WorldWideScience

Sample records for surface flow reed

  1. Creation of Principally New Generation of Switching Technique Elements (Reed Switches) with Nanostructured Contact Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karabanov S M; Zeltser I A; Maizels R M; Moos E N; Arushanov K A, E-mail: zeltseria@rmcip.ru [Russia, Ryazan, 390027, Novaya Str., 51B, Ryazan Metal Ceramics Instrumentation Plant JSC (Russian Federation)

    2011-04-01

    The cycle of activities of the creation of principally new generation of reed switches with nanostructured contact surfaces was implemented. Experimental justification of the opportunity of reed switches creation with modified contact surface was given (instead of precious metals-based galvanic coating). Principally new technological process of modification of magnetically operated contacts contacting surfaces was developed, based on the usage of the ion-plasma methods of nanolayers and nanostructures forming having specified contact features.

  2. A study on flow distribution for integrated hybrid actuator by analysis of reed valve

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jang Mi; Kang, Seung Hwan; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of); Goo, Nam Seo; Li, Yong Zhe [Konkuk University, Seoul (Korea, Republic of)

    2016-05-15

    Many studies have been conducted recently on an integrated hybrid actuator due to the increasing need for unmanned aircraft and guided weapons. In this study, flow distribution was analyzed for a reed valve which was used for flow regulation to improve the performance of the actuator. By using a Fluid structural interaction (FSI) technique with Computational fluid dynamics (CFD) having a moving mesh, numerical analysis was performed according to the thickness, shape and driving frequency of the reed valve. From the calculated results, the maximum performance of the reed valve was found at the valve thickness of 0.15 mm and the driving frequency of 250 Hz for a no-load state. The optimum thickness and shape for the valve for each driving frequency were also realized.

  3. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  4. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  5. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  6. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  7. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed

    Science.gov (United States)

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .

  8. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    Science.gov (United States)

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  9. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  10. An introduction to constructed wetlands (reed beds) sustainable low cost wastewater treatment plants

    International Nuclear Information System (INIS)

    Ahmad, M.I.

    2005-01-01

    because it is essentially simple, cheap and sustainable. Because they achieve a natural balance, well designed reed bed systems will more or less look after themselves. They do not need much power, they do not need any chemicals, they need very little maintenance, and the water leaving such a system can be very clean - certainly clean enough to pass the National Water Quality Standards. A well designed reed bed system needs both aquatic plants and special water movement. The main plants used is still the Common reed (Pragmatism karaka - Nari), Cattail (Typha australis - Dab) and Vetiver grass (Khus). Almost all these aquatic plants are available in natural wetlands, along rivers, canals, water courses, and water logged areas in Pakistan. The constructed wetlands (Reed Beds) utilize horizontal flow system, vertical flow system or combination of both. The horizontal system includes 'free water surface (FWS)' wetlands and 'vegetated submerged bed (VSB)' wetlands. The vertical system invariably uses VSB system. The required land area depends on the wastewater flow. However, in the rural setting, the horizontal system requires about 1.0 square meter / person (or population equivalent in case of an industry) and the vertical system even less than that. A working reed bed system can be designed as a public area like a park with water cascades, bridges, shallow pools with fish, and small islands for birds. There is no smell. no flies. no noise, no chemicals. and no machines. The only regular maintenance work is harvesting the reeds once a year and occasional weeding (without poisons) There is potential for the combination of reed beds with a methane process in which the bulk of sludge is removed by settlement and fed to a methane digester to produce energy, and the supernatant is then cleaned with reed beds. This may becomes a practical solution for systems in urban areas. In flat areas like large towns can be split up into segments, each served by a separate reed bed system

  11. Generic Reed Solomon Encorder

    Directory of Open Access Journals (Sweden)

    Petrus Mursanto

    2006-11-01

    Full Text Available Reed Solomon (RS codes is a mechanism to detect and correct burst of errors in data transmission and storage systems. It provides a solid introduction to foundation mathematical concept of Galois Field algebra and its application. With the development of digital hardware technology, the RS concepts were brought into reality, i.e. the implementation of RS codec chips. This paper presents the development steps of a generic RS encoder using VHDL. The encoder is able to handle generic width of data, variable length of information, number of error as well as variable form of primitive polynomial and generator polynomial used in the system. The design has been implemented for FPGA chip Xilinx XC3S200-5FT256 and has a better performance than commercially available equivalent encoder.

  12. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  13. Saving reed lands by giving economic value to reed

    Directory of Open Access Journals (Sweden)

    F.W. Croon

    2014-07-01

    Full Text Available Discussions about the need for renewable energy, the need for nature conservation, the need to double the world’s food production to eliminate hunger, the need to reduce carbon dioxide emission, and the wish to reduce dependency on dwindling oil resources, show that these issues are intimately related and sometimes mutually exclusive. The use of food crops for the production of renewable fuels has resulted in the energy vs. food debate; the use of scarce land and fresh water for the dedicated production of biomass conflicts with food production and nature conservation; the collection of harvest residues and forest wastes as biomass to produce renewable fuels is complex and leaves a CO2 footprint. The several species of reed that grow naturally in deltas, river plains etc. can provide large amounts of biomass but are hardly mentioned in the debates. Harvesting reed does not threaten the nature and the natural functions of reed lands, which are carbon neutral or carbon dioxide sinks. Reed production does not need extensive infrastructure or complex cultivation and does not compete with food production for land and fresh water. Reed lands in many places are under threat of reclamation for economic activities and urbanisation. This trend can be countered if reed is seen to have a proven economic value. In this article I argue that giving a sustainable economic value to reed lands can only be realised if the exploitation is recognised as being environmentally acceptable, commercially feasible and a source of economic gains for all stakeholders. Commercial feasibility can be achieved under present economic conditions only if a reliable supply of considerable volumes of reed at a limited price can be guaranteed.

  14. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  15. Free surface flows: coalescence, spreading and dewetting

    NARCIS (Netherlands)

    Hernandez Sanchez, J.F.

    2015-01-01

    Capillary and wetting phenomena are an essential part of nature. Its presence is noticed in many circumstances where solid and liquid surfaces come into contact. In this thesis different types of capillary free surface flows are studied. The topics discussed are mainly the coalescence of viscous

  16. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    International Nuclear Information System (INIS)

    HALVERSON, NANCY

    2004-01-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  17. Rotation Impact of Reed Switch

    International Nuclear Information System (INIS)

    Park, Yun Bum; Lee, Jae Seon; Kim, Jong Wook; Han, Eun Sil; Park, Hee June

    2016-01-01

    A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. A RPIS (Rod Position Indication System) is used as a position indicator of a control rod assembly for a CRDM of a nuclear reactor, SMART. A highly accurate RPIS for SMART is required because the reactivity of a nuclear core for a small modular reactor is more sensitive than the commercial ones. In this study, the effect of positioning direction of the reeds in a reed switch for the CRDM RPIS has been studied using the electromagnetic FE analysis. It is found that the positioning direction of the reeds slightly but not significantly affects the formation of attraction. Analysis results will be used as the basis on estimated accuracy of full RPIS system.

  18. Rotation Impact of Reed Switch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun Bum; Lee, Jae Seon; Kim, Jong Wook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Eun Sil [Taesung S and E, Seoul (Korea, Republic of); Park, Hee June [Woojin Inc., Hwaseong (Korea, Republic of)

    2016-10-15

    A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. A RPIS (Rod Position Indication System) is used as a position indicator of a control rod assembly for a CRDM of a nuclear reactor, SMART. A highly accurate RPIS for SMART is required because the reactivity of a nuclear core for a small modular reactor is more sensitive than the commercial ones. In this study, the effect of positioning direction of the reeds in a reed switch for the CRDM RPIS has been studied using the electromagnetic FE analysis. It is found that the positioning direction of the reeds slightly but not significantly affects the formation of attraction. Analysis results will be used as the basis on estimated accuracy of full RPIS system.

  19. Polygon formation and surface flow on a rotating fluid surface

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.

    2011-01-01

    We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

  20. Reeds as indicators of nutrient enrichment in a small temporarily ...

    African Journals Online (AJOL)

    Nutrient (NH4 and SRP) concentrations decreased from the bank towards the main estuary channel, suggesting that nutrients introduced into the estuary in groundwater and surface runoff were taken up by the fringe of reeds. The roots, rhizomes, stems and leaves of Phragmites at the site with the greatest Phragmites ...

  1. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  2. Fast Reed-Solomon Decoder

    Science.gov (United States)

    Liu, K. Y.

    1986-01-01

    High-speed decoder intended for use with Reed-Solomon (RS) codes of long code length and high error-correcting capability. Design based on algorithm that includes high-radix Fermat transform procedure, which is most efficient for high speeds. RS code in question has code-word length of 256 symbols, of which 224 are information symbols and 32 are redundant.

  3. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  4. Efficiency of a Horizontal Sub-Surface Flow Constructed Wetland Treatment System in an Arid Area

    Directory of Open Access Journals (Sweden)

    Abeer Albalawneh

    2016-02-01

    Full Text Available The main objective of this study was to evaluate the performance and treatment efficiency of the Horizontal Sub-Surface Flow Constructed Wetland treatment system (HSF-CW in an arid climate. Seventeen sub-surface, horizontal-flow HSF-CW units have been operated for approximately three years to improve the quality of partially-treated municipal wastewater. The studied design parameters included two sizes of volcanic tuff media (i.e., fine or coarse, two different bed dimensions (i.e., long and short, and three plantation types (i.e., reed, kenaf, or no vegetation as a control. The effluent Biological Oxygen Demand (BOD5, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, and phosphorus from all of the treatments were significantly lower as compared to the influent and demonstrated a removal efficiency of 55%, 51%, 67%, and 55%, respectively. There were significant increases in Electrical Conductivity (EC, sulfate, and calcium in the effluent of most HSF-CWs due to evaporative concentration and mineral dissolution from the media. The study suggests that unplanted beds with either fine or coarse media are the most suitable combinations among all of the studied designs based on their treatment efficiency and less water loss in arid conditions.

  5. Are atmospheric surface layer flows ergodic?

    Science.gov (United States)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  6. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E

    2007-01-01

    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  7. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  8. Enhanced Nutrients Removal Using Reeds Straw as Carbon Source in a Laboratory Scale Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Tong Wang

    2018-05-01

    Full Text Available The low carbon/nitrogen (C/N ratio and high nitrate content characteristics of agricultural runoff restricted the nitrogen removal in constructed wetlands (CWs. To resolve such problems, the economically- and easily-obtained Phragmites Australis (reeds litters were applied and packed in the surface layer of a surface flow CW as external carbon sources. The results demonstrated that the introduction of the reeds straw increased the C concentration as a result of their decomposition during the CW operation, which will help the denitrification in the ensuing operation of an entire 148 days. The total nitrogen (TN and Chemical Oxygen Demand (COD ( in the effluent reached the peak level of 63.2 mg/L and 83 mg/L at the fourth and the second day, respectively. Subsequently, the pollutants in the CW that were filled with straw decreased rapidly and achieved a stable removal after 13 days of operation. Moreover, the present study showed that the N removal efficiency increased with the increase of the hydraulic retention time (HRT. Under the HRT of four days, the CW presented 74.1 ± 6%, 87.4 ± 6% and 56.0 ± 6% removal for TN, NO3-, and TP, respectively.

  9. Role of hydraulic retention time and granular medium in microbial removal in tertiary treatment reed beds.

    Science.gov (United States)

    García, Joan; Vivar, Joan; Aromir, Maria; Mujeriego, Rafael

    2003-06-01

    The main objective of this paper is to evaluate the role of hydraulic retention time (HRT) and granular medium in faecal coliform (FC) and somatic coliphage (SC) removal in tertiary reed beds. Experiments were carried out in a pilot plant with four parallel reed beds (horizontal subsurface flow constructed wetlands), each one containing a different type of granular medium. This pilot plant is located in a wastewater treatment plant in Montcada i Reixac, near Barcelona, in northeastern Spain. The microbial inactivation ratios obtained in the different beds are compared as a function of three selected HRTs. Secondary effluent from the wastewater treatment plant was used as the influent of the pilot system. The microbial inactivation ratio ranged between 0.1 and 2.7 log-units for FC and from 0.5 to 1.7 log-units for SC in beds with coarser granular material (5-25mm), while it ranged between 0.7 and 3.4 log-units for FC and from 0.9 to 2.6 log-units for SC in the bed with finer material (2-13mm). HRT and granular medium are both key factors in microbial removal in the tertiary reed beds. The microbial inactivation ratio rises as the HRT increases until it reaches a saturation value (in general at an HRT of 3 days). The value of the microbial inactivation ratio at the saturation level depends on the granular medium contained in the bed. The specific surface area necessary to reach 2-3 log-units of FC and SC is approximately 3m(2)/person-equivalent.

  10. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  11. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    Science.gov (United States)

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  12. Biodiversity of Van Reeds, Eastern Turkey

    Directory of Open Access Journals (Sweden)

    Özdemir Adızel

    2017-12-01

    Full Text Available In this study, it is aimed to determine the vertebrate fauna and flora species diversity of Van Reeds. For this purpose, studies were conducted between 2014 and 2017 and 1 fish, 3 frog, 6 reptilian, 185 bird, and 5 mammal species, 200 fauna species and 79 flora species in total, were determined in the study area. Van Reeds is an important breeding, feeding, and wintering feature especially for birds. Reeds, which has various biodiversity, is exposed to intense pressure and destruction. The main threats in the study area are construction, filling, hunting, drainage, and pollution.

  13. Surface roughness influences on the behaviour of flow inside microchannels

    Science.gov (United States)

    Farias, M. H.; Castro, C. S.; Garcia, D. A.; Henrique, J. S.

    2018-03-01

    This work discusses influence of the surface roughness on the behavior of liquids flowing inside microchannels. By measuring the flow profile using the micro-PIV technique, the flow of water inside two rectangular microchannels of different wall roughness and in a circular smooth microchannel was studied. Comparisons were made among the experimental results, showing that a metrological approach concerning surface characteristics of microdevices is required to ensure reliability of the measurements for flow analyses in microfluidic processes.

  14. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer

    2017-01-01

    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.

  15. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  16. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara

    2016-01-01

    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  17. Ecology and physiology of reed. A literature study for evaluation of reed as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndahl, G.; Egneus, H.

    1980-04-01

    The potentials of reed as an energy source are evaluated. The following subjects are discussed: The structure and life-cycle of reed; Primary production and photosynthesis; important environmental factors for the production; Genetic variation; Competition, succession and parasitism; Human influence like cultivation, harvesting a.o. An extensive list of referencer is given.

  18. A Level Set Discontinuous Galerkin Method for Free Surface Flows

    DEFF Research Database (Denmark)

    Grooss, Jesper; Hesthaven, Jan

    2006-01-01

    We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...

  19. Local grid refinement for free-surface flow simulations

    NARCIS (Netherlands)

    van der Plas, Peter

    2017-01-01

    The principal goal of the current study is to explore and investigate the potential of local grid refinement for increasing the numerical efficiency of free-surface flow simulations in a practical context. In this thesis we propose a method for local grid refinement in the free-surface flow model

  20. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  1. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  2. Liquid flow along a solid surface reversibly alters interfacial chemistry.

    Science.gov (United States)

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa

    2014-06-06

    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  3. Fluid-Structure Interaction of a Reed Type Valve Subjected to Piston Displacement

    OpenAIRE

    Estruch, Olga; Lehmkuhl, Oriol; Rigola, Joaquim; Pérez-Segarra, Carles David

    2014-01-01

    In the field of reciprocating compressors, the developing of reed type valves is a challenging task. The understanding of the fluid flow behaviour through the valve reed is essential to improve the valve design. Hence, this work attempts the dynamic simulation of this fluid-structure interaction (FSI) problem, taking into account valve movement due to piston displacement. In this work attends the in-house implemented CFD&HT and moving mesh coupled code TermoFluids [1]. The CFD&HT solver consi...

  4. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  5. On the computation of the turbulent flow near rough surface

    Science.gov (United States)

    Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.

    2018-05-01

    One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.

  6. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  7. Simulation of Single Reed Instruments Oscillations Based on Modal Decomposition of Bore and Reed Dynamics

    OpenAIRE

    Silva, Fabrice; Debut, Vincent; Kergomard, Jean; Vergez, Christophe; Deblevid, Aude; Guillemain, Philippe

    2007-01-01

    This paper investigates the sound production in a system made of a bore coupled with a reed valve. Extending previous work (Debut, 2004), the input impedance of the bore is projected on the modes of the air column. The acoustic pressure is therefore calculated as the sum of modal components. The airrrflow blown into the bore is modulated by reed motion, assuming the reed to be a single degree of freedom oscillator. Calculation of self-sustained oscillations controlled by time-varyi...

  8. Reeds as potential sources of alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Lodh, A B; Rao, P R

    1964-01-01

    Five species of reeds, Erianthus ravennae, Saccharum munja S. procerum, Phragmites communis, and Neyraudia reynaudiana yielded 25.02, 19.5, 24.11, 26.1, and 21.6% reducing sugars, repectively., when digested with 1% H/sub 2/SO/sub 4/ under 15lb/square inch for 3 hours. Fermentable sugars from hydrolyzates of the above reeds were 70.0, 34.5, 65.0, 28.0, and 67.5% respectively. This source can become important only in case of an acute demand for fermentation alcohol.

  9. Flow Structure and Surface Topology on a UCAV Planform

    Science.gov (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  10. Free-surface viscous flow solution methods for ship hydrodynamics

    NARCIS (Netherlands)

    Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, van der A.; Starke, A.R.; Deng, G.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.

    2011-01-01

    The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the

  11. Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Nakamura, D.

    2005-01-01

    To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)

  12. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  13. Analysis of energy flow during playground surface impacts.

    Science.gov (United States)

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  14. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  15. Quality indicators for woodwind reed material

    International Nuclear Information System (INIS)

    Glave, Stefan; Pallon, Jan; Bornman, Chris; Bjoern, Lars Olof; Wallen, Rita; Raastam, Jacob; Kristiansson, Per; Elfman, Mikael; Malmqvist, Klas

    1999-01-01

    For the generation of sound, some woodwind musical instruments, e.g. oboe, bassoon, clarinet and saxophone, are provided with mouthpieces made from reeds. These reeds are the culms of Arundo donax, a tall, cane-like perennial grass. A general problem is that the material is of varying quality, yet externally differences cannot be observed. Hence, large proportions of the prepared reeds are unusable. One hypothesis is that the changes in quality are correlated with differences in the chemical and anatomical structure of the tissue. Therefore, a comparison of superior and inferior mouthpieces, used by professional musicians, was undertaken to determinate potential indicators of quality. Nuclear microprobe analysis of reeds was carried out and complemented by scanning electron and light microscopy. The elemental levels of Si, P, S, Cl, K and Ca were compared between good and poor mouthpieces using appropriate statistical tests. No statistically significant differences could be identified. Microscopical observations showed that partial occlusion of vessels by tylose formation was associated with material deemed unusable

  16. Reed Watkins: A Passion for Plume Moths

    Science.gov (United States)

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  17. The Reed Elsevier stock price gap

    NARCIS (Netherlands)

    Kamp, B.

    1995-01-01

    This is the report of a limited study on the structural stock price differences between Reed and Elsevier. The purpose of this study is to provide an overview of the problem area and to formulate and discuss several hypotheses regarding the causes of this gap. The research was performed by

  18. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  19. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    Science.gov (United States)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  20. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J

    2008-01-01

    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  1. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils

    2006-01-01

    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  2. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  3. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  4. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    Science.gov (United States)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  5. Hydraulic investigation on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Hu Chen; Gu Hanyang

    2015-01-01

    The formation and control of free surface are the most essential parts in the studies of windowless target in ACCELERATOR-DRIVEN sub-critical system (ADS). Water model experiments and 360° full scale three dimensional simulations were conducted. The experimental study demonstrates that the free surface is significantly affected by the inlet flow velocity and outlet pressure. The length of free surface decreases in the second order with the increase of inlet flow velocity, while it decreases linearly with the outlet pressure. The structure and feature of flow field were investigated. The results show that the free surface is vulnerable to the vortex movement. Transient simulations were performed with volume of fluid (VOF) method, large eddy simulation (LES) and the pressure implicit with splitting of operators (PISO) algorithm. The simulation results agree qualitatively well with the experimental data related to both free surface flow and flow field. These simulation models and methods are proved to be applicable in the hydraulic simulations of liquid heavy metal target. (authors)

  6. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  7. Fluid flow near the surface of earth's outer core

    Science.gov (United States)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  8. Dynamic surface-pressure instrumentation for rods in parallel flow

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Lawrence, W.

    1979-01-01

    Methods employed and experience gained in measuring random fluid boundary layer pressures on the surface of a small diameter cylindrical rod subject to dense, nonhomogeneous, turbulent, parallel flow in a relatively noise-contaminated flow loop are described. Emphasis is placed on identification of instrumentation problems; description of transducer construction, mounting, and waterproofing; and the pretest calibration required to achieve instrumentation capable of reliable data acquisition

  9. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild

    2012-01-01

    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow ......)]. Finally, an experimental work on elastic collisions of wet spheres is briefly discussed....

  10. Research on Noise Reduction of Reed Valves of a Hermetic Refrigerator Compressor

    Science.gov (United States)

    He, Zhilong; Chen, Qian; Li, Dantong; Wang, Ju; Xia, Pu; Wang, Tao

    2017-08-01

    The noise level of the refrigerator compressor has received more and more attention in recent years. As the key component of a compressor, reed valve is its main noise source. In this paper, a new noise reduction technology of coating on reed valve surface is proposed and verified by experiments. Firstly, the reed valves were coated, and their surface characteristics were checked. Then, the refrigerator compressor p-V diagram test was carried out to investigate the influence of doped diamond-like carbon (DLC) coating on power consumption. Finally, the noise test rig for the refrigerator compressor was set up. Based on the standard test method, noise spectrum was measured in a semi-anechoic room under standard working condition. Research results showed that the compressor noise was significantly reduced by 1.8dB (A) after coating. Moreover, the effect of aerodynamic noise reduction at suction side is better than that at discharge side. However, the influence of the film thickness on noise reduction value is little. The COP was reduced by 0.6% as compared to the compressor with uncoated reed valves.

  11. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  12. Near-surface flow of volcanic gases on Io

    International Nuclear Information System (INIS)

    Lee, S.W.; Thomas, P.C.

    1980-01-01

    Significant near-surface flow of gas several hundred kilometers from Pele (Plume 1) on Io is indicated by a series of bright, elongate albedo markings. Particles produced at small, local vents are apparently carried as much as 70 km farther 'downwind' from Pele. The gas densities and velocities necessary to suspend 0.1 to 10 micron particles at such a distance imply mass flow rates of 10 to the 7th - 10 to the 9th g/sec. Such flow rates are consistent with other estimates of mass transport by the plume. The large flow rates so far from the source allow an estimate of the rate of resurfacing of Io by lava flows and pyroclastics that is independent of estimates based on meteorite flux or on the amount of solids carried within the plumes themselves

  13. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  14. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2016-05-01

    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  15. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  16. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  17. Flow structure from a horizontal cylinder coincident with a free surface in shallow water flow

    Directory of Open Access Journals (Sweden)

    Kahraman Ali

    2012-01-01

    Full Text Available Vortex formation from a horizontal cylinder coincident with a free surface of a shallow water flow having a depth of 25.4 [mm] was experimentally investigated using the PIV technique. Instantaneous and time-averaged flow patterns in the wake region of the cylinder were examined for three different cylinder diameter values under the fully developed turbulent boundary layer condition. Reynolds numbers were in the range of 1124£ Re£ 3374 and Froude numbers were in the range of 0.41 £ Fr £ 0.71 based on the cylinder diameter. It was found that a jet-like flow giving rise to increasing the flow entrainment between the core and wake regions depending on the cylinder diameter was formed between the lower surface of the cylinder and bottom surface of the channel. Vorticity intensity, Reynolds stress correlations and the primary recirculating bubble lengths were grown to higher values with increasing the cylinder diameter. On the other hand, in the case of the lowest level of the jet-like flow emanating from the beneath of the smallest cylinder, the variation of flow characteristics were attenuated significantly in a shorter distance. The variation of the reattachment location of the separated flow to the free-surface is a strong function of the cylinder diameter and the Froude number.

  18. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  19. Flow profiling of a surface acoustic wave nanopump

    OpenAIRE

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-01-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...

  20. Regional Energy Deployment System (ReEDS)

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  1. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  2. Moving least squares simulation of free surface flows

    DEFF Research Database (Denmark)

    Felter, C. L.; Walther, Jens Honore; Henriksen, Christian

    2014-01-01

    In this paper a Moving Least Squares method (MLS) for the simulation of 2D free surface flows is presented. The emphasis is on the governing equations, the boundary conditions, and the numerical implementation. The compressible viscous isothermal Navier–Stokes equations are taken as the starting ...

  3. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory...

  4. Nitrogen Transformation and Removal in Horizontal Surface Flow ...

    African Journals Online (AJOL)

    The potential use of Constructed Mangrove Wetlands (CMWs) as a cheaper, effective and appropriate method for Nitrogen removal from domestic sewage of coastal zone in peri-urban cities was investigated from August 2007 to. September, 2008. Field investigations were made on horizontal surface flow constructed ...

  5. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  6. Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany

    Directory of Open Access Journals (Sweden)

    Nicolás Corti Meneses

    2017-12-01

    Full Text Available Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic reed, which were used for validation purposes. For the automatic classification of aquatic reed bed spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m. The overall accuracy measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5 compared to field measurements. Digital Surface Models (DSM, calculated from point clouds, similarly showed a high level of agreement in derived heights of flat surfaces (RMSE = 0.1 m and showed an adequate agreement of aquatic reed heights with evenly distributed errors (RMSE = 0.8 m. Compared to field measurements, aerial laser scanning delivered valuable information with no disturbance of the habitat. Analysing data with our classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and monitoring of aquatic reed beds.

  7. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas

    2003-01-01

    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  8. Incompressible flows of superfluid films on multiply-connected surfaces

    International Nuclear Information System (INIS)

    Corrada-Emmanuel, A.

    1989-01-01

    The theory of Riemann surfaces is applied to the problem of constructing quantized vortex flows in closed surfaces of arbitrary but finite genus. An in principle procedure for obtaining the lowest energy flow is presented. It is shown that quantized vortices in non-zero genus surfaces are, in general, not isomorphic to a Coulomb gas. This failure has a geometrical origin: the appearance in non-zero genus surfaces of closed curves that are not the boundary of any area. A theorem of Riemann is applied to the genus one surface, the torus, to show quantitatively how to construct the quantized vortices. Because of the breakdown in the isomorphism between quantized vortices and charges, a novel effect is possible: the violation of Earnshaw's theorem. On a torus a single vortex can be placed in local stable equilibrium. The uniform flows around the holes of the torus also lead to a new result: a non-vortex mechanism for the destruction of superfluidity in the film. An explicit formula is derived showing this effect by considering the response of a helium film to a rotation of the torus. The author predicts that torii of dissimilar proportions will exhibit different superfluid densities at the same temperature

  9. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  10. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  11. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  12. Free surface flow with moving rigid bodies. Part 1. Computational flow model

    International Nuclear Information System (INIS)

    Gubanov, O.I.; Mironova, L.A.; Kocabiyik, S.

    2005-01-01

    This paper was motivated by the study of Hirt and Sicilian, where the 'differential form' of the governing equations for the inviscid fluid flow (FAVOR equations) were obtained. We utilize mainly generalized differentiation to extend the Reynolds transport theorem over a control volume containing fluid interface for deriving the 'integral form' of governing equations for the incompressible viscous flow problems. This is done following the work by Farassat and the use of generalized function theory made this derivation straightforward, systematic and rigorous. The resulting equations are discretized by a finite-volume method using a staggered grid, after making use of the coarse-scale approximation. The resulting governing equations are valid for a class of flows including free surface flows with arbitrarily moving bodies and are consistent with Hirt and Sicilian's formulation in the inviscid fluid flow case. (author)

  13. Reduction of the suction losses through reed valves in hermetic reciprocating compressors using a magnet coil

    Science.gov (United States)

    Hopfgartner, J.; Posch, S.; Zuber, B.; Almbauer, R.; Krischan, K.; Stangl, S.

    2017-08-01

    Reed valves are widely used in hermetic reciprocating compressors and are responsible for a large part of the thermodynamic losses. Especially, the suction valve, which is opened nearly during the whole suction stroke, has a big potential for improvement. Usually, suction valves are opened only by vacuum created by the moving piston and should be closed before the compression stroke starts to avoid a reversed mass-flow through the valve. Therefore, the valves are prestressed, which results on the other hand in a higher flow resistance. In this work, a suction valve is investigated, which is not closed by the preload of the valve but by an electromagnetic coil located in the suction muffler neck. Shortly before the piston reaches its bottom dead centre, voltage is applied to the coil and a magnetic force is generated which pulls the valve shut. Thereby, the flow resistance through the valve can be reduced by changing the preload on the reed valve because it is no longer needed to close the valve. The investigation of this adapted valve and the electromagnetic coil is firstly done by numerical simulations including fluid structure interactions of the reed valves of a reciprocating compressor and secondly by experiments made on a calorimeter test bench.

  14. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)

    2001-02-01

    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  15. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  16. Free water surface constructed wetlands for urban-industrial wastewater treatment; Utilizacion de humedales construidos de flujo superficial en el tratamiento de aguas residuales de origen urbano-industrial

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Garcia, M.; Cabezas Beaumont, A.; Comin Sebastian, F.

    2009-07-01

    In order to assay superficial flow wetlands efficiency in the urban-industrial mixed wastewater quality improve and their effect in its re valorization for potential reuse in irrigation, three Free Water Surface Flow Wetlands were studied. the system presents a high capacity to reduce TSS, nitrate, nitrite and NT concentrations and this efficiency was growing up as the system mature. Denitrification processes in sediment is the main cause of nitrogen elimination. On the other hand reeds biomass development during this period could be contributing to treatment efficiency by means of reeds nutrients assimilation. (Author) 25 refs.

  17. "ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"

    Energy Technology Data Exchange (ETDEWEB)

    SANTHI, NANDAKISHORE [Los Alamos National Laboratory

    2007-01-22

    We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relative error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.

  18. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  19. A waveless free surface flow past a submerged triangular obstacle in presence of surface tension

    Directory of Open Access Journals (Sweden)

    Hakima Sekhri

    2016-07-01

    Full Text Available We consider the Free surface flows passing a submerged triangular obstacle at the bottom of a channel. The problem is characterized by a nonlinear boundary condition on the surface of unknown configuration. The analytical exact solutions for these problems are not known. Following Dias and Vanden Broeck [6], we computed numerically the solutions via a series truncation method. These solutions depend on two parameters: the Weber number $\\alpha$ characterizing the strength of the surface tension and the angle $\\beta$ at the base characterizing the shape of the apex. Although free surface flows with surface tension admit capillary waves, it is found that solution exist only for values of the Weber number greater than $\\alpha_0$ for different configurations of the triangular obstacle.

  20. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  1. Rarefaction effects in gas flows over curved surfaces

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  2. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  3. Flow and heat transfer regimes during quenching of hot surfaces

    International Nuclear Information System (INIS)

    Barnea, Y.; Elias, E.

    1993-05-01

    Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs

  4. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  5. Upgrated fuel from reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    Results described in this presentation are from a large EU-project - Development of a new crop production system based on delayed harvesting and system for its combined processing to chemical pulp and biofuel powder. This is a project to develop the use of Reed Canary Grass (Phalaris Arundinaceae) both for pulp industry and energy production. The main contractor of the project is Swedish University of Agricultural Sciences (coordinator), task coordinators are United Milling Systems A/S from Denmark, and Jaakko Poeyry Oy and VTT Energy from Finland In addition, there are partners from several countries participating in the project

  6. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  7. Reed as a gasification fuel: a comparison with woody fuels

    Directory of Open Access Journals (Sweden)

    S. Link

    2013-10-01

    Full Text Available Reed and coniferous wood can be used for energy production via thermochemical conversion, for instance by gasification. The rate-determining step of the gasification process is the reaction between the char and the gaseous environment in the gasifier, whose rate depends on variables such as pressure, temperature, particle size, mineral matter content, porosity, etc. It is known that reactivity can be improved by increasing the temperature, but on the other hand the temperature achieved in the reactor is limited due to the ash fusion characteristics. Usually, the availability of reed as a fuel is locally modest and, therefore, it must be blended with other fuels such as wood. Blending of fuels brings together several problems relating to ash behaviour, i.e. ash fusion issues. Because there is no correlation between the ash fusion characteristics of biomass blends and their individual components, it is essential to carry out prior laboratory-scale ash fusion tests on the blends. This study compares the reactivity of reed and coniferous wood, and the ash fusion characteristics of blends of reed and coniferous wood ashes. When compared with Douglas fir and reed chars, pine pellets have the highest reactivity. Reed char exhibits the lowest reactivity and, therefore, it is advantageous to gasify reed alone at higher gasification temperatures because the ash fusion temperatures of reed are higher than those of woody fuels. The ash produced by reed and wood blends can melt at lower temperatures than ash from both reed and wood gasified separately. Due to this circumstance the gasification temperature should be chosen carefully when gasification of blends is carried out.

  8. Effects of reed cutting on density and breeding success of reed warbler Acrocephalus scirpacaeus and sedge warbler A. schoenobaenus

    NARCIS (Netherlands)

    Graveland, J.

    1999-01-01

    The management of reedbeds for birds is often a controversial issue in discussions between conservationists, reed harvesters and managers. At the same time, data on the density and nesting success of birds in cut and uncut reed are scarce. This paper presents the results of a study on the density

  9. Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.

    Science.gov (United States)

    Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko

    2012-08-01

    Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.

  10. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  11. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    Science.gov (United States)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  12. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  13. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  14. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  15. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  16. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  17. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  18. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  19. Increase of body surface temperature and blood flow by theanine

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Noguchi, Kenichi; Ando, Satoshi

    2002-01-01

    Suntheanine (Taiyo Kagaku Co.: Theanine) is the trade name for L-theanine which is a unique amino acid found almost solely in tea plants, responsible for the exotictaste of green tea. We investigated the effects of relate to relaxation, improves the taste of processed foods, radiation sensitization, and increase of body surface temperature in vivo study. The results of the present study confirmed, (1) Suntheanine is incorporated into the brain and induces the emission of α -waves an induced of relaxation. (2) Body surface temperature and blood flow on skin were increased after administration of Suntheanine. (3) There was effects of radiation sensitization in whole body irradiation of X-rays after Suntheanine IP injection on C3H mice. (4) Acute toxicity, subacute toxicity and mutagen testconfirm the safety Suntheanine in this study

  20. Non-integrability of geodesic flow on certain algebraic surfaces

    International Nuclear Information System (INIS)

    Waters, T.J.

    2012-01-01

    This Letter addresses an open problem recently posed by V. Kozlov: a rigorous proof of the non-integrability of the geodesic flow on the cubic surface xyz=1. We prove this is the case using the Morales–Ramis theorem and Kovacic algorithm. We also consider some consequences and extensions of this result. -- Highlights: ► The behaviour of geodesics on surfaces defined by algebraic expressions is studied. ► The non-integrability of the geodesic equations is rigorously proved using differential Galois theory. ► Morales–Ramis theory and Kovacic's algorithm is used and the normal variational equation is of Fuchsian type. ► Some extensions and limitations are discussed.

  1. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks.

    Science.gov (United States)

    Djordjević, S; Prodanović, D; Maksimović, C; Ivetić, M; Savić, D

    2005-01-01

    The new simulation model, named SIPSON, based on the Preissmann finite difference method and the conjugate gradient method, is presented in the paper. This model simulates conditions when the hydraulic capacity of a sewer system is exceeded, pipe flow is pressurized, the water flows out from the piped system to the streets, and the inlets cannot capture all the runoff. In the mathematical model, buried structures and pipelines, together with surface channels, make a horizontally and vertically looped network involving a complex interaction of flows. In this paper, special internal boundary conditions related to equivalent inlets are discussed. Procedures are described for the simulation of manhole cover loss, basement flooding, the representation of street geometry, and the distribution of runoff hydrographs between surface and underground networks. All these procedures are built into the simulation model. Relevant issues are illustrated on a set of examples, focusing on specific parameters and comparison with field measurements of flooding of the Motilal ki Chal catchment (Indore, India). Satisfactory agreement of observed and simulated hydrographs and maximum surface flooding levels is obtained. It is concluded that the presented approach is an improvement compared to the standard "virtual reservoir" approach commonly applied in most of the models.

  2. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  3. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  4. Predictive model for convective flows induced by surface reactivity contrast

    Science.gov (United States)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  5. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  6. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  7. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  8. Decoding Reed-Solomon Codes beyond half the minimum distance

    DEFF Research Database (Denmark)

    Høholdt, Tom; Nielsen, Rasmus Refslund

    1999-01-01

    We describe an efficient implementation of M.Sudan"s algorithm for decoding Reed-Solomon codes beyond half the minimum distance. Furthermore we calculate an upper bound of the probabilty of getting more than one codeword as output...

  9. Modelling of a free-surface ferrofluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Habera, M., E-mail: habera@karlin.mff.cuni.cz; Hron, J., E-mail: hron@karlin.mff.cuni.cz

    2017-06-01

    The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results. - Highlights: • Incompressible Navier-Stokes equations are formulated for the problem of free-surface ferrofluid flow. • Computed equilibrium ferrofluid droplet shape is compared to known experimental result. • Magnetic field substantially changes the dynamics of ferrofluid dripping process.

  10. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  11. One way quantum repeaters with quantum Reed-Solomon codes

    OpenAIRE

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-01-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of $d$-level systems for large dimension $d$. We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generation of quantum repeaters using quan...

  12. Biology, Management and Utilization of Common Reed Pharagnites australis.

    Science.gov (United States)

    1987-02-01

    Vrije Universiteit Waterways Experiment Staticn Department of Ecology and Ecotoxicology Environmental Laboratory P.O. Box 7161 P.O. Box 631 1007 MC...Madelijn van der Werff Vrije Universiteit Department of Ecology and Ecotoxicology Amsterdam and John W. Simmers and Stratford H. Kay Waterways...lowing and cutting 67 5.2.4. Active regulation of the water table 68 5.5. Nature conservation 68 5.4. Reed cultivation 69 Z.4. 1. Reed harvest 69 6

  13. DNS of flows over superhydrophobic surfaces with small texture

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2015-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces with small texture sizes, comparable to those of practical application. Textures studied with DNS are usually much larger, as the cost of the simulations would otherwise be prohibitive. For this reason, a multi-block code that allows for finer resolution near the walls has been developed. We focus particularly on the pressure distribution at the wall. This distribution can cause the deformation of the gas pockets, which can ultimately lead to their loss and that of the drag reduction effect. The layout of the texture causes stagnation pressures which can contribute substantially to the wall pressure signal (Seo et al. JFM, under review). We study a range of different textures and their influence on these pressures.

  14. Near-field flow structures about subcritical surface roughness

    Science.gov (United States)

    Doolittle, Charles J.; Drews, Scott D.; Goldstein, David B.

    2014-12-01

    Laminar flow over a periodic array of cylindrical surface roughness elements is simulated with an immersed boundary spectral method both to validate the method for subsequent studies and to examine how persistent streamwise vortices are introduced by a low Reynolds number roughness element. Direct comparisons are made with prior studies at a roughness-based Reynolds number Rek (=U(k) k/ν) of 205 and a diameter to spanwise spacing ratio d/λ of 1/3. Downstream velocity contours match present and past experiments very well. The shear layer developed over the top of the roughness element produces the downstream velocity deficit. Upstream of the roughness element, the vortex topology is found to be consistent with juncture flow experiments, creating three cores along the recirculation line. Streamtraces stemming from these upstream cores, however, have unexpectedly little effect on the downstream flowfield as lateral divergence of the boundary layer quickly dissipates their vorticity. Long physical relaxation time of the recirculating wake behind the roughness remains a prominent issue for simulating this type of flowfield.

  15. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  16. Free-surface entrainment into a rimming flow containing surfactants

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  17. Free Surface Flows and Extensional Rheology of Polymer Solutions

    Science.gov (United States)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  18. Using subdivision surfaces and adaptive surface simplification algorithms for modeling chemical heterogeneities in geophysical flows

    Science.gov (United States)

    Schmalzl, JöRg; Loddoch, Alexander

    2003-09-01

    We present a new method for investigating the transport of an active chemical component in a convective flow. We apply a three-dimensional front tracking method using a triangular mesh. For the refinement of the mesh we use subdivision surfaces which have been developed over the last decade primarily in the field of computer graphics. We present two different subdivision schemes and discuss their applicability to problems related to fluid dynamics. For adaptive refinement we propose a weight function based on the length of triangle edge and the sum of the angles of the triangle formed with neighboring triangles. In order to remove excess triangles we apply an adaptive surface simplification method based on quadric error metrics. We test these schemes by advecting a blob of passive material in a steady state flow in which the total volume is well preserved over a long time. Since for time-dependent flows the number of triangles may increase exponentially in time we propose the use of a subdivision scheme with diffusive properties in order to remove the small scale features of the chemical field. By doing so we are able to follow the evolution of a heavy chemical component in a vigorously convecting field. This calculation is aimed at the fate of a heavy layer at the Earth's core-mantle boundary. Since the viscosity variation with temperature is of key importance we also present a calculation with a strongly temperature-dependent viscosity.

  19. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  20. Effects of confinement & surface roughness in electrorheological flows

    Science.gov (United States)

    Helal, Ahmed; Telleria, Maria J.; Wang, Julie; Strauss, Marc; Murphy, Mike; McKinley, Gareth; Hosoi, A. E.

    2014-11-01

    Electrorheological (ER) fluids are dielectric suspensions that exhibit a fast, reversible change in rheological properties with the application of an external electric field. Upon the application of the electric field, the material develops a field-dependent yield stress that is typically modeled using a Bingham plastic model. ER fluids are promising for designing small, cheap and rapidly actuated hydraulic devices such as rapidly-switchable valves, where fluid flowing in a microchannel can be arrested by applying an external electric field. In the lubrication limit, for a Bingham plastic fluid, the maximum pressure the channel can hold, before yielding, is a function of the field-dependent yield stress, the length of the channel and the electrode gap. In practice, the finite width of the channel and the surface roughness of the electrodes could affect the maximum yield pressure but a quantitative understanding of these effects is currently lacking. In this study, we experimentally investigate the effects of the channel aspect ratio (width/height) and the effects of electrode roughness on the performance of ER valves. Based on this quantitative analysis, we formulate new performance metrics for ER valves as well as design rules for ER valves that will help guide and optimize future designs.

  1. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, Wouter

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.

  2. Upgraded fuel from reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Heiskanen, V P

    1996-12-31

    The feasibility of RCG for commercial utilization depends primarily on its applicability for pulp production and its use in energy production will be based on the residue that will be available after extracting the pulp fraction of the RCG. Roughly 20 ..30% of the material will be available for energy production purposes. However, the percentage may be higher/lower depending on the quality standards of the pulp fiber material. The harvesting period has a significant effect on the fuel characteristics of RCG. For instance the contents of N, S, Cl, K are clearly lower if the RCG is harvested in the spring (delayed) instead of summer/autumn. These elements affect significantly overall emission formation and ash behaviour and its melting temperature. The combustion related research in this project has been focused on the spring-harvested RCG. The project aims to evaluate the feasibility of delayed harvested RCG for energy production. In order to reach this goal, the following combustion methods will be tested and studied: combustion of pelletized RCG; gasification; combustion of pulverized RCG. In addition, pelletizing, reactivity and NO conversion of pulverized RCG will be studied. The research described here is a part of `Reed Canary Grass` project (in AIR programme). The contractors of the project are Swedish University of Agricultural Sciences (coordinator), United Milling Systems from Denmark, Jaakko Poeyry Oy and VTT Energy. In addition, there are partners from several countries participating in the project. The project has been divided in five tasks, VTT Energy being responsible for combustion related task `Upgraded fuel` that includes the research topics discussed in this paper

  3. Upgraded fuel from reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Heiskanen, V.P.

    1995-12-31

    The feasibility of RCG for commercial utilization depends primarily on its applicability for pulp production and its use in energy production will be based on the residue that will be available after extracting the pulp fraction of the RCG. Roughly 20 ..30% of the material will be available for energy production purposes. However, the percentage may be higher/lower depending on the quality standards of the pulp fiber material. The harvesting period has a significant effect on the fuel characteristics of RCG. For instance the contents of N, S, Cl, K are clearly lower if the RCG is harvested in the spring (delayed) instead of summer/autumn. These elements affect significantly overall emission formation and ash behaviour and its melting temperature. The combustion related research in this project has been focused on the spring-harvested RCG. The project aims to evaluate the feasibility of delayed harvested RCG for energy production. In order to reach this goal, the following combustion methods will be tested and studied: combustion of pelletized RCG; gasification; combustion of pulverized RCG. In addition, pelletizing, reactivity and NO conversion of pulverized RCG will be studied. The research described here is a part of `Reed Canary Grass` project (in AIR programme). The contractors of the project are Swedish University of Agricultural Sciences (coordinator), United Milling Systems from Denmark, Jaakko Poeyry Oy and VTT Energy. In addition, there are partners from several countries participating in the project. The project has been divided in five tasks, VTT Energy being responsible for combustion related task `Upgraded fuel` that includes the research topics discussed in this paper

  4. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  5. Septage unit treatment by sludge treatment reed beds for easy management and reuse: performance and design considerations.

    Science.gov (United States)

    Kim, Boram; Bel, Thomas; Bourdoncle, Pascal; Dimare, Jocelyne; Troesch, Stéphane; Molle, Pascal

    2018-01-01

    Sustainable treatment and management of fecal sludge in rural areas require adapted solutions. Rustic and simple operating processes such as sludge treatment reed beds (STRB) have been increasingly considered for this purpose. The biggest full scale (2,600 m 2 of STRB) septage treatment unit in France had been built in Nègrepelisse with the final objectives of reusing treated sludge and leachates for agriculture spreading and tree irrigation, respectively. The aim of this investigation was to validate the treatment chain of this installation. The obtained field data showed firstly that the overall removal efficiencies of STRB were satisfactory and stable. Removal rates higher than 98% for chemical oxygen demand and suspended solids and a 95% for Kjeldahl nitrogen represented so far a beneficial septage treatment by STRB. The highlighted necessity of a suitable complementary leachate treatment (before tree irrigation) justified the presence of the second stage of vertical flow constructed wetland. The sludge deposit drying and mineralization efficiencies were on the right track. According to hydrotextural diagram analysis, surface deposit was however found to have high deformability probably due to the youth of the installation. An in-depth understanding of STRB system needs continuous long-term studies.

  6. Determination of averaged axisymmetric flow surfaces according to results obtained by numerical simulation of flow in turbomachinery

    Directory of Open Access Journals (Sweden)

    Bogdanović-Jovanović Jasmina B.

    2012-01-01

    Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia

  7. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...

  8. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  9. Effects of Inner Surface Roughness and Asymmetric Pipe Flow on Accuracy of Profile Factor for Ultrasonic Flow Meter

    International Nuclear Information System (INIS)

    Michitsugu Mori; Kenichi Tezuka; Yasushi Takeda

    2006-01-01

    Flow profile factors (PFs), which adjust measurements to real flow rates, also strongly depend on flow profiles. To determine profile factors for actual power plants, manufactures of flowmeters usually conduct factory calibration tests under ambient flow conditions. Indeed, flow measurements with high accuracy for reactor feedwater require them to conduct calibration tests under real conditions, such as liquid conditions and piping layouts. On the contrary, as nuclear power plants are highly aging, readings of flowmeters for reactor feedwater systems drift due to the changes of flow profiles. The causes of those deviations are affected by the change of wall roughness of inner surface of pipings. We have conducted experiments to quantify the effects of flow patterns on the PFs due to pipe roughness and asymmetric flow, and the results of our experiments have shown the effects of elbows and pipe inner roughness, which strongly affect to the creation of the flow patterns. Those changes of flow patterns lead to large errors in measurements with transit time (time-of-flight: TOF) ultrasonic flow meters. In those experiments, changes of pipe roughness result in the changes of PFs with certain errors. Therefore, we must take into account those effects in order to measure the flow rates of feedwater with better accuracy in actual power plants. (authors)

  10. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  11. Enteric and indicator virus removal by surface flow wetlands.

    Science.gov (United States)

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P

    2016-01-15

    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. 77 FR 43369 - Lexisnexis, a Subsidiary of Reed Elsevier Customer Service Department and Fulfillment Department...

    Science.gov (United States)

    2012-07-24

    ..., a Subsidiary of Reed Elsevier Customer Service Department and Fulfillment Department, Including On... Including Remote Workers in New York Reporting to Miamisburg, OH; Lexisnexis, a Subsidiary of Reed Elsevier... subsidiary of Reed Elsevier, Inc., Customer Service Department and Fulfillment Department, including on-site...

  13. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  14. Retention mechanisms and the flow wetted surface - implications for safety analysis

    International Nuclear Information System (INIS)

    Elert, M.

    1997-02-01

    The purpose of this report is to document the state-of-the-art concerning the flow wetted surface, its importance for radionuclide transport in the geosphere and review various suggestions on how to increase the present knowledge. Definitions are made of the various concepts used for the flow wetted surface as well as the various model parameters used. In the report methods proposed to assess the flow wetted surface are reviewed and discussed, tracer tests, tunnel and borehole investigations, geochemical studies, heat transport studies and theoretical modelling. Furthermore, a review is made of how the flow wetted surface has been treated in various safety analyses. Finally, an overall discussion with recommendations is presented, where it is concluded that at present no individual method for estimating the flow wetted surface can be selected that satisfies all requirements concerning giving relevant values, covering relevant distances and being practical to apply. Instead a combination of methods must be used. In the long-term research as well as in the safety assessment modelling focus should be put on assessing the ratio between flow wetted surface and water flux. The long-term research should address both the detailed flow within the fractures and the effective flow wetted surface along the flow paths. 55 refs

  15. 39th annual Reed rig census

    International Nuclear Information System (INIS)

    Crowhurst, M.E.; Fitts, R.L.

    1991-01-01

    This paper reports on cutbacks in U.S. exploration and development drilling during the first half of 1991 which squeezed most of the optimism out of the drilling industry. Just how rough the year has been is underscored by the results of this year's rig census. The number of rotary rigs available for U.S. drilling declined by only 69 units (3%) during the past 12 months. But despite those withdrawals from competition, only 66% of the remaining rigs were working at the time the census was taken. Results of the 1991 census contrasted sharply with the stability and optimism that seemed apparent a year ago when 72% of the available rig fleet met the census definition of active. At that time, the mini-boom in horizontal drilling coupled with tax-credit- driven gas drilling led to a relatively high rig utilization rate and suggested that rig supply and demand might be close to an economically acceptable balance. However, it quickly became apparent in early 1991 that industry optimism was unjustified. Horizontal drilling began to drop and the lowest natural gas prices in 12 years triggered rapid declines in gas drilling. Although oil prices have been relatively stable and above $18 per bbl since January 1989, most major operators have concluded that a better return on investment can be had outside the U.S. and have drastically cut their domestic drilling budgets. These factors, combined with softened energy demand from the worldwide recession, further slowed U.S. drilling. The long awaited balance between rig supply and demand has seemingly slipped away. The 1991 Reed rig census describes an industry facing several more rough years. Details of this year's census include: The available U.S. fleet now stands at 2,251 rigs, down by 69 from the 2,320-unit total in 1990, and the lowest since 1976. Rigs meeting the census definition of active numbered 1,485, down 192 (11.4%) from the 1,677 active rigs counted a year earlier

  16. Free surface flow of a suspension of rigid particles in a non-Newtonian fluid

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2012-01-01

    A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...

  17. Turbulent oscillating channel flow subjected to a free-surface stress.

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number

  18. Convective heat transfer from rough surfaces with two-dimensional ribs - transitional and laminar flow

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Meyer, L.

    1978-01-01

    Measurements of friction factor and heat transfer coefficients for two rods of 18.9 mm 0.D. with two-dimensional roughness, each in two different outer smooth tubes have been performed in turbulent and laminar flow. The turbulent flow results indicate that the flow was not thermally fully established, the isothermal data however agree reasonably well with our previously obtained general correlation. Laminar flow results can be correlated best when the Reynolds and Greatz numbers are evaluated at the temperature average between the temperature of the inner rod surface and of the outer smooth surface of the annulus, the average being weighted over the two surfaces. (orig.) [de

  19. Measurement of the interaction between the flow and the free surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji [Univ. of Tokyo, Ibaraki (Japan); Schmidl, W.D.; Philip, O.G. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.

  20. Measurement of the interaction between the flow and the free surface of a liquid

    International Nuclear Information System (INIS)

    Okamoto, Koji; Schmidl, W.D.; Philip, O.G.

    1995-01-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow

  1. Self-induced oscillation of free surface in a tank with circulating flow, 2

    International Nuclear Information System (INIS)

    Okamoto, Koji; Madarame, Haruki; Hagiwara, Tsuyoshi

    1991-01-01

    An energy supply mechanism to self-induced sloshing in a tank with circulating flow is proposed. The circulating flow impinges on the free surface making it swell partially. The amount of swell increases with increasing water level under the condition of growing sloshing. The change of the free surface contour by this effect supplies sufficient energy to the sloshing. The dependency of the sloshing growth on the flow rate and the water level is explained well by this model. (author)

  2. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  3. Method of driving liquid flow at or near the free surface using magnetic microparticles

    Science.gov (United States)

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  4. Vectorization of Reed Solomon decoding and mapping on the EVP

    NARCIS (Netherlands)

    Kumar, A.; Berkel, van C.H.

    2008-01-01

    Reed Solomon (RS) codes are used in a variety of (wireless) communication systems. Although commonly implemented in dedicated hardware, this paper explores the mapping of high-throughput RS decoding on vector DSPs. The four modules of such a decoder, viz. Syndrome Computation, Key Equation Solver,

  5. Disrupting the Education Monopoly: A Conversation with Reed Hastings

    Science.gov (United States)

    Jacobs, Joanne

    2015-01-01

    This article features an interview with Netflix CEO, Reed Hastings. In this interview, Hastings relates that he told the "Wall Street Journal" in 2008 that he started looking at education--trying to figure out why our education is lagging when our technology is increasing at great rates and there's great innovation in so many other areas…

  6. An Exemplary High School Literary Magazine: "The Thinking Reed."

    Science.gov (United States)

    Holbrook, Hilary Taylor, Comp.

    One of a series of 20 literary magazine profiles written to help faculty advisors wishing to start or improve their publication, this profile provides information on staffing and production of "The Thinking Reed," the magazine published by Bethlehem Central High School, Delmar, New York. The introduction describes the literary magazine…

  7. Purification performances of common reed beds based on the ...

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... advantages, the reed bed is a solution to Beninese purification problems. Since technical service agent of ... Journal of Applied Biosciences 71:5682– 5691. ISSN 1997–5902 ..... 15N/14N ratios. Journal of Hydrology, vol. 199,.

  8. Flow control inside a molten Zn pot for improving surface quality of zinc plated strips

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [Samsung Techwin Co., Ltd. (Korea); Koh, M.S.; Kim, S. [Pohang University of Science and Technology Graduate School, Pohang (Korea)

    2001-10-01

    The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed V{sub s}, flow rate Q of induction heater, scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the trip speed V{sub 2}, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type. (author). 14 refs., 11 figs.

  9. Experimental and numerical studies on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Su, G.Y.; Gu, H.Y.; Cheng, X.

    2012-01-01

    Highlights: ► Experimental and CFD studies on free surface flow have been performed in a scaled windowless target. ► Flow structure inside spallation area can be divided into three typical zones. ► Under large Reynolds number, large scale vortex can be observed. ► CFD studies have been conducted by using both LES and RANS (k-ω SST) turbulence models. ► LES model provides better numerical prediction on free surface behavior and flow transient. - Abstract: The formation and control method of the coolant free surface is one of the key technologies for the design of windowless targets in the accelerator driven system (ADS). In the recent study, experimental and numerical investigations on the free surface flow have been performed in a scaled windowless target by using water as the model fluid. The planar laser induced fluorescence technique has been applied to visualize the free surface flow pattern inside the spallation area. Experiments have been carried out with the Reynolds number in the range of 30,000–50,000. The structure and features of flow vortex have been investigated. The experimental results show that the free surface is vulnerable to the vortex movement. In addition, CFD simulations have been performed under the experimental conditions, using LES and RANS (k-ω SST) turbulence models, respectively. The numerical results of LES model agree qualitatively well with the experimental data related to both flow pattern and free surface behavior.

  10. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    Science.gov (United States)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  11. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  12. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  13. Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Audet, Joachim

    2014-01-01

    below the soil surface. Gross primary production (GPP) was estimated from the above ground biomass yield. Results The mean dry biomass yield across all water table treatments was 6 Mg ha−1 with no significant differences between the treatments. Raising the GWL to the surface decreased both the net...... of peatlands grown with reed canary grass (RCG) and rewetted to various extents. Methods Gas fluxes of CO2, methane (CH4) and nitrous oxide (N2O) were measured with a static chamber technique for 10 months from mesocosms sown with RCG and manipulated to ground water levels (GWL) of 0, −10, −20, −30 and −40 cm...... The results showed that a reduction in total GHG emission can be achieved without losing the productivity of newly established RCG when GWL is maintained close to the surface. Further studies should address the practical constrains and long-term productivity of RCG cultivation in rewetted peatlands....

  14. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    International Nuclear Information System (INIS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-01-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel

  15. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  16. Mass transfer from smooth alabaster surfaces in turbulent flows

    Science.gov (United States)

    Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.

    1987-11-01

    The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.

  17. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  18. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  19. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  20. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti

    2006-01-01

    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  1. Rotating polygon instability of a swirling free surface flow

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.

    2013-01-01

    We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface...... behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container....

  2. A New Method to Simulate Free Surface Flows for Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2015-01-01

    Full Text Available Free surface flows arise in a variety of engineering applications. To predict the dynamic characteristics of such problems, specific numerical methods are required to accurately capture the shape of free surface. This paper proposed a new method which combined the Arbitrary Lagrangian-Eulerian (ALE technique with the Finite Volume Method (FVM to simulate the time-dependent viscoelastic free surface flows. Based on an open source CFD toolbox called OpenFOAM, we designed an ALE-FVM free surface simulation platform. In the meantime, the die-swell flow had been investigated with our proposed platform to make a further analysis of free surface phenomenon. The results validated the correctness and effectiveness of the proposed method for free surface simulation in both Newtonian fluid and viscoelastic fluid.

  3. Modeling of surface roughness effects on Stokes flow in circular pipes

    Science.gov (United States)

    Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian

    2018-02-01

    Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.

  4. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  5. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  6. Ecology and physiology of reed. A literature study for evaluation of reed as an energy source. Vassens Ekologi och Fysiologi. Litteraturstudie foer Bedoerfrung au Vass som Energiraavaren

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndahl, G.; Egnens, H.

    1980-01-01

    The potentials of reed as an energy source are evaluated. The following subjects are discussed: The structure and life-cycle of reed; Primary production and photosynthesis; Important environmental factors for the production; Genetic variation; Competition, succession and parasitism; Human influence like cultivation, harvesting, etc. An extensive list of references is given.

  7. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.; Linden, Matthew; Agusti, Susana

    2017-01-01

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed

  8. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  9. Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface

    Science.gov (United States)

    Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John

    2016-11-01

    Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.

  10. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  11. A Kinematic Conservation Law in Free Surface Flow

    OpenAIRE

    Gavrilyuk , Sergey; Kalisch , Henrik; Khorsand , Zahra

    2015-01-01

    The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quanti...

  12. A stereo vision method for tracking particle flow on the weld pool surface

    NARCIS (Netherlands)

    Zhao, C.X.; Richardson, I.M.; Kenjeres, S.; Kleijn, C.R.; Saldi, Z.

    2009-01-01

    The oscillation of a weld pool surface makes the fluid flow motion quite complex. Two-dimensional results cannot reflect enough information to quantitatively describe the fluid flow in the weld pool; however, there are few direct three-dimensional results available. In this paper, we describe a

  13. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  14. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  15. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework

    Science.gov (United States)

    Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminant transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of Soil and Water Assessment ...

  16. Simultaneous measurement of a fluid flow and the fluid's free surface using PIV

    International Nuclear Information System (INIS)

    Philip, O.G.; Hassan, Y.A.; Okamoto, K.

    1995-01-01

    The objective of this investigation is to study the interaction between a fluid flow and its free surface with an improved application of the flow measurement technique, particle image velocimetry (PIV). In this study, improvements in the data acquisition and tracking method of the PIV technique were developed

  17. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    Science.gov (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  18. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  19. Gravity Drainage of Activated Sludge on Reed Beds

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian

    and operation of reed beds and the efficiencies are often lower than predicted. One reason is that the sludge quality varies from plant to plant and even within plants from time to time. No good method exists for measuring the sludge quality with respect to drainage characteristics. A new experimental method...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows......Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design...

  20. Mapping of reed in shallow bays. SFR-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten; Lindgren, Fredrik (Umeaa Univ. (Sweden))

    2011-03-15

    The regolith-lake development model (RLDM) describes the development of shallow bays to lakes and the infilling of lakes in the Forsmark area during an interglacial. The sensitivity analysis has shown the need for an update of the infill procedure in the RLDM. Data from the mapping of reed in shallow bays in the Forsmark area will be used to improve the infill procedure of an updated RLDM. The field work was performed in August 26-31, 2010. The mapping of reed was done in 124 points. In these points, coordinates and water depth were mapped using an echo sounder and a DGPS. Quaternary deposits and the thickness of soft sediments were mapped using an earth probe. Measurement points were delivered in ESRI shape format with coordinates in RT90 2.5 gon W and altitudes in the RHB70 system for storage in SKB's GIS data base

  1. Free-surface flow around an appended hull

    International Nuclear Information System (INIS)

    Lungu, A; Pacuraru, F

    2010-01-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.

  2. Segregating photoelastic particles in free-surface granular flows

    Science.gov (United States)

    Thomas, Amalia; Vriend, Nathalie; Environmental; Industrial Fluid Dynamics Team

    2017-11-01

    We present results from a novel experimental set-up creating 2D avalanches of photoelastic discs. Two distinct hoppers supply either monodisperse or bidisperse particles at adjustable flow-rates into a 2 meter long, narrow acrylic chute inclined at 20°. For 20-40 seconds the avalanche maintains a steady-state that accelerates and thins downstream. The chute basal roughness is variable, allowing for different flow profiles. Using a set of polarizers and a high-speed camera, we visualize and quantify the forces due to dynamic interactions between the discs using photoelastic theory. Velocity and density profiles are derived from particle tracking at different distances from the discharge point and are coarse-grained to obtain continuous fields. With the access to both force information and dynamical properties via particle-tracking, we can experimentally validate existing mu(I) and non-local rheologies. As an extension, we probe the effect of granular segregation in bimodal mixtures by using the two separate inflow hoppers. We derive the state of segregation along the avalanche channel and measure the segregation velocities of each species. This provides insight in, and a unique validation of, the fundamental physical processes that drive segregation in avalanching geometries.

  3. Oscillation thresholds for "striking outwards" reeds coupled to a resonator

    OpenAIRE

    Silva , Fabrice; Kergomard , Jean; Vergez , Christophe

    2007-01-01

    International audience; This paper considers a "striking outwards" reed coupled to a resonator. This expression, due to Helmholtz, is not discussed here : it corresponds to the most common model of a lip-type valve, when the valve is assumed to be a one degree of freedom oscillator. The presented work is an extension of the works done by Wilson and Beavers (1974), Tarnopolsky (2000). The range of the playing frequencies is investigated. The first results are analytical : when no losses are pr...

  4. Dorothy Reed and Hodgkin's disease: a reflection after a century

    International Nuclear Information System (INIS)

    Zwitter, Matjaz; Cohen, Joel R.; Barrett, Ann; Robinton, Elizabeth D.

    2002-01-01

    It has now been 100 years since Dorothy Reed, at the age of 28, wrote her paper on Hodgkin's disease. Her biography reveals the difficult lives of women entering the hitherto male-dominated field of medicine, let alone medical research. Her historic paper on Hodgkin's disease is remarkable for its brilliant observations and concise scientific reasoning. Nevertheless, she was told that as a woman she could not hope for a career as an academic pathologist. After marriage to Charles Elwood Mendenhall, Professor of Physics at the University of Wisconsin and after giving birth to four children, the second part of her career began. Motivated by the loss of her firstborn, she began a study of infant mortality, an interest that lasted throughout her career. In 1926, Mendenhall undertook a survey comparing infant and maternal mortality rates in Denmark and the United States. This influential study concluded that American mortality rates were higher because of unnecessary interference in the natural process of childbirth and recommended the education of midwives follow the Danish model. In 1937, her efforts were rewarded when Madison, WI received recognition for having the lowest infant mortality of any city in the United States. Reading Reed's paper on Hodgkin's disease, we see that her observations go far beyond a description of a specific cell. Her presentation of macroscopic and microscopic features is remarkable for the distinction between 'young' and 'old' growths: Reed saw Hodgkin's disease as a process, rather than the spreading of a cancer. She was the first to note that those most commonly affected are boys or young adults, especially those whose general health before the disease had been excellent. She was also the first to note anergy to tuberculin. Dorothy Reed defined Hodgkin's disease in relation to tuberculosis, described its pathologic features, and offered comments on its pathogenesis, epidemiology, and immunology that still deserve to be discussed

  5. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Hibiki, T.

    2008-01-01

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions

  6. Surface optimization and new cavitation model for lubricated flow

    Directory of Open Access Journals (Sweden)

    Dalissier Eric

    2013-12-01

    Full Text Available Le système piston/chemise/segment est le siège d’une partie importante des pertes en frottement du moteur (de l’ordre de 7% de l’énergie fournie par le moteur [1]. Une des pistes étudiées pour diminuer ces frottements consiste à introduire des rugosités à la surface de la chemise. Ces rugosités servent localement de réservoir au lubrifiant et permettent de limiter les contacts entre les segments et la chemise et donc de diminuer le frottement. Un des buts de notre travail était d’optimiser ces rugosités de surface en modélisant le système segment/chemise en présence de lubrifiant.

  7. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  8. Balanced Reed-Solomon codes for all parameters

    KAUST Repository

    Halbawi, Wael; Liu, Zihan; Hassibi, Babak

    2016-01-01

    We construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes with any length n and dimension k. By sparsest, we mean that each row has the least possible number of nonzeros, while balanced means that the number of nonzeros in any two columns differs by at most one. Codes allowing such encoding schemes are useful in distributed settings where computational load-balancing is critical. The problem was first studied by Dau et al. who showed, using probabilistic arguments, that there always exists an MDS code over a sufficiently large field such that its generator matrix is both sparsest and balanced. Motivated by the need for an explicit construction with efficient decoding, the authors of the current paper showed that the generator matrix of a cyclic Reed-Solomon code of length n and dimension k can always be transformed to one that is both sparsest and balanced, when n and k are such that k/n (n-k+1) is an integer. In this paper, we lift this condition and construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes for any set of parameters.

  9. Balanced Reed-Solomon codes for all parameters

    KAUST Repository

    Halbawi, Wael

    2016-10-27

    We construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes with any length n and dimension k. By sparsest, we mean that each row has the least possible number of nonzeros, while balanced means that the number of nonzeros in any two columns differs by at most one. Codes allowing such encoding schemes are useful in distributed settings where computational load-balancing is critical. The problem was first studied by Dau et al. who showed, using probabilistic arguments, that there always exists an MDS code over a sufficiently large field such that its generator matrix is both sparsest and balanced. Motivated by the need for an explicit construction with efficient decoding, the authors of the current paper showed that the generator matrix of a cyclic Reed-Solomon code of length n and dimension k can always be transformed to one that is both sparsest and balanced, when n and k are such that k/n (n-k+1) is an integer. In this paper, we lift this condition and construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes for any set of parameters.

  10. Fractal behaviour of flow of an inhomogeneous fluid over a smooth inclined surface

    International Nuclear Information System (INIS)

    Rouhani, S.; Maleki Jirsarani, N.; Ghane Motlagh, B.; Baradaran, S.; Shokrian, E.

    2001-01-01

    We have observed and analyzed fractal patterns made by the flow of an inhomogeneous fluid (a suspension) over an inclined smooth surface. We observed that if the angle of inclination is above a threshold (10 d eg C - 12 d eg C), the length of fractal clusters become infinity. We measured a fractal dimension of df=1.40 ± 0.05. This falls within the same general class of patterns of flow of water over an inhomogeneous surface. This observation is consistent with the results of theoretical modes for nonlinear fluid flow in random media

  11. System for the Reduction of Substances in Reject Water from Reed-Bed Sludge Mineralization Plants

    DEFF Research Database (Denmark)

    2004-01-01

    The invention is a system for the reduction of substances in reject water from reed-bed sludge mineralization plants (also referred to as sludge dewatering reed-beds). The systems utilizes the composition of substances in reject water from reed-beds and that of sludge to reduce substance mass from...... the reject water via recirculation into a mixed reactor and back onto the reed-beds. The mixed rector consists of a container in which sludge (that is typically loaded directly on to reed-beds) is mixed with recirculated reject water from reed-beds. The sludge mixture has a definable hydraulic retention time...... of by sending it back to the head of a wastewater treatment plant. The system has proven to reduce the mass of nitrogen, COD, and water in the reject water, and can possibly reduce phosphorus and other substances. The overall effect is a reduction in the substance recycle within a wastewater treatment plant...

  12. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  13. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  14. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water

    DEFF Research Database (Denmark)

    Dantas Mendes, Lipe Renato; Tonderski, Karin; Iversen, Bo Vangsø

    2018-01-01

    Surface-flow constructed wetlands (CWs) are potential cost-efficient solutions to mitigate phosphorus (P) loads from agricultural areas to surface waters. Hydraulic and phosphorus loading rates (HLR and PLR) are critical parameters that regulate P retention in these systems. The present study aim...

  15. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  16. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    Science.gov (United States)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  17. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    International Nuclear Information System (INIS)

    Zeng, C J; Xiao, Y X; Zhu, W; Yao, Y Y; Wang, Z W

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail

  18. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    International Nuclear Information System (INIS)

    Xiao, Y X; Wang, Z W; Yan, Z G; Cui, T

    2012-01-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  19. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.

    2012-11-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  20. A study on the effects of heated surface wettability on nucleation characteristics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio

    2014-01-01

    Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)

  1. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  2. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2009-01-01

    The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow

  3. Development of free surface flow between concentric cylinders with vertical axes

    International Nuclear Information System (INIS)

    Watanabe, T; Toya, Y; Nakamura, I

    2005-01-01

    Numerical and experimental studies are conducted on flows developing between two concentric cylinders with vertical axes. The inner cylinder rotates and the outer and the lower end wall are fixed. The upper boundary is a free surface. The flow is at rest in an initial state, and the inner cylinder impulsively begins to rotate or its rotation speed linearly increases to a prescribed value. The acceleration rate of the inner cylinder changes the formation processes of flows and/or the final flow modes. Time-dependent flows appear at higher Reynolds numbers, and the numerical and experimental results of the power spectra show some agreements. It is suggested that critical Reynolds numbers appear, at which the fluctuations in the displacement of the free surface and the kinetic energy of a velocity component steeply increase

  4. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  5. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  6. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  7. Passive control of flow structure interaction between a sphere and free-surface

    Directory of Open Access Journals (Sweden)

    Akilli Huseyin

    2012-04-01

    Full Text Available Flow characteristics for both a smooth and a vented sphere such as velocity vectors, patterns of streamlines, vorticity contours, stream-wise fluctuations, cross-stream velocity fluctuations and Reynolds stress correlations between a sphere and free-surface for various submerged ratio at Re =5,000 are studied by using dye visualization and the particle image velocimetry technique. Passive control of flow structure interaction between sphere and free surface was examined by using a modified geometry which has a 15% sphere diameter hole passing through the sphere equator. Both of the spheres were separately placed beneath the free surface with different positions from touching to the free surface to two sphere diameters below the free surface. It is demonstrated that reattachment point of the separated flow to the free surface varies for both of the sphere cases as the sphere position alters vertically through the water flow while the flow structure for the vented sphere occurs considerably symmetrical due to forming of a pair of counter-rotating ring vortices.

  8. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  9. Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow

    DEFF Research Database (Denmark)

    Szlavik, Julie; Soares Paiva, Dionísio; Mørk, Nils

    2012-01-01

    .001) was observed but not of interactions between surface-shear stress. No correlation between surface hydrophobicity and IAR was observed. Addition of 5% NaCl during propagation resulted in a decrease in IAR whilst propagation in low nutrient media caused an increase indicating a general change in surface......Some strains of the food borne pathogen Listeria monocytogenes persist in food processing environments. The exact reason behind this phenomenon is not known, but strain differences in the ability to adhere to solid surfaces could offer an explanation. In the present work, initial adhesion of nine...... strains of L. monocytogenes was investigated under liquid flow at two levels of shear stress on six different surfaces using a flow chamber set-up with microscopy measurements. The surfaces tested were glass and PVC, and glass coated with beef extract, casein, and homogenised and unhomogenised milk...

  10. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  11. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  12. Surface Tension Driven Instability in the Regime of Stokes Flow

    Science.gov (United States)

    Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun

    2010-03-01

    A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).

  13. Development library of finite elements for computer-aided design system of reed sensors

    Science.gov (United States)

    Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.

    2018-05-01

    The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.

  14. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  15. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  16. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  17. Effects of graphite surface roughness on bypass flow computations for an HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a

  18. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  19. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  20. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  1. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  2. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R

    2010-01-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  3. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fiereder, R; Riemann, S; Schilling, R, E-mail: fiereder@lhm.mw.tum.d [Department of Fluid Mechanics, Technische Universitaet Muenchen Bolzmannstrasse 15, Garching, 85748 (Germany)

    2010-08-15

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  4. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  5. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  6. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2017-10-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  7. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    Science.gov (United States)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  8. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag

  9. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Science.gov (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  10. Effects of flow on corrosion and surface film formation on an alkali borosilicate glass

    International Nuclear Information System (INIS)

    Clark, D.E.; Christensen, H.; Hermansson, H.P.; Sundvall, S.B.; Werme, L.

    1984-01-01

    Samples of the Swedish KBS glass type ABS 39 have been leached in doubly distilled water for 28 days at 90 0 C under static and flow conditions. After leaching, pH, weight loss, and elemental mass loss were determined. Surface film formation was studied by using IRRS, SEM-EDS, and SIMS analyses. Increasing the flow rate resulted in a decreased attack on the glass surface. Na and B were depleted while Al, Fe, La, and U were enriched at the surfaces of all the samples. The depth of the extensively leached layer determined by SIMS was approximately 6 μm on the low-flow-rate sample and about 2 μm on the high-flow-rate sample. SEM analysis also showed some variations in the thickness of the leached layers, but in general, the thickness of the layer on the 0.5 mL/h samples was about 3 times greater than on the 90 mL/g samples. Small particles ( 2 for the static and 0.5 mL/h samples and 6 g/m 2 for the 90 mL/h samples. This factor of 3 difference in weight loss between the low and high flow rates correlates well with the factor of 3 difference in their leached depths. A model is proposed to explain the results based on the effectiveness of protective surface layers

  11. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  12. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep

    2011-01-01

    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  13. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han

    2017-12-01

    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  14. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Erents, K.

    2002-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Both constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes, but below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  15. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, Carlos; Pedrosa, Maria A.; Erents, Kevin

    2001-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. The plasma conditions where this has been observed are clearly below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  16. Comparing two surface flow wetlands for removal of nutrients in agricultural drainage water

    DEFF Research Database (Denmark)

    Hoffmann, Carl Christian; Kjærgaard, Charlotte; Levesen, Bo

    In Denmark there is a growing interest for using constructed wetlands as a mean for removal of nutrients from agricultural run-off, such as drainage ditches and tile drainage systems. We have studied two surface flow constructed wetlands from district Vejle, Jutland, Denmark. The Vicarage Wetland.......020 mg P and unfiltered TP decreases with 75 % to 0.040 mg P l-1. The results from this study seem to indicate that constructed surface flow wetlands are able to remove nitrogen and retain phosphorus from agricultural drainage run-off although the nutrient concentrations are much lower as compared...

  17. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    a maximum release blood mononuclear cells were purified by density centrifugation and using flow cytometry, basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (

  18. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  19. On the link between ExB sheared flows and rational surfaces in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Erents, K.; Matthews, G.

    2000-11-01

    Experimental evidence of flattening in plasma profiles has been observed in the edge region of the JET tokamak. This observation has been interpreted in terms of the influence of rational surfaces on plasma profiles. In the framework of this interpretation, significant ExB sheared flows linked to rational surfaces have been identified. These ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. These results can explain the link between the magnetic topology and the generation of transport barriers reported in fusion devices. (author)

  20. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  1. Theory for source-responsive and free-surface film modeling of unsaturated flow

    Science.gov (United States)

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  2. Fate of xenobiotic compounds and plants activity in reed bed sludge treatment

    DEFF Research Database (Denmark)

    Chen, Xijuan; Pauli, Udo; Rehfus, Stefan

    different plants: bulrush (Typha), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea) were planted into 12 containers with a size of 1m Х 1m X 1m which were builded with 20cm gravel and 50cm sludge to study the plants activity in sludge degradation process, 4 containers were left...

  3. The vibrating reed frequency meter : digital investigation of an early cochlear model

    NARCIS (Netherlands)

    Bell, Andrew; Wit, Hero P.

    2015-01-01

    The vibrating reed frequency meter, originally employed by Bekesy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system,

  4. Islands in a desert : breeding ecology of the African Reed Warbler Acrocephalus baeticatus in Namibia

    NARCIS (Netherlands)

    Eising, CM; Komdeur, J; Buys, J; Reemer, M; Richardson, DS; Richardson, David S.

    The continental African Reed Warbler Acrocephalus baeticatus, like its relative the Seychelles Warbler Acrocephalus sechellensis, breeds in isolated patches. We studied the mating system of the African Reed Warbler to see whether this species, like the Seychelles Warbler, shows co-operative

  5. Ecosystem Service Value for the Common Reed Wetlands in the Liaohe Delta, Northeast China

    DEFF Research Database (Denmark)

    Ye, Siyuan; Laws, Edward A.; Costanza, Robert

    2016-01-01

    The largest reed field in the world, with an area of 1000 km2 in 1953, is located in the Liaohe Delta, which lies in the five-point-in-a-line economic strategic zone of northeastern China. However, the area of reeds has declined dramatically in recent years to accommodate oil field infrastructure...

  6. Hardware/Software Co-design Applied to Reed-Solomon Decoding for the DMB Standard

    NARCIS (Netherlands)

    Dam, A.C.; Lammertink, M.G.J.; Rovers, K.C.; Slagman, J.; Wellink, A.M.; Rauwerda, G.K.; Smit, Gerardus Johannes Maria

    2006-01-01

    This paper addresses the implementation of Reed- Solomon decoding for battery-powered wireless devices. The scope of this paper is constrained by the Digital Media Broadcasting (DMB). The most critical element of the Reed-Solomon algorithm is implemented on two different reconfigurable hardware

  7. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    Science.gov (United States)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  8. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  9. The application of slip length models to larger textures in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2017-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.

  10. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  11. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  12. Hydrodynamic modelling as a need for protection of the surface flows

    International Nuclear Information System (INIS)

    Popovska, Tsvetanka

    1997-01-01

    The problems of flow in the open flows, rivers and lakes especially today require serious access and its global solving. The choice of basic equations and the method of their solving is from the exceptional importance. Regardless of the fact whether two or three dimensional model is selected, as a global mathematical model it should have three phases: (i) hydrodynamic model with which the current picture is determined, (ii) transport-dispersive model with which the distribution of various physical-chemical parameters is determined and (iii) ecological model which uses the results from the first two phases, determines the situation of degradation and concentration of the various parameters and further provides measures for surpassing the negative situations. The flow in the open flows generally is a turbulent phenomena especially in the zones of emptying-releasing on the surface water currents and contaminants. Characteristic for turbulent flows is their stochastic nature, i.e. they lack and kind of regularity of the physic-hydraulic parameters. So, certain measuring are needed and within todays degree of pollution of our surface waters, we should say urgent. This kind of measuring from hydrodynamic aspect are concerned to the boundary and start conditions, or the conditions which rule on the surface, in the bottom and the coast. From the quality aspect, they need systematic measuring of the biological and chemical parameters. This points out to the need of multidisciplinary and not partial access in developing and application of the mathematical model

  13. An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows

    Science.gov (United States)

    Yokoi, Kensuke; Furuichi, Mikito; Sakai, Mikio

    2017-12-01

    We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated average-based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of the Reynolds number up to Re = 7500 with a Cartesian grid of 128 × 128, which was not capable for the original VSIAM3. We also tested the proposed framework in free surface flow problems (droplet collision and separation of We = 40 and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture droplet collision and separation of We = 40 with a low numerical resolution (8 meshes for the initial diameter of droplets). We also simulated free surface flows including particles toward non-Newtonian flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate interactions among air, particles (solid), and liquid.

  14. Method and apparatus for reducing the drag of flows over surfaces

    Science.gov (United States)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  15. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    International Nuclear Information System (INIS)

    Kim Hun; Lim, Hee Chang

    2015-01-01

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4

  16. A review of surface heat-flow data of the northern Middle Atlas (Morocco)

    Science.gov (United States)

    Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine

    2017-12-01

    We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.

  17. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim Hun; Lim, Hee Chang [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-07-15

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

  18. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...

  19. Free-Molecular Gas Flow in Channels (Pores) with Physico-Chemical Transformation on the Surface

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2006-01-01

    Roč. 49, 13-14 (2006), s. 2356-2365 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z40720504 Keywords : free-molecular flow * surface * spatial distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.482, year: 2006

  20. Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface

    International Nuclear Information System (INIS)

    Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho

    2005-01-01

    While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm

  1. Practical computational aeroacoustics for compact surfaces in low mach number flows

    DEFF Research Database (Denmark)

    Pradera-Mallabiabarrena, Ainara; Keith, Graeme; Jacobsen, Finn

    2011-01-01

    compared to the wavelength of interest. This makes it possible to focus on the surface source term of the Ffowcs Williams-Hawkings equation. In this paper, in order to illustrate the basic method for storing and utilizing data from the CFD analysis, the flow past a circular cylinder at a Reynolds number...

  2. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  3. DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  4. DNS of turbulent flow and heat transfer in a channel with surface mounted cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  5. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish

    2016-08-01

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  6. Should blood flow during cardiopulmonary bypass be individualized more than to body surface area?

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Larsson, A; Andreasen, Jan Jesper

    Blood flow during cardiopulmonary bypass (CPB) is calculated on body surface area (BSA). Increasing comorbidity, age and weight of today's cardiac patients question this calculation as it may not reflect individual metabolic requirement. The hypothesis was that a measured cardiac index (CI) prior...

  7. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  8. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  9. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  10. Free surface modeling of contacting solid metal flows employing the ALE formulation

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; Huetink, Han; Merklein, M.; Hagenah, H.

    2012-01-01

    In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition

  11. Reed-Solomon Codes and the Deep Hole Problem

    Science.gov (United States)

    Keti, Matt

    In many types of modern communication, a message is transmitted over a noisy medium. When this is done, there is a chance that the message will be corrupted. An error-correcting code adds redundant information to the message which allows the receiver to detect and correct errors accrued during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact discs, deep space probes,ldots) and investigate the limits of its error-correcting capacity. It can be shown that understanding this is related to understanding the "deep hole" problem, which is a question of determining when a received message has, in a sense, incurred the worst possible corruption. We partially resolve this in its traditional context, when the code is based on the finite field F q or Fq*, as well as new contexts, when it is based on a subgroup of F q* or the image of a Dickson polynomial. This is a new and important problem that could give insight on the true error-correcting potential of the Reed-Solomon code.

  12. Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Sho; Fukagata, Koji [Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Mamori, Hiroya, E-mail: fukagata@mech.keio.ac.jp [Department of Mechanical Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2017-04-15

    Friction drag reduction effect by superhydrophobic surfaces in a turbulent channel flow is investigated by means of direct numerical simulation. The simulations are performed under a constant pressure gradient at the friction Reynolds number of 180. A special focus is laid upon the influence of the angle of microridge structure to flow direction, while the gas area fraction on the surface is kept at 50% and the groove width is kept constant at 33.75 wall units. Larger drag reduction effect is observed for a smaller angle: the bulk-mean velocity is increased about 15% when the microridge is parallel to the flow. The drag reduction effect is found to deteriorate rapidly with the microridge angle due to a decrease in the slip velocity. The Reynolds stress budgets show that the modification in each physical effect is qualitatively similar but more pronounced when the microridge is aligned with the stream. (paper)

  13. Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method

    Science.gov (United States)

    Bilal, S.; Rehman, Khalil Ur; Malik, M. Y.

    Present study is addressed to express the implementation of Keller-Box technique on physical problem in the field of fluid rheology, for this purpose the Williamson fluid flow is considered along a cylindrical stretching surface manifested with temperature stratification. The flow model is translated mathematically in terms of differential equations. Numerical simulation is executed to trace out the solution structure of developed differential system. The graphical outcomes for the flow regime of two different geometries (i-e cylindrical and plane surface) are reported and examined towards involved physical parameters. Furthermore, the local skin friction coefficient and local Nusselt number are computed numerically. A remarkable agreement of present study is noticed with the previously published results, which confirms the implementation and validation of Keller-Box scheme and it will serve as a helping source for the future correspondence.

  14. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  15. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  16. Hydrodynamics of free surface flows modelling with the finite element method

    CERN Document Server

    Hervouet, Jean-Michel

    2007-01-01

    A definitive guide for accurate state-of-the-art modelling of free surface flows Understanding the dynamics of free surface flows is the starting point of many environmental studies, impact studies, and waterworks design. Typical applications, once the flows are known, are water quality, dam impact and safety, pollutant control, and sediment transport. These studies used to be done in the past with scale models, but these are now being replaced by numerical simulation performed by software suites called "hydro-informatic systems". The Telemac system is the leading software package worldwide, and has been developed by Electricité de France and Jean-Michel Hervouet, who is the head and main developer of the Telemac project. Written by a leading authority on Computational Fluid Dynamics, the book aims to provide environmentalists, hydrologists, and engineers using hydro-informatic systems such as Telemac and the finite element method, with the knowledge of the basic principles, capabilities, different hypothese...

  17. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  18. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  19. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  20. How Important Is Connectivity for Surface Water Fluxes? A Generalized Expression for Flow Through Heterogeneous Landscapes

    Science.gov (United States)

    Larsen, Laurel G.; Ma, Jie; Kaplan, David

    2017-10-01

    How important is hydrologic connectivity for surface water fluxes through heterogeneous floodplains, deltas, and wetlands? While significant for management, this question remains poorly addressed. Here we adopt spatial resistance averaging, based on channel and patch configuration metrics quantifiable from aerial imagery, to produce an upscaled rate law for discharge. Our model suggests that patch coverage largely controls discharge sensitivity, with smaller effects from channel connectivity and vegetation patch fractal dimension. However, connectivity and patch configuration become increasingly important near the percolation threshold and at low water levels. These effects can establish positive feedbacks responsible for substantial flow change in evolving landscapes (14-36%, in our Everglades case study). Connectivity also interacts with other drivers; flow through poorly connected hydroscapes is less resilient to perturbations in other drivers. Finally, we found that flow through heterogeneous patches is alone sufficient to produce non-Manning flow-depth relationships commonly observed in wetlands but previously attributed to depth-varying roughness.

  1. Surface wave propagation in an ideal Hall-magnetohydrodynamic plasma jet in flowing environment

    International Nuclear Information System (INIS)

    Sikka, Himanshu; Kumar, Nagendra; Zhelyazkov, Ivan

    2004-01-01

    The behavior of the Hall-magnetohydrodynamic (Hall-MHD) sausage and kink waves is studied in the presence of steady flow. The influence of the flow both inside and outside the plasma slab is taken into account. The plasma in the environment is considered to be cold and moves with the different flow velocity outside the slab. In the limit of parallel propagation, dispersion relation is derived to discuss the propagation of both the modes. Numerical results for the propagation characteristics are obtained for different Alfvenic Mach number ratios inside and outside the slab. It is found that the dispersion curves for both surface modes, namely, the sausage and kink ones in cold plasma show complexities in their behavior in terms of multivalued portions of the curves. These multivalued portions correspond to the different normalized phase velocities for the same value of Alfvenic Mach number. In contrast to the conventional MHD surface waves which are assumed to be pure surface waves or pseudosurface waves, surface waves are obtained which are bulk waves for very small dimensionless wave numbers, then turn to leaky waves and finally transform to pure surface waves for values of dimensionless wave number greater than one

  2. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  3. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  4. Verification of surface source's characteristics using large-area 2π gas flow counter

    International Nuclear Information System (INIS)

    Abu Naser Waheed, M.M.; Mikami, S.; Kobayashi, H.; Noda, K.

    1998-09-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has large-area 2π gas flow counter for the purpose of measuring activity of surface sources of alpha or beta ray emitter. Surface sources are used for the calibration of radiation measuring equipment for radiation control. Due to sequent use of sources, the surface of these sources are inclined to go in bad condition because of unwanted accidental incidents. For the better calibration achievement of radiation measuring instruments the rate of emission of these sources are to be checked periodically by the large-area 2π gas flow counter. In this paper described that eight U 3 O 8 surface sources were selected from many sources of PNC Tokai Works and activity of these sources was measured by the 2π gas flow counter. The results were compared with the values certified by Japan Radio Isotope Association (JRIA). It is evident from the result of comparison that the surface sources are in good condition, i.e., the sources are reliable to calibrate the radiation control instruments. (author)

  5. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  6. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  7. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  8. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  9. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  10. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  11. Numerical analysis of special-shaped surface in abrasive flow machining

    Science.gov (United States)

    Li, Junye; Zhou, Zengwei; Wu, Guiling; Lu, Hui; Sun, Zhihuai

    2018-03-01

    Solid-liquid two-phase abrasive flow machining is a method to effectively polish the surface of Special-shaped surface parts. Based on the processing characteristics of the abrasive flow machining. The standard model and the pressure-coupled SIMPLEC algorithm are used. The shear force and velocity of the near-wall surface of the runner of the solid-liquid two-phase abrasive machining with different inlet pressure are analyzed. The numerical simulation results show that the inlet pressure has little effect on the velocity, and the shear force has a linear relationship with the inlet pressure. To obtain a better polishing effect, the outlet pressure can be appropriately increased.

  12. A novel algorithm for delineating wetland depressions and mapping surface hydrologic flow pathways using LiDAR data

    Science.gov (United States)

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...

  13. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  14. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H [Toyo Construction Co. Ltd., Tokyo (Japan)

    1997-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  15. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  16. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    Science.gov (United States)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  17. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    Science.gov (United States)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  18. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil

    Directory of Open Access Journals (Sweden)

    Minh Khang Phan

    2016-08-01

    Full Text Available Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles (from 5° to 25° is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.

  19. Comparison of Flow Characteristics of Different Sphere Geometries Under the Free Surface Effect

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available Comparison of the experimental results of turbulent flow structures between a smooth sphere and a sphere with a vent hole, roughened, and o-ring is presented in the presence of a free-surface. Dye visualization and particle image velocimetry (PIV techniques were performed to examine effects of passive control methods on the sphere wake for Reynolds number Re = 5000 based on the sphere diameter with a 42.5mm in an open water channel. Instantaneous and time-averaged flow patterns in the wake region of the sphere were examined from point of flow physics for the different sphere locations in the range of 0≤h/D≤2.0 where h was the space between the top point of the sphere and the free surface. The ratio of ventilation hole to sphere diameter was 0.15, o-ring was located at 55° with a 2 mm from front stagnation point of the sphere and roughened surface was formed by means of totally 410 circular holes with a 3 mm diameter and around 2 mm depth in an equilateral triangle arrangement. The flow characteristics of instantaneous velocity vectors, vorticity contours, time-averaged streamline patterns, Reynolds stress correlations and streamwise and cross-stream velocity fluctuations for both the smooth and passively controlled sphere were interpreted.

  20. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  1. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  2. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  3. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  4. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  5. An exploration of common reed (Phragmites australis bioenergy potential in North America

    Directory of Open Access Journals (Sweden)

    R. Vaičekonytė

    2014-10-01

    Full Text Available In North America, reed (Phragmites australis is typically considered to be a weed although it provides important ecosystem services. Small, sparse, patchy or mixed reedbeds are more suitable as habitat for many species than extensive dense reedbeds, whose habitat functions can be enhanced by the selective removal of biomass. We propose that above-ground reed biomass could be harvested for bioenergy, at the same time improving habitat for biodiversity by thinning or fragmenting the more extensive reedbeds. Biofuel pellets manufactured from reeds harvested at Montréal (Canada had moisture content 6.4 %, energy content 16.9 kJ g-1 (dry mass, ash content 3.44 %, and chloride content 1962 ppm. Thus, reed as a material for fuel pellet manufacture is similar to switchgrass (Panicum virgatum, which is commonly cultivated for that purpose and requires higher inputs than harvested wild reed. We discuss these findings in the context of environmental considerations and conclude that the bioenergy potential of reed could most expediently be realised in North America by combining material harvested from the widespread spontaneously occurring reedbeds with organic waste from other sources to create mixed biofuels. However, reeds with high levels of chlorine, sulphur or metals should not be burned to avoid air pollution or equipment damage unless these problems are mitigated by means of appropriate season of harvest, equipment, combustion regime, or use of a mixed feedstock.

  6. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  7. A STUDY OF RECOVERING A REED ECOSYSTEM USING POROUS CONCRETE IN THE LAKE BIWA SHORE

    Science.gov (United States)

    Takeda, Naho; Kato, Hayato; Okamoto, Takahisa; Kojima, Takayuki

    In this study, reed planting tests were carried out at the Biyo-center, an experiment station on the Lake Biwa shore, in order to evaluate the feasibility of a planting method with porous concrete (PoC method). Reed planting tests with coconut-fiber mats (mat method), which were generally used around Lake Biwa, were simultaneously carried out to compare with the PoC method. The reeds planted by the PoC method grew better than the ones planted by the mat method, and the number of reeds which were washed away by waves was smaller than that planted by the mat method. The result of the observation of reeds planted in the PoC showed plant maturation, and reeds could ta ke root into the PoC without interference with the voids of the PoC. As a result, it was shown that the reed planting tests with the PoC method was simple and effective, so it would become in harmony with the environment around Lake Biwa.

  8. Development and Application of a Flow Reactor Cell for Studies of Surface Chemistry

    Science.gov (United States)

    Algrim, L. B.; Pagonis, D.; Price, D.; Day, D. A.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    We have designed, constructed, characterized, and employed a flow reactor cell that can be used to investigate the interaction of gaseous species such as volatile organic compounds (VOCs), oxidants, acids, and water vapor with authentic and model surfaces that are present in indoor and outdoor environments. The 3.9 L rectangular cell is made of FEP-coated aluminum and has one open face that can be sealed to the surface of interest. An internal plunger is raised (lowered) to expose (cover) the surface while various probe chemicals are added to the flow. To date we have exposed painted surfaces to O3, OH radicals (made from reaction of O3 with tetramethylethene and from photolysis of methyl nitrate/NO mixtures), and NO3 radicals (made from thermal decomposition N2O5) and analyzed the emitted oxidation products with a proton transfer reaction mass spectrometer (PTR-MS) and chemical ionization mass spectrometer (CIMS) equipped with an iodide reagent ion source. Further studies have included the reaction of oxidants with surfaces coated with organic films such as squalene and polyethylene glycol, as well as uptake of ketones and acids from the gas-phase to painted surfaces. The cell was also recently deployed at the University of Colorado-Boulder Art Museum during spring of 2017 to investigate the oxidation products released from the museum walls and floors. Results from all of these studies will be presented.

  9. On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow

    Science.gov (United States)

    Behzad, Mohsen; Ashgriz, Nasser

    2011-11-01

    The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.

  10. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  11. FLOW VISUALIZATION OF RECTANGULAR SLOT AIR JET IMPINGEMENT ON FLAT SURFACES

    OpenAIRE

    Satheesha V *1, B. K. Muralidhra2, Abhilash N3, C. K. Umesh4

    2018-01-01

    Jet impingement near the mid-chord of the gas turbine blade is treated as a flat plate. Experimental and numerical investigations are carried out for a single slot air jet impinging on flat surface for two different rectangular slots of dimension (3mm x 65 mm) and (5mm x 65 mm). Experimentation is done to study the flow pattern topography on the flat target plate, with varying the flow rate from 20 LPM to 50 LPM by varying the nozzle to plate distance from 9 mm to 24 mm for slot jet of 3mm an...

  12. From Geodesic Flow on a Surface of Negative Curvature to Electronic Generator of Robust Chaos

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2016-12-01

    Departing from the geodesic flow on a surface of negative curvature as a classic example of the hyperbolic chaotic dynamics, we propose an electronic circuit operating as a generator of rough chaos. Circuit simulation in NI Multisim software package and numerical integration of the model equations are provided. Results of computations (phase trajectories, time dependencies of variables, Lyapunov exponents and Fourier spectra) show good correspondence between the chaotic dynamics on the attractor of the proposed system and of the Anosov dynamics for the original geodesic flow.

  13. Plasma flow to a surface using the iterative Monte Carlo method

    International Nuclear Information System (INIS)

    Pitcher, C.S.

    1994-01-01

    The iterative Monte Carlo (IMC) method is applied to a number of one-dimensional plasma flow problems, which encompass a wide range of conditions typical of those present in the boundary of magnetic fusion devices. The kinetic IMC method of solving plasma flow to a surface consists of launching and following particles within a grid of 'bins' into which weights are left according to the time a particle spends within a bin. The density and potential distributions within the plasma are iterated until the final solution is arrived at. The IMC results are compared with analytical treatments of these problems and, in general, good agreement is obtained. (author)

  14. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  15. Numerical analysis of free-surface flows by using OpenFOAM

    International Nuclear Information System (INIS)

    Uzawa, Ken; Watanabe, Tadashi; Nishida, Akemi; Takemiya, Hiroshi

    2010-01-01

    Laminar and turbulent free-surface flows induced by three-dimensional dam break are numerically investigated. It is found that a Second-order Moment Closure (SMC) model is in good agreement with experimental results. An eddy viscosity model becomes less effective because the turbulent dissipation rate is overestimated in the eddy viscosity model. The impact on a vertical wall resulting from a dam break flow is also investigated. The maximum pressure on the wall in the SMC model is higher than that in the laminar model, whereas averaged pressure on the wall in the SMC model is lower than that in the laminar model. (author)

  16. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  17. Calculation of three-dimensional fluid flow with multiple free surfaces

    International Nuclear Information System (INIS)

    Vander Vorst, M.J.; Chan, R.K.C.

    1978-01-01

    This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident

  18. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  19. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  20. An extended validation of the last generation of particle finite element method for free surface flows

    Science.gov (United States)

    Gimenez, Juan M.; González, Leo M.

    2015-03-01

    In this paper, a new generation of the particle method known as Particle Finite Element Method (PFEM), which combines convective particle movement and a fixed mesh resolution, is applied to free surface flows. This interesting variant, previously described in the literature as PFEM-2, is able to use larger time steps when compared to other similar numerical tools which implies shorter computational times while maintaining the accuracy of the computation. PFEM-2 has already been extended to free surface problems, being the main topic of this paper a deep validation of this methodology for a wider range of flows. To accomplish this task, different improved versions of discontinuous and continuous enriched basis functions for the pressure field have been developed to capture the free surface dynamics without artificial diffusion or undesired numerical effects when different density ratios are involved. A collection of problems has been carefully selected such that a wide variety of Froude numbers, density ratios and dominant dissipative cases are reported with the intention of presenting a general methodology, not restricted to a particular range of parameters, and capable of using large time-steps. The results of the different free-surface problems solved, which include: Rayleigh-Taylor instability, sloshing problems, viscous standing waves and the dam break problem, are compared to well validated numerical alternatives or experimental measurements obtaining accurate approximations for such complex flows.

  1. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  2. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  3. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    Science.gov (United States)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  4. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    Science.gov (United States)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  5. One-way quantum repeaters with quantum Reed-Solomon codes

    Science.gov (United States)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-05-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.

  6. Space communication system for compressed data with a concatenated Reed-Solomon-Viterbi coding channel

    Science.gov (United States)

    Rice, R. F.; Hilbert, E. E. (Inventor)

    1976-01-01

    A space communication system incorporating a concatenated Reed Solomon Viterbi coding channel is discussed for transmitting compressed and uncompressed data from a spacecraft to a data processing center on Earth. Imaging (and other) data are first compressed into source blocks which are then coded by a Reed Solomon coder and interleaver, followed by a convolutional encoder. The received data is first decoded by a Viterbi decoder, followed by a Reed Solomon decoder and deinterleaver. The output of the latter is then decompressed, based on the compression criteria used in compressing the data in the spacecraft. The decompressed data is processed to reconstruct an approximation of the original data-producing condition or images.

  7. Flow and heat transfer over a rotating disk with surface roughness

    International Nuclear Information System (INIS)

    Yoon, Myung Sup; Hyun, Jae Min; Park, Jun Sang

    2007-01-01

    A numerical study is made of flow and heat transfer near an infinite disk, which rotates steadily about the longitudinal axis. The surface of the disk is characterized by axisymmetric, sinusoidally-shaped roughness. The representative Reynolds number is large. Numerical solutions are acquired to the governing boundary-layer-type equations. The present numerical results reproduce the previous data for a flat disk. For a wavy surface disk, the radial distributions of local skin friction coefficient and local Nusselt number show double periodicity, which is in accord with the previous results. Physical explanations are provided for this finding. The surface-integrated torque coefficient and average Nusselt number increase as the surface roughness parameter increases. The effect of the Rossby number is also demonstrated

  8. The role of bed surface configuration on river response under increasing flows

    Science.gov (United States)

    Ferrer-Boix, Carles; Elgueta, María A.; Hassan, Marwan A.

    2017-04-01

    This research aims to explore how bed surface configuration influence channel evolution, vertical and downstream sediment sorting, and sediment transport in gravel bed streams under varying flows. While a significant body of research has been focused on channel evolution under constant flow regimes, few studies have focused on the impacts of flow variations in channel adjustments. Particularly, we are interested in examining the impact of the degree of bed surface coarsening and particle arrangement on channel adjustments and sediment transport rates. To this end, we conducted a set of experiments in a 0.55 m-wide, 5 m-long tilting flume. Flow discharge during the runs was initially held constant at 25 l/s for a period of time after which discharge was gradually increased at steps of certain duration. Flow rates during the rising limb of the hydrographs ranged from 26 l/s to 40 l/s. Initial bed slope was 0.04 m/m for all runs. Some of the experiments were conducted under no feed conditions while others were carried out with sediment supply, which ranged from 1 kg/h to 10 kg/h. The feed texture in these latter runs was identical to that of the original mixture (Dg = 5.65 mm and σg = 3.05). Bed slopes and surface configuration were obtained after varying times of conditioning under constant flow and no feed. Data acquisition included: 1) bed surface images covering the entire flume, 2) bed scans at 2 mm resolution of the whole flume and 3) real-time measurements of bedload transport (rate and texture) at the outlet of the flume. This set up allows us to obtain fractional particle mobility, i.e. how much bed area covered by a particular grain size changed at a given time and to link to sediment transport rates. Data gathered from this study 1) will contribute to better understanding of river dynamics under unsteady flow conditions (floods) and 2) will help us improve sediment transport predictions under such conditions.

  9. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition

    International Nuclear Information System (INIS)

    Attar, Elham; Koerner, Carolin

    2011-01-01

    Purpose: The main objective of this work is to develop an algorithm to use the Lattice Boltzmann method for solving free surface thermal flow problems with solid/liquid phase changes. Approach: A multi-distribution function model is applied to simulate hydrodynamic flow and the coupled thermal diffusion-convection problem. Findings: The free surface problem, i.e. the reconstruction of the missing distribution functions at the interface, can be solved by applying a physical transparent momentum and heat flux based methodology. The developed method is subsequently applied to some test cases in order to assess its computational potentials. Practical implications: Many industrial processes involve problems where non-isothermal motion and simultaneous solidification of fluids with free surface is important. Examples are all castings processes and especially foaming processes which are characterized by a huge and strongly changing surface. Value: A reconstruction algorithm to treat a thermal hydrodynamic problem with free surfaces is presented which is physically transparent and easy to implement.

  10. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  11. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  12. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  13. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  14. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    Science.gov (United States)

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  15. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  16. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  17. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    Science.gov (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  18. Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells

    OpenAIRE

    Beg, OA; Uddin, MJ; Khan, WA; Qureshi, SR

    2017-01-01

    A theoretical study is presented to examine free convective boundary layer flow of water-based bio-nanofluid containing gyrotactic microorganisms past a wavy surface. Buongiorno’s nanofluid model with passively controlled boundary condition is applied to investigate the effects of the emerging parameters on the physical quantities namely, skin friction, Nusselt numbers and density number of motile microorganisms. The effects of the both hydrodynamic and thermal slips are also incorporated. Lo...

  19. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    International Nuclear Information System (INIS)

    BAER, THOMAS A.; SACKINGER, PHILIP A.; SUBIA, SAMUEL R.

    1999-01-01

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance

  20. Surface heat flow density at the Phlegrean Fields caldera (southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Corrado, Gennardo [Naples Univ., Dept. of Geophysics and Volcanology, Naples (Italy); De Lorenzo, Salvatore; Mongelli, Francesco; Tramacere, Antonio; Zito, Gianmaria [Bari Univ., Dept. of Geology and Geophysics, Bari (Italy)

    1998-08-01

    The Phlegrean Fields areas is a Holocene caldera located west of Naples, southern Italy. The recent post caldera activity is characterised by several eruptive centers inside the collapsed areas. In order to investigate the still active volcanic processes, surface heat flow measurement were carried out in 1995 in 30 sites of the Phlegrean Fields and a heat flow map compiled. Filtering of the map reveals some well-defined anomalies superimposed on a general southward-increasing trend. Local anomalies are related to small magma bodies, whereas the observed general trend has been attributed to the effect of ground-water flow. This effect was calculated and removed. The undisturbed mean value of the surface heat flow density in the eastern sector is 149mW/m{sup 2}, which is above the regional value of 85mW/m{sup 2} assigned to the eastern part of the Tyrrhenian Sea, and which is probably influenced by a very large, deep magmatic body. (Author)

  1. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  2. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions

    OpenAIRE

    Jodeau , M.; Hauet , A.; Paquier , A.; Le Coz , J.; Dramais , G.

    2008-01-01

    Large Scale Particle Image Velocimetry (LS-PIV) is used to measure the surface flow velocities in a mountain stream during high flow conditions due to a reservoir release. A complete installation including video acquisition from a mobile elevated viewpoint and artificial flow seeding has been developed and implemented. The LS-PIV method was adapted in order to take into account the specific constraints of these high flow conditions. Using a usual LS-PIV data processing, significant variations...

  3. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  4. The interaction between fluid flow and ultra-hydrophobic surface in mini channel

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2017-01-01

    Full Text Available Interaction of liquid with ultra-hydrophobic surface is accompanied by creation of layer of air. The effect of the air film has a potential of use in industry in many applications. The quality of the surface is influenced by matrix roughness, the character of physical or chemical cover. There was developed a method for analysis of the liquid flow and the air film using the lighting in volume, visualization with CCD camera and long distance microscope, and optical filters. There were prepared four stainless steel samples of inner channel of dimensions (80 × 8 × 8 mm and initial surface roughness Ra 0.33, Ra 1.0, Ra 2.0, and Ra 2.2. The inner channel was treated with plasma and commercial hydrophobic coating Greblon (WEILBURGER Coatings GmbH. There was realized study focused on the liquid flow velocity profile close to the air film. There are present results for laminar, transient and turbulent flows. The study also estimated the air film thickness depending on the Re number. The knowledge of the air film behaviour helps applied suitable degree of processing and cover for the target application.

  5. Undulations on the surface of elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Ferrari, A.; Thome, J. R.; Stone, H. A.

    2017-08-01

    A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca =0.002 -0.1 and Re =0.1 -1000 , where Ca =μ U /σ and Re =2 ρ U R /μ , with μ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We =Ca Re =O (10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10 R when Ca >0.01 and the value of the Reynolds number approaches 1000.

  6. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  7. Storm event-scale nutrient attenuation in constructed wetlands experiencing a Mediterranean climate: A comparison of a surface flow and hybrid surface-subsurface flow system.

    Science.gov (United States)

    Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R

    2017-11-15

    Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function

  8. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  9. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-03-01

    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  10. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  11. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    Science.gov (United States)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  12. The influence of surface roughness on cloud cavitation flow around hydrofoils

    Science.gov (United States)

    Hao, Jiafeng; Zhang, Mindi; Huang, Xu

    2018-02-01

    The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.

  13. Subcooled flow boiling heat transfer from microporous surfaces in a small channel

    International Nuclear Information System (INIS)

    Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong

    2011-01-01

    The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)

  14. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  15. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  16. A bit faster : ReedHycalog focuses new drill bit technology on the needs of western Canadian drillers

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2009-06-15

    ReedHycalog, a division of National Oilwell Varco Inc., is advancing its drill bit technology and is setting performance records in an effort to meet the needs of drillers in western Canada. This article described the company's new drill bit technology. Through its motor series polycrystalline diamond cutter (PDC) bits, ReedHycalog developed and commercialized several unique and proprietary drill bit features that reduced variations in torque. This lowered the risk of stick-slip while improving lateral stability, directional control and drilling efficiency. The design of the motor series bits was reviewed along with laboratory and field testing. Smooth torque was identified as one of the greatest challenges when drilling with a drill bit on a directional assembly. Test results revealed that there are 4 distinct characteristics for optimal steerable motor performance, such as smooth torque control components (TCC) that were specifically positioned in the cone of the bit to prevent cutter over engagement reducing in torque fluctuations for optimal tool face control; optimized cutter backrakes that provided high penetration rates in rotating mode, while TCCs were optimized to control torque when sliding; gauge inserts for lateral control that provided a low-friction bearing surface; and laterally exposed gauge cutters that cleaned up the hole in rotating mode, and a tapered upper section that reduced gauge pad interference while in sliding mode. The motor series bits performed extremely well in the vertical, build and horizontal intervals with multiple operators. 1 ref., 3 figs.

  17. Regional myocardial flow and capillary permeability-surface area products are nearly proportional.

    Science.gov (United States)

    Caldwell, J H; Martin, G V; Raymond, G M; Bassingthwaighte, J B

    1994-08-01

    Analyses of data on the transcapillary exchange and cellular uptake in the normal heart have generally been based on the assumption that local membrane conductances and volumes of distribution are everywhere the same. The question is whether such an assumption is justified in view of the marked (sixfold) heterogeneity of local blood flows per gram tissue. The method was to estimate both flow and capillary membrane permeability-surface area products (PS) locally in the heart. For each of five dogs running on a sloped treadmill, the deposition of tracer microspheres and of [131I]iodophenylpentadecanoic acid (IPPA), after left atrial injection, was determined in 256 pieces of left ventricular myocardium by killing the animals at approximately 100 s after radiotracer injection. A hydraulic occluder stopped the flow to a portion of the myocardium supplied by the left circumflex coronary artery 30 s before tracer injection. Regional flows ranged from 0.1 to 7.0 ml.g-1.min-1. IPPA extractions ranged from 20 to 49%. Using the known flows, we assumed the applicability of an axially distributed blood-tissue exchange model to estimate the PS for the capillary (PSc) and the parenchymal cell. It was impossible to explain the data if the PSc values for membrane transport were uniform throughout the organ. Rather, the only reasonable descriptors of the data required that local PSc values increase with local flow, almost in proportion. Current methods of analysis using data based on deposition methods need to be revised to take into account the near proportionality of PS to flow for at least some substrates.

  18. On locality of Generalized Reed-Muller codes over the broadcast erasure channel

    KAUST Repository

    Alloum, Amira; Lin, Sian Jheng; Al-Naffouri, Tareq Y.

    2016-01-01

    , and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet

  19. Ishmael Reed and the Politics of Aesthetics, or Shake Hands and Come Out Conjuring

    Science.gov (United States)

    Fontenot, Chester J.

    1978-01-01

    Discusses the ways in which Ishmael Reed uses black American folklore, black American language, traditional African religion, and African myths as poetic materials from which he develops artistic forms. (GW)

  20. Arrangement of permanent magnet and reed switches for control rod position indicator of SMART CEDM

    International Nuclear Information System (INIS)

    Yoo, J. Y.; Kim, J. I.; Kim, J. H.; Hur, H.; Jang, M. H.

    2001-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indication. In this study, the characteristics of permanent magnet and reed switches are introduced and the calculation method for arrangement of permanent magnet and reed switch is presented

  1. Paraskeva pühastest ja reede kultusest Satserinna kiriklikus traditsioonis / Kai Kuusing

    Index Scriptorium Estoniae

    Kuusing, Kai

    2005-01-01

    Saatse kirikust pärit Paraskeva pühaste (ikoonide) ikonograafia- ja hagiograafiaalasest materjalist ning Paraskeva kultusega seotud kahest erinevast traditsioonist Saatse kirikus - Ikonioni Paraskeva mälestuspäeva ja Eelija reede pühitsemisest

  2. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  3. Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications

    International Nuclear Information System (INIS)

    Sun, Xihe; Souier, Tewfik; Chiesa, Matteo; Vassallo, Anthony

    2014-01-01

    Due to their high electrical conductivity and corrosion resistance, carbon nanotube (MWNT)-high density polyethylene (HDPE) composites are potential candidates to replace traditional activated carbon electrodes for the next generation of fuel-cells, super capacitors and flow batteries. Electrochemical impedance spectroscopy (EIS) is employed to separate the surface conduction from bulk conduction in 15% HDPE-MWNT and 19% carbon black (CB)-HDPE composites for zinc-bromine flow battery electrodes. While exhibiting superior bulk conductivity, the interfacial conductivity of MWNT-filled composites is lower than that of CB-filled composites. High resolution conductive atomic force microscopy (C-AFM) imaging and current-voltage (I-V) spectroscopy were employed to investigate the sub-surface electronic transport of the composite. Unlike the CB-composite, the fraction of conducting MWNTs near the surface is very low compared to their volume fraction. In addition, the non-linear I-V curves reveal the presence of a tunneling junction between the tip and the polymer-coated MWNTs. The tunneling resistance is as high as 1 GΩ, which strongly affects the electronic/electrochemical transfer at the interface of the electrolyte and the surface of the composite, which is evident in the voltammetric and EIS observations

  4. Hindcasting and Forecasting of Surface Flow Fields through Assimilating High Frequency Remotely Sensing Radar Data

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-09-01

    Full Text Available In order to improve the forecasting ability of numerical models, a sequential data assimilation scheme, nudging, was applied to blend remotely sensing high-frequency (HF radar surface currents with results from a three-dimensional numerical, EFDC (Environmental Fluid Dynamics Code model. For the first time, this research presents the most appropriate nudging parameters, which were determined from sensitivity experiments. To examine the influence of data assimilation cycle lengths on forecasts and to extend forecasting improvements, the duration of data assimilation cycles was studied through assimilating linearly interpolated temporal radar data. Data assimilation nudging parameters have not been previously analyzed. Assimilation of HF radar measurements at each model computational timestep outperformed those assimilation models using longer data assimilation cycle lengths; root-mean-square error (RMSE values of both surface velocity components during a 12 h model forecasting period indicated that surface flow fields were significantly improved when implementing nudging assimilation at each model computational timestep. The Data Assimilation Skill Score (DASS technique was used to quantitatively evaluate forecast improvements. The averaged values of DASS over the data assimilation domain were 26% and 33% for east–west and north–south velocity components, respectively, over the half-day forecasting period. Correlation of Averaged Kinetic Energy (AKE was improved by more than 10% in the best data assimilation model. Time series of velocity components and surface flow fields were presented to illustrate the improvement resulting from data assimilation application over time.

  5. In vitro incorporation of tritiated thymidine by the Sternberg-Reed cells in Hodgkin disease

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, M; Tkachenko, G; Gavilondo, J; Baeza, B [National Institute of Oncology and Radiology, Havana (Cuba)

    1975-01-01

    A new DNA synthesis by the Sternberg-Reed cells in Hodgkin disease was studied using tritiated thymidine and autoradiography. The results show that after incubation pulses of 30 and 60 minutes, cells with lobulated nucleus, binucleated and trinucleated cells identifiable to the diagnostic Sternberg-Reed cells could undergo a new DNA synthesis. This points to a more dynamic interpretation of this type of cell.

  6. Reed-Solomon error-correction as a software patch mechanism.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.

  7. Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2012-03-01

    Full Text Available The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.

  8. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    Science.gov (United States)

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  9. Water Entry and Exit of Horizontal Cylinder in Free Surface Flow

    International Nuclear Information System (INIS)

    Hafsia, Zouhaier; Maalel, Khlifa; Mnasri, Chokri; Mohamed, Omri

    2009-01-01

    This paper describes two-dimensional numerical simulations of the water entry and exit of horizontal circular cylinder at constant velocity. The deformation of free surface is described by Navier-Stokes (N S) equations of incompressible and viscous fluid with additional transport equation of the volume-of-fluid (VOF). The motion of the cylinder is modeled by the associated momentum source term implemented in the Phoenicis (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series) code. The domain is discretized by a fixed Cartesian grid using a finite volume method and the cylinder is represented and cut cell method. The simulated results are compared with the numerical results of Lin (2007). This comparison shows good agreement in terms of free surface evolution for water exit and sinking. However, for water entry, the jet flow simulated by Lin is not reproduced. The free surface deformation around the cylinder in downward direction is accurately predicted

  10. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    caries or medical device-related infections. It further investigated if OPN's effect on adhesion is caused by blocking the accessibility of glycoconjugates on bacterial surfaces. Bacterial adhesion was determined in a shear-controlled flow cell system in the presence of different concentrations of OPN......The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental......, and interaction forces of single bacteria were quantified using single-cell force spectroscopy before and after OPN exposure. Moreover, the study investigated OPN's effect on the accessibility of cell surface glycoconjugates through fluorescence lectin-binding analysis. OPN strongly affected bacterial adhesion...

  11. Slip length measurement of confined air flow on three smooth surfaces.

    Science.gov (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-02

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  12. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    Science.gov (United States)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  13. Contribution to the study of techniques of measurement of interface surface area in bubble flows

    International Nuclear Information System (INIS)

    Veteau, Jean-Michel

    1981-01-01

    This research thesis addresses problems raised by the measurement of the interface area per volume unit in duct bubble flows. The author first reports a literature survey of existing methods (photographic, chemical and optical methods) which give access to the value of the parameter which is commonly named 'specific surface area'. He analyses under which conditions these methods lead to a rigorous determination of the SVIM (mean integral volume surface). The author highlights the theoretical contributions of models related to each of these methods which are indeed global methods as they allow the interface surface area to be directly obtained in a given volume of a two-phase mixture. Then, the author reports the development of an original technique based on the use of phase detecting local probes. In the next part, the author compares photographic and optical methods, on the one hand, and optical and local methods, on the other hand. Recommendations are made for the development of local methods [fr

  14. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    International Nuclear Information System (INIS)

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  15. Assemblage of filamentous fungi associated with aculeate hymenopteran brood in reed galls.

    Science.gov (United States)

    Heneberg, Petr; Bizos, Jiří; Čmoková, Adéla; Kolařík, Miroslav; Astapenková, Alena; Bogusch, Petr

    2016-01-01

    Monotypic stands of common reed and the reed-gall-associated insect assemblages are distributed worldwide. However, fungi associated with these assemblages have not been characterized in detail. Here we examined 5200 individuals (12 species) of immature aculeate hymenopterans or their parasitoids collected at 34 sampling sites in Central Europe. We noticed fungal outgrowth on exoskeletons of 83 (1.60%) larvae and pupae. The most common host was eudominant Pemphredon fabricii. However, the less abundant aculeate hymenopteran reed gall inquilines were infected at higher prevalence, these included Trypoxylon deceptorium, Trypoxylon minus, Hoplitis leucomelana and Hylaeus moricei (all considered new host records). We identified three fungal species, Penicillium buchwaldii (72% of cases), Aspergillus pseudoglaucus (22%) and Penicillium quebecense (6%). When multibrooded nests were affected, only a part of individuals was infected in 62% of cases. The sampling site-specific infection rate reached up to 13%, thus fungal infections should be considered an important variable driving the abundance of gall inquilines. Infections of generalist host species were more frequent than those of reed gall specialists, suggesting that suboptimal conditions decreased the immunocompetence of non-specialized species, which only occasionally nest in reed galls and feed in reed beds. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    International Nuclear Information System (INIS)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-01-01

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area α. An engine cycle and predicted thrust was explained.

  17. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  18. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  19. Numerical analysis of non-stationary free surface flow in a Pelton bucket

    Energy Technology Data Exchange (ETDEWEB)

    Hana, Morten

    1999-07-01

    Computation and analysis of flow in Pelton buckets have been carried out. First a graphical method is investigated and partially improved. In order to decide whether to improve the method further or disregard it in favour of commercial computational fluid dynamics (CFD) codes, a study on numerical methods for free surface flow was carried out. This part of this work concentrates on the theoretical background for different numerical methods, and describes some practical considerations. Although small programs were created based on the literature survey, but only one reported herein, it was soon found that commonly available numerical codes were favourable in use. A code, RIPPLE, was acquired to study the Volume of Fluid (VOF) method in detail. The commercial codes used were Flow-3D and CFX-4. These programs were used in three different cases. First, a simplified 2-dimensional case was verified experimentally. Next, a 3-dimensional fixed jet calculation was carried out. Finally, numerical calculations with relative motion between the jet and buckets were carried out with CFX-4. The conclusion is that commercial CFD codes can replace the graphical method. But careful implementation is needed in order to resolve the special features of Pelton turbines, which are the free surface, the complex geometry and the relative motion between the jet and the bucket.

  20. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    Science.gov (United States)

    Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen

    2016-01-01

    The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.

  1. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    Science.gov (United States)

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  2. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  3. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  4. Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones

    Science.gov (United States)

    Saoula, R. Iddir S.; Mokhtar, K. Ait

    The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.

  5. Ion-Induced Surface Modification of Magnetically Operated Contacts

    Directory of Open Access Journals (Sweden)

    Karen Arushanov

    2012-02-01

    Full Text Available A study has been made of permalloy (iron-nickel contacts of reed switches before and after ion-induced surface modification using atomic force and optical microscopy, Auger electron and X-ray photoelectron spectroscopy. It has been found that the formation of surface nitride layers enhances corrosion and erosion resistance of contacts. We proposed to produce such layers directly into sealed reed switches by means of pulsing glow-discharge nitrogen plasma.

  6. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  7. The Finite-Surface Method for incompressible flow: a step beyond staggered grid

    Science.gov (United States)

    Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru

    2017-11-01

    We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.

  8. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  9. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    Science.gov (United States)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation

  10. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    DEFF Research Database (Denmark)

    Whaler, K. A.; Olsen, Nils; Finlay, Chris

    2016-01-01

    . On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow......Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them...... less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterising the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV...

  11. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  12. Study of surface and bulk instabilities in MHD duct flow with imitation of insulator coating imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zengyu [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China)]. E-mail: xuzy@swip.ac.cn; Pan Chuanjie [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China); Wei Wenhao [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China); Kang Weishan [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China)

    2006-02-15

    MHD phenomena in a duct flow were studied experimentally by using copper electrodes inserted into the wall of a perfectly insulated duct. The electrodes were connected using a copper wire to imitate different insulator coating imperfection conditions. The experimental results show instabilities of electric potential at the wall (surface instabilities) as well as instabilities in the pressure and velocity (bulk instabilities). The instabilities are strongly dependent on the scale of the copper wire. Three different cases were studied (at the same flow regimes, but with different electrode connections), where the potential at the duct wall is smaller, equal to or higher than the product of duct diameter 2a and transverse magnetic field B and average velocity V . MHD pressure drop {delta}P also exhibits significant changes.

  13. Groundwater flow modeling for near-field of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, H. Y.; Park, J. W.; Jang, G. M.; Kim, C. R.

    2000-01-01

    For a hypothetical near-surface radioactive disposal facility, the behavior of groundwater flow around the near-field of disposal vault located at the unsaturated zone were analyzed. Three alternative conceptual models proposed as the hydraulic barrier layer design were simulated to assess the hydrologic performance of engineered barriers for the facility. In order to evaluate the seepage possibility of the infiltrated water passed through the final disposal cover after the facility closure, the flow path around and water flux through each disposal vault were compared. The hydrologic parameters variation that accounts for the long-term aging and degradation of the cover and engineered materials was considered in the simulations. The results showed that it is necessary to construct the hydraulic barrier at the upper and sides of the vault, and that, for this case, achieving design hydraulic properties of bentonite/sand mixture barrier in the as-built condition is crucial to limit the seepage into the waste

  14. Investigation of ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution.

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Bradley Wright.; Robinson, Allen C

    2014-01-01

    Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow with significant compression and release and is provided as a steady state initial condition. There should be no shocks and no entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA which should be examined further. The results of this work are intended to be used to guide future algorithmic improvements in the spirit of test-driven development processes.

  15. Amplification of hot electron flow by the surface plasmon effect on metal–insulator–metal nanodiodes

    International Nuclear Information System (INIS)

    Lee, Changhwan; Nedrygailov, Ievgen I; Keun Lee, Young; Lee, Hyosun; Young Park, Jeong; Ahn, Changui; Jeon, Seokwoo

    2015-01-01

    Au–TiO_2–Ti nanodiodes with a metal–insulator–metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO_2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au–TiO_2–Ti nanodiodes, and (2) reducing the thickness of the TiO_2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO_2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed. (paper)

  16. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  17. Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization

    International Nuclear Information System (INIS)

    Dallaston, Michael C; McCue, Scott W

    2013-01-01

    We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularize the ill-posedness arising from the viscous (Saffman–Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilizing the boundary, and kinetic undercooling destabilizing it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or ‘slit’ of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilizes the applicability of complex variable theory to Hele-Shaw flow. (paper)

  18. Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.

    Science.gov (United States)

    Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung

    2010-01-01

    We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.

  19. Simulation of time-dependent free-surface Navier-Stokes flows

    International Nuclear Information System (INIS)

    Muldowney, G.P.

    1989-01-01

    Two numerical methods for simulation of time-dependent free-surface Navier-Stokes flows are developed. Both techniques are based on semi-implicit time advancement of the momentum equations, integral formulation of the spatial problem at each timestep, and spectral-element discretization to solve the resulting integral equation. Central to each algorithm is a boundary-specific solution step which permits the spatial treatment in two dimensions to be performed in O(N 3 ) operations per timestep despite the presence of deforming geometry. The first approach is a domain-integral formulation involving integrals over the entire flow domain of kernel functions which arise in time-differencing the Navier-Stokes equations. The second is a particular-solution formulation which replaces domain integration with an iterative scheme to generate particular velocity and pressure fields on individual elements, followed by a patching step to produce a particular solution continuous over the full domain. Two of the most difficult aspects of viscous free-surface flow simulations, namely time-dependent geometry and nontrivial boundary conditions, are well accommodated by these integral equation techniques. In addition the methods offer spectral accuracy in space and admit arbitrarily high-order discretization in time. For large-scale computations and/or long-term time advancement the domain-integral algorithm must be executed on a supercomputer to deliver results in reasonable processing time. A detailed simulation of gas liquid flow with full resolution of the free phase boundary requires approximately five CPU hours at 80 megaflops

  20. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  1. Motion of cells sedimenting on a solid surface in a laminar shear flow.

    Science.gov (United States)

    Tissot, O; Pierres, A; Foa, C; Delaage, M; Bongrand, P

    1992-01-01

    Cell adhesion often occurs under dynamic conditions, as in flowing blood. A quantitative understanding of this process requires accurate knowledge of the topographical relationships between the cell membrane and potentially adhesive surfaces. This report describes an experimental study made on both the translational and rotational velocities of leukocytes sedimenting of a flat surface under laminar shear flow. The main conclusions are as follows: (a) Cells move close to the wall with constant velocity for several tens of seconds. (b) The numerical values of translational and rotational velocities are inconsistent with Goldman's model of a neutrally buoyant sphere in a laminar shear flow, unless a drag force corresponding to contact friction between cells and the chamber floor is added. The phenomenological friction coefficient was 7.4 millinewton.s/m. (c) Using a modified Goldman's theory, the width of the gap separating cells (6 microns radius) from the chamber floor was estimated at 1.4 micron. (d) It is shown that a high value of the cell-to-substrate gap may be accounted for by the presence of cell surface protrusions of a few micrometer length, in accordance with electron microscope observations performed on the same cell population. (e) In association with previously reported data (Tissot, O., C. Foa, C. Capo, H. Brailly, M. Delaage, and P. Bongrand. 1991. Biocolloids and Biosurfaces. In press), these results are consistent with the possibility that cell-substrate attachment be initiated by the formation of a single molecular bond, which might be considered as the rate limiting step.

  2. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  3. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2013-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  4. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau

    2014-01-01

    are not well suited for surfaces with high curvature, we therefore propose to derive columns from properly generated, non-intersecting flow lines. This guarantees solutions that do not self-intersect. The method is applied to segment human airway walls in computed tomography images in three-dimensions. Phantom.......5%, the alternative approach in 11.2%, and in 20.3% no method was favoured. Airway abnormality measurements obtained with the method on 490 scan pairs from a lung cancer screening trial correlate significantly with lung function and are reproducible; repeat scan R(2) of measures of the airway lumen diameter and wall...

  5. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface

    Science.gov (United States)

    Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.

  6. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  7. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  8. Energy harvesting through gas dynamics in the free molecular flow regime between structured surfaces at different temperatures

    DEFF Research Database (Denmark)

    Baier, Tobias; Dölger, Julia; Hardt, Steffen

    2014-01-01

    For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured...... from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations...

  9. Viscosity and surface tension effects during multiphase flow in propped fractures

    Science.gov (United States)

    Dzikowski, Michał; Dąbrowski, Marcin

    2017-04-01

    Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants

  10. Implementation of Bin Packing Model for Reed Switch Production Planning

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Rainier Romero [Polytechnic University of Baja California, Calle de la Claridad S/N, Col Plutarco Elias Calles, Mexicali, B. C., 21376 (Mexico); Burtseva, Larysa [Engineering Institute, Autonomous University of Baja California, Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, BC, 21280 (Mexico)

    2010-06-17

    This paper presents a form to resolve a real problem of efficient material election in reed switch manufacturing. The carrying out of the consumer demands depends on the stochastic results of the classification process where each lot of switches is distributed into bins according to an electric measure value. Various glass types are employed for the switch manufacturing. The effect caused by the glass type variation on the switch classification results was investigated. Based on real data statistic analysis, the problem is reduced to the lot number minimizing taking into consideration the glass type, and interpreted as a bin packing problem generalization. On difference to the classic bin packing problem, in the considered case, an item represents a set of pieces; a container is divided into a number of bins (sub-containers); the bin capacity is variable; there are the assignment restrictions between bins and sets of pieces; the items are allowed to be fragmented into bins and containers. The problem has a high complexity. A heuristic offline algorithm is proposed to find the quantity, types and packing sequence of containers, the item fragments associated with containers and bins. The bin capacities do not affect the algorithm.

  11. Implementation of Bin Packing Model for Reed Switch Production Planning

    International Nuclear Information System (INIS)

    Parra, Rainier Romero; Burtseva, Larysa

    2010-01-01

    This paper presents a form to resolve a real problem of efficient material election in reed switch manufacturing. The carrying out of the consumer demands depends on the stochastic results of the classification process where each lot of switches is distributed into bins according to an electric measure value. Various glass types are employed for the switch manufacturing. The effect caused by the glass type variation on the switch classification results was investigated. Based on real data statistic analysis, the problem is reduced to the lot number minimizing taking into consideration the glass type, and interpreted as a bin packing problem generalization. On difference to the classic bin packing problem, in the considered case, an item represents a set of pieces; a container is divided into a number of bins (sub-containers); the bin capacity is variable; there are the assignment restrictions between bins and sets of pieces; the items are allowed to be fragmented into bins and containers. The problem has a high complexity. A heuristic offline algorithm is proposed to find the quantity, types and packing sequence of containers, the item fragments associated with containers and bins. The bin capacities do not affect the algorithm.

  12. Determination of friction factors and heat transfer coefficients for flow past artificially roughened surfaces

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1979-12-01

    Because convective heat transfer is enhanced in flow past rough surfaces, much experimental and analytical effort over the past several decades has been devoted to the evaluation of artificial roughening for potential application to the heat transfer surfaces of gas-cooled reactors. Unfortunately, much of the analytical development in this field has been inadequately explained in the literature; this has led to misinterpretation of some of the subsequent experimental findings, compounding the uncertainty. This work provides a critical review of the underlying assumptions, theoretical foundations, and supporting experimental evidence for the analytical procedures in current use for the evaluation of roughness effects. It is a concise presentation of the available formulations with recommendations concerning their applicability to rough rod bundles

  13. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  14. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    International Nuclear Information System (INIS)

    Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz

    2007-01-01

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall

  15. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Abdelkrim [Departement de Mathematiques, Faculte des sciences, Universite Mohamed Boudiaf, M' sila, 28000 (Algeria); Mekias, Hocine [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria); Guechi, Fairouz [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria)

    2007-11-23

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number {alpha} and for various values of the inclination angle {beta} between the horizontal bottom and the inclined wall.

  16. Heat transfer to surface and gaps of RSI tile arrays in turbulent flow at Mach 10.3

    Science.gov (United States)

    Throckmorton, D. A.

    1974-01-01

    Heat transfer to gap walls and surface of a simulated reusable surface insulation (RSI) tile array are presented. The data were obtained in the thick, turbulent tunnel wall boundary layer of the Langley Continuous Flow Hypersonic Tunnel at a freestream Mach number of 10.3 and a freestream unit Reynolds number of one million. Pertinent test variables were: (1) tile array orientation (staggered and in-line), (2) gap width, (3) flow angularity, and (4) tile mismatch.

  17. An experimental study of flow boiling chf with porous surface coatings and surfactant solutions

    International Nuclear Information System (INIS)

    Sarwar, Mohammad Sohail

    2007-02-01

    The boiling crisis or critical heat flux (CHF) phenomenon is an enormously studied topic of the boiling heat transfer. The great interest in the CHF is due to practical motives, since it is desirable to design an equipment (heat exchanger or boiler, etc) to operate at as high a heat flux as possible with optimum heat transfer rates but without the risk of physical burnout. This study consists of two parts of flow boiling CHF experiment: with porous surface coated tubes and by using surfactant solutions as working fluid. In first part, the effect of micro- and nano-porous inside surface coated vertical tubes on the CHF was determined for flow boiling of water in vertical round tubes at atmospheric pressure. CHF was measured for a smooth and three different coated tubes, at mass fluxes of 100∼300 kg/m 2 s and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Greater CHF enhancement was found with microporous coatings. Al 2 O 3 microporous coatings with particle size <10 μm and coating thickness of 50 μm showed the best CHF enhancement. The maximum increase in the CHF was about 25% for microporous Al 2 O 3 . A wettability test was performed to study the physical mechanism of increase of CHF with microporous coated surfaces and contact angle was measured for smooth and coated surfaces. Pressure drop measurements were also performed across the coated tubes using the DP-cell apparatus. In second part, surfactant effect on the CHF was determined for water flow boiling at atmospheric pressure in a closed loop filled with solution of tri-sodium phosphate (TSP, Na 3 PO 4 ·12H 2 O). The TSP is usually added to the containment sump water to adjust pH level during accident in nuclear power plants. The CHF was measured for four different surfactant solutions of water in vertical tubes, at different mass fluxes (100 ∼ 500 kg/m 2 s) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Surfactant solutions in the range of 0.05%∼0.2% at low mass

  18. Characterizing water surface elevation under different flow conditions for the upcoming SWOT mission

    Science.gov (United States)

    Domeneghetti, A.; Schumann, G. J.-P.; Frasson, R. P. M.; Wei, R.; Pavelsky, T. M.; Castellarin, A.; Brath, A.; Durand, M. T.

    2018-06-01

    The Surface Water and Ocean Topography satellite mission (SWOT), scheduled for launch in 2021, will deliver two-dimensional observations of water surface heights for lakes, rivers wider than 100 m and oceans. Even though the scientific literature has highlighted several fields of application for the expected products, detailed simulations of the SWOT radar performance for a realistic river scenario have not been presented in the literature. Understanding the error of the most fundamental "raw" SWOT hydrology product is important in order to have a greater awareness about strengths and limits of the forthcoming satellite observations. This study focuses on a reach (∼140 km in length) of the middle-lower portion of the Po River, in Northern Italy, and, to date, represents one of the few real-case analyses of the spatial patterns in water surface elevation accuracy expected from SWOT. The river stretch is characterized by a main channel varying from 100 to 500 m in width and a large floodplain (up to 5 km) delimited by a system of major embankments. The simulation of the water surface along the Po River for different flow conditions (high, low and mean annual flows) is performed with inputs from a quasi-2D model implemented using detailed topographic and bathymetric information (LiDAR, 2 m resolution). By employing a simulator that mimics many SWOT satellite sensor characteristics and generates proxies of the remotely sensed hydrometric data, this study characterizes the spatial observations potentially provided by SWOT. We evaluate SWOT performance under different hydraulic conditions and assess possible effects of river embankments, river width, river topography and distance from the satellite ground track. Despite analyzing errors from the raw radar pixel cloud, which receives minimal processing, the present study highlights the promising potential of this Ka-band interferometer for measuring water surface elevations, with mean elevation errors of 0.1 cm and 21

  19. Robust numerical methods for boundary-layer equations for a model problem of flow over a symmetric curved surface

    NARCIS (Netherlands)

    A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)

    2007-01-01

    textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer

  20. The Structure of a Hypersonic Air Flow near a Plane Surface at Various Intensities of Magnetogasdynamic Interaction

    Science.gov (United States)

    Fomichev, V. P.; Yadrenkin, M. A.

    2017-12-01

    This Letter presents a systematization of the effects observed in experiments on the magnetogasdynamic interaction near the surface of a plate in a high-speed gas flow. Ranges of the hydromagnetic-interaction parameter determining various levels of influence on the shock-wave structure of the flow are established.

  1. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  2. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    Science.gov (United States)

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  3. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  4. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    Science.gov (United States)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  5. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  6. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    Science.gov (United States)

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  7. Base adsorption calorimetry for characterising surface acidity: a comparison between pulse flow and conventional ''static'' techniques

    International Nuclear Information System (INIS)

    Felix, S.P.; Savill-Jowitt, C.; Brown, D.R.

    2005-01-01

    A pulsed flow adsorption microcalorimeter (pulse-FMC) has been developed by modifying a Setaram 111. It is tested in comparison with a conventional pulsed static adsorption microcalorimeter (pulse-SMC) for characterising surface acidity of solid acid catalysts. Small pulses of 1% ammonia in helium are delivered to an activated catalyst sample and its surface acidity is differentially profiled in terms of the molar enthalpy of ammonia adsorption (ΔH ads o ) using a combination of differential scanning calorimeter (DSC) and a downstream thermal conductivity detector (TCD). The pulsing action and its sequences are controlled by in-house developed software and the TCD output also is logged into a PC. Thus, the pulse-FMC is fully automated. Two sulfonated polystyrene resin-type catalysts, Amberlyst 15 and Amberlyst 35, a zeolite of the type H + -ZSM-5 (CT 410) and an acid activated clay (Fulcat 220) are characterised at appropriate temperatures using both the new technique and the conventional static base adsorption method. ΔH ads o versus surface coverage profiles of all the four catalysts obtained from both pulse-FMC and the conventional method are found to be comparable. Results are interpreted in terms of the extent to which NH 3 adsorption on the catalysts surface is under thermodynamic control in the two methods

  8. Erosion of a grooved surface caused by impact of particle-laden flow

    Science.gov (United States)

    Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young

    2016-11-01

    Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.

  9. Motion of a cylinder adjacent to a free-surface: flow patterns and loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Q.; Lin, J.C. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Mechanical Engineering and Mechanics; Unal, M.F.; Rockwell, D.

    2000-06-01

    The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence. (orig.)

  10. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved

  11. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  12. Mind the gap: a flow instability controlled by particle-surface distance

    Science.gov (United States)

    Driscoll, Michelle; Delmotte, Blaise; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul

    2016-11-01

    Does a rotating particle always spin in place? Not if that particle is near a surface: rolling leads to translational motion, as well as very strong flows around the particle, even quite far away. These large advective flows strongly couple the motion of neighboring particles, giving rise to strong collective effects in groups of rolling particles. Using a model experimental system, weakly magnetic colloids driven by a rotating magnetic field, we observe that driving a compact group of microrollers leads to a new kind of flow instability. First, an initially uniformly-distributed strip of particles evolves into a shock structure, and then it becomes unstable, emitting fingers with a well-defined wavelength. Using 3D large-scale simulations in tandem with our experiments, we find that the instability wavelength is controlled not by the driving torque or the fluid viscosity, but a geometric parameter: the microroller's distance above the container floor. Furthermore, we find that the instability dynamics can be reproduced using only one ingredient: hydrodynamic interactions near a no-slip boundary.

  13. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    Science.gov (United States)

    Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-01-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one‐dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start‐up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross‐sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short‐circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  14. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    Science.gov (United States)

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  15. Turbulent flow and heat transfer in channels with combined rough and smooth surfaces

    International Nuclear Information System (INIS)

    Aytekin, A.

    1978-01-01

    A two-part experimental investigation is reported on the effects of transverse square rib roughening on fluid flow and heat transfer in channels with uniform and non-uniform boundary conditions. The first part of the experimental programme consisted of providing detailed measurements of mean and basic turbulent characteristics of fully developed flow in two rectangular ducts of aspect ratios 1.63 and 3.0. In each duct only one wall was roughened. In channels having low aspect ratios secondary flows play an important part in momentum transfer, and an interpretation of their effect on the measured Reynolds shear stress distribution has been attempted. In the second part of the experimental programme mean velocity and temperature profiles, friction factors and Stanton numbers were measured in an internally roughened pipe and annuli composed of a rough inner rod and either a smooth or a rough outer pipe. Heating was always applied on the outer surface. In all the geometries the mean velocities near the rough walls were found to be represented by logarithmic straight lines. The gradients of these lines were independent of Reynolds number but differed for various geometries. The mean temperature profiles, measured in the rough pipe and the fully rough annulus, showed that these could also be represented by logarithmic straight lines, but the slopes of these profiles were markedly different from those of the velocity profiles. (author)

  16. Measurements of the cesium flow from a surface-plasma H- ion source

    International Nuclear Information System (INIS)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs 0 flow rate through the emission slit of a surface-plasma source (SPS) of H - ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H - current occurs at an equivalent cesium density of approx. 7 x 10 12 cm -3 (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H - current occurs at an equivalent cesium density of approx. 2 x 10 13 cm -3 (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation

  17. A new capture fraction method to map how pumpage affects surface water flow

    Science.gov (United States)

    Leake, S.A.; Reeves, H.W.; Dickinson, J.E.

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  18. Surface degassing and modifications to vesicle size distributions in active basalt flows

    Science.gov (United States)

    Cashman, K.V.; Mangan, M.T.; Newman, S.

    1994-01-01

    The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent

  19. Hydrodynamics and Heat Transfer in Flow over Rectangular Ribs on the Initially Smooth Surface

    Directory of Open Access Journals (Sweden)

    V. N. Afanasiev

    2017-01-01

    Full Text Available An efficiency of the heat exchange equipment and reducing their weight and size parameters can be considerably improved by using the optimal methods of heat transfer enhancement, which include a two-dimensional roughness, i.e. ribs, backward-facing steps, cavities, etc. deposited on the heat transfer surface. Their shape, sizes and positional relationship have a significant impact on the structure of the boundary layer and its exchange processes.As known, the most affordable and effective method of controlled influence on the structure of turbulent flow is to create a separation zone or other organized vortex structure in it. In order to successfully use the separation zone, it is necessary to know the mechanism of their interaction with the main turbulent flow and the mechanism of the process in separation zone itself. Heat transfer enhancement is provided mainly due to roughness impact on hydrodynamics of turbulent flow, if the rib height h does not exceed the thickness of the viscous sublayer, since heat transfer enhancement arises from breaking and destruction of viscous sublayer produced by the roughness ribs and emerging vortex zones – sources of turbulence. Usually, the height of ribs y+ ≈ 50, and the distance between them along the streamlined surface is 10-20 times greater. The coefficient of friction also increases, but if the height of ribs is sufficiently small and most of them are in the sublayer, the increase of the friction factor will not exceed the increase of the heat transfer coefficient.The paper presents results of experimental investigation of hydrodynamics and heat transfer in the separation zone before and after a rib and in the area of two rectangular ribs with the height of y+ £ 60. The ribs are placed on the flat plate and heated according to the law of qw = const. The structure of turbulent boundary layer from the standpoint of the universal logarithmic law of velocity distribution has been experimentally

  20. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    Science.gov (United States)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  1. RIMAPS characterization of a surface in the variable aperture fracture model and determination of the main paths for water flow

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    To understand the real incidence of fracture geometry in the unsteady behavior of flowing water channels, the RIMAPS (Rotated Image with Maximum Average Power Spectrum) technique is used to determine the main directions of these channels. This new characterization technique works on digitized images obtained from the surfaces under study. The present work presents the results of a comparison between the flow directions predicted by RIMAPS and the real channels directions observed in a laboratory experiment. A perfect accordance was verified between the directions obtained in both cases. It can be concluded from these results that geometrical characteristics of a fracture surface determine the main path directions for water flow. (author)

  2. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2016-06-01

    Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winter images performed better than summer ones. The combination of ascending and descending images also improved the result as it reduces the influence of the sensor

  3. Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2013-04-01

    Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results

  4. Resistance strategies of Phragmites australis (common reed to Pb pollution in flood and drought conditions

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2018-01-01

    Full Text Available Resistance strategies of clonal organs, and parent and offspring shoots of Phragmites australis (common reed to heavy metal pollution in soils are not well known. To clarify the tolerance or resistance strategies in reeds, we conducted a pot experiment with five levels of Pb concentration (0∼4,500 mg kg−1 in flood and drought conditions. Lead toxicity had no inhibitory effect on the number of offspring shoots in flood environment; however, biomass accumulation, and photosynthetic and clonal growth parameters were inhibited in both water environment. At each treatment of Pb concentration, offspring shoots had greater biomass and higher photosynthesis indicators than parent shoots. The lowest Pb allocation was found in rhizomes. More of the Pb transported to above-ground parts tended to accumulate in parent shoots rather than in offspring shoots. Biomass and photosynthesis of offspring shoots, rhizome length, and the number of buds, rhizomes and offspring shoots in the flooded treatment were significantly greater than those in the drought treatment. Our results indicated that the tolerance strategies used by reeds, including higher biomass accumulation and photosynthesis in offspring shoots, low allocation of Pb in rhizomes and offspring shoots, and stable clonal growth, maintained the stability of population propagation and productivity, improving the resistance of reeds to Pb pollution in flood environment. However, the resistance or tolerance was significantly reduced by the synergistic effect of Pb and drought, which significantly inhibited biomass accumulation, photosynthesis, and clonal growth of reeds.

  5. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry

    Science.gov (United States)

    Huber, Thomas M.; Fatemi, Mostafa; Kinnick, Randall R.; Greenleaf, James F.

    2004-05-01

    The goal of this experiment was to excite and measure, in a noncontact manner, the vibrational modes of the reed from a reed organ pipe. To perform ultrasound stimulated excitation, two ultrasound beams in air of different frequencies were directed at the reed; the audio-range beat frequency between these ultrasound beams induced vibrations. The resulting vibrational deflection shapes were measured with a scanning vibrometer. The modes of any relatively small object can be studied in air using this technique. For a 36 mm by 7 mm clamped brass reed cantilever, displacements and velocites of 5 μ and 4 mm/s could be imparted at the fundamental frequency of 145 Hz. Using the same ultrasound transducer, excitation across the entire range of audio frequencies was obtained, which was not possible using audio excitation with a speaker. Since the beam was focused on the reed, ultrasound stimulated excitation eliminated background effects observed during mechanical shaker excitation, such as vibrations of clamps and supports. We will discuss the results obtained using single, dual, and confocal ultrasound transducers in AM and unmodulated CW modes, along with results obtained using a mechanical shaker and audio excitation using a speaker.

  6. NRC [Nuclear Regulatory Commission] staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    International Nuclear Information System (INIS)

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved

  7. Ammonia Fiber Expansion Pretreatment and Enzymatic Hydrolysis on Two Different Growth Stages of Reed Canarygrass

    Science.gov (United States)

    Bradshaw, Tamika C.; Alizadeh, Hasan; Teymouri, Farzaneh; Balan, Venkatesh; Dale, Bruce E.

    Plant materials from the vegetative growth stage of reed canarygrass and the seed stage of reed canarygrass are pretreated by ammonia fiber expansion (AFEX) and enzymatically hydrolyzed using 15 filter paper units (FPU) cellulase/g glucan to evaluate glucose and xylose yields. Percent conversions of glucose and xylose, effects of temperature and ammonia loading, and hydrolysis profiles are analyzed to determine the most effective AFEX treatment condition for each of the selected materials. The controls used in this study were untreated samples of each biomass material. All pretreatment conditions tested enhanced enzyme digestibility and improved sugar conversions for reed canarygrass compared with their untreated counterparts. Based on 168 h hydrolysis results using 15 FPU Spezyme CP cellulase/g glucan the most effective AFEX treatment conditions were determined as: vegetative growth stage of reed canarygrass—100°C, 60% moisture content, 1.2∶1 kg ammonia/kg of dry matter (86% glucose and 78% xylose) and seed stage of reed canarygrass—100°C, 60% moisture content, 0.8∶1 kg ammonia/kg of dry matter (89% glucose and 81% xylose). Supplementation by commercial Multifect 720 xylanase along with cellulase further increased both glucose and xylose yields by 10-12% at the most effective AFEX conditions.

  8. Position indicating systems and reed contact unit assemblies for such systems

    International Nuclear Information System (INIS)

    Foxworthy, M.K.

    1980-01-01

    Specifications are given for a position indicating system for determining the position of a movable member inside a sealed container such as the position of a control rod in a nuclear reactor. The system comprises a magnetic flux producing member mounted to the movable member so as to move with it, a series of magnetic reed contact units mounted along the outside of the sealed container to be individually actuated by the flux producer as the movable member moves within the sealed container to indicate the position of this member. Each of the reed contact units is connected to a source of alternating electric current to produce a magnetic flux field to minimize the flux differential between the actuated and unactuated reed contact positions. A second aspect of the invention provides for a low operating flux differential reed contact unit assembly for a position indicating system such that it is actuated by the magnetic member at one magnetic flux level and deactivated at a second level. There is a source of alternating current connected to a coil surrounding the reed contact unit so as to produce an alternating magnetic flux with amplitude less than the difference between the two levels. Variations are given, also diagrams and benefits. (U.K.)

  9. Eddy formation and surface flow field in the Luzon Strait area during the summer of 2009

    Science.gov (United States)

    Liu, Ze; Hou, Yijun; Xie, Qiang

    2015-09-01

    The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzon Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.

  10. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    Science.gov (United States)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in

  11. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    Science.gov (United States)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  12. COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS

    International Nuclear Information System (INIS)

    Švanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent

    2013-01-01

    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

  13. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20.8-cm Nova box amplifier cavities

    International Nuclear Information System (INIS)

    Julien, J.L.; Molishever, E.L.

    1983-01-01

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks

  14. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  15. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).

  16. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  17. Effects of irregular two-dimensional and three-dimensional surface roughness in turbulent channel flows

    International Nuclear Information System (INIS)

    De Marchis, M.; Napoli, E.

    2012-01-01

    Highlights: ► 3D irregular rough surfaces produce higher effects than those observed over 2D. ► Effective slope is a geometrical parameter representative of the roughness effects. ► 3D rough surfaces enhance the turbulence isotropization. ► 2D and 3D irregular roughness partially support the wall similarity. ► Irregular rough surfaces shear some features with regular rough walls. - Abstract: Wall-resolved Large Eddy Simulation of fully developed turbulent channel flows over two different rough surfaces is performed to investigate on the effects of irregular 2D and 3D roughness on the turbulence. The two geometries are obtained through the superimposition of sinusoidal functions having random amplitudes and different wave lengths. In the 2D configuration the irregular shape in the longitudinal direction is replicated in the transverse one, while in the 3D case the sinusoidal functions are generated both in streamwise and spanwise directions. Both channel walls are roughened in such a way as to obtain surfaces with statistically equivalent roughness height, but different shapes. In order to compare the turbulence properties over the two rough walls and to analyse the differences with a smooth wall, the simulations are performed at the same Reynolds number Re τ = 395. The same mean roughness height h = 0.05δ (δ the half channel height) is used for the rough walls. The roughness function obtained with the 3D roughness is larger than in the 2D case, although the two walls share the same mean height. Thus, the considered irregular 3D roughness is more effective in reducing the flow velocity with respect to the 2D roughness, coherently with the literature results that identified a clear dependence of the roughness function on the effective slope (see ), higher in the generated 3D rough wall. The analysis of higher-order statistics shows that the effects of the roughness, independently on its two- or three-dimensional shape, are mainly confined in the inner

  18. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    Science.gov (United States)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  19. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Mariana [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Young, Trevor M., E-mail: Trevor.Young@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2014-09-30

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (R{sub a}) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (R{sub a} = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  20. The golden-mean surface pattern to enhance flow mixing in micro-channel.

    Science.gov (United States)

    Wang, J F; Liu, Y; Xu, Y S

    2009-04-01

    Mixing of analytes and reagents in microfluidic devices is often crucial to the effective functioning of lab-on-a-chip. It is possible to affect the mixing in microfluidics by intelligently controlling the thermodynamic and chemical properties of the substrate surface. Numerous studies have shown that the phase behavior of mixtures is significantly affected by surface properties of microfluidics. For example, the phase separation between the fluids can be affected by heterogeneous patterns on the substrate. The patterned substrate can offer an effective means to control fluid behavior and in turn to enhance mixing. The golden mean is a ratio that is present in the growth patterns of many biological systems--the spiral formed by a shell or the curve of a fern, for example. The golden mean or golden section was derived by the ancient Greeks. Like "pi" the golden mean ratio is an irrational number 1.618, or (square root{5} + 1) / 2. It was found that the golden mean was an optimum ratio in natural convection heat transfer problem (Liu and Phan-Thien, Numer Heat Transf 37:613-630, 2000). In this study, we numerically studied the effect of optimum surface pattern on mixing in a micro channel and found that the flow oscillation and chaotic mixing were enhanced apparently when the ratio of hydrophobic and hydrophilic boundary follows the golden mean.

  1. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  2. The mechanical spectra of deposited materials by a composite reed vibration method

    International Nuclear Information System (INIS)

    Ying, X.N.; Zhang, L.; Yuan, Y.H.

    2010-01-01

    Recently a composite reed vibration method has been designed to measure the mechanical spectra (complex Young's modulus) of materials from liquid to solid state. The mechanical spectra of materials can be obtained from a composite system consisting of a substrate reed and of materials deposited on it. In this report, two sets of formulas to calculate the mechanical spectra of deposited materials are further analyzed. The proof is given for the previous named 'approximate formulas' (labeled as Formula II). Then the composite reed vibration method can be safely used as an extension of the mechanical spectrum method of the thin solid film. At the same time, some comments are made on previous analytical formulas (labeled as Formula I). At last, more experiments with a small amount of deposited materials are performed. It is found that smaller quantity is more favorable to achieve the intrinsic mechanical spectra of deposited materials.

  3. Using aerial photography for mapping giant reed infestations along the Texas-Mexico portion of the Rio Grande.

    Science.gov (United States)

    Giant reed (Arundo donax L.) is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and...

  4. Mapping giant reed (Arundo donax) infestations along the Texas-Mexico portion of the Rio Grande using aerial photography

    Science.gov (United States)

    Giant reed is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and estimate infested...

  5. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...

  6. 77 FR 19362 - Environmental Assessment and Finding of No Significant Impact for License Renewal for the Reed...

    Science.gov (United States)

    2012-03-30

    ... serves about 1,300 students. The Reed Research Reactor is housed in a section of the Psychology Building constructed specifically for that purpose. The section of the Psychology building housing the Reed Research... encompasses the entire Psychology Building and all areas 76 meters (250 feet) from the center of the reactor...

  7. Shear Evaluation by Quantitative Flow Visualization Near the Casing Surface of a Centrifugal Blood Pump

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Tsukamoto, Yuki; Ito, Kazuyuki; Konishi, Yoshiaki; Masuzawa, Toru; Tsukiya, Tomonori; Endo, Seiko; Taenaka, Yoshiyuki

    To clarify the correlation between high-shear flow and hemolysis in blood pumps, detail shear velocity distribution was quantified by an experimental method with a model centrifugal blood pump that has a series data of hemolysis tests and computational fluid dynamic analyses. Particular attention was paid to the shear velocity near the casing surface in the volute where the high shear causes in circumferentially wide region that is considerable to cause high hemolysis. Three pump models were compared concern with the radial gap width between the impeller and casing (the radial volute width) also with the outlet position whereas the impeller geometry was identical. These casing geometries were as follows: model 1-the gap width is standard 3mm and the outlet locates to make a smooth geometrical connection with the volute, model 2-the gap width is small 0.5mm and the outlet locates to make the smooth geometrical connection with the volute, and model 3-the gap width is small 0.5mm and the outlet locates to hardly make the smooth geometrical connection with the volute but be similar radial position with that of model 1. Velocity was quantified with a particle tracking velocimetry that is one of the quantitative flow visualization techniques, and the shear velocity was calculated. Results showed that all large shear velocity existed within the layers of about 0.1mm from the casing surface and that those layers were hardly affected by a vane passage even if the gap width is 0.5mm. They also showed that the maximum shear velocity appeared on the casing surface, and the shear velocities of models 2 and 3 were almost twice as large as that of model 1. This finding is in full corresponding with the results of hemolysis tests which showed that the hemolysis levels of both models 2 and 3 were 1.5 times higher than that of model 1. These results suggest that detailed high-shear evaluation near the casing surface in the volute is one of the most important keys in estimating the

  8. Full 2D observation of water surface elevation from SWOT under different flow conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  9. Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Das K.

    2017-12-01

    Full Text Available An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.

  10. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola; Allione, Marco; Marini, Monica; Torre, Bruno; Giugni, Andrea; Limongi, Tania; Das, Gobind; Di Fabrizio, Enzo M.

    2017-01-01

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  11. Performance of free water surface flow constructed wetland with floating aquatic macrophytes

    Directory of Open Access Journals (Sweden)

    C. Soler

    2018-04-01

    Full Text Available The aim of this study was to evaluate the behavior of constructed wetlands with aquatic macrophytes in decreasing the concentration of pollutants from urban effluents. A pilot-scale system with two coverages of floating plants and two hydraulic residence times, working with continuous flow laminar was built. The lower concentration of chemical oxygen demand and biological oxygen demand, were obtained with the lower coverage and higher hydraulic residence times. With little influence of the variables on the concentration of total nitrogen and total suspended solids, being the significant response for total phosphorus with the lowest plant coverage. There was a highly significant removal of total coliforms, regardless of coverage and in favor of higher hydraulic residence times. The use of free water surface wetlands is auspicious for sanitary control, showing low incidence on total nitrogen and total phosphorus.

  12. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  13. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola

    2017-05-19

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  14. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    Science.gov (United States)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  15. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    Science.gov (United States)

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  16. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...

  17. Quantum maps of geodesic flows on surfaces of constant negative curvature

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Carioli, M.

    1992-01-01

    The Selberg zeta function Z(s) yields an exact relationship between the periodic orbits of a fully chaotic Hamiltonian system (the geodesic flow on surfaces of constant negative curvature) and the corresponding quantum system (the spectrum of the Laplace-Beltrami operator on the same manifold). It was found that for certain manifolds Z(s) can be exactly rewritten as the Fredholm determinant det(1-T s ), where T s is the generalization of the Ruelle-Perron-Frobenius transfer operator. An alternative derivation of this result is presented, yielding a method to find not only the spectrum but also the eigenvalues of the Laplace-Beltrami operator in terms of eigenfunctions of T s . Various properties of the transfer operator are investigated both analytically and numerically. (author) 15 refs., 10 figs

  18. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  19. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    Science.gov (United States)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  20. Pacemaker reed switch behavior in 0.5, 1.5, and 3.0 Tesla magnetic resonance imaging units: are reed switches always closed in strong magnetic fields?

    Science.gov (United States)

    Luechinger, Roger; Duru, Firat; Zeijlemaker, Volkert A; Scheidegger, Markus B; Boesiger, Peter; Candinas, Reto

    2002-10-01

    MRI is established as an important diagnostic tool in medicine. However, the presence of a cardiac pacemaker is usually regarded as a contraindication for MRI due to safety reasons. The aim of this study was to investigate the state of a pacemaker reed switch in different orientations and positions in the main magnetic field of 0.5-, 1.5-, and 3.0-T MRI scanners. Reed switches used in current pacemakers and ICDs were tested in 0.5-, 1.5-, and 3.0-T MRI scanners. The closure of isolated reed switches was evaluated for different orientations and positions relative to the main magnetic field. The field strengths to close and open the reed switch and the orientation dependency of the closed state inside the main magnetic field were investigated. The measurements were repeated using two intact pacemakers to evaluate the potential influence of the other magnetic components, like the battery. If the reed switches were oriented parallel to the magnetic fields, they closed at 1.0 +/- 0.2 mT and opened at 0.7 +/- 0.2 mT. Two different reed switch behaviors were observed at different magnetic field strengths. In low magnetic fields ( 200 mT), the reed switches opened in 50% of all tested orientations. No difference between the three scanners could be demonstrated. The reed switches showed the same behavior whether they were isolated or an integral part of the pacemakers. The reed switch in a pacemaker or an ICD does not necessarily remain closed in strong magnetic fields at 0.5, 1.5, or 3.0 T and the state of the reed switch may not be predictable with certainty in clinical situations.