184433/1-184433/6 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA1010214 Institutional research plan: CEZ:AV0Z10100521 Keywords : hexaferrite s * exchange interaction * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.185, year: 2005

  7. A photometric function of planetary surfaces for gourmets

    Science.gov (United States)

    Shkuratov, Yuriy; Korokhin, Viktor; Shevchenko, Vasilij; Mikhalchenko, Olga; Belskaya, Irina; Kaydash, Vadym; Videen, Gorden; Zubko, Evgenij; Velikodsky, Yuriy

    2018-03-01

    A new photometric model with small number of parameters is presented. The model is based on an assumption that there exist such surfaces for which spatial brightness variations caused by small topography undulations can be reproduced exactly by corresponding spatial variations of albedo. This indistinguishability results in a differential equation suggesting a new photometric function that generalizes, in particular, the Akimov disk-function. Our model provides excellent fits in a wide phase-angle range for integral observations of asteroids of different albedos. We also carried out fitting to integral observations of the Moon and Mercury, confirming difficulties in describing Mercury's phase function at large phase angles, which were also found for the Hapke model. Comparisons of global latitude and longitude trends with our model calculations have shown good coincidence for the Moon. To retrieve the lunar trends, we use the phase-ratio technique, applying it to our telescope observations. Mapping the model parameters using LROC WAC data were carried out for a region comprising the Reiner Gamma formation. This mapping allows us to calculate phase-ratio images of the region, showing at large phase angles systematically steeper phase curves of young craters and smaller steepness for the very Reiner Gamma formation.

  8. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  9. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  10. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  11. Binding and leakage of barium in alginate microbeads.

    Science.gov (United States)

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2009-01-05

    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  13. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    Science.gov (United States)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  14. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei

    2014-01-01

    degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen...... feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...

  15. Surface functionalization and biomedical applications based on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yakimova, R; Petoral, R M Jr; Yazdi, G R; Vahlberg, C; Spetz, A Lloyd; Uvdal, K [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden)

    2007-10-21

    The search for materials and systems, capable of operating long term under physiological conditions, has been a strategy for many research groups during the past years. Silicon carbide (SiC) is a material, which can meet the demands due to its high biocompatibility, high inertness to biological tissues and to aggressive environment, and the possibility to make all types of electronic devices. This paper reviews progress in biomedical and biosensor related research on SiC. For example, less biofouling and platelet aggregation when exposed to blood is taken advantage of in a variety of medical implantable materials while the robust semiconducting properties can be explored in surface functionalized bioelectronic devices. (review article)

  16. Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface

    Directory of Open Access Journals (Sweden)

    Sung-Ho Shin

    2016-10-01

    Full Text Available Palladium (Pd-based hydrogen (H2 gas sensors have been widely investigated thanks to its fast reaction and high sensitivity to hydrogen. Various sensing mechanisms have been adopted for H2 gas sensors; however, all the sensors must be powered through an external battery. We report here an H2 gas sensor that can detect H2 by measuring the output voltages generated during contact electrification between two friction surfaces. When the H2 sensor, composed of Pd-coated ITO (indium tin oxide and PET (polyethylene Terephthalate film, is exposed to H2, its output voltage is varied in proportion to H2 concentration because the work function (WF of Pd-coated surface changes, altering triboelectric charging behavior. Specifically, the output voltage of the sensor is gradually increased as exposing H2 concentration increases. Reproducible and sensitive sensor response was observed up 1% H2 exposure. The approach introduced here can easily be adopted to development of triboelectric gas sensors detecting other gas species.

  17. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  18. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  19. Gluten content of barium sulfate suspensions used for barium swallows in patients with celiac disease.

    Science.gov (United States)

    Chiu, Jennifer G; Shin, Yoona; Patel, Priti N; Mangione, Robert A

    2014-01-01

    To determine the availability and accuracy of information provided by hospitals, imaging centers, and manufacturers regarding gluten in barium sulfate suspensions. A total of 105 facilities were contacted via telephone to determine the gluten content of the contrast media used in those facilities. Manufacturers were contacted and their Web sites reviewed to determine the gluten content of their barium products. Thirty-nine percent of the hospitals and 52% of the imaging centers were not aware of the gluten content of the contrast media they used. Twenty-nine-and-a-half percent of the respondents provided the correct gluten content. The manufacturers noted that 5 products were tested and confirmed gluten free, 1 product was not tested but described as gluten free, 1 product's gluten content depended upon its flavor, and 1 product was reported to contain gluten. Clinicians caring for patients with celiac disease or patients who choose to restrict their gluten consumption must ensure that the barium sulfate suspension ingested is gluten free. It can be difficult to determine the gluten content of barium sulfate, as a majority of radiology departments and imaging centers did not know whether the product they use is gluten free. Educating staff members and improving product labeling would benefit the quality of care provided to patients with celiac disease.

  20. Comparison of barium and gastrograffin swallow for radiation ...

    African Journals Online (AJOL)

    using radio-opaque contrast is a standard step in treatment planning prior to delivering radiation therapy. Various contrast mediums such as barium, gastrograffin and hexabrix have been used for simulation at different centres. Objective. The purpose of the study was to compare barium and gastrograffin as a useful and ...

  1. Study on the preparation and formation mechanism of barium ...

    Indian Academy of Sciences (India)

    This paper reports a simple method to prepare barium sulphate nanoparticles by use of tetradecanoic acid, hexadecanoic acid and stearic acid as modifier. The barium sulphate nanoparticles obtained are characterized by using Fourier transform infra-red spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission ...

  2. Outcome of barium enema in patients with colorectal symptoms ...

    African Journals Online (AJOL)

    Background: For many years, double contrast barium enema has been an effective way to evaluate the large bowel. With the development of the colonoscope, the role of barium enema has been questioned. However it is still useful in investigating patients with colorectal symptoms especially in the developing world where ...

  3. Application of magnesium hydroxide and barium hydroxide for the ...

    African Journals Online (AJOL)

    Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. ... equivalent to the Ba(OH)2 dosage. During CO2-dosing, CaCO3 is precipitated to the saturation level of CaCO3. Keywords: Magnesium hydroxide; barium hydroxide; sulphate removal; water treatment ...

  4. Barium enema findings of milk allergy in infants

    International Nuclear Information System (INIS)

    Kim, Gyoung Ju; Kim, Mi Jeong; Lee, Hee Jung

    2006-01-01

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention

  5. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  6. Dielectric properties of barium titanate supramolecular nanocomposites.

    Science.gov (United States)

    Lee, Keun Hyung; Kao, Joseph; Parizi, Saman Salemizadeh; Caruntu, Gabriel; Xu, Ting

    2014-04-07

    Nanostructured dielectric composites can be obtained by dispersing high permittivity fillers, barium titanate (BTO) nanocubes, within a supramolecular framework. Thin films of BTO supramolecular nanocomposites exhibit a dielectric permittivity (εr) as high as 15 and a relatively low dielectric loss of ∼0.1 at 1 kHz. These results demonstrate a new route to control the dispersion of high permittivity fillers toward high permittivity dielectric nanocomposites with low loss. Furthermore, the present study shows that the size distribution of nanofillers plays a key role in their spatial distribution and local ordering and alignment within supramolecular nanostructures.

  7. Structural and Dynamical Properties of Barium Stannate

    Science.gov (United States)

    Phelan, D.; Krogstad, M. J.; Lopez-Bezanilla, A.; Parshall, D.; Gim, Y.; Cooper, S. L.; Zheng, H.

    Barium stannate based perovskites have recently drawn attention due to their potential as transparent conducting oxides and reports of high carrier mobility in La-doped single crystals. Published DFT calculations and experimental results have suggested phonon instabilities at high symmetry zone boundary positions and local octahedral rotations, respectively, for BaSnO3. Here, we discuss recent structural measurements of BaSnO3, in which we have searched for such distortions by employing a combination of single crystal neutron diffraction and total scattering analysis of powder neutron diffraction. Moreover, we discuss lattice dynamical measurements, comparing phonon dispersion measurements to DFT calculations.

  8. Short-cavity squeezing in barium

    International Nuclear Information System (INIS)

    Hope, D.M.; Bachor, H-A.; Manson, P.J.; Mcclelland, D.E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system

  9. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    Gillham, R.W.; Sharma, H.D.; Reddy, M.R.; Cooper, E.L.; Cherry, J.A.

    1981-05-01

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  10. Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

    2011-12-31

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  11. Barium sulfate aspiration: Severe chemical pneumonia induced by a massive reflux of contrast medium during small bowel barium enema.

    Science.gov (United States)

    Zhang, Lin; Yang, Yi; Zhang, Ji; Zhou, Xiaowei; Dong, Hongmei; Zhou, Yiwu

    2015-08-01

    Barium contrast radiography is a conventional procedure aimed at revealing lesions of the alimentary tract using barium sulfate on X-ray irradiation. Although it is widely used in clinics, adverse effects and complications are observed, such as anaphylaxis, granuloma, fecalithes, abdomen-leaking, embolism, bacterial contamination, and aspiration. We report a case of death due to a massive barium sulfate aspiration resulted from an air-barium double contrast enema radiography. A 25-year-old female patient was hospitalized with symptoms of abdominal distention, nausea, vomiting and diarrhea for three days. A progressive respiratory distress presented only 1h after a small bowel air-barium double contrast enema. The patient died 11h later. The result of autopsy revealed the cause of death to be severe chemical pneumonitis induced by gastric fluid which was aspirated into her lungs. Barium sulfate is generally recognized to be chemically inert for the respiratory system, but a mixture of barium sulfate with gastric contents is fatal. Here we intend to suggest that, when determining the potential cause of death, medical examiners should consider a patient's status quo as well as the possible adverse effects and complications caused by the barium sulfate preparation during gastrointestinal radiography. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Fabrication and Characterization of Carbonized Rice Husk/Barium Titanate Nanocomposites

    Science.gov (United States)

    Melvin, G. J. H.; Wang, Z.; Ni, Q.-Q.; Siambun, N. J.; Rahman, M. M.

    2017-09-01

    Carbon materials were prepared by carbonizing rice husk (RHs) at 2500°C. Few- and multi-layer graphene were obtained from this carbonization process. Barium titanate (BTO) nanoparticles were fabricated by using sol-gel method. Then, the BTO nanoparticles were grafted onto the surface of carbonized rice husk (CRH) to fabricate CRH/BTO nanocomposites. The nanocomposites were characterized using scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman measurement, and X-ray photoelectron spectroscopy (XPS). Based on the broadening of (1 1 0) peak from XRD result, the average crystalline size of BTO nanoparticles were calculated to be 16.5 nm. Coexistence of cubic and tetragonal phase of BTO nanoparticles is expected, based on the XRD and Raman results. From XPS result, carbon, barium, titanium, and oxygen peaks were also observed. The combination of CRH with BTO can integrate the properties of these two components to form nanocomposites for broad applications.

  13. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  14. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  15. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  16. Three barium diphosphonates with 3-D structures

    Science.gov (United States)

    Tuikka, Matti; Haukka, Matti; Ahlgrén, Markku

    2007-06-01

    The gel crystallization method was exploited in this work in order to study the 3-D solid state structures of barium diphosphonates. This technique proved to be an effective tool for the growth of single crystals of diphosphonates for structure analysis. By using this approach, three barium diphosphonates, Ba[HO 3P(CH 2) 2PO 3H] ( 1), Ba 2[O 3P(CH 2) 3PO 3]·3H 2O ( 2) and Ba[HO 3P(CH 2) 4PO 3H] ( 3), with different three dimensional structures, were synthesized and characterized. The structures of compounds 1 and 2 were determined by single crystal X-ray diffraction and the structure of 3 by the powder diffraction method. In the structure of 1, the diphosphonate ligand is completely surrounded by the Ba atoms, which is an unusual arrangement in a diphosphonate system. The structures of 2 and 3 are more conventional. They are organized in typical pillared layers in which the separation of the layers can be adjusted by varying the length of the hydrocarbon chain.

  17. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH, thiol-functionalized graphene (graphene-SH, and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene suspensions, where the gold nanoparticles are deposited on the functionalized graphene surface during their synthesis process. In addition, we compare the influence of surface functionalization on the growth of gold nanoparticles on graphene surface. Transmission electron morphology (TEM and ultraviolet-visible (UV-Vis spectroscopy are employed to study the effect of surface functionalities on AuNPs distribution onto the graphene surface and demonstrate the successful immobilization of AuNPs on graphene surface.

  18. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  19. Effects of barium sulfate as a contrast medium to enterocutaneous fistulas

    International Nuclear Information System (INIS)

    Pelster, F.W.; Reichelt, S.; Arndt, M.; Eising, E.G.

    1989-01-01

    Fistulation following thoracic and epigastric interventions are conservatively treated, as a rule, because of the high rate of complications expected from reoperation. With properly functioning anastomotic transit, insufficiencies usually undergo spontaneous healing, within four to six weeks. Enterocutaneous fistulae developed in 29 of 271 patients with intrathoracic oesophagastric or oesophagojejunal anastomosis. Syringeal ramification into pleural or abdominal cavities were eliminated by means of an absorbable contrast medium, before barium sulphate was orally administered to all patients. Thoracic fistulae were closed after 21.8 days on average, while 20.3 days was the average period required for closure of epigastric fistulae. Barium sulphate was found to stimulate fistular tissue granulation, so that obliteration of the fistular system occurred much sooner, as compared to conservative treatment. The patient's quality of life can thus be improved, and hospitalisation can be shortened. Neither locally delimited nor systemic complications were observed in any of the cases described. (author)

  20. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures.

    Science.gov (United States)

    Zagar, Kristina; Hernandez-Ramirez, Francisco; Prades, Joan Daniel; Morante, Joan Ramon; Rečnik, Aleksander; Ceh, Miran

    2011-09-23

    In this work, we report on the integration of individual BaTiO(3) nanorods into simple circuit architectures. Polycrystalline BaTiO(3) nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO(3) nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO(3) nanorods may be integrated in complex circuit architectures with functional capacities.

  1. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures

    International Nuclear Information System (INIS)

    Zagar, Kristina; Recnik, Aleksander; Ceh, Miran; Hernandez-Ramirez, Francisco; Morante, Joan Ramon; Prades, Joan Daniel

    2011-01-01

    In this work, we report on the integration of individual BaTiO 3 nanorods into simple circuit architectures. Polycrystalline BaTiO 3 nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO 3 nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO 3 nanorods may be integrated in complex circuit architectures with functional capacities.

  2. Radiation doses to patients undergoing barium meal and barium enema examinations

    International Nuclear Information System (INIS)

    Delichas, M. G.; Hatziioannou, K.; Papanastassiou, E.; Albanopoulou, P.; Chatzi, E.; Sioundas, A.; Psarrakos, K.

    2004-01-01

    The radiation doses received by patients during 41 barium meal (BM) and 42 barium enema (BE) examinations in two Greek hospitals are presented. Radiation dose was measured in terms of the dose area product (DAP). The effective dose and doses to certain organs were estimated using the ODS-60 software. Mean total DAP values were found to be 25 ± 11 Gy cm 2 for BM and 60 ± 35 Gy cm 2 for BE examinations, whereas the estimated mean values of effective dose were 8.6 ± 4.0 and 24 ± 16 mSv respectively. DAP to effective dose conversion coefficients were estimated to be 0.34 mSv per Gy cm 2 for BM and 0.41 mSv per Gy cm 2 for BE. (authors)

  3. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  4. Relaxor properties of barium titanate crystals grown by Remeika method

    Science.gov (United States)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle "butterfly wing" BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  5. Functional coordination polymers and MOFs from reactions of the lanthanides and barium with azole ligands. Synthesis and characterization with a focus on structure determination from X-ray powder diffraction data

    International Nuclear Information System (INIS)

    Rybak, Jens-Christoph

    2012-01-01

    This thesis deals with the synthesis and characterization of coordination polymers and MOFs of the lanthanides and barium with different azolic N-heterocycles. A total of 18 new organic-inorganic hybrid materials, as well as a series of co-doped compounds is presented. Besides the structural characterization of these materials from X-ray diffraction powder data, the focus of the investigations is on the thermal and photoluminescence spectroscopic properties. The lanthanides La - Lu, except Eu and Pm, can be reacted with 1H-1,2,3-triazole to give the series of the isotypic dense 3D-MOFs 3 ∞ [Ln(Tz * ) 3 ]. Investigation of the photoluminescence properties of these compounds reveals a broad range of different luminescence phenomena, including the first observation of an intrinsic inner-filter effect of the Ln 3+ -ions. The structure of this isotypic series of compounds was solved and refined from X-ray powder diffraction data. A 2D-polymorph of these compounds 2 ∞ [Ln(Tz * ) 3 ], is observed for Ln = Sm, Tb and was characterized by single crystal data. The reaction of Eu with 1H-benzotriazole yields the 1D-coordination polymer 1 ∞ [Eu(Btz) 2 (BtzH) 2 ], which is the first example of a divalent rare earth benzotriazolate. Analysis of the thermal properties reveals the transformation to the 3D-MOF 3 ∞ [Eu(Btz) 2 ] at higher temperatures. The structure of this material was also solved from X-ray powder diffraction data. Investigation of the photoluminescence properties of the co-doped compounds 3 ∞ [Ba 1-x Eu x (Im) 2 ], which were obtained from reaction of the salt-like hydrides BaH 2 and EuH 2 with imidazole, show that the synthesis of luminescent MOF materials by co-doping of non-luminescent networks with luminescence centers is possible. The structure of these materials was solved from X-ray powder diffraction data of the undoped compound 3 ∞ [BaEu(Im) 2 ]. Structural characterization of materials from X-ray powder diffraction data is an important aspect

  6. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    degrees C and evidence was found for the solidification of the melt at 380-440 degrees C, i.e. simultaneously with the onset of decomposition. Between 400 degrees C and 520 degrees C (Ba(C4H9CO2)(2) decomposes in two main steps, first into BaCO3 with release of C4H9COC4H9 (5-nonanone), whereas final......The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  7. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  8. Investigation of Tooling for Anisotropic Optical Functional Surfaces

    DEFF Research Database (Denmark)

    Li, Dongya; Regi, Francesco; Zhang, Yang

    is assessed by processing the images obtained from a digital microscope Hirox RH-2000 [1]. Figure 1 illustrates the studied surface structure and the microscope. The optical axis of microscope can be tilted within 90 degrees from the horizontal level, which simulates the viewing angle; the analysed surface...

  9. Interactions between acid- and base-functionalized surfaces

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    In this paper we present an AFM force study on interactions between chemically modified surfaces. Surfaces with terminal groups of either NH2 or COOH were obtained by chemisorption of a silane-based compound (3-amino-propyltriethoxysilane) on silica or a thiol compound (11-mercapto undecanoic acid)

  10. Solar Twins and the Barium Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Arumalla B. S.; Lambert, David L., E-mail: bala@astro.as.utexas.edu [W.J. McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712-1205 (United States)

    2017-08-20

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La−Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s -process, the difficulty to replicate higher Ba abundance and normal La−Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measured the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba ii relative to La−Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba ii lines by the upper photospheric layers from where the Ba ii lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba ii lines but the change of microturbulence in the upper photosphere has only a minor affect on La−Sm abundances measured from the weak lines.

  11. Testing of newly developed functional surfaces under pure sliding conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Mohaghegh, Kamran; Grønbæk, J.

    2013-01-01

    -polished counterpart. A number of experiments were carried out at different normal pressures employing for all specimens the same reciprocating movement and the same lubrication. The measured friction forces were plotted against the incremental normal pressure, and the friction coefficients were calculated....... The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0...... the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology...

  12. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges

    NARCIS (Netherlands)

    Bhattacharjee, S.; Rietjens, I.M.C.M.; Singh, M.P.; Atkins, T.M.; Purkait, T.K.; Xu, Z.; Regli, S.; Shukaliak, A.; Clark, R.J.; Mitchell, B.S.; Alink, G.M.; Marcelis, A.T.M.; Fink, M.J.; Veinot, J.G.C.; Kauzlarich, S.M.; Zuilhof, H.

    2013-01-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying

  13. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  14. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  15. Process chain for fabrication of anisotropic optical functional surfaces on polymer components

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    2017-01-01

    This paper aims to introduce a process chain for fabrication of anisotropic optical functional surfaces on polymer products. Thesurface features under investigation are composed of micro serrated ridges. The scope was to maximize the visible contrast betweenhorizontally orthogonal textured surfaces...

  16. Study of the photovoltaic effect in thin film barium titanate

    Science.gov (United States)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1983-01-01

    The feasibility of making non-volatile digital memory devices of barium titanate, BaTiO3, that are integrated onto a silicon substrate with the required ferroelectric film produced by processing, compatible with silicon technology was examined.

  17. Functional surface chemistry of carbon-based nanostructures

    Science.gov (United States)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  18. The Overview of The Electrical Properties of Barium Titanate

    OpenAIRE

    Burcu Ertuğ

    2013-01-01

    The perovskite family includes many titanates used in various electroceramic applications, for example, electronic, electro-optical, and electromechanical applications of ceramics. Barium titanate, perovskite structure, is a common ferroelectric material with a high dielectric constant, widely utilized to manufacture electronic components such as mutilayer capacitors (MLCs), PTC thermistors, piezoelectric transducers, and a variety of electro-optic devices. Pure barium titanate is an insulato...

  19. Microwave assisted organic modification and surface functionalization of Phyllosilicates

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-11-01

    Full Text Available Organically modified phyllosilicates (montmorillonite and palygorskite) using Arquad 2HT-75 surfactant were effectively synthesized utilizing a microwave irradiation technique. The microwave method was successfully used also for the surface...

  20. Cost-effectiveness of barium enemas performed by radiographers

    International Nuclear Information System (INIS)

    Brown, Lorraine; Desai, Sharad

    2002-01-01

    AIM: To assess the cost-effectiveness of barium enemas performed by radiographers compared to those performed by consultant radiologists. METHOD: Prospective study of 200 barium enemas carried out by a senior radiographer and a consultant radiologist. The sample was a consecutive sample of adult out-patients over a 3-month period, with no exclusion. The length of time of the enema and the numbers and grades of staff involved in the procedure were recorded. This was translated into staffing costs using the appropriate pay scales. RESULTS: The barium enemas performed by the superintendent radiographer were more cost-effective than those performed by the consultant radiologist (1406 pounds for 100 radiographer-performed barium enemas compared to 1787 pounds for 100 carried out by the consultant radiologist). CONCLUSION: In terms of staffing costs, radiographers performing barium enemas not only liberates radiologist time, it is also a cost-effective method of providing an out-patient barium enema service. Brown, L. and Desai, S. (2002)

  1. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  2. Effect of ionic strength on barium transport in porous media

    Science.gov (United States)

    Ye, Zi; Prigiobbe, Valentina

    2018-02-01

    Hydraulic fracturing (or fracking) is a well stimulation technique used to extract resources from a low permeability formation. Currently, the most common application of fracking is for the extraction of oil and gas from shale. During the operation, a large volume of brine, rich in hazardous chemicals, is produced. Spills of brine from wells or pits might negatively impact underground water resources and, in particular, one of the major concerns is the migration of radionuclides, such as radium (Ra2+), into the shallow subsurface. However, the transport behaviour of Ra2+ through a reactive porous medium under conditions typical of a brine, i.e., high salinity, is not well understood, yet. Here, a study on the transport behaviour of barium (Ba2+, congener of radium) through a porous medium containing a common mineral such as goethite (FeO(OH)) is presented. Batch and column flood tests were carried out at conditions resembling the produced brine, i.e., large values of ionic strength (I), namely, 1 to 3 mol/kg. The measurements were described with the triple layer surface complexation model coupled with the Pitzer activity coefficient method and a reactive transport model, in the case of the transport tests. The experimental results show that the adsorption of Ba2+ onto FeO(OH) increases with pH but decreases with I and it becomes negligible at the brine conditions. Moreover, even if isotherms show adsorption at large I, at the same conditions during transport, Ba2+ travels without retardation through the FeO(OH) porous medium. The triple layer model agrees very well with all batch data but it does not describe well the transport tests in all cases. In particular, the model cannot match the pH measurements at large I values. This suggests that the chemical reactions at the solid-liquid interface do not capture the mechanism of Ba2+ adsorption onto FeO(OH) at large salinity. Finally, this study suggests that barium, and potentially its congeners, namely, radium

  3. First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach

    Science.gov (United States)

    Smidstrup, Søren; Stradi, Daniele; Wellendorff, Jess; Khomyakov, Petr A.; Vej-Hansen, Ulrik G.; Lee, Maeng-Eun; Ghosh, Tushar; Jónsson, Elvar; Jónsson, Hannes; Stokbro, Kurt

    2017-11-01

    We present an efficient implementation of a surface Green's-function method for atomistic modeling of surfaces within the framework of density functional theory using a pseudopotential localized basis set approach. In this method, the system is described as a truly semi-infinite solid with a surface region coupled to an electron reservoir, thereby overcoming several fundamental drawbacks of the traditional slab approach. The versatility of the method is demonstrated with several applications to surface physics and chemistry problems that are inherently difficult to address properly with the slab method, including metal work function calculations, band alignment in thin-film semiconductor heterostructures, surface states in metals and topological insulators, and surfaces in external electrical fields. Results obtained with the surface Green's-function method are compared to experimental measurements and slab calculations to demonstrate the accuracy of the approach.

  4. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo D. [Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering and Materials Science; Altman, Eric I. [Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3DAFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  5. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  6. On Approximations of Compact Sets of Functions by Algebraic Surfaces

    Science.gov (United States)

    Kudryavtsev, S. N.

    1986-06-01

    This article deals with approximations of certain compact sets of smooth and analytic functions by families of functions depending in a polynomial fashion on parameters. The connection between the accuracy of the approximations of the compact sets by such families and the number of parameters and their degree is studied. Bibliography: 3 titles.

  7. Anastomotic stenosis of the descending colon caused by barium granuloma formation following barium peritonitis: report of a case.

    Science.gov (United States)

    Kitajima, Toshihiro; Tomizawa, Kenji; Hanaoka, Yutaka; Toda, Shigeo; Matoba, Shuichiro; Kuroyanagi, Hiroya; Oota, Yasunori

    2014-11-01

    Anastomotic stricture reportedly often recurs following barium peritonitis, regardless of whether the anastomotic diameter is initially sufficient. However, the causes of repetitive stricture have not been clarified. We report a case that suggests the pathophysiology of recurrent anastomotic strictures following barium peritonitis. The patient was a 39-year-old Japanese man with idiopathic perforation of the descending colon after undergoing an upper gastrointestinal barium contrast study. After emergency peritoneal lavage and diverting colostomy, created using the perforated region, the patient recovered uneventfully and 3 months later, the colostomy was closed and the perforated colon was resected. However, 7 months after colostomy closure, abdominal distention gradually developed, and colonoscopy revealed an anastomotic stricture. The patient was referred to our hospital where he underwent resection of the anastomotic stricture. The surgical specimen exhibited barium granulomas not only in the subserosa of the entire specimen, but also in the submucosa and lamina propria localized in the anastomotic site. These findings suggest that barium was embedded in the submucosa and lamina propria with manipulation of the stapled anastomosis and that the barium trapped in the anastomotic site caused persistent inflammation, resulting in an anastomotic stricture.

  8. The efficacy of steroids for postoperative persistent inflammatory reaction in a patient with barium peritonitis: A case report

    Directory of Open Access Journals (Sweden)

    Hirofumi Kojima

    2017-01-01

    Conclusion: Residual barium in the intraperitoneal cavity causes persistent inflammatory reaction in patients with barium peritonitis. The use of steroids is effective for postoperative persistent inflammation due to the residual barium.

  9. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be

  10. Density functional theory in surface chemistry and catalysis

    Science.gov (United States)

    Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337

  11. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  12. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  13. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    tron-transfer mediator and immobilizing matrices for biological or chemical molecules. 22. The chemical properties of SiNWs surfaces are crucial to their application in mesoscopic electronic devices in terms of stability and transport properties. Currently, many studies have been involved in the modification and reactivity of ...

  14. Biokinetics and effects of barium sulfate nanoparticles.

    Science.gov (United States)

    Konduru, Nagarjun; Keller, Jana; Ma-Hock, Lan; Gröters, Sibylle; Landsiedel, Robert; Donaghey, Thomas C; Brain, Joseph D; Wohlleben, Wendel; Molina, Ramon M

    2014-10-21

    Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO₄ NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of ¹³¹BaSO₄ NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO₄ in rats. We compared the tissue distribution of ¹³¹Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of ¹³¹BaSO₄. Rats were exposed to 50 mg/m³ BaSO₄ aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed. Inhaled BaSO₄ NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO₄ NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO₄ NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO₄ NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated ¹³¹Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected ¹³¹BaSO₄ NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure. Pulmonary exposure to instilled BaSO₄ NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m³) of BaSO₄ NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO₄ NPs were cleared quickly yet

  15. Changes of lead and barium with time in California off-shore basin sediments

    Science.gov (United States)

    No, Amy; Patterson, Clair C.

    1982-11-01

    During ancient times the natural deposition fluxes of lead which can be leached with dilute acid from sediments in Santa Barbara, Santa Monica and San Pedro basins offshore from the Los Angeles Urban complex, were about 0.7, 0.1 and 0.2 μg Pb/cm 2 yr respectively. Since there was little difference in biological productivity in surface waters of these basins, it is proposed that clay is a major transport vehicle for sequestered soluble lead, which then explains why the lead deposition flux within the Santa Barbara basin was so much larger compared to the other basins. The fluxes of silicate mud in the basins in ancient times were about 92, 19 and 30 mg/cm 2 yr in Santa Barbara, Santa Monica and San Pedro basins respectively. Today deposition fluxes of acid soluble lead within these three basins are 3- to 9-fold greater, being about 2.1, 1.1 and 1.8 μg Pb/cm 2 yr respectively, partly in the form of directly deposited large sewage particles, which account for none, 2/3 and 3/4 of the total industrial lead deposition fluxes in the respective basins. Concentrations of leachable lead in varve dated sediment layers increase with time and isotopic compositions of these leads change in accordance with corresponding known changes of isotopic compositions of industrial lead in the Los Angeles atmosphere. Lead remaining in acid leached sediment residues originates from igneous and clay minerals, exhibiting no change in concentration or isotopic composition since pre-industrial times. Deposition fluxes of total barium in sediments among the three basins were proportional to mass deposition fluxes before 1950 in the same manner as for lead. Afterwards, there are barium concentration maxima with time in both Santa Monica and San Pedro Basin sediments which are attributable to industrial sewage rather than to episodic erosion from barium-rich sedimentary evaporite strata exposed locally along the shore. An increase of barium concentrations in present day Santa Barbara basin

  16. Microcapsules with Intrinsic Barium Radiopacity for Immunoprotection and X-ray/CT imaging of Pancreatic Islet Cells

    Science.gov (United States)

    Arifin, D.R.; Manek, S.; Call, E.; Arepally, A.; Bulte, J.W.M.

    2012-01-01

    Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444±21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-L-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mM barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3–4 weeks in vitro, with secreted human C-peptide levels of 0.2–160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. PMID:22444642

  17. Solution-processed barium salts as charge injection layers for high performance N-channel organic field-effect transistors.

    Science.gov (United States)

    Kim, Nam-Koo; Khim, Dongyoon; Xu, Yong; Lee, Seung-Hoon; Kang, Minji; Kim, Jihong; Facchetti, Antonio; Noh, Yong-Young; Kim, Dong-Yu

    2014-06-25

    N-channel organic field-effect transistors (OFETs) have generally shown lower field-effect mobilities (μFET) than their p-type counterparts. One of the reasons is the energetic misalignment between the work function (WF) of commonly used charge injection electrode, i.e. gold (Au), and the lowest unoccupied molecular orbital (LUMO) of n-channel electron-transporting organic semiconductors. Here, we report barium salts as solution-processed interlayers, to improve the electron-injection and/or hole-blocking in top-gate/bottom-contact n-channel OFETs, based on poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-dithiophene)} (P(NDI2OD-T2)) and phenyl-C61-butyric acid methyl ester (PC61BM). Two different barium salts, barium hydroxide (Ba(OH)2) and barium chloride (Ba(Cl)2), are employed as the ultrathin interlayer (∼2 nm); and they effectively tune the WF of Au from 4.9 eV, to as low as 3.5 eV. The resulting n-channel OFETs exhibit significantly improved μFET, approaching 2.6 cm(2)/(V s) and 0.1 cm(2)/(V s) for the best P(NDI2OD-T2) and PC61BM devices, respectively, with Ba(OH)2 as interlayer.

  18. Microcapsules with intrinsic barium radiopacity for immunoprotection and X-ray/CT imaging of pancreatic islet cells.

    Science.gov (United States)

    Arifin, Dian R; Manek, Sameer; Call, Emma; Arepally, Aravind; Bulte, Jeff W M

    2012-06-01

    Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444 ± 21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-l-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mm barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3-4 weeks in vitro, with secreted human C-peptide levels of 0.2-160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Monte Carlo estimation for pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Filipov, D.; Schelin, H.R.; Denyak, V.; Legnani, A.; Ledesma, J.A.; Paschuk, S.A.; Sauzen, J.; Yagui, A.; Hoff, G.; Khoury, H.J.

    2015-01-01

    Fluoroscopic barium meal (BM) series involve an X-ray examination of the esophagus, stomach, and duodenum, by the use of a contrast media – the barium sulfate (BaSO4). They are widely used to observe digestive functions or to diagnose abnormalities such as ulcers; tumors; inflammation of the esophagus, stomach, and duodenum; malrotations; vascular rings; and gastroesophageal reflux disease (a common ailment in children). However, this procedure uses long fluoroscopy times and multiple radiographies, resulting in high effective doses to pediatric patients, whose radiosensitivity and life expectancy are higher than in adults. Based on those data, the aims of the current study are to: determine the P K,A (kerma-area product) values, on the patient chest area, and the effective doses to 5 and 10 years old children. Thirty-seven different pediatric patients were studied and stratified into two group sizes: 5 and 10 years old. For each procedure, the following data was recorded: sex, age and upper chest thickness, from the patients; technical parameters of the procedure (kV, fluoroscopy time and number of radiographies); distances (focus-detector and focus-table) and field size on the examination table. Three pairs of LiF:Mg,Ti thermoluminescent dosimeters were positioned at the center of the child´s sternum. After that, upper chest thickness was subtracted from focus-table distance, so focus-patient distance was obtained. Using the field size on the table and applying similar triangles concepts, the field size on the patient was measured, which was multiplied by the mean kerma (from the dosimeters), so that P K,A could be determined. To estimate the effective dose, P K,A and technical parameters of the procedure (kV, total filtration, focus-detector distance and field size on the patient) were written in a Monte Carlo software simulation. The results of P K,A and effective doses were higher than studies used for comparison, which shows the importance of an

  20. Vitamin D, surface electromyography and physical function in uraemic patients

    DEFF Research Database (Denmark)

    Heaf, J.G.; Mølsted, Stig; Harrison, Adrian Paul

    2010-01-01

    ) under voluntary contractions. Physical function was determined using a 30-second Chair Stand Test and the Short Form 36 quality of life questionnaire. Clinical characteristics were collected from the patient records. Results: Moderate vitamin 25-OHD deficiency (

  1. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng (Texas-HSC); (OKLU)

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  2. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy.

    Science.gov (United States)

    Wang, Zhaohui; Gong, Xiangjun; Ngai, To

    2015-03-17

    Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.

  3. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  4. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  5. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  6. A radiologic evaluation of bladder tumors on barium air double contrast cystography and triple-fractionated cystography

    International Nuclear Information System (INIS)

    Hur, W. J.; Jang, H. Y.; Sol, C. H.; Kim, B. S.

    1984-01-01

    Clinically bladder tumors can be easily diagnosed on cystoscopic examination and biopsy in the patients with silent hematuria, terminal dribbling and dysuria. But for the evaluation of the extent of tumor invasion, the authors performed both barium-air double contrast and triple-fractionated cystography on 16 patients suspected to be bladder tumor on cystoscopic examination in the radiologic department of B.N.U.H. from September 1982 to August 1983. The obtained results were summarized as follows. 1. On barium-air double contrast cystography and triple-fractionated cystography, 13 cases were concluded as bladder tumor, and 3 cases were consistent with the findings of chronic inflammation out of the total 16 cases. 2. After operation of 15 cases, 12 cases were confirmed pathologically as transitional cell carcinoma, 1 case as prostatic hypertrophy, and 2 cases as chronic inflammation. Remaining one was biopsied on cystoscopic examination, and confirmed as chronic inflammation. 3. Among 9 cases of transitional cell carcinoma having the evidence of muscle invasion on triple- fractionated cystography, 8 cases were confirmed as more than stage B 1 on pathologic study, and the other as chronic inflammation. 4. In detecting multiplicity, presence of ulceration, and evaluation of nature of tumor surface, barium- air double contrast cystogrpahy was more excellent than cystoscopic results. 5. Cases presenting both ulceration and cauliflower appearance on barium- air double contrast cystography was more than grade III on microscopic evaluation. 6. In conclusion, the authors considers the barium-air double contrast and triple-fractionated cystography are easy to perform, reasonable in price and have relatively high accuracy in tumor detection, staging and grading.

  7. In vitro tests of barium sulphate suspensions for double contrast examinations of the stomach

    International Nuclear Information System (INIS)

    Treugut, H.; Huebener, K.H.

    1980-01-01

    Four barium sulphate suspensions were investigated with respect to their adhesion and contrast following standard means of spreading the contrast over a model stomach, which corresponds in its detailed structure with the surface of the gastric mucosa. By this means various factors, which make a true comparison in vivo impossible, could be eliminated and a comparison of the suspensions became possible. Using similar mechanical and chemical situations, the radiographs of the artificial mucosa showed very different results from the use of the different preparations. These corresponded well with the findings in vivo. (orig.) [de

  8. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  9. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications.

    Science.gov (United States)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H

    2014-06-21

    Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.

  10. Graphs on Surfaces and the Partition Function of String Theory

    OpenAIRE

    Garcia-Islas, J. Manuel

    2007-01-01

    Graphs on surfaces is an active topic of pure mathematics belonging to graph theory. It has also been applied to physics and relates discrete and continuous mathematics. In this paper we present a formal mathematical description of the relation between graph theory and the mathematical physics of discrete string theory. In this description we present problems of the combinatorial world of real importance for graph theorists. The mathematical details of the paper are as follows: There is a com...

  11. Development of smart functional surfaces for biosensor applications

    Science.gov (United States)

    Sokkalinga Balasubramanian, Shankar Ganesh

    Biosensing platforms and antimicrobial coatings were developed to combat problems associated with infectious diseases. Particularly, a lytic bacteriophage based surface plasmon resonance (SPR) biosensor was developed to detect food borne pathogen Staphylococcus aureus (S.aureus) in real-time with high specificity. Lytic bacteriophages are naturally developed molecular probes that infect bacteria. They are environmentally stable and inexpensive to produce compared to commercially available antibodies. The sensitivity of SPR biosensors were further improved specifically by poly-L-lysine grafted polyethylene glycol (PLL-g-PEG) polymer. This polymer reduces non-specific adsorption of S.aureus on SPR gold surface by ˜97%. When used as a blocking buffer in affinity sensing of model antigen, beta-galactosidase by filamentous bacteriophage, this polymer improved the detection sensitivity by 2 to 3 orders of magnitude. A facile approach was developed for sensor surface regeneration by controlling the immobilization and removal of antibodies from SPR gold surface. This was facilitated by the electro-reductive nature of alkanethiols. By combining SPR with electrochemical methods, the molecular assembly/disassembly processes were monitored in real-time with great control. Finally, single-walled carbon nanotube (SWNT) biocomposites were prepared using DNA and lysozyme (LSZ) to develop mechanically strong antimicrobial coatings. Coulombic interactions between DNA and LSZ were exploited to fabricate multilayer antimicrobial coatings using a technique called layer-by-layer assembly. This produced large scale biomimetic coatings with significant antimicrobial activity, high Young's modulus and controlled morphology which combines the individual attributes of SWNTs and natural materials.

  12. Functionalization of silicon crystal surface by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Jastrabík, Lubomír; Vorlíček, Vladimír; Chvostová, Dagmar; Potůček, Zdeněk; Narumi, K.; Naramoto, H.

    2012-01-01

    Roč. 12, č. 12 (2012), s. 9136-9141 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : cluster impacts * silicon * surface * quantum dots * light emission Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2012

  13. Relationships between surface energy analysis and functional characteristics of dairy powders.

    Science.gov (United States)

    Kondor, Anett; Hogan, Sean A

    2017-12-15

    Surface energetics of demineralised whey (DMW), skimmed milk (SMP), phosphocasein (PCN) and infant milk formula (IMF) powders were determined by inverse gas chromatography (IGC). All four milk powders were amphoteric in nature with the dispersive (apolar) component of surface energy dominating the specific (polar) contribution. PCN and IMF had the highest and lowest extent of surface heterogeneity, respectively. PCN also demonstrated the poorest functional properties of the powders examined. In contrast, IMF had excellent flow and rehydration properties. Thermodynamic work of cohesion was highest in PCN and may have contributed to inadequate rehydration behaviour. Glass transition temperature of IMF powder, determined by IGC, suggested a surface dominated by lactose. Surface heterogeneity provided a better indicator of functional behaviour than total surface energy. IGC is a useful complementary technique for chemical and structural analysis of milk powders and allows improved insight into the contribution of surface and bulk factors to functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effectiveness of therapeutic barium enema for diverticular hemorrhage.

    Science.gov (United States)

    Matsuura, Mizue; Inamori, Masahiko; Nakajima, Atsushi; Komiya, Yasuhiko; Inoh, Yumi; Kawasima, Keigo; Naitoh, Mai; Fujita, Yuji; Eduka, Akiko; Kanazawa, Noriyoshi; Uchiyama, Shiori; Tani, Rie; Kawana, Kennichi; Ohtani, Setsuya; Nagase, Hajime

    2015-05-14

    To evaluate the effectiveness of barium impaction therapy for patients with colonic diverticular bleeding. We reviewed the clinical charts of patients in whom therapeutic barium enema was performed for the control of diverticular bleeding between August 2010 and March 2012 at Yokohama Rosai Hospital. Twenty patients were included in the review, consisting of 14 men and 6 women. The median age of the patients was 73.5 years. The duration of the follow-up period ranged from 1 to 19 mo (median: 9.8 mo). Among the 20 patients were 11 patients who required the procedure for re-bleeding during hospitalization, 6 patients who required it for re-bleeding that developed after the patient left the hospital, and 3 patients who required the procedure for the prevention of re-bleeding. Barium (concentration: 150 w%/v%) was administered per the rectum, and the leading edge of the contrast medium was followed up to the cecum by fluoroscopy. After confirmation that the ascending colon and cecum were filled with barium, the enema tube was withdrawn, and the patient's position was changed every 20 min for 3 h. Twelve patients remained free of re-bleeding during the follow-up period (range: 1-19 mo) after the therapeutic barium enema, including 9 men and 3 women with a median age of 72.0 years. Re-bleeding occurred in 8 patients including 5 men and 3 women with a median age of 68.5 years: 4 developed early re-bleeding, defined as re-bleeding that occurs within one week after the procedure, and the remaining 4 developed late re-bleeding. The DFI (disease-free interval) decreased 0.4 for 12 mo. Only one patient developed a complication from therapeutic barium enema (colonic perforation). Therapeutic barium enema is effective for the control of diverticular hemorrhage in cases where the active bleeding site cannot be identified by colonoscopy.

  15. Pyro- and electromagnetic effects in ferrite/barium titanate composite

    Directory of Open Access Journals (Sweden)

    Andrey A. Pan'kov

    2016-09-01

    Full Text Available New solutions for tensors of effective pyroelectromagnetic properties of piezoactive composites on the basis of boundary value problem solution for electromagnetic elasticity have been obtained. For the solution of the boundary value problem, new solutions for singular components of the second derivative Green functions for displacements, electric and magnetic potentials in homogeneous transversal isotropic piezoelectromagnetic medium with ellipsoidal grain of heterogeneity have been used. Calculation results on the concentration dependences for effective coefficients of pyromagnetic and electromagnetic coherence of ferrite/barium titanate composite with ellipsoidal, spherical and fibrous inclusions for various polydisperse structures and those of a layered structure composite have been presented. Considerable influence of the shape of the inclusions, features of relative positioning and inversion of the properties of phases on the effective coefficients of pyromagnetic and electromagnetic coherence of the composite material have been revealed. The conclusion is drawn on the preferable use of the pyroelectric phase as spherical inclusions, and ferrite as the composite matrix. This allows for more than a fivefold increase in the effective constant of pyromagnetic coherence of the composite material in comparison with its value for the same structure but with inversion of properties of phases for constant volume fractions of the ferrite and pyroelectric phases.

  16. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tao [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Liu, Yong [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Zhu, Yan, E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Yang, De-Quan, E-mail: dequan.yang@gmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Sacher, Edward [Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2017-07-31

    Highlights: • A two-step process has been developed to enhance the adhesion of immobilized Ag NPs to the PET surface. • The method is simple, easy to use and low-cost for mass production. • The increased density of active sites (−OH, −CH=O and COOH) at the PET surface, after plasma treatment, permits increased reaction with 3-aminopropyltriethoxysilane (APTES). • The presence of APTES with high surface density permits −NH{sub 2}-Ag complex formation, increasing the adhesion of the Ag NPs. - Abstract: Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (−OH, −CH=O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose −NH{sub 2} groups were then able to form a bonding complex with the Ag NPs.

  17. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus

    2016-01-01

    be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry.......2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces....

  18. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    International Nuclear Information System (INIS)

    Siddabattuni, Sasidhar; Schuman, Thomas P.; Dogan, Fatih

    2011-01-01

    Highlights: → A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. → A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T g measurements. → Composite T g was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. → A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. → The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm 3 .

  19. Calorimetric study of phase transitions in ocylcyanobiphenyl-barium titanate nanoparticle dispersions.

    Science.gov (United States)

    Sigdel, Krishna P; Iannacchione, Germano S

    2013-11-28

    High-resolution ac-calorimetry is reported on the weakly first-order isotropic to nematic (I-N) and the continuous nematic to smectic-A (N-SmA) phase transitions in the liquid crystal octylcyanobiphenyl (8CB) doped with a ferroelectric nanoparticle barium titanate, BaTiO3 (BT). Measurements were performed as a function of BT concentration and over a wide temperature range well above and below the two transitions. From the thermal scans of all samples (having BT mass fraction φ(m) = 0.001 to 0.014 and pure 8CB), both the I-N and the N-SmA transitions evolve in character. Specifically, there appears an unusual change of the I-N specific heat peak shape on heating as φ(m) increases. Both the transitions shift to lower temperature at a different rate for φ(m)φ(m)(c). The effective transition enthalpies are essentially constant and similar to that seen in the bulk. Using a simple geometric model, the mean distance between the BT particles at the cross-over φ(m)(c) is found to be x(c)~3 μm, which is consistent with an estimated surface extrapolation length b for the nematic director. This suggests that the low φ(m) regime is dominated by an impurity/disorder effect while for φ(m)>φ(m)(c) the mean distance is small enough for the LC to mediate coupling between the BT ferroelectric nanoparticles.

  20. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  1. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    Magneto-resistive sensors capable of detecting superparamagnetic micro-/nano-sized beads are promising alternatives to standard diagnostic assays based on absorbance or fluorescence and streptavidin-functionalized beads are widely used as an integral part of these sensors. Here we have developed ...

  2. High Dispersion Barium Sulfate Nanoparticles Prepared with Dodecyl Benzene Sulfonic Acid

    Science.gov (United States)

    Li, Ying; Wang, Xuanjun; Cui, Yibin; Ma, Wenxin; Guo, Heng

    2012-01-01

    Production of nanoparticles by precipitation is a relatively simple process but the control of product particle size distribution is difficult. In this paper, nanosize barium sulfate (BaSO4) particles are prepared with dodecyl benzene sulfonic acid (DBSA) in ethanol-water reaction system at room temperature. The BaSO4 nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), powder X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA), respectively. The results indicated that the average diameter of spherical BaSO4 is about 46 nm modified with 5 wt.% DBSA, which have good dispersion in the presence of a certain concentration NH3 ṡ H2O. It suggests that the high dispersion is attributed to presence of a thin layer of barium alkyl sulfate, which is formed and coated onto the surface of BaSO4 particles during the reaction process. The thin films on the surface of the BaSO4 effectively modified the surface and properties, which also control the particle size and morphology.

  3. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Reed, David [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nie, Zimin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Schwarz, Ashleigh M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nandasiri, Manjula I. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Kizewski, James P. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Wang, Wei [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Thomsen, Edwin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Sprenkle, Vincent [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Li, Bin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA

    2016-05-17

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  4. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets

    Directory of Open Access Journals (Sweden)

    N Jiao

    2012-06-01

    Full Text Available Using first-principles calculations within the framework of density-functional theory, we studied the modulation effect of hydrogen/fluorine chemical decoration on the surface work function of BN sheets. We found that the difference in the work function (ΔWBN between two surfaces of the chair structure varies with the different decoration. Geometric distortion and chemical effects cause opposite modulation effects, and the chemical effect plays a leading role by inducing charge redistribution in the system.

  5. Surface Tension of Nonideal Binary Liquid Mixtures as a Function of Composition.

    Science.gov (United States)

    Nath

    1999-01-01

    The composition dependence of the surface tension of highly nonideal organic-organic and aqueous-organic nonelectrolyte solutions is described, based on the assumption that the surface layer can be treated as a separate phase located between vapor and bulk liquid phases. The Wilson, NRTL, and UNIFAC methods are used for activity coefficients of surface and bulk phases and three techniques for calculation of molar surface areas, based on Paquette areas, Rasmussen areas, and a Langmuir-type approach are tested. Comparisons of the calculated surface tensions with experimental data yield mean absolute errors, in the best case, of less than 2.5% for the systems studied, all of which exhibit highly nonideal behavior. The surface tension predictions are found to be extremely sensitive to the values of the molar surface areas used in the computation. A Langmuir-type adsorption model is formulated to determine the surface mole fractions from a knowledge of the mixture surface tension as a function of bulk composition. A novel procedure is developed to obtain the partial molar surface area of the larger organic component as a function of composition in binary aqueous-organic systems, assuming that the two components are very dissimilar in size, and that deviations in the partial molar surface area of the smaller component (water) from its pure component molar surface area contribute negligibly to the total molar surface area of the mixture. This removes the approximation of equality of partial and pure component molar surface area for the larger organic component. Use of the Langmuir-type approach with partial molar surface areas improves surface tension predictions of highly nonideal aqueous-organic mixtures by 20% over use of pure component molar surface areas. It is an important first step in the development of a thermodynamically consistent theory of surfaces for liquid mixtures based on an accurate determination of the composition dependence of partial molar surface

  6. Air (CO2) double-contrast barium enteroclysis.

    Science.gov (United States)

    Maglinte, Dean D T; Kohli, Marc D; Romano, Stefania; Lappas, John C

    2009-09-01

    In the 1980s and 1990s in North America and Europe, air (CO(2)) double-contrast barium enteroclysis took a back seat to biphasic methylcellulose double-contrast enteroclysis in the investigation of small-bowel diseases. The widespread application of capsule endoscopy in the 21st century has identified a number of limitations of radiologic examinations in the investigation of mucosal diseases of the small intestine. Evidence-based studies comparing barium, computed tomographic (CT), and magnetic resonance (MR) enteroclysis have shown that in spite of improvements in small-bowel examination methods using CT and MR, barium examinations remain superior in the depiction of mucosal abnormalities, particularly the apthoid lesions of early Crohn disease. Barium small-bowel examinations have been recommended in the patient with a negative CT or MR enteroclysis study where the pretest probability of Crohn disease is high. A recent prospective comparison of methylcellulose double-contrast barium enteroclysis to capsule endoscopy with review of the literature has shown that air enteroclysis depicts mucosal details better than does methylcellulose double-contrast enteroclysis because of the "washout" effect of methylcellulose on superficial mucosal features. Recent articles have shown that air enteroclysis compares favorably with wireless capsule endoscopy and double-balloon endoscopy in the diagnosis of mucosal abnormalities of the small bowel. This article describes the authors' technique of performing air double-contrast enteroclysis, its clinical indications, and its pitfalls.

  7. Creating unstable velocity-space distributions with barium injections

    International Nuclear Information System (INIS)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges

  8. Preparation of barium hexaferrite powders using oxidized steel scales waste

    Science.gov (United States)

    Septiani, Ardita; Idayanti, Novrita; Kristiantoro, Tony

    2016-02-01

    Research on preparation of barium hexaferrite powders has been done using Hot Strip Mill scales as raw materials. Hot Strip Mill scales are oxidized steel scales waste from steel industrial process. The method used for preparing the barium hexaferrite powders was solid state reaction method. Oxidized steel scales were milled using ball mill for 10 hours, then screened through a 250 mesh sieve to obtain powders with maximum size of 63 µm. Powders were roasted at 600°C temperature for 4 hours to obtain hematite (Fe2O3) phase. Roasted powders were then mixed with barium carbonate, and were subsequently milled for 16 hours. After mixing, powders were calcined with an increasing rate of 10°C/min and maintained at 1100°C for 3 hours. Calcination process was performed to acquire barium hexaferrite phase. X-ray Diffraction (XRD) characterization in conjunction with RIR analysis showed that 85 wt. % of barium hexaferrite is formed. The magnetic properties of powders were characterized using Permagraph. It is found the value of remanent induction is 1.09 kG, coercivity of 2.043 kOe, and the maximum energy product of 0.25 MGOe.

  9. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    Science.gov (United States)

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  10. Surface regulated arsenenes as Dirac materials: From density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian, E-mail: niannianyu@whut.edu.cn; Wang, Jiafu, E-mail: jasper@whut.edu.cn

    2017-02-01

    Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  11. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  12. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  13. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C, E-mail: albertto@pitt.edu [Department of Mechanical Engineering and Materials Science and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size ({approx}5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  14. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C

    2011-01-01

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  15. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...... are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  16. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  17. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...

  18. Oxygen diffusion in single crystal barium titanate.

    Science.gov (United States)

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  19. Osteoblast response to the surface of amino acid-functionalized hydroxyapatite.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2015-06-01

    Interactions between proteins and the surface of biomaterials are crucial for the biological function and success of materials implanted in the human body. In this study, hydroxyapatite (HA) with negative and positive surface charges were fabricated by functionalizing the HA surface with acidic or basic amino acids. The influence of HA surface charge on protein adsorption and cell activities was studied. The crystallinity, morphology, and surface charge of amino acid-functionalized HA (AA-HA) particles and the stability of amino acids on the HA surface were determined. Both AA-HA and unmodified HA were studied for their capacity to adsorb proteins present in biological medium. The results showed that the presence of glutamic acid; Glu (acidic amino acids) and arginine; Arg (basic amino acids) on the HA surface resulted in higher protein adsorption owing to stronger electrostatic attraction between the HA particles and the proteins in medium. Functionalizing HA with Glu and Arg significantly promoted osteoblast adhesion on the surface of treated HA. No significant differences in cell proliferation between negatively and positively charged HA was observed. Significantly higher alkaline phosphatase (ALP) activity of osteoblasts on both charged surfaces was seen as compared to the unmodified HA. The study demonstrated that immobilization of amino acids (Glu and Arg) on the surface of HA promoted osteoblast proliferation and ALP activity. © 2014 Wiley Periodicals, Inc.

  20. Centrifugal Jet Spinning for Highly Efficient and Large-scale Fabrication of Barium Titanate Nanofibers

    OpenAIRE

    Ren, Liyun; Kotha, Shiva P.

    2013-01-01

    The centrifugal jet spinning (CJS) method has been developed to enable large-scale synthesis of barium titanate nanofibers. Barium titanate nanofibers with fiber diameters down to 50 nm and grain sizes around 25 nm were prepared with CJS by spinning a sol-gel solution of barium titanate and poly(vinylpyrrolidone) with subsequent heat treatment at 850 °C. XRD and FTIR analysis demonstrated high purity and tetragonal perovskite structured barium titanate nanofibers. SEM and TEM images confirm t...

  1. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces.

    Science.gov (United States)

    Martin, Lewis J; Akhavan, Behnam; Bilek, Marcela M M

    2018-01-24

    Surface functionalization of an implantable device with bioactive molecules can overcome adverse biological responses by promoting specific local tissue integration. Bioactive peptides have advantages over larger protein molecules due to their robustness and sterilizability. Their relatively small size presents opportunities to control the peptide orientation on approach to a surface to achieve favourable presentation of bioactive motifs. Here we demonstrate control of the orientation of surface-bound peptides by tuning electric fields at the surface during immobilization. Guided by computational simulations, a peptide with a linear conformation in solution is designed. Electric fields are used to control the peptide approach towards a radical-functionalized surface. Spontaneous, irreversible immobilization is achieved when the peptide makes contact with the surface. Our findings show that control of both peptide orientation and surface concentration is achieved simply by varying the solution pH or by applying an electric field as delivered by a small battery.

  2. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    Science.gov (United States)

    Giresse Tetsassi Feugmo, Conrard; Champagne, Benoît; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J.; Liégeois, Vincent

    2012-03-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement.

  3. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    International Nuclear Information System (INIS)

    Tetsassi Feugmo, Conrard Giresse; Champagne, Benoît; Liégeois, Vincent; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J

    2012-01-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement. (paper)

  4. Using the lambda function to evaluate probe measurements of charged dielectric surfaces

    DEFF Research Database (Denmark)

    Rerup, T. O.; Crichton, George C; McAllister, Iain Wilson

    1996-01-01

    The use of Pedersen's λ function to evaluate electrostatic probe measurements of charged dielectric surfaces is demonstrated. With a knowledge of the probe λ function, the procedure by which this function is employed is developed, and thereafter applied to a set of experimental measurements avail...

  5. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Filipov, D.; Schelin, H.R.; Denyak, V.; Legnani, A.; Ledesma, J.A.; Paschuk, S.A.; Sauzen, J.; Yagui, A.; Hoff, G.; Khoury, H.J.

    2015-01-01

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)

  6. Selectivity in biomineralization of barium and strontium.

    Science.gov (United States)

    Krejci, Minna R; Wasserman, Brian; Finney, Lydia; McNulty, Ian; Legnini, Daniel; Vogt, Stefan; Joester, Derk

    2011-11-01

    The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Functionality of porous silicon particles: Surface modification for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gallach, D.; Recio Sanchez, G.; Munoz Noval, A. [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain); Manso Silvan, M., E-mail: miguel.manso@uam.es [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain); Ceccone, G. [Institute for Health and Consumer Protection, European Commission, 21020 Ispra (Italy); Martin Palma, R.J.; Torres Costa, V.; Martinez Duart, J.M. [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain)

    2010-05-25

    Porous silicon-based particles (PSps) with tailored physical and biological properties have recently attracted great attention given their biomedical potential. Within this context, the objective of the present work is to optimize the experimental parameters for the formation of biofunctional mesoporous PSps. Their functionality has been studied on the one hand by analyzing the fluorescence characteristics, such as tunable narrow band emission and fluorescence aging for PSps with different molecular capping. With regard to the biofunctional characteristics, two different molecular end-capping processes have been assayed: antifouling polyethylene glycol (PEG) and polar binding amino silanes (APTS), which were evaluated by X-ray photoelectron spectroscopy (XPS). Both PEG and APTS binding to the particles could be confirmed from the analysis of Si 2p and C 1s XPS core level spectra. The finding that these PSp-molecule conjugates allow the reduction of fluorescence degradation with time in solution is of interest for the development of cellular or tissue markers. From the morphological point of view, PEG termination is of special interest allowing the PSps after an ultrasonic treatment to get spherical shapes in the micron scale. The functionality as solid state dyes is preliminarily evaluated by direct fluorescence imaging.

  8. Functionality of porous silicon particles: Surface modification for biomedical applications

    International Nuclear Information System (INIS)

    Gallach, D.; Recio Sanchez, G.; Munoz Noval, A.; Manso Silvan, M.; Ceccone, G.; Martin Palma, R.J.; Torres Costa, V.; Martinez Duart, J.M.

    2010-01-01

    Porous silicon-based particles (PSps) with tailored physical and biological properties have recently attracted great attention given their biomedical potential. Within this context, the objective of the present work is to optimize the experimental parameters for the formation of biofunctional mesoporous PSps. Their functionality has been studied on the one hand by analyzing the fluorescence characteristics, such as tunable narrow band emission and fluorescence aging for PSps with different molecular capping. With regard to the biofunctional characteristics, two different molecular end-capping processes have been assayed: antifouling polyethylene glycol (PEG) and polar binding amino silanes (APTS), which were evaluated by X-ray photoelectron spectroscopy (XPS). Both PEG and APTS binding to the particles could be confirmed from the analysis of Si 2p and C 1s XPS core level spectra. The finding that these PSp-molecule conjugates allow the reduction of fluorescence degradation with time in solution is of interest for the development of cellular or tissue markers. From the morphological point of view, PEG termination is of special interest allowing the PSps after an ultrasonic treatment to get spherical shapes in the micron scale. The functionality as solid state dyes is preliminarily evaluated by direct fluorescence imaging.

  9. Gastrointestinal tract wall visualization and distention during abdominal and pelvic multidetector CT with a neutral barium sulphate suspension: comparison with positive barium sulphate suspension and with water.

    Science.gov (United States)

    Oliva, M R; Erturk, S M; Ichikawa, T; Rocha, T; Ros, P R; Silverman, S G; Mortele, K J

    2012-01-01

    When examining patients with contrast-enhanced multidetector-row CT, we determined if the stomach and small bowel were visualized and distended better with a neutral barium sulphate suspension than with positive barium sulphate suspension or water. After obtaining approval from our institutional review board, 156 patients (women: 84; mean age: 54 yrs) with no history of gastrointestinal tract disease were randomized prospectively to receive orally either 900 ml of neutral (0.1% w/v) barium sulphate suspension (n = 53), 900 ml of positive (2.1% w/v) barium sulphate suspension (n = 53), or 900 ml of water (n = 50), prior to undergoing contrast-enhanced abdominal and pelvic multidetector-row CT. Two independent radiologists evaluated the stomach, and small bowel, for luminal distension and wall visualization, using a five point scale. Results were compared using Kruskal-Wallis and Mann-Whitney U tests. The walls of the stomach, and small bowel were visualized better in patients who were administered neutral barium sulphate suspension than those who were administered either positive barium sulphate suspension (p barium sulphate suspension, the stomach and small bowel were distended better compared to patients administered water (p barium sulphate suspension (p contrast-enhanced abdominal and pelvic multidetector-row CT, orally administered neutral barium sulphate suspension allows the gastrointestinal tract to be visualized and distended better than either positive barium sulphate suspension, or water.

  10. Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion.

    Science.gov (United States)

    Zhao, Lu; Hu, Yan; Xu, Dawei; Cai, Kaiyong

    2014-07-01

    Orthopedic implants failures are generally related to poor osseointegration and/or bacterial infection in clinical application. Surface functionalization of an implant is one promising alternative for enhancing osseointegration and/or reducing bacterial infection, thus ensuring the long term survival of the implant. In this study, titanium (Ti) substrates were surface functionalized with a polydopamine (PDOP) film as an intermediate layer for post-immobilization of chitosan-lauric acid (Chi-LA) conjugate. Chi-LA conjugate was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen proton nuclear magnetic resonance (NMR) spectrometer, respectively. Lauric acid (LA), a natural saturated fatty acid, was used mainly due to its good antibacterial property. Scanning electron microscopy (SEM) and water contact angle measurements were employed to detect the morphology changes and surface wettability of Ti substrates. The results suggested that Chi-LA conjugate was successfully immobilized onto the surfaces of Ti substrates. In vitro tests confirmed that the cell adhesion, cell viability, intracellular alkaline phosphatase activity and mineralization capacity of osteoblasts were remarkably improved when cultured onto Chi-LA surface functionalized Ti substrates. Antibacterial assay against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) showed that the Chi-LA modified Ti substrates efficiently inhibited the adhesion and growth of bacteria. Overall, this study developed a promising approach to fabricate functional Ti-based orthopedic implants, which could enhance the biological functions of osteoblasts and concurrently reduce bacteria adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. New neutron-deficient isotopes of barium and rare-earth elements

    CERN Document Server

    Bogdanov, D D; Karnaukhov, V A; Petrov, L A; Plochocki, A; Subbotin, V G; Voboril, J

    1976-01-01

    The authors present an investigation of the short-lived neutron- deficient isotopes of barium and rare-earth elements. By using the BEMS-2 isotope separator on a heavy ion beam, 19 new isotopes were produced with mass numbers ranging from 117 to 138. Five of these (/sup 117/Ba, /sup 129,131/Nd and /sup 133,135/Sm) turned out to be delayed proton emitters. The beta -decay probabilities for the new isotopes have been analyzed in terms of the beta -strength function. An analysis of the proton spectrum shape has been performed using the statistical model for delayed proton emission.

  12. Effect of titanium surface characteristics on the behavior and function of oral fibroblasts.

    Science.gov (United States)

    Att, Wael; Yamada, Masahiro; Ogawa, Takahiro

    2009-01-01

    The purpose of this study was to evaluate the effect of different titanium surface characteristics on the behavior and function of oral fibroblasts as well as the deposition pattern of collagen within the extracellular matrix. Titanium surfaces created by machining, acid etching with sulfuric acid (AE1), or acid etching with hydrofluoric acid (AE2) were analyzed using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy. Rat oral fibroblasts were cultured on different surfaces. Cell spread and morphology of extracellular matrix were evaluated using SEM. Attachment and proliferation of cells were examined by comparing the numbers of attached to detached cells and cell count, respectively. Gene expression was analyzed via reverse transcriptase polymerase chain reaction. Collagen production and deposition were examined via a Sirius red-based stain assay and confocal laser scanning microscopy. The machined surface showed a flat profile with isotropic grooves, the AE1 surface showed a uniformly microscale roughened surface, and the AE2 surface had a grooved profile with intermediate surface roughness. The AE2 surface contained fluoride atoms (2.45%+/-0.44% as F/Ti atomic ratio). Cell attachment was significantly weaker on the machined surface than on the AE1 and AE2 surfaces, whereas no differences were observed between the AE1 and AE2 surfaces. The cell counts on the machined and AE2 surfaces were higher, with a parallel orientation, whereas the cell count was lower and randomly distributed on the AE1 surface. The expression level of fibroblastic genes was similar among surfaces for all time points tested. Collagen production was highest on the machined surface, followed by AE2 and AE1 surfaces. Collagen deposition displayed a parallel pattern on the machined surface, while it was multidirectional on the AE1 and AE2 surfaces. The surface characteristics of titanium affect attachment, spread, and proliferative activity of oral fibroblasts as well

  13. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  14. Diagnostic role of barium enema in carcinoma rectum

    International Nuclear Information System (INIS)

    Asghar, M.

    2003-01-01

    Objective: The main aim of this barium enema study was to evaluate its role in patients suspected to have rectal pathologies with complaints of change in bowel habit, anorexia/weight loss, bleeding per rectum and acute/sub-acute colonic obstruction. Results: barium enema study as screening test for colo-rectal carcinoma was undertaken. Contrast outlined the colonic growth in 35 cases, out of which the cases of carcinoma colon were 24 including 13 patients suffering from carcinoma rectum. The percentage of carcinoma colon to total colonic growth was 68% while, carcinoma rectum to total carcinoma colon was 54%. Conclusion: On the basis of these investigations, it is concluded that patient's compliance is important factor in the early detection of colonic neoplasia. Though results of colonoscopy are more reliable but in practice, barium enema (double contrast) is performed initially to outline the lesion and then colonoscopy for biopsy purpose. (author)

  15. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or more...

  16. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2010-06-28

    ... International Trade Administration Barium Chloride From the People's Republic of China: Continuation of... the antidumping duty order on barium chloride from the People's Republic of China (``PRC'') would... of initiation of the third sunset review of the antidumping duty order on barium chloride from the...

  17. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  18. The diagnosis of gastro-esophageal reflux disease cannot be made with barium esophagograms

    NARCIS (Netherlands)

    Saleh, C. M. G.; Smout, A. J. P. M.; Bredenoord, A. J.

    2015-01-01

    For over 50 years, barium studies have been used to diagnose gastro-esophageal reflux disease (GERD), but the value of this test is controversial. Our study aimed to determine if barium esophagograms can be used to diagnose GERD. Barium esophagograms and pH-impedance measurement were performed in 20

  19. Measurement of Elastic Modulus of Alumina and Barium Strontium Titanate Wafers Produced by Tape Casting Method

    Science.gov (United States)

    2014-02-01

    DATES COVERED (From – To) 4. TITLE AND SUBTITLE MEASUREMENT OF ELASTIC MODULUS OF ALUMINA AND BARIUM STRONTIUM TITANATE WAFERS PRODUCED BY...configuration testing method. Samples of barium strontium titanate (BST) were made using a regular powder pressing, sintering, pelletizing, and...fabricated using thin wafers of barium strontium titanate (BST) and aluminum oxide (alumina) ceramic during launch of a system. Sandia National

  20. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  1. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical-vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  2. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical -vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  3. Diagnosis of anastomotic leak: electrolyte detection versus barium fluoroscopy.

    Science.gov (United States)

    DeArmond, Daniel T; Carswell, Aimee; Louden, Christopher L; Simmons, Jeremy D; Bayer, Johanna; Das, Nitin A; Johnson, Scott B

    2013-06-15

    We recently described a new method of diagnosing anastomotic leak using the detection of electrical changes induced by electrolyte extravasation from a surgically created gastric leak site in experimental rats. We sought to compare the sensitivity and specificity of anastomotic leak detection for this method to that of upper gastrointestinal (GI) barium fluoroscopy. Experimental rats with a surgically created gastric leak site and controls were interrogated as to the presence of leak using either the electrolyte-gated leak detection method or upper GI barium fluoroscopy. The sensitivity and specificity of leak detection for the two methods were compared. The sensitivity and specificity of electrolyte-gated leak detection were both 100% (95% confidence interval 69-100%). Barium upper GI fluoroscopy misidentified one leak as a control and one control as a leak, for a sensitivity and specificity of 80% each (95% confidence interval 37-97%). No statistically significant difference was seen between electrolyte-gated leak detection and barium upper GI fluoroscopy in terms of the sensitivity and specificity of anastomotic leak detection. Electrolyte-gated leak detection was similarly sensitive and specific for anastomotic leak detection as upper GI barium fluoroscopy, the current standard. The electrolyte-gated method has the advantages of an inert contrast agent (normal saline) and the possibility of performing leak interrogation at the bedside. Electrolyte-gated leak detection might represent a plausible alternative to upper GI barium fluoroscopy for routine postoperative anastomotic leak surveillance after esophagectomy or other foregut surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. © 2011 American Institute of Physics

  5. Reaction sintering of a zirconia-containing barium feldspar ceramic

    International Nuclear Information System (INIS)

    Nordmann, A.; Cheng, Y-B.; Muddle, B. C.

    1996-01-01

    Zircon (ZrSiO 4 ) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al 2 O 3 2SiO 2 display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO 2 (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO 2 can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO 4 + BaCO 3 + Al 2 O 3 → 2ZrO 2 + BaO-Al 2 O 3 -2SiO 2 + CO 2 ↑. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO 2 in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO 2 to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening

  6. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells

    Science.gov (United States)

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Tyson, Trevor A.; Liu, Meilin

    2011-01-01

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C3H8, CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity. PMID:21694705

  7. Preliminary evaluation of helical CT colonography in detection of colonic diseases compared with double contrast barium enema

    International Nuclear Information System (INIS)

    Zhai Xiaoli; Zhang Lei; Zhai Renyou; Li Jie; Wang Yajie; Ding Yi

    2000-01-01

    Objective: To evaluate helical CT colonography in regard to technology principles, limitations, and clinical applications. Methods: Fifty-six patients underwent volume scanning using helical CT. The diseases included adenocarcinoma 39, adenomatous polyp 3, multiple diverticular 7, mucocele of appendix 1, and normal colon 6. All cases had been compared with double contrast barium enema (DCBE), proved by histology except the 6 normal colon and the 7 multiple diverticular. All CTC images were reconstructed using shaded surface display (SSD) on workstation. Then, perspective images such as the ones from DCBE were generated via ray sum. The images could clearly demonstrate the extent and detail of the disorder by using 'CUT' software, 'revolve' function, and zoom. Results: CTC correctly demonstrated 3-5 mm diverticulum, 3 mm ulcer, and 6 mm polyps. Not only show colon straitness clearly, CTC is also very sensitive to demonstrate the stenotic end of masses. In these cases, discovery rate of CTC is 100.0%, the rate of DCBE is 88.6%; CTC is more sensitive than DCBE in cases of tumor nodules. Ray sum can show the boundary of colonic mass extending to both proximal and distal ends, its discovery rate is 62.6%. Accuracy of localization for CTC is 100.0%. Conclusion: CTC is a novel technique for detecting colonic diseases. It is a safe, accurate, and non-invasive means for detection of lesions and is an efficient complement for DCBE. Further development in CTC technique is expected in the future

  8. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan, E-mail: yan_jiang_72@126.com [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Liang, Yuan; Zhang, Hongwen [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Zhang, Weiwei [College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, Heilongjiang (China); Tu, Shanshan [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2014-08-01

    The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering. - Highlights: • The PET film was grafted by functional β-CD copolymers, which owns amphiphilicity. • The surface of grafted PET film by copolymers enhanced the cell adhesion and growth. • The biocompatible PET film may be used in tissue engineering and cell cultivation.

  9. Esophageal intramural pseudodiverticulosis characterized by barium esophagography: a case report

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-05-21

    Abstract Introduction Esophageal intramural pseudodiverticulosis is a rare condition characterized by the dilatation of the submucosal glands. Case presentation We present a case of esophageal intramural pseudodiverticulosis in a 72-year-old Caucasian man who presented with dysphagia and with a background history of alcohol abuse. An upper gastrointestinal endoscopy of our patient showed an esophageal stricture with abnormal mucosal appearances, but no malignant cells were seen at biopsy. Appearances on a barium esophagram were pathognomonic for esophageal intramural pseudodiverticulosis. Conclusion We demonstrate the enduring usefulness of barium esophagography in the characterization of abnormal mucosal appearances at endoscopy.

  10. Comparison of endoscopy and barium swallow with marshmallow in dysphagia.

    Science.gov (United States)

    Somers, S; Stevenson, G W; Thompson, G

    1986-06-01

    Forty-four patients with dysphagia were examined both by endoscopy and by barium swallow with a marshmallow bolus. In these patients 36 stenoses were found: 34 by radiology and 30 by endoscopy. The radiologic criteria for stenosis included arrest of the marshmallow in a manner to support a column of barium and reproduction of the patient's symptoms at the time this occurred. Radiologic false negative findings were partly due to an inability by patients to swallow an adequate marshmallow bolus; endoscopic failures were associated with small endoscopes and mild stenoses.

  11. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experime......A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...

  12. Methods for producing monodispersed particles of barium titanate

    Science.gov (United States)

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  13. Preparation, structure and dielectric property of barium stannate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wei Xiaoyong [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong Univesity, Xi' an 710049 (China)]. E-mail: wdy@mail.xjtu.edu.cn; Yao Xi [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong Univesity, Xi' an 710049 (China)

    2007-02-25

    The processing route of barium stannate titanate ceramics were optimized to prepare full composition range solid solution sample. The phase structure, microscopic morphology and dielectric properties of barium stannate titanate ceramics were studied. X-ray diffraction patterns indicated that the samples are of single perovskite structure. Linear empirical relationship between crystal lattice and tin content was proposed. This relationship is valid covering the full composition range, which suggests that this solid solution system is ultimate mutual soluble. The phase transition behavior was studied and a phase diagram was obtained based on the dielectric measurements.

  14. The use of dielectric spectroscopy for the characterisation of the precipitation of hydrophobically modified poly(acrylic-acid) with divalent barium ions

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2009-01-01

    The use of dielectric spectroscopy as a monitor for coagulation processes was investigated. Hydrophobically modified poly(acrylic-acid) polymers were used as model macromolecules and coagulated with barium ions. The coagulation process was quantified using a photometric dispersion analyser, thereby...... serving as a point of reference for the dielectric spectroscopy. It was found that the hydrophobic modification increased the dosage of barium needed to obtain complete coagulation, whereas the dosage required to initiate coagulation was lowered. The coagulation of the polymer samples caused...... the relaxation time of the measured dielectric dispersion to increase, and this parameter was found to be a good indicator of the formation of polymer aggregates. The magnitude of the dielectric dispersion decreased as a function of barium dosage, but when coagulation was initiated an increase was observed...

  15. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications.

    Science.gov (United States)

    Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-04-10

    New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba₀ .96 Ca 0. 04 Ti 0. 82 Zr 0. 18 O₃ (BCZTO) target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111) underlayer enhanced the (001) orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111) textured film at 700 °C and directly onto (100) Si wafers showed relatively larger (011) and diminished intensity (00ℓ) diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (e r ) and resistivity (r) of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~10⁴ to ~10 10 Ω∙cm, respectively.

  16. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  17. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    OpenAIRE

    Song, Min; Xu, Juan; Wu, Changzi

    2012-01-01

    In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH), thiol-functionalized graphene (graphene-SH), and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene sus...

  18. Surface Acoustic Wave (SAW-Enhanced Chemical Functionalization of Gold Films

    Directory of Open Access Journals (Sweden)

    Gina Greco

    2017-10-01

    Full Text Available Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material’s surface. Here, we demonstrate that surface acoustic waves (SAWs can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids and devices (e.g., sensors, devices for cell cultures.

  19. Neuromuscular functions in sportsmen and fibromyalgia patients : a surface EMG study in static and dynamic conditions

    NARCIS (Netherlands)

    Klaver-Krol, E.G.

    2012-01-01

    This thesis presents two studies, one involving sportsmen (sprinters versus endurance athletes) and one fibromyalgia patients (patients versus healthy controls). The studies have investigated muscular functions using a non-invasive method: surface electromyography (sEMG). In the sportsmen,

  20. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  1. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae).

    Science.gov (United States)

    Gorb, E V; Gorb, S N

    2006-11-01

    Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention.

  2. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    Science.gov (United States)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  3. Density-functional calculations of the surface tension of liquid Al and Na

    Science.gov (United States)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  4. Biomimetic Functionalized Surfaces and the Induction of Bone Formation.

    Science.gov (United States)

    Ripamonti, Ugo

    2017-11-01

    Tissue engineering still needs to assign the molecular basis of pattern formation, tissue induction, and morphogenesis: What next to morphogens and stem cells? Macroporous biomimetic matrices per se, without the addition of the soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β) supergene family, remarkably initiate the induction of bone formation. Carving geometries within different calcium phosphate-based macroporous bioreactors we show that geometric cues imprinted within the macroporous spaces initiate the spontaneous induction of bone. Concavities biomimetize the remodeling cycle of the primate osteonic bone and are endowed with functionalized smart geometric cues that per se initiate osteoblasts' differentiation with the expression and secretion of osteogenic molecular signals that induce bone as a secondary response. To study the role of calcium ions (Ca ++ ) and osteoclastogenesis, coral-derived calcium carbonate (CC)/hydroxyapatite (HA) bioreactors with limited conversion to HA (7% HA/CC) were preloaded with 500 μg of the L-type voltage gated calcium channel blocker verapamil hydrochloride. Bioreactors were also loaded with 240 μg of the bisphosphonate zoledronate, an osteoclast inhibitor, and implanted in heterotopic sites of the rectus abdominis muscle of Papio ursinus. Bisphosphonate-treated specimens were characterized by a delayed profoundly inhibited induction of tissue patterning with limited induction of bone. Macroporous constructs pretreated with verapamil hydrochloride yielded limited bone formation. Similarly, 125 or 150 μg human Noggin previously adsorbed onto the macroporous bioreactors resulted in minimal bone formation by induction, indirectly showing that the initiation of bone formation is through the bone morphogenetic protein (BMP) pathway. Downregulation of BMP-2 and osteogenic protein-1 (OP-1) with upregulation of Noggin correlated with limited bone induction. Angiogenesis, capillary sprouting

  5. Electron work function and composition of gallium-indium alloy surface

    International Nuclear Information System (INIS)

    Egorova, E.M.

    1979-01-01

    The dependences of electron work functions on the composition for gallium-indium alloy obtained under different conditions are compared. An attempt is made to estimate a change in the alloy surface composition caused by a change in temperature and in the boundary phase nature. For the case under consideration it has been shown to be reasonable to compare the dependences of the electron work functions not on the alloy volumetric composition but on the composition of its surface

  6. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2.

    Science.gov (United States)

    Piskounova, Sonya; Forsgren, Johan; Brohede, Ulrika; Engqvist, Håkan; Strømme, Maria

    2009-11-01

    Poor implant fixation and bone resorption are two of the major challenges in modern orthopedics and are caused by poor bone/implant integration. In this work, bioactive crystalline titanium dioxide (TiO(2))/hydroxyapatite (HA) surfaces, functionalized with bone morphogenetic protein 2 (BMP-2), were evaluated as potential implant coatings for improved osseointegration. The outer layer consisted of HA, which is known to be osteoconductive, and may promote improved initial bone attachment when functionalized with active molecules such as BMP-2 in a soaking process. The inner layer of crystalline TiO(2) is bioactive and ensures long-term fixation of the implant, once the hydroxyapatite has been resorbed. The in vitro response of mesenchymal stem cells on bioactive crystalline TiO(2)/HA surfaces functionalized with BMP-2 was examined and compared with the cell behavior on nonfunctionalized HA layers, crystalline TiO(2) surfaces, and native titanium oxide surfaces. The crystalline TiO(2) and the HA surfaces showed to be more favorable than the native titanium oxide surface in terms of cell viability and cell morphology as well as initial cell differentiation. Furthermore, cell differentiation on BMP-2-functionalized HA surfaces was found to be significantly higher than on the other surfaces indicating that the simple soaking process can be used for incorporating active molecules, promoting fast bone osseointegration to HA layers.

  7. Ab initio and work function and surface energy anisotropy of LaB6

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of

  8. Interrelation of work function and surface stability : The case of BaAl4

    NARCIS (Netherlands)

    Uijttewaal, MA; de Wijs, GA; de Groot, RA; Coehoorn, R; van Elsbergen, [No Value; Weijtens, CHL

    2005-01-01

    The relationship between the work function (Phi) and the surface stability of compounds is, to our knowledge, unknown but very important for applications such as organic light-emitting diodes. This relation is studied using first-principles calculations on various surfaces of BaAl4. The most stable

  9. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    Science.gov (United States)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  10. Grafting of functionalized polymer on porous silicon surface using Grignard reagent

    Science.gov (United States)

    Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.

    2017-11-01

    Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).

  11. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

    Science.gov (United States)

    Jeon, Seongbeom; Subbiah, Ramesh; Bonaedy, Taufik; Van, Seyoung; Park, Kwideok; Yun, Kyusik

    2018-02-01

    Magnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under "on" or "off" magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics. © 2017 Wiley Periodicals, Inc.

  12. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  13. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  14. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    Science.gov (United States)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao; Jiang, Hong

    2015-06-01

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between the top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties.

  15. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    Science.gov (United States)

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. On-Surface Synthesis and Reactivity of Functional Organic and Metal-Organic Adsorbates at Metal Surfaces by Vibrational Spectroscopy

    Science.gov (United States)

    Williams, Christopher Glen

    Surface self-assembly is a promising way to introduce functionality to a surface through design at the molecular level. These self-assembled species allow for new on-surface type reactions to be observed and studied. The experiments described in this thesis demonstrate that the molecules used in self-assembly can potentially lead to interesting synthesis pathways and can be used to explore previously under-researched reaction pathways and surface molecular architecture activity or stability. Alkanes are an unreactive species typically used for driving molecular assembly in surface structures. However, with molecular design, alkanes are capable of reacting on surfaces not typically associated with alkane reactivity. Utilizing high-resolution electron energy loss spectroscopy (HREELS) and octaethylporphyrin, we could observe that dehydrogenation is possible on Cu(100) and Ag(111) surfaces at 500 and 610 K respectively. HREELS revealed that after the dehydrogenation, the molecule undergoes an intramolecular C-C bond formation leading to a tetrabenzo-porphyrin structure. Controls with deposited tetrabenzo-porphyrin were performed to verify the structure. This work provides the first example of dehydrocyclization on Cu(100) and Ag(111) to be analyzed by vibrational spectroscopy. Alkyl species in the 1,3,5-tris-(3,5-diethylphenyl)benzene molecule also undergo a dehydrogenation on Cu(100) and Au(111) at 450 and 500 K. The design of this molecule does not let the intramolecular dehydrocyclization reaction take place, but instead the dehydrogenation leads to intermolecular C-C bond formation between molecular species as noted by the formation of extended structure across the surface. Controls with triphenyl-benzene were done to help characterize the peaks in the spectra and observe varying reactivity when the ethyl groups are absent. The fabrication of uniform single-site metal centers at surfaces is important for higher selectivity in next-generation heterogeneous

  17. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup, E-mail: kssong10@kumoh.ac.kr

    2016-01-15

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O{sub 2} or C{sub 3}F{sub 8} gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  18. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  19. AUTOIONIZATION OF LOW-LYING 5DNG STATES IN BARIUM

    NARCIS (Netherlands)

    van Leeuwen, R.; Ubachs, W.M.G.; Hogervorst, W.

    1994-01-01

    The autoionizing 5dng J = 1-5 states in barium for n=5-8 were investigated in a two-step pulsed laser atomic beam experiment. The wavefunctions of the 5dng configuration can be well described in a (jl)K-coupled basis. Each 5d(j)ng[K] fine structure state autoionizes into a single 6sepsilonl

  20. Ionic conductivity and diffusion coefficient of barium-chloride-based ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 4. Ionic conductivity and diffusion coefficient of barium-chloride-based polymer electrolyte with poly(vinyl alcohol)–poly(4-styrenesulphonic acid) polymer complex. MAYANK PANDEY GIRISH M JOSHI NARENDRA NATH GHOSH. Volume 40 Issue 4 August ...

  1. ORIGINAL ARTICLE ORIG ORIG Comparison of barium and ...

    African Journals Online (AJOL)

    Background. Simulation of patients with carcinoma of the oesophagus using radio-opaque contrast is a standard step in treatment planning prior to delivering radiation therapy. Various contrast mediums such as barium, gastrograffin and hexabrix have been used for simulation at different centres. Objective. The purpose of ...

  2. Barium Ferrite Films Grown By Pulsed Laser Ablation

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; de Haan, P.; Roesthuis, F.J.G.

    1998-01-01

    Abstract available only. It is known that barium ferrite (BaFe12019) can grow with perpendicular anisotropy on A1203 a single crystal substrate,' but also on an amorphous substrate by using a ZnO buffer.2 Because of its large magnetic anisotropy which can easily overcome the shape anisotropy of the

  3. Synthesis of nanosized barium titanate/epoxy resin composites and ...

    Indian Academy of Sciences (India)

    Anechoic chamber; barium titanate; electromagnetic interference and compatibility; epoxy resin composites; microwave absorbers; radio frequency absorbers. ... The reflection loss (RL) and transmission loss (TL) of the composite materials were measured by the reflection/transmission method using a vector network ...

  4. Thermal expansion behaviour of barium and strontium zirconium ...

    Indian Academy of Sciences (India)

    Unknown

    Thermal expansion behaviour of barium and strontium zirconium phosphates. P SRIKARI TANTRI, K GEETHA†, A M UMARJI† and SHEELA K RAMASESHA*. Materials Science Division, National Aerospace Laboratories, Bangalore 560 017, India. †Materials Research Centre, Indian Institute of Science, Bangalore 560 ...

  5. Phase developments and dielectric responses of barium substituted ...

    Indian Academy of Sciences (India)

    Phase developments and dielectric responses of barium substituted four-layer CaBi4Ti4O15 Aurivillius. HUILING DU. ∗. , XIANG SHI and HUILU LI. College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China. MS received 26 December 2010; revised 8 February 2011.

  6. Experimental study of yttrium barium copper oxide superconducting ...

    Indian Academy of Sciences (India)

    667–676. Experimental study of yttrium barium copper oxide ... In the present study, torsional strain dependence of the critical current of the coated conductor is investigated experimentally for different current ramp rates. Again, the .... An empirical formula was proposed and established using a curve fit expressed in eq. (1).

  7. Dose-area product measurements during Barium enema radiograph ...

    African Journals Online (AJOL)

    The aim of this study was to obtain a direct measurement of the typical dose delivered to an average adult patient during a barium enema examination. Measurement was done on a sample of 50 patients at three departments, using a dose-area product (DAP) meter. The comparison of the results with UK median levels ...

  8. peroxo-oxalate preparation of doped barium titanate

    NARCIS (Netherlands)

    van der Gijp, S.; Winnubst, Aloysius J.A.; Verweij, H.

    1999-01-01

    The peroxo-oxalate complexation method is a method that can be used for the preparation of doped barium titanate. In this paper we focus on BaTi0.91Zr0.09O3, which can be used for discharge capacitors in lamp starters. The preparation method described here is based on the complexation and subsequent

  9. Thermal expansion behaviour of barium and strontium zirconium ...

    Indian Academy of Sciences (India)

    Unknown

    small substitution of barium changes its sign. X = 1⋅0 and 1⋅25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials. Keywords. Coefficient of thermal expansion; low thermal ...

  10. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    Science.gov (United States)

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  11. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  12. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    Science.gov (United States)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  13. Continuous surface functionalization of flame-made TiO2 nanoparticles.

    Science.gov (United States)

    Teleki, Alexandra; Bjelobrk, Nada; Pratsinis, Sotiris E

    2010-04-20

    Hydrophilic TiO(2) particles made in a flame aerosol reactor were converted in situ to hydrophobic ones by silylation of their surface hydroxyl groups. So the freshly formed titania aerosol was mixed with a fine spray of octyltriethoxysilane (OTES) in water/ethanol solution and functionalized continuously at high temperature. The extent of functionalization and structure of that surface layer were assessed by thermogravimetric analysis (TGA) coupled to mass spectroscopy (MS), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and Raman spectroscopy. Product particles were characterized also by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption. The influence of titania specific surface area (SSA) and OTES solution concentration on the functional group surface density was investigated. The titanium dioxide surface was covered with functional groups (up to 2.9 wt %) that were thermally stable up to 300 degrees C in air at an average density of 2 OTES/nm(2). Such surface-functionalized particle suspensions in 2-ethylhexanoic acid and xylene were stable over several weeks. In contrast, as-prepared hydrophilic TiO(2) precipitated within days in these solvents.

  14. Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

    Directory of Open Access Journals (Sweden)

    Nina J. Blumenstein

    2015-08-01

    Full Text Available We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.

  15. Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Girard-Lauriault, Pierre-Luc, E-mail: pierre-luc.girard-lauriault@mcgill.ca [BAM Bundesanstalt fuer Materialforschung und - pruefung, D-12203 Berlin (Germany); Department of Chemical Engineering, McGill University, Montreal, H3A 2B2 (Canada); Illgen, Rene [BAM Bundesanstalt fuer Materialforschung und - pruefung, D-12203 Berlin (Germany); Ruiz, Juan-Carlos; Wertheimer, Michael R. [Groupe de Physique et Technologie des Couches Minces (GCM), Department of Engineering Physics, Ecole Polytechnique, Montreal, QC, H3C3A7 (Canada); Unger, Wolfgang E.S. [BAM Bundesanstalt fuer Materialforschung und - pruefung, D-12203 Berlin (Germany)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Graphite and CNT surfaces were functionalized by VUV photochemistry in NH{sub 3} or O{sub 2}. Black-Right-Pointing-Pointer Significant amounts of N and O were incorporated at the materials surface. Black-Right-Pointing-Pointer Primary amine and hydroxyl groups were successfully incorporated at the surface. Black-Right-Pointing-Pointer NEXAFS permitted to assess the conservation of the aromatic structure. - Abstract: Graphite and multiwall carbon nanotube surfaces were functionalized by vacuum-ultraviolet induced photochemistry in NH{sub 3} or O{sub 2}, in order to introduce amino- (NH{sub 2}) or hydroxyl (OH) functionalities, respectively. Modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), which showed significant incorporation of nitrogen (N) and oxygen (O) at the materials' surface. While high-resolution XP spectra did not yield much specific information about the incorporated functional groups, chemical derivatization with 4-trifluoromethyl benzaldehyde and trifluoroacetic anhydride accompanied by XPS enabled quantification of NH{sub 2} and OH groups, respectively. Using near edge X-ray absorption fine structure spectroscopy, we assessed the conservation of the aromatic structure following functionalization treatments.

  16. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  17. Work function anisotropy and surface stability of half-metallic CrO(2)

    NARCIS (Netherlands)

    Attema, J. J.; Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    Insight in the interplay between work function and stability is important for many areas of physics. In this paper, we calculate the anisotropy in the work function and the surface stability of CrO(2), a prototype half-metal, and find an anisotropy of 3.8 eV. An earlier model for the relation

  18. On-Site Surface Functionalization for Titanium Dental Implant with Nanotopography: Review and Outlook

    Directory of Open Access Journals (Sweden)

    Byung Gyu Kim

    2016-01-01

    Full Text Available Titanium (Ti has been the first choice of material for dental implant due to bonding ability to natural bone and great biocompatibility. Various types of surface roughness modification in nanoscale have been made as promising strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with nanotopography oriented favors in cell attachment, on-site surface functionalization with reproducibility of nanotopography is introduced as next strategy to further enhance cellular bioactivity. Extensive research has been conducted to investigate the potential of nanotopography preserved on-site surface functionalization for Ti dental implant. This review will discuss nonthermal atmospheric pressure plasma, ultraviolet, and low level of laser therapy on Ti dental implant with nanotopography as next generation of surface functionalization due to its abilities to induce superhydrophilicity or biofunctionality without change of nanotopography.

  19. Hand grip function assessed by the box and block test is affected by object surfaces.

    Science.gov (United States)

    Seo, Na Jin; Enders, Leah R

    2012-01-01

    N/A. One of the hand function assessment tools is the Box and Block Test (BBT). To examine if the BBT score is affected by grip surfaces. Thirteen adults performed the BBT with wooden, rubber-covered, and paper-covered blocks. The BBT scores and time for seven movements (finger closing, contact to lift-off, transport before barrier, transport after barrier, release, return, and reach) were compared across the three block types. The mean BBT score was 8% higher for the rubber blocks than the paper and wooden blocks (pblock until the block is lifted). Hand function assessments should be controlled for object surfaces. Therapists may vary grip difficulties by changing object surfaces. Redesigning daily objects with high-friction surfaces may increase grip function. N/A. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  20. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  1. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.

    Science.gov (United States)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R; Carmalt, Claire J; Parkin, Ivan P

    2015-03-06

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications. Copyright © 2015, American Association for the Advancement of Science.

  2. Robust self-cleaning surfaces that function when exposed to either air or oil

    Science.gov (United States)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R.; Carmalt, Claire J.; Parkin, Ivan P.

    2015-03-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  3. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates.

    Science.gov (United States)

    Nachtigall, Olaf; Kördel, Christian; Urner, Leonhard H; Haag, Rainer

    2014-09-01

    The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene-oligoglycerol conjugates in different environments is reported. Through the formation of host-guest complexes with surface immobilized β-cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light-illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half-lives of the cis isomers were calculated for different environments. Surprisingly, the half-lives on gold nanoparticles were significantly smaller compared to planar gold surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers.

    Science.gov (United States)

    Mosby, Brian M; Díaz, Agustín; Bakhmutov, Vladimir; Clearfield, Abraham

    2014-01-08

    Inorganic-organic hybrid materials were synthesized by covalent attachment of epoxides to the surface of zirconium phosphate (ZrP) nanoplatelets. X-ray powder diffraction, FTIR, and TGA were utilized to confirm the presence of the modifiers and exclusive functionalization of the ZrP surface. NMR experiments were conducted to confirm the formation of P-O-C bonds between surface phosphate groups and epoxide rings. The applicability of the organically modified products was demonstrated by their use as fillers in a polymer matrix. Subsequently, a two step intercalation and surface modification procedure was utilized to prepare polymer nanocomposites that were imparted with functionality through the encapsulation of molecules within the interlayer of surface modified ZrP.

  5. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    Science.gov (United States)

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  6. The impact of tool wear on the functionality of replicated polymer surface with micro structures

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    -axis micro milling ma-chine was employed to pattern the surface of a steel insert for subsequent polymer replication. In order to conduct the study, 1200 pixels (0.8 x 0.8 mm2) was machined on the surface of a steel insert using the same mill tool (Ф0.5 mm, ARNO®); each of the pixels contains16 ridges which...... is illustrated in figure 1 (a). The obtained surface structures were replicated using liquid silicon rubber (LSR). The mill tool was inspected by scanning electron microscope (SEM) before and after the machining. Noticeable wear was observed. The weight of the studied tool was measured before and after machining......Wear happened frequently in the tooling process of mold for polymer production. The scope of this paper is to understand how the wear of the milling tool affected the function of the replicated polymer surface. This study is part of the process chain of fabrication of optical functional surfaces...

  7. CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies

    Science.gov (United States)

    Muttaqien, Fahdzi; Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Shiozawa, Yuichiro; Mukai, Kozo; Koitaya, Takanori; Yoshimoto, Shinya; Yoshinobu, Jun; Morikawa, Yoshitada

    2017-09-01

    We investigated the adsorption of CO2 on the flat, stepped, and kinked copper surfaces from density functional theory calculations as well as the temperature programmed desorption and X-ray photoelectron spectroscopy. Several exchange-correlation functionals have been considered to characterize CO2 adsorption on the copper surfaces. We used the van der Waals density functionals (vdW-DFs), i.e., the original vdW-DF (vdW-DF1), optB86b-vdW, and rev-vdW-DF2, as well as the Perdew-Burke-Ernzerhof (PBE) with dispersion correction (PBE-D2). We have found that vdW-DF1 and rev-vdW-DF2 functionals slightly underestimate the adsorption energy, while PBE-D2 and optB86b-vdW functionals give better agreement with the experimental estimation for CO2 on Cu(111). The calculated CO2 adsorption energies on the flat, stepped, and kinked Cu surfaces are 20-27 kJ/mol, which are compatible with the general notion of physisorbed species on solid surfaces. Our results provide a useful insight into appropriate vdW functionals for further investigation of related CO2 activation on Cu surfaces such as methanol synthesis and higher alcohol production.

  8. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  9. Synthesis of nano-hydroxyapatite and its rapid mediated surface functionalization by silane coupling agent.

    Science.gov (United States)

    Rehman, Sarish; Khan, Kishwar; Mujahid, Mohammad; Nosheen, Shaneela

    2016-01-01

    In this work, hydroxyapatite (HA) nanorods were synthesized by simple one step wet precipitation method followed by their rapid surface functionalization via aminopropyltriethoxysilane (APTS) to give modified (HA-APTS) product. Functionalized hydroxyapatite (HA-APTS) holds amino groups on their surface that can be further functionalized with other bioactive molecules. The extent of functionalization of HA was studied under three different processing conditions; at room temperature, at 80 °C and under microwave condition (600 W). Three different temperatures have been use for the purpose of comparison between the functionalized products so that we can judge that whether there is any effect of temperature on the final products. In the last we conclude that temperature has no effect. So microwave condition is best to carried out the functionalization in just 5 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Control surfaces of aquatic vertebrates: active and passive design and function.

    Science.gov (United States)

    Fish, Frank E; Lauder, George V

    2017-12-01

    Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance. © 2017. Published by The Company of Biologists Ltd.

  11. Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality.

    Science.gov (United States)

    Latour, Robert A; Rini, Christopher J

    2002-06-15

    At a fundamental level, protein adsorption to a synthetic surface must be strongly influenced by the interaction between the peptide residues presented by the protein's surface (primary protein structure) and the functional groups presented by the synthetic surface. In this study, semi-empirical molecular modeling was used along with experimental wetting data to theoretically approach protein adsorption at this primary structural level. Changes in enthalpy, entropy, and Gibbs free energy were calculated as a function of residue-surface separation distance for the adsorption of individual hydrophobic peptide residues (valine, leucine, phenylalanine) on alkanethiol self-assembled monolayers on gold [Au-S(CH(2))(15)-X; X = CH(3), OH, NH(3)(+), COO(-)]. The results predict that the adsorption of each type of hydrophobic residue is energetically favorable and entropy dominated on a methyl-terminated hydrophobic surface, energetically unfavorable and enthalpy dominated on a hydroxyl-terminated neutral hydrophilic surface, and very slightly favorable to unfavorable and enthalpy dominated on charged surfaces. These theoretical results provide a basis for understanding some of the fundamental effects governing protein adsorption to synthetic surfaces. This level of understanding is needed for the proactive design of surfaces to control protein adsorption and subsequent cellular response for both implant and tissue engineering applications. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 564-577, 2002

  12. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  13. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  14. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Science.gov (United States)

    Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-02-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  15. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping.

    Science.gov (United States)

    Ishibashi, Yu; Oura, Shusuke; Umemura, Kazuo

    2017-09-01

    We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH 2 groups (CONH 2 -SWNT) exhibited very strong interactions between the CONH 2 -SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces. In addition, the DNA binding protein RecA was more adhesive than single-stranded DNA binding proteins to the functionalized SWNT surfaces.

  16. Enzyme-mimicking polymer brush-functionalized surface for combating biomaterial-associated infections

    Science.gov (United States)

    Jiang, Rujian; Xin, Zhirong; Xu, Shiai; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Yan, Shunjie; Luan, Shifang; Yin, Jinghua; Khan, Ather Farooq; Li, Yonggang

    2017-11-01

    Biomaterial-associated infections critically compromise the functionality and performance of the medical devices, and pose a serious threat to human healthcare. Recently, natural DNase enzyme has been recognized as a potent material to prevent bacterial adhesion and biofilm formation. However, the vulnerability of DNase dramatically limits its long-term performance in antibacterial applications. In this work, DNase-mimicking polymer brushes were constructed to mimic the DNA-cleavage activity as well as the macromolecular scaffold of the natural DNase. The bacteria repellent efficacy of DNase-mimicking polymer brush-functionalized surface was comparable to that of the DNase-functionalized surface. More importantly, due to their inherent stability, DNase-mimicking polymer brushes presented the much better performance in inhibiting bacterial biofilm development for prolonged periods of time, as compared to the natural DNase. The as-developed DNase-mimicking polymer brush-functionalized surface presents a promising approach to combat biomaterial-associated infections.

  17. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Mierczynska-Vasilev, Agnieszka, E-mail: agnieszka.mierczynska-vasilev@awri.com.au; Smith, Paul A., E-mail: paul.smith@awri.com.au

    2016-11-15

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO{sub 3}H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH{sub 2} and NR{sub 3} groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR{sub 3} and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO{sub 3}H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH{sub 2} and −NR{sub 3} groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR{sub 3} and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  18. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    International Nuclear Information System (INIS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-01-01

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO 3 H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH 2 and NR 3 groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR 3 and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO 3 H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH 2 and −NR 3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR 3 and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  19. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.

    Science.gov (United States)

    Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B

    2009-08-01

    Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.

  20. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  1. Photo-induced functionalization of spherical and planar surfaces via caged thioaldehyde end-functional polymers

    Czech Academy of Sciences Publication Activity Database

    Kaupp, M.; Quick, A. S.; Rodriguez-Emmenegger, Cesar; Welle, A.; Trouillet, V.; Pop-Georgievski, Ognen; Wegener, M.; Barner-Kowollik, C.

    2014-01-01

    Roč. 24, č. 36 (2014), s. 5649-5661 ISSN 1616-301X R&D Projects: GA ČR GAP205/12/1702; GA ČR(CZ) GAP108/11/1857 Institutional support: RVO:61389013 Keywords : surface modification * porous materials * reversible addition fragmentation chain transfer polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 11.805, year: 2014

  2. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  3. Correlation of H- production and the work function of a surface in a hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.

    1983-01-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future netural beam systems. In these ion sources, negative hydrogen ions (H - ) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H-production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment. The photoelectron emission currents from Mo and Cu surfaces in a cesiated hydrogen discharge were measured in the photon energy range from 1.45 to 4.14 eV, to determine the work function based on Fowler's theory. A small magnetic line cusp plasma container was specially designed to minimize the plasma noise and to realize the efficient collection of incident light onto the target. The photelectron current was detected phase sensitively and could be measured with reasonable accuracy up to about 5 x 10 11 cm -3 of the plasma electron density. As Cs density was increased in the hydrogen discharge, the work function decreased until it reached a minimum value. This value of the lowest work function was approximately 1.4 eV for both Mo and Cu surfaces, and the detected total H - current was a maximum at this condition

  4. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics.

    Science.gov (United States)

    Jallo, Laila J; Dave, Rajesh N

    2015-07-01

    Powder flow involves particle-particle and particle-vessel contacts and separation resulting in electrostatic charging. This important phenomenon was studied for uncoated and dry-coated micronized acetaminophen (MAPAP) as a function of relative humidity. The main hypothesis is that by modifying powder surface energy via dry coating of MAPAP performed using magnetically assisted impaction coating, its charging tendency, flow can be controlled. The examination of the relationship between electrostatic charging, powder flow, and the surface energies of the powders revealed that an improvement in flow because of dry coating corresponded to a decrease in the charging of the particles. A general trend of reduction in both electrostatic charging and dispersive surface energy with dry coating and relative humidity were also observed, except that a divergent behavior was observed at higher relative humidities (≥55% RH). The uncoated powder was found to have strong electron acceptor characteristic as compared with the dry coated. The adhesion energy between the particles and the tubes used for the electrostatic charging qualitatively predicted the decreasing trend in electrostatic charging from plastic tubes to stainless steel. In summary, the surface energies of the powders and the vessel could explain the electrostatic charging behavior and charge reduction because of dry coating. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    Science.gov (United States)

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  6. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  7. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay.

    Science.gov (United States)

    Wang, Shige; Wen, Shihui; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Wang, Jianhua; Shi, Xiangyang

    2011-01-01

    We report on aminopropyltriethoxysilane (APTS)-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS) was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS. Ac) or negatively charged (n-HA-APTS.SAH) nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, (1)H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements. In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization. APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of biomedical applications.

  8. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    Science.gov (United States)

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  10. Effects of chemesthetic stimuli mixtures with barium on swallowing apnea duration.

    Science.gov (United States)

    Todd, J Tee; Butler, Susan G; Plonk, Drew P; Grace-Martin, Karen; Pelletier, Cathy A

    2012-10-01

    This study tested the hypotheses that swallowing apnea duration (SAD) will increase given barium versus water, chemesthetic stimuli (i.e., water barium, age (older > younger), and genetic taste differences (supertasters > nontasters). Prospective group design. University Medical Center. Eighty healthy women were identified as nontasters and supertasters, equally comprising two age groups: 18 to 35 years and 60+ years. The KayPentax Swallowing Signals Lab was used to acquire SAD via nasal cannula during individually randomized swallows of 5 mL barium, 2.7% w/v citric acid with barium, carbonation with barium, and 50:50 diluted ethanol with barium. Data were analyzed using path analysis, with the mediator of chemesthetic perception, adjusted for repeated measures. Significant main effects of age (P = .012) and chemesthetic stimuli (P = .014) were found, as well as a significant interaction between chemesthetic stimuli and age (P = .028). Older women had a significantly longer SAD than younger women. Post hoc analyses revealed that barium mixed with ethanol elicited a significantly longer SAD than other bolus conditions, regardless of age group. There were no significant differences in SAD between barium and water conditions, and no significant effect of chemesthetic perception (P > .05). Ethanol added to barium elicited longer SAD compared to plain barium, but not the other chemesthetic conditions. Older women had a longer SAD than younger women in all conditions. These findings may influence design of future studies examining effects of various stimuli on SAD. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus

    Science.gov (United States)

    Foster, Timothy J.; Geoghegan, Joan A.; Ganesh, Vannakambadi K.; Höök, Magnus

    2014-01-01

    Staphylococcus aureus is an important opportunistic pathogen and persistently colonizes about 20% of the human population. Its surface is ‘decorated’ with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional analysis has identified four distinct classes of surface proteins, of which microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. aureus in the commensal state and during invasive infections, and targeting them with vaccines could combat S. aureus infections. PMID:24336184

  12. Functionalization of SU-8 Photoresist Surfaces with IgG Proteins

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Johansson, Alicia

    2008-01-01

    The negative epoxy-based photoresist SU-8 has a variety of applications within microelectromechanical systems (MEMS) and lab-on-a-chip systems. Here, several methods to functionalize SU-8 surfaces with IgG proteins were investigated. Fluorescent labeled proteins and fluorescent sandwich...... immunoassays were employed to characterize the binding efficiency of model proteins to bare SU-8 surface, SU-8 treated with cerium ammonium nitrate (CAN) etchant and CAN treated surfaces modified by aminosilanization. The highest binding capacity of antibodies was observed on bare SU-8. This explains why bare...... SU-8 in a functional fluorescent sandwich immunoassay detecting C-reactive protein (CRP) gave twice as high signal as compared with the other two surfaces. Immunoassays performed on bare SU-8 and CAN treated SU-8 resulted in detection limits of CRP of 30 and 80 ng/ml respectively which is sufficient...

  13. Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization.

    Science.gov (United States)

    Willenbockel, Martin; Maurer, Reinhard J; Bronner, Christopher; Schulze, Michael; Stadtmüller, Benjamin; Soubatch, Serguei; Tegeder, Petra; Reuter, Karsten; Stefan Tautz, F

    2015-10-25

    We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.

  14. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  15. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  16. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  17. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  18. Exposure to low-dose barium by drinking water causes hearing loss in mice.

    Science.gov (United States)

    Ohgami, Nobutaka; Hori, Sohjiro; Ohgami, Kyoko; Tamura, Haruka; Tsuzuki, Toyonori; Ohnuma, Shoko; Kato, Masashi

    2012-10-01

    We continuously ingest barium as a general element by drinking water and foods in our daily life. Exposure to high-dose barium (>100mg/kg/day) has been shown to cause physiological impairments. Direct administration of barium to inner ears by vascular perfusion has been shown to cause physiological impairments in inner ears. However, the toxic influence of oral exposure to low-dose barium on hearing levels has not been clarified in vivo. We analyzed the toxic influence of oral exposure to low-dose barium on hearing levels and inner ears in mice. We orally administered barium at low doses of 0.14 and 1.4 mg/kg/day to wild-type ICR mice by drinking water. The doses are equivalent to and 10-fold higher than the limit level (0.7 mg/l) of WHO health-based guidelines for drinking water, respectively. After 2-week exposure, hearing levels were measured by auditory brain stem responses and inner ears were morphologically analyzed. After 2-month exposure, tissue distribution of barium was measured by inductively coupled plasma mass spectrometry. Low-dose barium in drinking water caused severe hearing loss in mice. Inner ears including inner and outer hair cells, stria vascularis and spiral ganglion neurons showed severe degeneration. The Barium-administered group showed significantly higher levels of barium in inner ears than those in the control group, while barium levels in bone did not show a significant difference between the two groups. Barium levels in other tissues including the cerebrum, cerebellum, heart, liver and kidney were undetectably low in both groups. Our results demonstrate for the first time that low-dose barium administered by drinking water specifically distributes to inner ears resulting in severe ototoxicity with degeneration of inner ears in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  20. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  1. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage

    CSIR Research Space (South Africa)

    Mulopo, J

    2012-01-01

    Full Text Available Batch regeneration of barium carbonate (BaCO3) from barium sulphide (BaS) slurries by passing CO2 gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO3 recovery in the Alkali...

  2. Azetidinium Functionalized Polytetrahydrofurans: Antimicrobial Properties in Solution and Application to Prepare Non Leaching Antimicrobial Surfaces

    Directory of Open Access Journals (Sweden)

    Subrata Chattopadhyay

    2014-05-01

    Full Text Available In this work, we report the antimicrobial efficacy of azetidinium functionalized polytetrahydrofurans in solution and their application in the preparation of non leaching, antimicrobial surfaces. The excellent antimicrobial efficacy of these water soluble polymers both in solution and on surfaces (>99.99%–100% bacterial growth inhibition makes them excellent candidates for solving the hygiene related problems in the medical and hospital environment.

  3. Drug delivery to the bone-implant interface: Functional hydroxyapatite surfaces and particles

    OpenAIRE

    Schüssele, Andrea

    2007-01-01

    With the goal of controlling the events at the bone-implant interface, it was the main objective of this thesis to provide a basis for the conjugation of cell stimulating molecules or targeting motifs to the surface of hydroxyapatite ceramic discs and particles. To this end, methods for surface functionalization have been investigated for the attachment of biomolecules. The approach focused on combining three approved and effective principles for enhanced osseointegration of implants: hydroxy...

  4. Relationship between specific surface area and spatial correlation functions for anisotropic porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    1987-01-01

    A result of Debye, Anderson, and Brumberger (P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. Appl. Phys. 28, 679 (1957)) for isotropic porous media states that the derivative of the two-point spatial correlation at the origin is equal to minus one-quarter of the specific surface area. This result is generalized for nonisotropic media by noting that the angular average of the anisotropic two-point spatial correlation function has the same relationship to the specific surface area.

  5. Low-Temperature Synthesis and Thermodynamic and Electrical Properties of Barium Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Florentina Maxim

    2015-01-01

    Full Text Available Studies regarding the morphology dependence of the perovskite-type oxides functional materials properties are of recent interest. With this aim, nanorods (NRs and nanocubes (NCs of barium titanate (BaTiO3 have been successfully synthesized via a hydrothermal route at temperature as low as 408 K, employing barium acetate, titanium isopropoxide, and sodium hydroxide as reagents without any surfactant or template. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD, used for the morphology and structure analyses, showed that the NRs were formed by an oriented attachment of the NCs building-blocks with 20 nm average crystallites size. The thermodynamic properties represented by the relative partial molar free energies, enthalpies, and entropies of the oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressure of oxygen, indicated that NRs powders have lower oxygen vacancies concentration than the NCs. This NRs characteristic, together with higher tetragonallity of the structure, leads to the enhancement of the dielectric properties of BaTiO3 ceramics. The results presented in this work show indubitably the importance of the nanopowders morphology on the material properties.

  6. Viscosity measurements of barium sulfate mixtures for use in motility studies of the pharynx and esophagus.

    Science.gov (United States)

    Li, M; Brasseur, J G; Kern, M K; Dodds, W J

    1992-01-01

    Detailed viscosity measurements have been made of barium sulfate mixtures over a wide range of viscosities for use in radiography of the esophagus, stomach, and duodenum. A new methodology was developed for more accurate estimation of viscosity in non-Newtonian fluids in conventional cylinder-type viscometers. As base cases, the variation of viscosity with shear rate was measured for standard commercial mixes of e.z.hd (250% w/v) and a diluted mixture of liquid e.z.paque (40% w/v). These suspensions are strongly shear thinning at low shear rates. Above about 3s-1 the viscosity is nearly constant, but relatively low. To increase the viscosity of the barium sulfate mixture, Knott's strawberry syrup was mixed to different proportions with e.z.hd powder. In this way viscosity was systematically increased to values 130,000 times that of water. For these mixtures the variation of viscosity with temperature, and the change in mixture density with powder-syrup ratio are documented. From least-square fits through the data, simple mathematical formulas are derived for approximate calculation of viscosity as a function of mixture ratio and temperature. These empirical formulas should be useful in the design of "test kits" for systematic study for pharyngeal and esophageal motility, and clinical analysis of motility disorders as they relate to bolus consistency.

  7. Gas thermodesorption study of barium and strontium cerates

    International Nuclear Information System (INIS)

    Aksenova, T.I.; Khromushin, I.V.; Zhotabaev, Zh.R.; Bukenov, K.D.; Medvedeva, Z.V.; Berdauletov, A.K.

    2002-01-01

    Kinetic of water, oxygen, hydrogen and carbon dioxide molecules release from doped and undoped samples of barium cerates and doped strontium cerates during vacuum heating was studied. The samples were prepared by inductive melting method. The following two kinds of preliminary samples treatments were used: annealing in air (650-750 deg. C) and wet nitrogen atmosphere (625 deg.C). Main results of thermodesorption studies of barium and strontium cerates are represented in the table. The samples of doped LaSrMnO were investigated also. It was found that the initial doped samples (without preliminary annealing) did not show any gas release in temperature range of 20-1100 deg. C. This fact indicates on high stability of compositions and strong bond of 'host' oxygen in their lattice. A significant amount of water and oxygen molecules were released from BaCe 0.9 Nd 0.1 O 3 samples whereas water and hydrogen molecules desorption from SrCe 0.95 Y 0.05 O 3 samples took place. Hydrogen molecules desorption was found for strontium cerates samples; no hydrogen molecules release was observed for doped and pure barium cerate samples.Intensive water molecules release from doped samples confirms the necessity of oxygen vacancies creation in these compounds to get properties of proton conductivity, since it was not found any water molecules release from annealed undoped samples of BaCeO 3 It is necessary to notice that oxygen molecules release from these samples took place at ∼1000 deg. C that is significantly higher then from BaCeNdO samples. Forms of high temperatures part of oxygen and low temperature part of water spectra indicate that phase transformations are responsible for oxygen and water molecules desorption in this cases. These results are in good agreement with literature data. Desorption of water molecules from barium and strontium cerates took place. Oxygen desorption took place only from barium cerates. It can be explained as the following: doped barium cerates have

  8. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    Science.gov (United States)

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  9. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  10. FUNCTIONAL SURFACE MICROGEOMETRY PROVIDING THE DESIRED PERFORMANCE OF AN AIRCRAFT VIBRATION SENSOR

    Directory of Open Access Journals (Sweden)

    Yuriy S. Andreev

    2016-11-01

    Full Text Available Subject of Research. The paper deals with the methods of efficiency improving for piezoelectric vibration sensors used in aircraft industry to control the level of vibration of gas turbine engines. The study looks into the matter of surface microgeometry effect of the vibro sensor part on its transverse sensitivity ratio. Measures are proposed to improve the sensor performance without cost supplement by optimization of the functional surface microgeometry. Method. A method for determination of the best possible surface microgeometry within the specific production conditions is shown. Also, a method for microgeometry estimation of the functional surfaces using graphical criteria is used. Taguchi method is used for design of experiment for functional surfaces machining. The use of this method reduces significantly the number of experiments without validity loss. Main Results. The relationship between technological factors of manufacturing the vibration sensor parts and its sensitivity has been found out. The optimal surface machining methods and process conditions for parts ensuring the best possible sensitivity have been determined. Practical Relevance. Research results can be used by instrument-making companies to improve the process of piezoelectric vibration sensor design and manufacturing.

  11. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia

    2014-07-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor\\'s stadiation, therapy, and early relapsing lesions. Within surface\\'s bio-functionalization and cell\\'s isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient\\'s blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

    Science.gov (United States)

    Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki

    2017-01-01

    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724

  13. Cavitand-functionalized porous silicon as an active surface for organophosphorus vapor detection.

    Science.gov (United States)

    Tudisco, Cristina; Betti, Paolo; Motta, Alessandro; Pinalli, Roberta; Bombaci, Luigi; Dalcanale, Enrico; Condorelli, Guglielmo G

    2012-01-24

    This paper reports on the preparation of a porous silicon-based material covalently functionalized with cavitand receptors suited for the detection of organophosphorus vapors. Two different isomeric cavitands, both containing one acid group at the upper rim, specifically designed for covalent anchoring on silicon, were grafted on H-terminated porous silicon (PSi) by thermal hydrosilylation. The covalently functionalized surfaces and their complexation properties were characterized by combining different analytical techniques, namely X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy analysis coupled with thermal desorption experiments. Complexation experiments were performed by exposing both active surfaces and a control surface consisting of PSi functionalized with a structurally similar but inactive methylene-bridged cavitand (MeCav) to dimethyl methylphosphonate (DMMP) vapors. Comparison between active and inactive surfaces demonstrated the recognition properties of the new surfaces. Finally, the nature of the involved interactions, the energetic differences between active and inactive surfaces toward DMMP complexation, and the comparison with a true nerve gas agent (sarin) were studied by DFT modeling. The results revealed the successful grafting reaction, the specific host-guest interactions of the PSi-bonded receptors, and the reversibility of the guest complexation.

  14. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  15. Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates

    Science.gov (United States)

    Prakash, T.; Singha, M. K.; Ganapathi, M.

    2009-02-01

    Nonlinear behavior of functionally graded material (FGM) skew plates under in-plane load is investigated here using a shear deformable finite element method. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the first order shear deformation theory based on exact neutral surface position is employed here. The present model is compared with the conventional mid-surface based formulation, which uses extension-bending coupling matrix to include the noncoincidence of neutral surface with the geometric mid-surface for unsymmetric plates. The nonlinear governing equations are solved through Newton Raphson technique. The nonlinear behavior of FGM skew plates under compressive and tensile in-plane load are examined considering different system parameters such as constituent gradient index, boundary condition, thickness-to-span ratio and skew angle.

  16. Environmental controls on barium incorporation into planktic foraminifer, Globorotalia truncatulinoides

    Science.gov (United States)

    Richey, J. N.; Reynolds, C. E.; Fehrenbacher, J. S.

    2017-12-01

    The Ba/Ca of planktic foraminifera in marine sediment cores has been used primarily to track changes in riverine input over time, and thus may be a potentially powerful proxy for reconstructing past changes in the terrestrial hydrologic cycle. Using Ba/Ca as a proxy for riverine freshwater input requires the assumption that Ba/Ca in foraminiferal calcite reflects the Ba/Ca of seawater, and that the partition coefficient for barium between seawater and foraminiferal calcite is independent of the influence of temperature, salinity, pH, alkalinity and light availability. Although it has been shown that this partition coefficient is nearly identical for common species of spinose planktic foraminifera (e.g., Globigerinoides ruber, Orbulina universa, Globigerinoides sacculifer), some non-spinose species have been demonstrated to have Ba/Ca ratios that are much higher than that of co-occurring spinose specimens. We investigate environmental controls on Ba/Ca in the tests of Globorotalia truncatulinoides, a planktic species of foraminifera with a unique life history in the Gulf of Mexico (GoM). G. truncatulinoides experiences 92% of its annual flux to the sediment trap during winter (JFM) in the GoM. The Mg/Ca and ∂18O of the ontogenetic calcite suggests that primary calcification occurs within the surface mixed layer (0-150 meters), and a thick secondary crust is added at depths below the thermocline. We use LA-ICP-MS to analyze the Ba/Ca of both encrusted and non-encrusted G. truncatulinoides from a sediment trap time series in the GoM and find that the Ba/Ca in ontogenetic calcite of non-encrusted specimens varies between 10 and 200 mmol/mol, while the Ba/Ca of the secondary crust varies between 0 and 3 mmol/mol. The Ba/Ca of the non-encrusted G. truncatulinoides specimens is two to three orders of magnitude higher than that of co-occurring spinose planktic foraminifera (O. universa and G. ruber) in the GoM sediment trap, while the secondary crust has Ba/Ca similar to

  17. Hydrophobic surface functionalization of Philippine natural zeolite for a targeted oil remediation application

    Science.gov (United States)

    Osonio, Airah P.; Olegario-Sanchez, Eleanor M.

    2017-12-01

    The objective of this study is to modify and compare the oil sorption capacity on the surface of natural zeolite (NZ) and functionalized natural zeolite (FNZ) and to compare with activated charcoal samples. The NZ samples were surface modified via esterification process and characterized using XRD, SEM, and IR spectroscopy. The NZ, FNZ and activated charcoal were then tested using ASTM method F726-12 to validate the oil sorption capacity and TGA was used for the oil selectivity of the adsorbents. The results indicate that FNZ has an improved oil/water adsorption capacity than NZ when functionalized with ester and has a comparable capacity with activated charcoal.

  18. Modeling butadiene adsorption on oxidized graphene surface using density functional theory

    Science.gov (United States)

    Akimenko, Ju. Y.; Akimenko, S. S.; Gorbunov, V. A.

    2017-08-01

    In this paper, the process of chemisorption of cis-butadiene rubber on the surface of oxidized graphene was studied using the density functional theory. The polymer is interacting to a quinone group, an oxygen bridge, and an OH group which was differently located on the surface of the graphene sheet. Based on the calculated value of ΔG298, the possibility of spontaneous formation of the bond between butadiene rubber and these functional groups was estimated. The features of the temperature dependence of the change in free Gibbs energy for thermodynamically possible coupled systems are considered.

  19. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase.

    Science.gov (United States)

    Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang

    2015-04-21

    Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.

  20. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach.

    Science.gov (United States)

    Navamani Kartic, D; Aditya Narayana, B Ch; Arivazhagan, M

    2018-01-15

    Sulfate ions pose a major threat and challenge in the treatment of industrial effluents. The sample of wastewater obtained from a pigment industry contained large quantities of sulfate in the form of sodium sulfate which resulted in high TDS. As the removal of sulfate from pigment industry effluent was not reported previously, this work was focused on removing the sulfate ions from the effluent by chemical precipitation using barium chloride. The efficiency of sulfate removal was nearly 100% at an excess dosage of barium chloride, which precipitates the dissolved sulfate ions in the form of barium sulfate. Optimization of the parameters was done using Response Surface Methodology (RSM). This work is the first attempt for modeling the removal of sulfate from pigment industry effluent using RSM and Artificial Neural Network (ANN). Prediction by both the models was evaluated and both of them exhibited good performance (R 2 value > 0.99). It was observed that the prediction by RSM (R 2 value 0.9986) was closer to the experimental results than ANN prediction (R 2 value 0.9955). The influence on the pH and conductivity of the solution by dosage of precipitant was also studied. The formation of barium sulfate was confirmed by characterization of the precipitate. Therefore, the sulfate removed from the effluent was converted into a commercially valuable precipitate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Barium determination in gastric contents, blood and urine by inductively coupled plasma mass spectrometry in the case of oral barium chloride poisoning.

    Science.gov (United States)

    Łukasik-Głębocka, Magdalena; Sommerfeld, Karina; Hanć, Anetta; Grzegorowski, Adam; Barałkiewicz, Danuta; Gaca, Michał; Zielińska-Psuja, Barbara

    2014-01-01

    A serious case of barium intoxication from suicidal ingestion is reported. Oral barium chloride poisoning with hypokalemia, neuromuscular and cardiac toxicity, treated with intravenous potassium supplementation and hemodialysis, was confirmed by the determination of barium concentrations in gastric contents, blood, serum and urine using the inductively coupled plasma mass spectrometry method. Barium concentrations in the analyzed specimens were 20.45 µg/L in serum, 150 µg/L in blood, 10,500 µg/L in urine and 63,500 µg/L in gastric contents. Results were compared with barium levels obtained from a non-intoxicated person. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay

    Directory of Open Access Journals (Sweden)

    Wang S

    2011-12-01

    Full Text Available Shige Wang1, Shihui Wen2, Mingwu Shen2, Rui Guo2, Xueyan Cao2, Jianhua Wang3, Xiangyang Shi1,2,41State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 3Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 4Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, PortugalBackground: We report on aminopropyltriethoxysilane (APTS-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS.Ac or negatively charged (n-HA-APTS.SAH nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements.Results: In vitro 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization.Conclusion: APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of

  3. The thumb carpometacarpal joint: curvature morphology of the articulating surfaces, mathematical description and mechanical functioning.

    Science.gov (United States)

    Dathe, Henning; Dumont, Clemens; Perplies, Rainer; Fanghänel, Jochen; Kubein-Meesenburg, Dietmar; Nägerl, Hans; Wachowski, Martin M

    2016-01-01

    The purpose is to present a mathematical model of the function of the thumb carpometacarpal joint (TCMCJ) based on measurements of human joints. In the TCMCJ both articulating surfaces are saddle-shaped. The aim was to geometrically survey the shapes of the articulating surfaces using precise replicas of 28 TCMCJs. None of these 56 articulating surfaces did mathematically extend the differential geometrical neighbourhood around the main saddle point so that each surface could be characterised by three main parameters: the two extreme radii of curvature in the main saddle point and the angle between the saddles' asymptotics (straight lines). The articulating surfaces, when contacting at the respective main saddle points, are incongruent. Hence, the TCMCJ has functionally five kinematical degrees of freedom (DOF); two DOF belong to flexion/extension, two to ab-/adduction. These four DOF are controlled by the muscular apparatus. The fifth DOF, axial rotation, cannot be adjusted but stabilized by the muscular apparatus so that physiologically under compressive load axial rotation does not exceed an angle of approximately ±3°. The TCMCJ can be stimulated by the muscular apparatus to circumduct. The mechanisms are traced back to the curvature incongruity of the saddle surfaces. Hence we mathematically proved that none of the individual saddle surfaces can be described by a quadratic saddle surface as is often assumed in literature. We derived an algebraic formula with which the articulating surfaces in the TCMCJ can be quantitatively described. This formula can be used to shape the articulating surfaces in physiologically equivalent TCMCJ-prostheses.

  4. Determination of the transfer function for optical surface topography measuring instruments—a review

    Science.gov (United States)

    Foreman, Matthew R.; Giusca, Claudiu L.; Coupland, Jeremy M.; Török, Peter; Leach, Richard K.

    2013-05-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements.

  5. Determination of the transfer function for optical surface topography measuring instruments—a review

    International Nuclear Information System (INIS)

    Foreman, Matthew R; Török, Peter; Giusca, Claudiu L; Leach, Richard K; Coupland, Jeremy M

    2013-01-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements. (topical review)

  6. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  7. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  8. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    Science.gov (United States)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  9. Simple preparation of thiol-ene particles in glycerol and surface functionalization by thiol-ene chemistry (TEC) and surface chain transfer free radical polymerization (SCT-FRP)

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Chiaula, Valeria; Pinelo, Manuel

    2018-01-01

    functionalization of excess thiol groups via photochemical thiol-ene chemistry (TEC) resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization (SCT-FRP) was used for the first time to introduce a thicker polymer layer on the particle surface. The application potential...

  10. Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion

    Science.gov (United States)

    Zhou, Zhaoli

    Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram

  11. Study of carboxylic functionalization of polypropylene surface using the underwater plasma technique

    Science.gov (United States)

    Joshi, R. S.; Friedrich, J. F.; Wagner, M. H.

    2009-08-01

    Non-equilibrium solution plasma treatment of polymer surfaces in water offers the possibility of more dense and selective polymer surface functionalization in comparison to the well-known and frequently used low-pressure oxygen plasma. Functional groups are introduced when the polymer surface contacts the plasma moderated solution especially water solutions. The emission of ions, electrons, energy-rich neutrals and complexes, produced by the ion avalanche are limited by quenching, with the aid of the ambient water phase. The UV-radiation produced in plasma formation also helps to moderate the reaction solution further by producing additional excited, ionized/dissociated molecules. Thus, monotype functional groups equipped polymer surfaces, preferably OH groups, originating from the dissociated water molecules, could be produced more selectively. An interesting feature of the technique is its flexibility to use a wide variety of additives in the water phase. Another way to modify polymer surfaces is the deposition of plasma polymers carrying functional groups as carboxylic groups used in this work. Acetic acid, acrylic acid, maleic and itaconic acid were used as additive monomers. Acetic acid is not a chemically polymerizing monomer but it could polymerize by monomer/molecular fragmentation and recombination to a cross linked layer. The other monomers form preferably water-soluble polymers on a chemical way. Only the fragmented fraction of these monomers could form an insoluble coating by cross linking to substrate. The XPS analysis was used to track the alterations in -O-CO- bond percentage on the PP surface. To identify the -COOH groups on substrate surface unambiguously, which have survived the plasma polymerization process, the derivatization with trifluoroethanol was performed.

  12. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  13. Perforated colorectal neoplasms: Correlation of clinical, barium, and CT examinations

    International Nuclear Information System (INIS)

    Hulnick, D.H.; Megibow, A.J.; Gordon, R.; Balthazar, E.J.

    1986-01-01

    Findings on clinical, barium enema, and CT examinations in 24 patients with perforated colorectal neoplasms were retrospectively reviewed. In 12 patients with fever and leukocytosis, the clinical diagnoses were diverticulitis (n=8), appendicitis (n=2), pelvic inflammatory disease (n=2), and perforation of a known carcinoma (n=1). In 12 nontoxic patients, the clinical diagnoses were malignancy (n=8), obstruction (n=3) and an abdominal mass (n=1). In 18 barium enema examinations, the radiologic impression was uncomplicated carcinoma (n=9), perforated carcinoma (n=6), and diverticulitis (n=3). Twenty-two CT examinations revealed pericolic inflammation in all cases and macroperforation in 12. The primary tumor was evident in 14 patients, liver metastases were found in six, and ascites was present in three. CT findings influenced the management of patients initially suspected of having inflammatory conditions

  14. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Directory of Open Access Journals (Sweden)

    Olusegun Sholiyi

    2014-07-01

    Full Text Available This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3–6 μm for coarse and 0.8–1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM. The Thru, Reflect, Line (TRL calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  15. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    Science.gov (United States)

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  16. Attainment of barium hexaferrite nanoparticles by a Pechini Method

    International Nuclear Information System (INIS)

    Galvao, S.B.; Timoteo, Jr.J.F.; Melo, G.M.; Souto, K.K.O.; Florioto, N.T.; Paskocimas, C.A.

    2009-01-01

    The barium hexaferrites (BaFe 12 O 19 ) are used as a compound of materials applied in electronic devices, as medical devices, satellites, dada servers systems, wireless systems and others. The general properties are strongly related to the microstructure and morphology, and the particles size decrease results in advantages to the majority applications, mainly the high-tech thumbnail devices. These magnetic ceramic materials, with perovskite structure, are traditionally prepared my conventional oxide mixture synthesis. In this work was studied the nanoparticle synthesis of BaFe 12 O 19 by the precursors polymeric method (Pechini), using as precursors the barium carbonate and the iron nitrate, under different thermal treatment conditions. The samples were characterized by XRD, SEM, BET, DTA and TGA. The results presented the attainment of a monophasic powder with particles size around 100 nm. (author)

  17. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    positively charged and electrostatically neutral, hydrophobic and hydrophilic, aliphatic and aromatic, and variable-length micro-environments, as well as their combinations. Optimal conditions for enzyme function seems to be a combination of hydrophobic and hydrophilic surface linker properties, which can...... lead to close to complete non-catalytic monolayer interfacial electron transfer function and electrocatalysis with activity approaching enzyme activity in homogeneous solution. Thiophenol (combined hydrophobic stacking and interdispersed water molecules), 4-methyl-thiophenol (hydrophobic and water...

  18. Zeta function of self-adjoint operators on surfaces of revolution

    International Nuclear Information System (INIS)

    Lu, Tianshi; Jeffres, Thalia; Kirsten, Klaus

    2015-01-01

    In this article we analyze the zeta function for the Laplace operator on a surface of revolution. A variety of boundary conditions, separated and unseparated, are considered. Formulas for several residues and values of the zeta function as well as for the determinant of the Laplacian are obtained. The analysis is based upon contour integration techniques in combination with a WKB analysis of solutions of related initial value problems. (paper)

  19. Vanadium doped barium germanate microrods and photocatalytic properties under solar light

    Science.gov (United States)

    Pei, L. Z.; Wang, S.; Liu, H. D.; Lin, N.; Yu, H. Y.

    2015-01-01

    Vanadium doped barium germanate microrods have been prepared by a facile hydrothermal process. The obtained vanadium doped barium germanate microrods are proved to be hexagonal BaGe4O9 and orthorhombic Ba2V2O7 phases by X-ray diffraction. Scanning electron microscopy shows that the vanadium doped barium germanate products consist of microrods with the diameter of microscale size. The diameter of the mirorods decreases from 800 nm to 150 nm with the vanadium doping mass percentage increasing from 1% to 10%. Solid UV-vis diffuse reflectance spectra show that the band gap of the vanadium doped barium germanate is smaller than that of the undoped barium germanate. The photocatalytic activity has been greatly enhanced by the vanadium doping. The vanadium doped barium germanate microrods exhibit great application potential for the photocatalytic degradation of methylene blue under solar light irradiation.

  20. Microstructured Polymer Blend Surfaces Produced by Spraying Functional Copolymers and Their Blends.

    Science.gov (United States)

    Vargas-Alfredo, Nelson; Rodríguez Hernández, Juan

    2016-05-31

    We described the fabrication of functional and microstructured surfaces from polymer blends by spray deposition. This simple technique offers the possibility to simultaneously finely tune the microstructure as well as the surface chemical composition. Whereas at lower polymer concentration, randomly distributed surface micropatterns were observed, an increase of the concentration leads to significant changes on these structures. On the one hand, using pure homopolystyrene fiber-like structures were observed when the polymer concentration exceeded 30 mg/mL. Interestingly, the incorporation of 2,3,4,5,6-pentafluorostyrene changed the morphology, and, instead of fibers, micrometer size particles were identified at the surface. These fluorinated microparticles provide superhydrophobic properties leading to surfaces with contact angles above 165°. Equally, in addition to the microstructures provided by the spray deposition, the use of thermoresponsive polymers to fabricate interfaces with responsive properties is also described. Contact angle measurements revealed variations on the surface wettability upon heating when blends of polystyrene and polystyrene- b -poly(dimethylaminoethyl methacrylate) are employed. Finally, the use of spraying techniques to fabricate gradient surfaces is proposed. Maintaining a constant orientation, the surface topography and thus the contact angle varies gradually from the center to the edge of the film depending on the spray angle.