WorldWideScience

Sample records for surface energy predictions

  1. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  2. The molar surface Gibbs energy and prediction of surface tension of [Cnpy][DCA] (n = 3, 4, 5)

    International Nuclear Information System (INIS)

    Xing, Nannan; Dai, Bing; Ma, Xiaoxue; Wei, Jie; Pan, Yi; Guan, Wei

    2016-01-01

    Highlights: • The molar surface Gibbs energy, g s was put forword. • A new Eötvös equation is obtained. The molar surface enthalpy, h, is a temperature-independent constant. • By using g s and n D , the surface tensions of [C n py][DCA] (n = 3, 4, 5) were estimated. - Abstract: Three pyridinium-based ionic liquids of [C n py][DCA] (n = 3, 4, 5) (N-alkyl-pyridinium dicyanamide) were prepared and characterized by 1 H NMR ( 1 H nuclear magnetic resonance) spectroscopy, 13 C NMR ( 13 C nuclear magnetic resonance) spectroscopy. Their densities, surface tensions and refractive indices were measured at different temperatures. The molar surface Gibbs energy, g s , critical temperature, T c and Eötvös empirical parameter related to polarity, k E , were also calculated. In terms of the concept of molar surface Gibbs energy, g s , a new Eötvös equation was obtained. It is found that the slope of the new Eötvös equation is the molar surface entropy of the ILs and the intercept is the molar surface enthalpy which is a temperature-independent constant. By using the refractive index and the molar surface Gibbs energy, an equation to predict surface tension of the ILs was derived and the predicted values of the surface tension of [C n py][DCA] (n = 3, 4, 5) are all most the same with the corresponding experimental values.

  3. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  4. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  5. Evaluation of one-dimensional potential energy surfaces for prediction of spectroscopic properties of hydrogen bonds in linear bonded complexes.

    Science.gov (United States)

    Jouypazadeh, Hamidreza; Farrokhpour, Hossein; Solimannejad, Mohammad

    2017-05-01

    This work evaluated the reliability of the one-dimensional potential energy surface for calculating the spectroscopic properties (rovibrational constants and rotational line energies) of hydrogen bonds in linear bonded complexes by comparing theoretical results with the corresponding experimental results. For this purpose, two hydrogen bonded complexes were selected: the HCN···HCN homodimer and the HCN···HF heterodimer. The one-dimensional potential energy surfaces related to the hydrogen bonds in these complexes were calculated using different computational methods and basis sets. The calculated potential curve of each complex was fitted to an analytical one-dimensional potential function to obtain the potential parameters. The obtained analytical potential function of each complex was used in a two-particle Schrödinger equation to obtain the rovibrational energy levels of the hydrogen bond. Using the calculated rovibrational levels, the rovibrational spectra and constants of each complex were calculated and compared with experimental data available from the literature. Compared with experimental data, the calculated one-dimensional potential energy surface at the QCISD/aug-cc-pVDZ level of theory was found to predict the spectroscopic properties of hydrogen bonds better than the potential curves obtained using other computational methods, especially for the HCN···HCN homodimer complex. Generally, the results obtained for the HCN···HCN homodimer complex were closer to experimental data than those obtained for the HCN···HF heterodimer complex. The investigation performed in this work showed that the one-dimensional potential curve related to the hydrogen bond between two linear molecules can be used to predict the spectroscopic constants of hydrogen bonds. Graphical abstract Potential energy curves of HCN···HCN and HCN···HF complexes calculated at the different computational levels.

  6. Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for energy consumption using response surface methodology.

    Science.gov (United States)

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai

    2014-01-01

    Cellulosic biomass can be used as a feedstock for biofuel manufacturing. Pelleting of cellulosic biomass can increase its bulk density and thus improve its storability and reduce the feedstock transportation costs. Ultrasonic vibration-assisted (UV-A) pelleting can produce biomass pellets whose density is comparable to that processed by traditional pelleting methods (e.g. extruding, briquetting, and rolling). This study applied response surface methodology to the development of a predictive model for the energy consumption in UV-A pelleting of wheat straw. Effects of pelleting pressure, ultrasonic power, sieve size, and pellet weight were investigated. This study also optimized the process parameters to minimize the energy consumption in UV-A pelleting using response surface methodology. Optimal conditions to minimize the energy consumption were the following: ultrasonic power at 20%, sieve size at 4 mm, and pellet weight at 1g, and the minimum energy consumption was 2.54 Wh. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  8. Energy Predictions 2011

    International Nuclear Information System (INIS)

    2010-10-01

    Even as the recession begins to subside, the energy sector is still likely to experience challenging conditions as we enter 2011. It should be remembered how very important a role energy plays in driving the global economy. Serving as a simple yet global and unified measure of economic recovery, it is oil's price range and the strength and sustainability of the recovery which will impact the ways in which all forms of energy are produced and consumed. The report aims for a closer insight into these predictions: What will happen with M and A (Mergers and Acquisitions) in the energy industry?; What are the prospects for renewables?; Will the water-energy nexus grow in importance?; How will technological leaps and bounds affect E and P (exploration and production) operations?; What about electric cars? This is the second year Deloitte's Global Energy and Resources Group has published its predictions for the year ahead. The report is based on in-depth interviews with clients, industry analysts, and senior energy practitioners from Deloitte member firms around the world.

  9. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties

    Science.gov (United States)

    Kalugina, Yulia N.; Roy, Pierre-Nicholas

    2017-12-01

    We present a five-dimensional potential energy surface (PES) for the HF@C60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C60 molecules are considered rigid with bond length rHF = 0.9255 Å (gas phase ground rovibrational state geometry). The C60 geometry is of Ih symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C60, and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C60 and obtain good agreement with experiment.

  10. Wind energy prediction; Prediccion eolica

    Energy Technology Data Exchange (ETDEWEB)

    Xiberta, B. J.; Florez, M. V. E.

    2004-07-01

    On March 12th, 2004 the Spanish Government modified the legal situation of the renewable energies following the approval of RD 436/2004. This makes necessary the development of wind energy prediction models for its entrance to the daily electricity market like the conventional energies. The improvement of physical models, meteorological models, or a combination of both, is necessary for the prediction of the wind generation. This will guarantee the wind energy full utilization and the participation in the electrical market, as well as the remuneration of the complementary services and the regulation of reactive electricity. In this way wind energy turns into a perfectly manageable one. (Author)

  11. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  12. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  13. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  14. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  15. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  16. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  17. Basin-Scale Assessment of the Land Surface Energy Budget in the National Centers for Environmental Prediction Operational and Research NLDAS-2 Systems

    Science.gov (United States)

    Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin

    2015-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  18. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  19. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  20. Generalised empirical method for predicting surface subsidence

    International Nuclear Information System (INIS)

    Zhang, M.; Bhattacharyya, A.K.

    1994-01-01

    Based on a simplified strata parameter, i.e. the ratio of total thickness of the strong rock beds in an overburden to the overall thickness of the overburden, a Generalised Empirical Method (GEM) is described for predicting the maximum subsidence and the shape of a complete transverse subsidence profile due to a single completely extracted longwall panel. In the method, a nomogram for predicting the maximum surface subsidence is first developed from the data collected from subsidence measurements worldwide. Then, a method is developed for predicting the shapes of complete transfer subsidence profiles for a horizontal seam and ground surface and is verified by case studies. 13 refs., 9 figs., 2 tabs

  1. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  2. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    Abstract. We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at z = 3.32 Å. It was observed ...

  3. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the ...

  4. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Schaefer, H.F. III.

    1976-01-01

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  5. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  6. Energy prediction using spatiotemporal pattern networks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun; Henze, Gregor P.; Sarkar, Soumik

    2017-11-01

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated by the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.

  7. Deterministic prediction of surface wind speed variations

    Directory of Open Access Journals (Sweden)

    G. V. Drisya

    2014-11-01

    Full Text Available Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  8. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  9. Surface energy and surface tension of liquid metal nanodrops

    Directory of Open Access Journals (Sweden)

    Shebzukhov A.A.

    2011-05-01

    Full Text Available A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  10. Surface energy and surface tension of liquid metal nanodrops

    Science.gov (United States)

    Shebzukhova, M. A.; Shebzukhov, A. A.

    2011-05-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  11. Surface energy and surface tension of liquid metal nanodrops

    OpenAIRE

    Shebzukhov A.A.; Shebzukhova M.A.

    2011-01-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  12. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  13. Prediction of surface distress using neural networks

    Science.gov (United States)

    Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo

    2017-06-01

    Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).

  14. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  15. Predictive model for ice formation on superhydrophobic surfaces.

    Science.gov (United States)

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-06

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society

  16. Short communication: Prediction of energy requirements of ...

    African Journals Online (AJOL)

    Data collected on metabolizable energy (ME) intake and growth performance of preruminant female kids of the Murciano-Granadina breed was used to assess the accuracy of the latest U. S. National Research Council (NRC) recommendations to predict their energy requirements. Female kids were fed a milk replacer ...

  17. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...

  18. Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb{sub 2}O{sub 5}-doped-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andre Luiz da; Hotza, Dachamir [Department of Chemical Engineering (EQA), Graduate Program on Materials Science and Engineering (PGMAT), Federal University of Santa Catarina - UFSC, 88040-900 Florianópolis, SC (Brazil); Castro, Ricardo H.R., E-mail: rhrcastro@ucdavis.edu [Department of Materials Science & Engineering and NEAT ORU, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2017-01-30

    Highlights: • Anatase-rutile phase transition diagram was built for nano Nb{sub 2}O{sub 5}-doped-TiO{sub 2}. • Nb{sub 2}O{sub 5}-doping postpones the anatase-to-rutile transition. • The stability crossover for TiO{sub 2} was 17.3 nm, for 2 mol% Nb{sub 2}O{sub 5}-doped-TiO{sub 2} ∼30 nm. • The surface energy for Nb{sub 2}O{sub 5}-doped-TiO{sub 2} decreases systematically with Nb concentration. - Abstract: Titanium dioxide nanoparticles are widely used for photocatalysis, and the relative fraction of titanium dioxide polymorph, i.e. anatase, rutile, or brookite, significantly affects the final performance. Even though conventional phase diagrams indicate a higher stability for the rutile polymorph, it is well established that nanosizes benefit the anatase phase due to its smaller surface energy. However, doping elements are expected to change this behavior, once changes in both surface and bulk energies may occur. Nb{sub 2}O{sub 5} is commonly added to TiO{sub 2} to allow property control. However, the effect of niobium on the relative stability of anatase and rutile phases is not well understood from the thermodynamic point of view. The objective of this work was to build a new predictive nanoscale phase diagram for Nb{sub 2}O{sub 5}-doped TiO{sub 2}. Water adsorption microcalorimetry and high temperature oxide melt solution were used to obtain the surface and bulk enthalpies. The phase diagram obtained shows the stable titania polymorph as a function of the composition and size.

  19. Skilful seasonal predictions for the European energy industry

    Science.gov (United States)

    Clark, Robin T.; Bett, Philip E.; Thornton, Hazel E.; Scaife, Adam A.

    2017-02-01

    We assess the utility of seasonal forecasts for the energy industry by showing how recently-established predictability of the North Atlantic Oscillation (NAO) in winter allows predictability of near-surface wind speed and air temperature and therefore energy supply and demand respectively. Our seasonal prediction system (GloSea5) successfully reproduces the influence of the NAO on European climate, leading to skilful forecasts of wind speed and wind power and hence wind driven energy supply. Temperature is skilfully forecast using the observed temperature-NAO relationship and the NAO forecast. Using the correlation between forecast NAO and observed GB electricity demand, we demonstrate that skilful predictions of winter demand are also achievable on seasonal timescales well in advance of the season. Finally, good reliability of probabilistic forecasts of above/below-average wind speed and temperature is also demonstrated.

  20. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the + charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  1. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  2. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  3. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available This paper reviews the current state of observation, parameterization and evaluation of surface air-sea energy and gas fluxes, and sea ice, for the purposes of monitoring and predicting the state of the global ocean. The last 10 years have been...

  4. Surface free energy analysis of adsorbents used for radioiodine adsorption

    Energy Technology Data Exchange (ETDEWEB)

    González-García, C.M. [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); Román, S., E-mail: sroman@unex.es [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); González, J.F.; Sabio, E. [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); Ledesma, B. [Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain)

    2013-10-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  5. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  6. Ab initio Potential Energy Surface for H-H2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  7. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  8. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 6. Adhesion energy, surface ... 2 G A Adebayo1. Department of Physics, University of Agriculture, Abeokuta, Nigeria; Department of Pure and Applied Physics, College of Pure and Applied Science, Caleb University, Imota, Lagos, Nigeria ...

  9. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  10. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  11. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  12. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  13. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  14. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  15. Obtaining evapotranspiration and surface energy fluxes with ...

    African Journals Online (AJOL)

    In this study, SEBAL (Surface Energy Balance Algorithm for Land), a remote sensing based evapotranspiration model, has been applied with Landsat ETM+ sensor for the estimation of actual ... The land uses in this study area consists of irrigated agriculture, rain-fed agriculture and livestock grazing. The obtained results ...

  16. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  17. Potential energy surface of triplet O4.

    Science.gov (United States)

    Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G

    2018-03-28

    We present a global ground-state potential energy surface (PES) for the triplet spin state of O 4 that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic spin-conserving O 2 -O 2 collisions. The surface is based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation; the active space has 16 electrons in 12 orbitals. The global ground-state potential energy surface was fitted by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction potential to 10 180 electronic structure data points. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions. The geometries calculated and used for the fit include geometry scans corresponding to dissociative and vibrationally excited diatom-diatom collisions of O 2 , scans corresponding to O 3 interacting with O, additional geometries identified by running trajectories, and geometries along linear synchronous transit paths connecting randomly selected points. The global O 4 PES includes subsurfaces describing the interaction of diatomic molecules with other diatomic molecules or interactions of triatomic molecules and an atom. The interaction of ozone with a ground-state oxygen atom occurs on the triplet O 4 surface, and our surface includes high-energy points with O 3 -O geometries as well as O 2 -O 2 geometries and O 2 -O-O geometries.

  18. [Energy expenditure prediction equations in burn patients; bibliographic review].

    Science.gov (United States)

    Núñez-Villaveirán, Teresa; Sánchez, Manuel; Millán, Pablo; Martínez-Méndez, Jose Ramón; Iglesias, Carmen; Casado-Pérez, César; García-de-Lorenzo, Abelardo

    2014-06-01

    The estimation of the caloric requirements of the burn patient is based on the measurement of his resting energy expenditure (REE) via indirect calorimetry, which is not available in all Burn Units, or its estimation by means of predictive equations. we analyze the history and state of art of the use of REE predictive equations in burn patients, and determine their validity. bibliographic review of the studies and reviews written in English and Spanish between 1989 and 2013. More than 190 equations have been designed to estimate energy expenditure. These equations can be imprecise because they are based on measurements with a heterogeneous methodology and in heterogeneous groups. We describe the different parameters that are used in the different equations (stress and activity factors, total burn surface area, post-burn day, lean body mass), the influence of age in the calculation of the caloric requirements, and the most commonly used equations nowadays. We also describe the articles that evaluate the accuracy of the predictive equations when compared to REE indirect calorimetry measurements. Predictive equations are not precise in general in the burn patient. Until more accurate predictive equations are developed, we recommend calculation of the nutritional requirements in burn patients based on the energy expenditure measurement via indirect calorimetry. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Simplified Approach to Predicting Rough Surface Transition

    Science.gov (United States)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  20. Surface analysis with low energy ion scattering

    International Nuclear Information System (INIS)

    Taglauer, E.; Heiland, W.

    1976-01-01

    Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de

  1. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  2. Prediction and Migration of Surface-related Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Surface-related resonant multiples can be migrated to achieve better resolution than migrating primary reflections. We now derive the formula for migrating surface-related resonant multiples, and show its super-resolution characteristics. Moreover, a method is proposed to predict surface-related resonant multiples with zero-offset primary reflections. The prediction can be used to indentify and extract the true resonant multiple from other events. Both synthetic and field data are used to validate this prediction.

  3. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  4. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  5. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  6. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  7. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  8. Molecular Dynamics Simulations for Predicting Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-06-01

    Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.

  9. Surface Energy Balance System (SEBS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  10. Constraining Agricultural Irrigation Surface Energy Budget Feedbacks in Atmospheric Models

    Science.gov (United States)

    Aufforth, M. E.; Desai, A. R.; Suyker, A.

    2017-12-01

    The expansion and modernization of irrigation increased the relevance of knowing the effects it has on regional weather and climate feedbacks. We conducted a set of observationally-constrained simulations determining the result irrigation exhibits on the surface energy budget, the atmospheric boundary layer, and regional precipitation feedbacks. Eddy covariance flux tower observations were analyzed from two irrigated and one rain-fed corn/soybean rotation sites located near Mead, Nebraska. The evaluated time period covered the summer growing months of June, July, and August (JJA) during the years when corn grew at all three sites. As a product of higher continuous surface moisture availability, the irrigated crops had significantly higher amounts of energy partitioned towards latent heating than the non-irrigated site. The daily average peak of latent heating at the rain-fed site occurred before the irrigated sites and was approximately 45 W/m2 lower. Land surface models were evaluated on their ability to reproduce these effects, including those used in numerical weather prediction and those used in agricultural carbon cycle projection. Model structure, mechanisms, and parameters that best represent irrigation-surface energy impacts will be compared and discussed.

  11. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  12. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, P.M.

    1982-10-01

    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed.

  13. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    International Nuclear Information System (INIS)

    Whitmore, P.M.

    1982-10-01

    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed

  14. Towards a generalized energy prediction model for machine tools.

    Science.gov (United States)

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  15. Robust Prediction of High Lift Using Surface Vorticity, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FlightStream has been developed a fast, accurate, aerodynamic prediction code based on vorticity computations on the surface of an aircraft. The code, though still a...

  16. Enhanced Prediction of Gear Tooth Surface Fatigue Life, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sentient will develop an enhanced prediction of gear tooth surface fatigue life with rigorous analysis of the tribological phenomena that contribute to pitting...

  17. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  18. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  19. Constructing ab initio and empirical potential energy surfaces for water

    International Nuclear Information System (INIS)

    Kain, Jacqueline Sophie

    2001-01-01

    The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing effect with increasing Ka. A further alteration to the ab initio calculations is introduced by adjusting the barrier to linearity in the water potential. This alteration to the barrier was considered in order to compensate for the lack of convergence of quantum chemical calculations of the Born-Oppenheimer surface. This barrier attempts to represent the change in the potential from linear to equilibrium. We show the improvements this has on the calculated energy levels by comparison with the HITRAN database. This then led the way to the improved spectroscopic potential presented here in this thesis. This new spectroscopic potential reduces the overall standard deviation significantly for vibrational and rotational energy levels. (author)

  20. Predicting 3D lip shapes using facial surface EMG

    NARCIS (Netherlands)

    Eskes, Merijn; van Alphen, Maarten J. A.; Balm, Alfons J. M.; Smeele, Ludi E.; Brandsma, Dieta; van der Heijden, Ferdinand

    2017-01-01

    Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and

  1. The prediction of BRDFs from surface profile measurements

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.; Leonard, T.A.

    1989-01-01

    This paper discusses methods of predicting the BRDF of smooth surfaces from profile measurements of their surface finish. The conversion of optical profile data to the BRDF at the same wavelength is essentially independent of scattering models, while the conversion of mechanical measurements, and wavelength scaling in general, are model dependent. Procedures are illustrated for several surfaces, including two from the recent HeNe BRDF round robin, and results are compared with measured data. Reasonable agreement is found except for surfaces which involve significant scattering from isolated surface defects which are poorly sampled in the profile data

  2. Land surface impacts on subseasonal and seasonal predictability

    Science.gov (United States)

    Guo, Zhichang; Dirmeyer, Paul A.; DelSole, Tim

    2011-12-01

    This paper shows that realistically initialized land surface states enhance atmospheric predictability significantly out to two-to-three months during summer. The spatial structure of the impact of land initialization on atmospheric predictability can be explained by the simultaneous influence of soil moisture memory time and land surface-evapotranspiration coupling strength. A proxy for this impact based on soil moisture and evaporation anomalies is proposed. The results also show that the impact of the land surface on atmospheric predictability varies with season: enhancement of predictability is relatively small during boreal spring and autumn, and reaches a maximum during boreal summer. Remarkably, the predictability of atmospheric temperature and precipitation increases with lead time from spring to summer. This increase is diagnosed as a “transfer” of predictability from land to atmosphere: during spring, the soil moisture predictability is high, but this predictability does not impact the atmosphere due to lack of land-atmosphere coupling; during summer, the coupling increases, thereby transferring the predictability from land to atmosphere.

  3. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu

    2013-01-01

    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  4. CO dimer: new potential energy surface and rovibrational calculations.

    Science.gov (United States)

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  5. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  6. Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    In this thesis, we consider control strategies for flexible distributed energy resources in the future intelligent energy system – the Smart Grid. The energy system is a large-scale complex network with many actors and objectives in different hierarchical layers. Specifically the power system must...... significantly. A Smart Grid calls for flexible consumers that can adjust their consumption based on the amount of green energy in the grid. This requires coordination through new large-scale control and optimization algorithms. Trading of flexibility is key to drive power consumption in a sustainable direction....... In Denmark, we expect that distributed energy resources such as heat pumps, and batteries in electric vehicles will mobilize part of the needed flexibility. Our primary objectives in the thesis were threefold: 1.Simulate the components in the power system based on simple models from literature (e.g. heat...

  7. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    2012-01-01

    Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new app...... inhabitant behaviour, operation, and maintenance to predict the performance of the systems and the level of certainty for fulfilling design requirements under random conditions.......Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...

  8. Tidal energy extraction: renewable, sustainable and predictable.

    Science.gov (United States)

    Nicholls-Lee, R F; Turnock, S R

    2008-01-01

    The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.

  9. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  10. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  11. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jie [University of Texas at Dallas; Weng, Yang [Arizona State University

    2017-12-01

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to power system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.

  12. Prediction of Protein Structure Using Surface Accessibility Data.

    Science.gov (United States)

    Hartlmüller, Christoph; Göbl, Christoph; Madl, Tobias

    2016-09-19

    An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance-to-surface information encoded in the sPRE data in the chemical shift-based CS-Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Economic Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    Model Predictive Control (MPC) can be used to control the energy distribution in a Smart Grid with a high share of stochastic energy production from renewable energy sources like wind. Heat pumps for heating residential buildings can exploit the slow heat dynamics of a building to store heat...

  14. Predicting Surface Runoff from Catchment to Large Region

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2015-01-01

    Full Text Available Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1 modeling catchment, regional and global runoff using lumped conceptual rainfall-runoff models, distributed hydrological models, and land surface models, (2 parameterizing hydrological models in ungauged catchments, (3 improving hydrological model structure, and (4 using new remote sensing precipitation data.

  15. An Accurate Potential Energy Surface for H2O

    Science.gov (United States)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  16. Prediction of Wind Energy Resources (PoWER) Users Guide

    Science.gov (United States)

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources ( PoWER ) User’s Guide by David P Sauter...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources ( PoWER ...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 09/2015–11/2015 4. TITLE AND SUBTITLE Prediction of Wind Energy Resources ( PoWER ) User’s

  17. Linear predictability: A sea surface height case study

    Science.gov (United States)

    Sonnewald, Maike; Wunsch, Carl; Heimbach, Patrick

    2017-04-01

    A benchmark of linear predictive skill of global sea surface height (SSH or η) is presented, complementing more complicated studies of η predictive skill. Twenty years of the ECCOv4 state estimate (1992-2012) are used, fitting ARMA(n,m) models where the order is chosen by the Akaike and Bayesian Information Criteria (AIC and BIC). The prediction on the basis of monthly detrended data shows skill generally of the order of a few months, with isolated regions of twelve months or more. With the trend, the predictive skill increases, particularly in the south Pacific. Annually averaged data are also used, although the time-series are too short to assess the variability. Including a linear trend as part of the signal results in some enhanced predictability.

  18. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  19. Landform and surface attributes for prediction of rodent burrows in ...

    African Journals Online (AJOL)

    Previous studies suggest that rodent burrows, a proxy for rodent population are important for predicting plague risk areas. However, studies that link landform, surface attributes and rodent burrows in the Western Usambara Mountains in Tanzania are scanty. Therefore, this study was conducted in plague endemic area of ...

  20. Modeling of a nanoscale flexoelectric energy harvester with surface effects

    Science.gov (United States)

    Yan, Zhi

    2017-04-01

    This work presents the modeling of a beam energy harvester scavenging energy from ambient vibration based on the phenomenon of flexoelectricity. By considering surface elasticity, residual surface stress, surface piezoelectricity and bulk flexoelectricity, a modified Euler-Bernoulli beam model for the energy harvester is developed. After deriving the requisite energy expressions, the extended Hamilton's principle and the assumed-modes method are employed to obtain the discrete electromechanical Euler-Lagrange's equations. Then, the expressions of the steady-state electromechanical responses are given for harmonic base excitation. Numerical simulations are conducted to show the output voltage and the output power of the flexoelectric energy harvesters with different materials and sizes. Particular emphasis is given to the surface effects on the performance of the energy harvesters. It is found that the surface effects are sensitive to the beam geometries and the surface material constants, and the effect of residual surface stress is more significant than that of the surface elasticity and the surface piezoelectricity. The axial deformation of the beam is also considered in the model to account for the electromechanical coupling due to piezoelectricity, and results indicate that piezoelectricity will diminish the output electrical quantities for the case investigated. This work could lead to the development of flexoelectric energy harvesters that can make the micro- and nanoscale sensor systems autonomous.

  1. Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.

    Science.gov (United States)

    Koput, Jacek

    2017-01-05

    The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm -1 . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    Science.gov (United States)

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO 2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO 2 molecule is discussed. The vibration-rotation energy levels of the 32 SO 2 and 34 SO 2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. BION web server: predicting non-specifically bound surface ions.

    Science.gov (United States)

    Petukh, Marharyta; Kimmet, Taylor; Alexov, Emil

    2013-03-15

    Ions are essential component of the cell and frequently are found bound to various macromolecules, in particular to proteins. A binding of an ion to a protein greatly affects protein's biophysical characteristics and needs to be taken into account in any modeling approach. However, ion's bounded positions cannot be easily revealed experimentally, especially if they are loosely bound to macromolecular surface. Here, we report a web server, the BION web server, which addresses the demand for tools of predicting surface bound ions, for which specific interactions are not crucial; thus, they are difficult to predict. The BION is easy to use web server that requires only coordinate file to be inputted, and the user is provided with various, but easy to navigate, options. The coordinate file with predicted bound ions is displayed on the output and is available for download.

  4. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  5. Demonstration of Data Center Energy Use Prediction Software

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry; Greenberg, Steve; Tschudi, William

    2013-09-30

    This report documents a demonstration of a software modeling tool from Romonet that was used to predict energy use and forecast energy use improvements in an operating data center. The demonstration was conducted in a conventional data center with a 15,500 square foot raised floor and an IT equipment load of 332 kilowatts. It was cooled using traditional computer room air handlers and a compressor-based chilled water system. The data center also utilized an uninterruptible power supply system for power conditioning and backup. Electrical energy monitoring was available at a number of locations within the data center. The software modeling tool predicted the energy use of the data center?s cooling and electrical power distribution systems, as well as electrical energy use and heat removal for the site. The actual energy used by the computer equipment was recorded from power distribution devices located at each computer equipment row. The model simulated the total energy use in the data center and supporting infrastructure and predicted energy use at energy-consuming points throughout the power distribution system. The initial predicted power levels were compared to actual meter readings and were found to be within approximately 10 percent at a particular measurement point, resulting in a site overall variance of 4.7 percent. Some variances were investigated, and more accurate information was entered into the model. In this case the overall variance was reduced to approximately 1.2 percent. The model was then used to predict energy use for various modification opportunities to the data center in successive iterations. These included increasing the IT equipment load, adding computer room air handler fan speed controls, and adding a water-side economizer. The demonstration showed that the software can be used to simulate data center energy use and create a model that is useful for investigating energy efficiency design changes.

  6. Predicting the potential of energy from agricultural wastes in Malaysia

    International Nuclear Information System (INIS)

    Arifah Bahar; Ahmad Mahir Razali; Kamaruzzaman Sopian

    2000-01-01

    This paper presents the prediction of the potential of energy supply from agricultural wastes in Malaysia until the year 2005. The exponential smoothing method is used to predict the supply of energy from these resources. The prediction is based on four scenarios namely (a) business as usual, (b) increase in the plantation area by 1 % (c) increase in productivity by 1 % with no increase in plantation area and (d) decrease in plantation area of 1%. The agricultural wastes considered are from rubber, oil palm ,cocoa, paddy, coconut and pineapple resources. In Peninsular Malaysia, these resources include groundnut, sugar cane, and tapioca. Assuming an energy conversion of 30%, only three agricultural wastes can contribute as an energy supply i.e. oil palm, paddy and sugar cane wastes. The contribution of these resources to the demand of energy for Malaysia is 21% in the year 2000 and 17% in the year 2005. (Author)

  7. Allometric Prediction of Energy Expenditure in Infants and Children.

    Science.gov (United States)

    Blinman, Thane; Cook, Robin

    2011-08-01

    Predicting energy needs in children is complicated by the wide range of patient sizes, confusing traditional estimation equations, nonobjective stress-activity factors, and so on. These complications promote errors in bedside estimates of nutritional needs by rendering the estimation methods functionally unavailable to bedside clinicians. Here, the authors develop a simple heuristic energy prediction equation that requires only body mass (not height, age, or sex) as input. Expert estimation of energy expenditure suggested a power-law relationship between mass and energy. A similar mass-energy expenditure relationship was derived from published pediatric echocardiographic data using a Monte Carlo model of energy expenditure based on oxygen delivery and consumption. A simplified form of the equation was compared with energy required for normal growth in a cohort of historical patients weighing 2 to 70 kg. All 3 methods demonstrate that variation in energy expenditure in children is dominated by mass and can be estimated by the following equation: Power(kcal/kg/d) = 200 × [Mass(kg)((-0.4))]. This relationship explains 85% of the variability in energy required to maintain expected growth over a broad range of surgical clinical contexts. A simplified power-law equation predicts real-world energy needs for growth in patients over a wide range of body sizes and clinical contexts, providing a more useful bedside tool than traditional estimators.

  8. Energy Prediction in Urban Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramos-Paja

    2013-11-01

    Full Text Available  This paper proposes a new method to accurately estimate the power and energy production in urban photovoltaic (PV systems, which are commonly covered by shades affecting its performance. The solution is based on an efficient algorithm designed to compute, in short time, an accurate model accounting for the shades impact. In such a way, the proposed approach improves classical solutions by significantly reducing the processing time to simulate long periods, e.g. months and years, but without introducing sensible errors. Therefore, this approach is suitable to estimate the production of PV systems for economical analyses such as the return-of-invested time calculation, but also to accurately design PV installations by selecting the right number of photovoltaic modules to supply the required load power. 

  9. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  10. PREDICTION OF SURFACE ROUGHNESS IN END MILLING OPERATION OF DUPLEX STAINLESS STEEL USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. D. PHILIP

    2015-03-01

    Full Text Available Response surface methodology has been used to study the effects of the machining parameters such as spindle speed, feed rate and axial depth of cut on surface roughness of duplex stainless steel in end milling operation. Dry milling experiments were conducted with three levels of spindle speed, feed rate and axial depth of cut. A mathematical model has been developed to predict the surface roughness in terms of the machining parameters using Box-Behnken design response surface methodology. The adequacy of the model was verified using analysis of variance. The prediction equation shows that the feed rate is the most important factor that influences the surface roughness followed by axial depth of cut and spindle speed. The validity of the model was verified by conducting the confirmation experiment.

  11. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  12. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Science.gov (United States)

    Lourenço-Martins, Hugo; Kociak, Mathieu

    2017-10-01

    Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].

  13. Surface technologies 2006-Alternative energies and policy options

    International Nuclear Information System (INIS)

    Rose, Lars

    2007-01-01

    Surfaces are the immediate contact between anything in our world. Literally, every industry utilizes coatings and surface modifications in order to create surfaces tailored to specific needs, protect underlying substrates, or modify their behavior. Surface and coating technologies are essential to a large variety of different industrial sectors, including transportation, manufacturing, food and biomedical engineering, energy, resources, and materials science and technology. The present paper explains the limitations for alternative energy technologies, with a focus on fuel cell technology development and the alternative energy sector, based on the outcomes of presentations and facilitated discussion groups during a Canadian national workshop series. Options for technological improvements of alternative energy systems are presented in combination with national and international policy choices, which could positively influence research and development in the alternative energy sector

  14. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.

    Science.gov (United States)

    Kothari, Kartik; Maldovan, Martin

    2017-07-17

    Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions. We show that thermal transport in superlattices can be divided in two different heat transport modes having different physical properties at small length scales: layer-restricted and extended heat modes. We study how interface conditions, periodicity, and composition can be used to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the existence of wave effects. The results and insights in this paper advance the fundamental understanding of heat transport in superlattices and the prospects of rationally designing thermal systems with tailored phonon transport properties.

  15. Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

    International Nuclear Information System (INIS)

    Mehta, M.S.; Gupta, Raj K.; Jha, T.K.; Patra, S.K.

    2004-01-01

    We have calculated the potential energy surfaces for N = Z, 20 Ne- 112 Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RAl and TM1 parameter sets are used. The phenomenon of (multiple) shape coexistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions. (author)

  16. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  17. Dual hierarchical biomimic superhydrophobic surface with three energy states

    Science.gov (United States)

    Chen, Ming-Hung; Hsu, Tsung-Hsing; Chuang, Yun-Ju; Tseng, Fan-Gang

    2009-07-01

    A low hysteresis surface prepared by two-length-scaled hierarchical textures to mimic the Lotus effect is proposed. The fabricated textures incorporate self-masked nanorods on microextrusions. A high static contact angle (160°) and low hysteresis (˜2.7°) are obtained and comparable to the surface properties of a natural lotus leaf. The stability of hydrophobicity is described with respect to three energy states (nonwetting, microwetting, and nanowetting) based on dynamic contact angle analysis by droplet impinging onto the surface. The estimated texture-induced energy barrier based on the principle of energy conservation is in good agreement to those estimated from Laplace's law.

  18. Surface acoustic wave probe implant for predicting epileptic seizures

    Science.gov (United States)

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  19. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  20. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  1. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  2. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum

    Science.gov (United States)

    Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-06-01

    Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface energy balance (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and operational Simplified Surface Energy Balance (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available energy. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress

  3. Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.

    Science.gov (United States)

    Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J

    2017-03-01

    Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.

  4. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  5. On Averaging Timescales for the Surface Energy Budget Closure Problem

    Science.gov (United States)

    Grachev, A. A.; Fairall, C. W.; Persson, O. P. G.; Uttal, T.; Blomquist, B.; McCaffrey, K.

    2017-12-01

    An accurate determination of the surface energy budget (SEB) and all SEB components at the air-surface interface is of obvious relevance for the numerical modelling of the coupled atmosphere-land/ocean/snow system over different spatial and temporal scales, including climate modelling, weather forecasting, environmental impact studies, and many other applications. This study analyzes and discusses comprehensive measurements of the SEB and the surface energy fluxes (turbulent, radiative, and ground heat) made over different underlying surfaces based on the data collected during several field campaigns. Hourly-averaged, multiyear data sets collected at two terrestrial long-term research observatories located near the coast of the Arctic Ocean at Eureka (Canadian Archipelago) and Tiksi (East Siberia) and half-hourly averaged fluxes collected during a year-long field campaign (Wind Forecast Improvement Project 2, WFIP 2) at the Columbia River Gorge (Oregon) in areas of complex terrain. Our direct measurements of energy balance show that the sum of the turbulent sensible and latent heat fluxes systematically underestimate the available energy at half-hourly and hourly time scales by around 20-30% at these sites. This imbalance of the surface energy budget is comparable to other terrestrial sites. Surface energy balance closure is a formulation of the conservation of energy principle (the first law of thermodynamics). The lack of energy balance closure at hourly time scales is a fundamental and pervasive problem in micrometeorology and may be caused by inaccurate estimates of the energy storage terms in soils, air and biomass in the layer below the measurement height and above the heat flux plates. However, the residual energy imbalance is significantly reduced at daily and monthly timescales. Increasing the averaging time to daily scales substantially reduces the storage terms because energy locally entering the soil, air column, and vegetation in the morning is

  6. Predictive Maintenance (PdM) Centralization for Significant Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dale

    2010-09-15

    Cost effective predictive maintenance (PdM) technologies and basic energy calculations can mine energy savings form processes or maintenance activities. Centralizing and packaging this information correctly empowers facility maintenance and reliability professionals to build financial justification and support for strategies and personnel to weather global economic downturns and competition. Attendees will learn how to: Systematically build a 'pilot project' for applying PdM and tracking systems; Break down a typical electrical bill to calculate energy savings; Use return on investment (ROI) calculations to identify the best and highest value options, strategies and tips for substantiating your energy reduction maintenance strategies.

  7. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...

    Indian Academy of Sciences (India)

    s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

  9. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    Science.gov (United States)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  10. Factors Predicting the Ocular Surface Response to Desiccating Environmental Stress

    Science.gov (United States)

    Alex, Anastasia; Edwards, Austin; Hays, J. Daniel; Kerkstra, Michelle; Shih, Amanda; de Paiva, Cintia S.; Pflugfelder, Stephen C.

    2013-01-01

    Purpose. To identify factors predicting the ocular surface response to experimental desiccating stress. Methods. The ocular surfaces of both eyes of 15 normal and 10 dry eye subjects wearing goggles were exposed to a controlled desiccating environment (15%–25% relative humidity and 2–5 L/min airflow) for 90 minutes. Eye irritation symptoms, blink rate, tear meniscus dimensions, noninvasive (RBUT) and invasive tear break-up time, and corneal fluorescein and conjunctival lissamine green-dye staining were recorded before and after desiccating stress. Pre- and postexposure measurements were compared, and Pearson correlations between clinical parameters before and after desiccating stress were calculated. Results. Corneal and conjunctival dye staining significantly increased in all subjects following 90-minute exposure to desiccating environment, and the magnitude of change was similar in normal and dry eye subjects; except superior cornea staining was greater in dry eye. Irritation severity in the desiccating environment was associated with baseline dye staining, baseline tear meniscus height, and blink rate after 45 minutes. Desiccation-induced change in corneal fluorescein staining was inversely correlated to baseline tear meniscus width, whereas change in total ocular surface dye staining was inversely correlated to baseline dye staining, RBUT, and tear meniscus height and width. Blink rate from 30 to 90 minutes in desiccating environment was higher in the dry eye than normal group. Blink rate significantly correlated to baseline corneal fluorescein staining and environmental-induced change in corneal fluorescein staining. Conclusions. Ocular surface dye staining increases in response to desiccating stress. Baseline ocular surface dye staining, tear meniscus height, and blink rate predict severity of ocular surface dye staining following exposure to a desiccating environment. PMID:23572103

  11. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is a critical component of the surface energy balance along with the ... and prediction techniques. Evaporation measured .... Both incident and reflected solar radiation sensors are developed using wide spectrum photodiodes. The accuracy, resolution and range of the sensors used in the hydro-meteorological ...

  12. Effect of mechanical denaturation on surface free energy of protein powders.

    Science.gov (United States)

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  14. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  15. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  16. Predictive Model of Energy Consumption in Beer Production

    Directory of Open Access Journals (Sweden)

    Tiecheng Pu

    2013-07-01

    Full Text Available The predictive model of energy consumption is presented based on subtractive clustering and Adaptive-Network-Based Fuzzy Inference System (for short ANFIS in the beer production. Using the subtractive clustering on the historical data of energy consumption, the limit of artificial experience is conquered while confirming the number of fuzzy rules. The parameters of the fuzzy inference system are acquired by the structure of adaptive network and hybrid on-line learning algorithm. The method can predict and guide the energy consumption of the factual production process. The reducing consumption scheme is provided based on the actual situation of the enterprise. Finally, using concrete examples verified the feasibility of this method comparing with the Radial Basis Functions (for short RBF neural network predictive model.

  17. Surface solar radiation from geostationary satellites for renewable energy

    Science.gov (United States)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  18. A global perspective on renewable energy resources. NASA's prediction of worldwide energy resources (power) project

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Taiping; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H. [SSAI/NASA Langley Research Center, Hampton, VA (United States); Stackhouse, Paul W. Jr [NASA Langley Research Center, Hampton, VA (United States)

    2008-07-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, analyzes, synthesizes and makes available data parameters on a global scale. These data have proved to be reliable and useful to the renewable energy industries, especially to the solar energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper. (orig.)

  19. Intermolecular potential energy surface for CS2 dimer.

    Science.gov (United States)

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. Copyright © 2010 Wiley Periodicals, Inc.

  20. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  1. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    Science.gov (United States)

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  2. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    Science.gov (United States)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-07-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  3. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  4. Accurate prediction of peptide binding sites on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Evangelia Petsalaki

    2009-03-01

    Full Text Available Many important protein-protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled but where no structure of the protein-peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein-peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.

  5. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  6. Effect of lifestyle on energy use estimations and predicted savings

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, T.K.; Fuller, L.C.

    1988-03-01

    Audit predictions of energy-conservation savings are usually much higher than the savings actually achieved. Speculation about possible causes for this discrepancy has often centered around residents' lifestyle, specifically their indoor temperature management. Detailed indoor temperature data and extensive demographic information were available for 300 homes in Hood River, Oregon. These data were analyzed to examine the effect of demographic variables on indoor temperature and energy use. Changes in indoor temperature before and after retrofit were also examined. The effects of these variables were very small. Some small improvements to auditing procedures can be suggested based on this analysis. However, the major conclusion is that while some takeback of energy savings is occurring, it is very small in magnitude and cannot explain the large differences between predicted and achieved energy savings. 8 refs., 19 figs., 5 tabs.

  7. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  8. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  9. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  10. Prediction Based Energy Balancing Forwarding in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yang Jian-Jun

    2017-01-01

    Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.

  11. Land surface contribution to climate predictability: the long way from early evidence to improved forecast skill

    Science.gov (United States)

    Douville, Hervé

    2013-04-01

    Seasonal forecasts performance over most land areas remains relatively weak, particularly in the mid-latitudes where the interannual ocean variability has a lesser influence than in the tropics. Yet, many observational and numerical studies suggest that there is a fraction of predictability that is still untapped over land at the monthly to seasonal time scales, due to both local and remote land surface effects. Soil moisture and snow mass anomalies may have a strong signature in the land surface energy budget and thereby influence not only surface temperature, but also precipitation through changes in surface evaporation and/or moisture convergence. Land surface anomalies may also trigger planetary waves that can have remote effects on seasonal mean climate. This talk will first illustrate some potential land surface impacts on climate predictability using both statistical and numerical evidence. Then, the limitations of such studies and the practical difficulties for taking advantage of the land surface memory will be presented, as well as on-going efforts for adressing these issues at both European (i.e., SPECS) and international (i.e., GLACE) levels.

  12. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  13. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  14. Predicting energy performance of a net-zero energy building: A statistical approach

    International Nuclear Information System (INIS)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these

  15. Prediction of wind energy distribution in complex terrain using CFD

    DEFF Research Database (Denmark)

    Xu, Chang; Li, Chenqi; Yang, Jianchuan

    2013-01-01

    Based on linear models, WAsP software predicts wind energy distribution, with a good accuracy for flat terrain, but with a large error under complicated topography. In this paper, numerical simulations are carried out using the FLUENT software on a mesh generated by the GAMBIT and ARGIS software...

  16. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal...

  17. Prediction of metabolisable energy of poultry feeds by estimating in ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... The aim of this study was to develop equations to predict the in vivo apparent metabolisable energy. (AME) of poultry feeds using an in vitro method for estimation of organic matter digestibility. In this study, a total of 57 samples of feedstuffs and 23 samples complete diets for poultry were used. Dry.

  18. Prediction of metabolisable energy of poultry feeds by estimating in ...

    African Journals Online (AJOL)

    The aim of this study was to develop equations to predict the in vivo apparent metabolisable energy (AME) of poultry feeds using an in vitro method for estimation of organic matter digestibility. In this study, a total of 57 samples of feedstuffs and 23 samples complete diets for poultry were used. Dry matter (DM), crude protein ...

  19. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator is an a...

  20. Statistics and predictions of population, energy and environment problems

    International Nuclear Information System (INIS)

    Sobajima, Makoto

    1999-03-01

    In the situation that world's population, especially in developing countries, is rapidly growing, humankind is facing to global problems that they cannot steadily live unless they find individual places to live, obtain foods, and peacefully get energy necessary for living for centuries. For this purpose, humankind has to think what behavior they should take in the finite environment, talk, agree and execute. Though energy has been long respected as a symbol for improving living, demanded and used, they have come to limit the use making the global environment more serious. If there is sufficient energy not loading cost to the environment. If nuclear energy regarded as such one sustain the resource for long and has market competitiveness. What situation of realization of compensating new energy is now in the case the use of nuclear energy is restricted by the society fearing radioactivity. If there are promising ones for the future. One concerning with the study of energy cannot go without knowing these. The statistical materials compiled here are thought to be useful for that purpose, and are collected mainly from ones viewing future prediction based on past practices. Studies on the prediction is so important to have future measures that these data bases are expected to be improved for better accuracy. (author)

  1. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    Science.gov (United States)

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  2. Predicting Energy Consumption for Potential Effective Use in Hybrid Vehicle Powertrain Management Using Driver Prediction

    Science.gov (United States)

    Magnuson, Brian

    A proof-of-concept software-in-the-loop study is performed to assess the accuracy of predicted net and charge-gaining energy consumption for potential effective use in optimizing powertrain management of hybrid vehicles. With promising results of improving fuel efficiency of a thermostatic control strategy for a series, plug-ing, hybrid-electric vehicle by 8.24%, the route and speed prediction machine learning algorithms are redesigned and implemented for real- world testing in a stand-alone C++ code-base to ingest map data, learn and predict driver habits, and store driver data for fast startup and shutdown of the controller or computer used to execute the compiled algorithm. Speed prediction is performed using a multi-layer, multi-input, multi- output neural network using feed-forward prediction and gradient descent through back- propagation training. Route prediction utilizes a Hidden Markov Model with a recurrent forward algorithm for prediction and multi-dimensional hash maps to store state and state distribution constraining associations between atomic road segments and end destinations. Predicted energy is calculated using the predicted time-series speed and elevation profile over the predicted route and the road-load equation. Testing of the code-base is performed over a known road network spanning 24x35 blocks on the south hill of Spokane, Washington. A large set of training routes are traversed once to add randomness to the route prediction algorithm, and a subset of the training routes, testing routes, are traversed to assess the accuracy of the net and charge-gaining predicted energy consumption. Each test route is traveled a random number of times with varying speed conditions from traffic and pedestrians to add randomness to speed prediction. Prediction data is stored and analyzed in a post process Matlab script. The aggregated results and analysis of all traversals of all test routes reflect the performance of the Driver Prediction algorithm. The

  3. Surface/interfacial free energies and the surface tension of uranium dioxide

    International Nuclear Information System (INIS)

    Deshpande, M.S.; Desai, P.D.; Solomon, A.A.

    1984-01-01

    The purpose of this study is to review literature on surface/interfacial free energies and surface tension of UO/sub 2 +- x/. The data available in the literature are reviewed and critical evaluation and analyses of the available data are made by comparing them not only with each other, but also with the estimated values based on the available theoretical models. In light of the complexity of the material and the problems associated with the available literature data, no recommendations of surface/interfacial free energies and surface tension values are possible at this time. However, an attempt is made to point out problems associated with the data in general and also to develop procedures that can be used to analyze surface energies

  4. On the mechanics of continua with boundary energies and growing surfaces

    Science.gov (United States)

    Papastavrou, Areti; Steinmann, Paul; Kuhl, Ellen

    2013-06-01

    Many biological systems are coated by thin films for protection, selective absorption, or transmembrane transport. A typical example is the mucous membrane covering the airways, the esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities, and buckling of biological surfaces have been studied intensely by approximating the surface as a layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we establish a theory of continua with boundary energies and growing surfaces of zero thickness in which the surface is equipped with its own potential energy and is allowed to grow independently of the bulk. In complete analogy to the kinematic equations, the balance equations, and the constitutive equations of a growing solid body, we derive the governing equations for a growing surface. We illustrate their spatial discretization using the finite element method, and discuss their consistent algorithmic linearization. To demonstrate the conceptual differences between volume and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube. Our novel approach toward continua with growing surfaces is capable of predicting extreme growth of the inner cylindrical surface, which more than doubles its initial area. The underlying algorithmic framework is robust and stable; it allows to predict morphological changes due to surface growth during the onset of buckling and beyond. The modeling of surface growth has immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of growth-induced morphological instabilities and surface wrinkling has important implications in material sciences, manufacturing, and microfabrication, with applications in

  5. Predicting 3D lip shapes using facial surface EMG.

    Directory of Open Access Journals (Sweden)

    Merijn Eskes

    Full Text Available The aim of this study is to prove that facial surface electromyography (sEMG conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions.With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA and a modified general regression neural network (GRNN to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG.The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.

  6. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Predicting the Specific Energy Consumption of Reverse Osmosis Desalination

    Directory of Open Access Journals (Sweden)

    Ashlynn S. Stillwell

    2016-12-01

    Full Text Available Desalination is often considered an approach for mitigating water stress. Despite the abundance of saline water worldwide, additional energy consumption and increased costs present barriers to widespread deployment of desalination as a municipal water supply. Specific energy consumption (SEC is a common measure of the energy use in desalination processes, and depends on many operational and water quality factors. We completed multiple linear regression and relative importance statistical analyses of factors affecting SEC using both small-scale meta-data and municipal-scale empirical data to predict the energy consumption of desalination. Statistically significant results show water quality and initial year of operations to be significant and important factors in estimating SEC, explaining over 80% of the variation in SEC. More recent initial year of operations, lower salinity raw water, and higher salinity product water accurately predict lower values of SEC. Economic analysis revealed a weak statistical relationship between SEC and cost of water production. Analysis of associated greenhouse gas (GHG emissions revealed important considerations of both electricity source and SEC in estimating the GHG-related sustainability of desalination. Results of our statistical analyses can aid decision-makers by predicting the SEC of desalination to a reasonable degree of accuracy with limited data.

  8. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal) and b...

  9. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  10. Surface energies of metals in both liquid and solid states

    Energy Technology Data Exchange (ETDEWEB)

    Aqra, Fathi, E-mail: fathiaqra2009@hotmail.com [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown); Ayyad, Ahmed [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown)

    2011-05-15

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension ({gamma}{sub m}), surface energy ({gamma}{sub SV}), surface excess entropy (-d{gamma}/dT), surface excess enthalpy (H{sub s}), coefficient of thermal expansion ({alpha}{sub m} and {alpha}{sub b}), sound velocity (c{sub m}) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  11. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence

    Science.gov (United States)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-01

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu50 Au50 , and Cu25 Au75 nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N -body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  12. The Size and Shape dependence of the Surface Free Energy of Nanocrystals

    Science.gov (United States)

    Abdul-Hafidh, Esam

    Based on many recent reports, it became possible to control the synthesis of nanomaterials with certain sizes and shapes. A theoretical model to investigate the effect of size and shape on the surface free energy of nanocrystals is worked out in this research. The model is applied to a general shape and size nanocrsytal designated by a shape factor. The model considers all nanocrystals with different morphologies (but with the same shape factor) to be the same. The results were tested for gold and silver. The surface free energy was found to decrease with size for spherical nanocrystals. On the other hand, the surface free energy is enhanced for non-spherical nanocrystals. These findings are in qualitative agreement with previous experimental and theoretical predictions. The results pave the road to manufacture controlled- mechanical properties materials.

  13. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  14. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; King, J.C.; Gray, T.; Reijmer, C.H.|info:eu-repo/dai/nl/229345956

    2012-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in

  15. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.; van den Broeke, Michiel; King, J.C.; Gray, T.; Reijmer, C.H.

    2011-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the

  16. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface

    International Nuclear Information System (INIS)

    Valentini, Paolo; Schwartzentruber, Thomas E.; Bender, Jason D.; Nompelis, Ioannis; Candler, Graham V.

    2015-01-01

    The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N 2 –N 2 collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications

  17. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  18. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double......-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm -1 at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials were further used in the evaluation of rovibrational states and the rotational constants...

  19. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  20. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  1. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  2. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  3. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  4. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  5. Evaluation of Satellite-Based Surface Energy Budget Products with Surface Measurements Over the Great Lakes

    Science.gov (United States)

    Wang, H.; Loeb, N. G.; Lenters, J. D.; Spence, C.; Blanken, P.

    2017-12-01

    Earth's climate is fundamentally driven by the global energy balance. While Earth's energy budget at the top-of-atmosphere (TOA) is well understood, satellite-based estimates of the global mean surface energy budget yield an imbalance of 15-20 Wm-2. The data products used to infer the components of the surface energy budget are often based upon physical or empirical models and ancillary input data sets of varying quality. In order to make progress, comparisons between satellite-based estimates of the surface energy budget components and direct surface measurements are critically needed. This study evaluates surface radiative fluxes from NASA CERES EBAF and surface turbulent heat fluxes from OAFLUX by comparing them with surface station measurements from the Great Lakes Evaporation Network (GLEN). The GLEN measurements are collected using instruments on lighthouses in the Great Lakes, and include surface evaporation measurement via eddy covariance technique. The evaluation is performed for 3 offshore and 1 nearshore Great Lakes sites. We highlight results for Stannard Rock in Lake Superior, which is the farthest lighthouse from shore ( 40km from the nearest land). Relative to the GLEN observations, the OAFLUX underestimates latent heat flux by 12 Wm-2 (19 Wm-2) at Stannard Rock (4-station average), in part due to its weaker near surface wind speed, and overestimates sensible heat flux by 12 Wm-2 (6 Wm-2), which is partly contributed by its colder surface air temperature. The CERES EBAF-Surface overestimates the surface downward all-sky shortwave (longwave) flux by 8 Wm-2 (7 Wm-2) at Stannard Rock, and is comparable to the 4-station average. As a result, the surface estimated using EBAF-Surface and OAFLUX receives 16 Wm-2 (13 Wm-2) more than the GLEN observations at Stannard Rock (4-station average). The above surface energy flux differences will be further discussed based on a comparison between the input data sets used in the satellite-based estimates and

  6. Low Energy Surface Activation of Zirconia Based Restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N

    2016-03-01

    To evaluate the influence of low energy surface activation technique on the biaxial flexure strength of zirconia frameworks. Zirconia discs were prepared by cutting CAD/CAM zirconia blocks. Sintered discs were airborne particle abraded using one of the following particles: 30 μm alumina particles, 50 μm alumina particles, or modified round edges 30 μm alumina particles at low pressure. Scanning electron microscopy, x-ray diffraction analysis, surface roughness, and biaxial flexure strength tests were performed (n = 20). Fractured specimens were fractographically analyzed (α = 0.05). Low energy surface activation resulted in 7% monoclinic crystallographic transformation, increasing surface roughness from 0.05 to 0.3 μm and in significant increase in biaxial flexure strength (1718 MPa) compared 30 μm (1064 MPa), 50 μm (1210 MPa), and as-sintered specimens (1150 MPa). Low energy surface activation of zirconia specimens improved the biaxial flexure strength of zirconia frameworks without creation of surface damage. Clinical implications: by controlling particle size and shape of alumina, the flexure strength of zirconia restorations could be increased usinglow pressure particle abrasion.

  7. Short communication Prediction of energy requirements of Murciano ...

    African Journals Online (AJOL)

    p2492989

    Short communication. Prediction of energy requirements of Murciano-Granadina preruminant female kids using the National Research Council. A.L. Martínez Marín#, M. Pérez Hernández, L.M. Pérez Alba, D. Carrión Pardo. & A.G. Gómez Castro. University of ..... (in Spanish, English abstract). Bezabih, M. & Pfeffer, E., 2003.

  8. Prediction of the energy-absorption capability of composite tubes

    Science.gov (United States)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    A method of predicting the crack-related energy-absorption capability of composite tubes is presented. The method is based upon a phenomenological model of the crushing process exhibited by continuous-fiber-reinforced tubes. A finite element method is used to model the crushing process. The analysis is compared with experiments on Kevlar-epoxy and graphite-epoxy tubes. Reasonable agreement is obtained between the analysis and experiment.

  9. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  10. Predicting Output Power for Nearshore Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Henock Mamo Deberneh

    2018-04-01

    Full Text Available Energy harvested from a Wave Energy Converter (WEC varies greatly with the location of its installation. Determining an optimal location that can result in maximum output power is therefore critical. In this paper, we present a novel approach to predicting the output power of a nearshore WEC by characterizing ocean waves using floating buoys. We monitored the movement of the buoys using an Arduino-based data collection module, including a gyro-accelerometer sensor and a wireless transceiver. The collected data were utilized to train and test prediction models. The models were developed using machine learning algorithms: SVM, RF and ANN. The results of the experiments showed that measurements from the data collection module can yield a reliable predictor of output power. Furthermore, we found that the predictors work better when the regressors are combined with a classifier. The accuracy of the proposed prediction model suggests that it could be extremely useful in both locating optimal placement for wave energy harvesting plants and designing the shape of the buoys used by them.

  11. Predicting the Wear of High Friction Surfacing Aggregate

    Directory of Open Access Journals (Sweden)

    David Woodward

    2017-05-01

    Full Text Available High friction surfacing (HFS is a specialist type of road coating with very high skid resistance. It is used in the UK at locations where there is significant risk of serious or fatal accidents. This paper considers the aggregate used in HFS. Calcined bauxite is the only aggregate that provides the highest levels of skid resistance over the longest period. No naturally occurring aggregate has been found to give a comparable level of in-service performance. This paper reviews the historical development of HFS in the UK relating to aggregate. In-service performance is predicted in the laboratory using the Wear test which subjects test specimens to an estimated 5–8 years simulated trafficking. Examples are given of Wear test data. They illustrate why calcined bauxite performs better than natural aggregate. They show how the amount of calcined bauxite can be reduced by blending with high skid resistant natural aggregates. Data from the Wear test can be related to every HFS laboratory experiment and road trial carried out in the UK for over the last 50 years. Anyone considering the prediction of HFS performance needs to carefully consider the data given in this paper with any other test method currently being considered or used to investigate HFS.

  12. Plasma Treatment Maintains Surface Energy of the Implant Surface and Enhances Osseointegration

    Directory of Open Access Journals (Sweden)

    Fernando P. S. Guastaldi

    2013-01-01

    Full Text Available The surface energy of the implant surface has an impact on osseointegration. In this study, 2 surfaces: nonwashed resorbable blasting media (NWRBM; control and Ar-based nonthermal plasma 30 days (Plasma 30 days; experimental, were investigated with a focus on the surface energy. The surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and the chemistry by X-ray photoelectron spectroscopy (XPS. Five adult beagle dogs received 8 implants (n=2 per surface, per tibia. After 2 weeks, the animals were euthanized, and half of the implants (n=20 were removal torqued and the other half were histologically processed (n=20. The bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were evaluated on the histologic sections. The XPS analysis showed peaks of C, Ca, O, and P for the control and experimental surfaces. While no significant difference was observed for BIC parameter (P>0.75, a higher level for torque (P<0.02 and BAFO parameter (P<0.01 was observed for the experimental group. The surface elemental chemistry was modified by the plasma and lasted for 30 days after treatment resulting in improved biomechanical fixation and bone formation at 2 weeks compared to the control group.

  13. Potential energy surfaces for Ж = , Ne- Ba nuclei

    Indian Academy of Sciences (India)

    112Ba nu- clei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RA1 and TM1 parameter sets ...

  14. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...

  15. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Abstract. Limitations of the static Woods–Saxon potential and the applicability of the energy- dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional. Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface exci- tations of the fusing nuclei are found to ...

  16. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  17. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  18. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  19. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Limitations of the static Woods–Saxon potential and the applicability of the energy dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface excitations of the fusing nuclei are found to be ...

  20. Ab initio potential energy surface and vibration-rotation energy levels of germanium dicarbide, GeC2.

    Science.gov (United States)

    Koput, Jacek

    2018-03-05

    The accurate ground-state potential energy surface of germanium dicarbide, GeC 2 , has been determined from ab initio calculations using the coupled-cluster approach. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy surface of GeC 2 was shown to be extraordinarily flat near the T-shaped equilibrium configuration. The potential energy barrier to the linear CCGe configuration was predicted to be 1218 cm -1 . The vibration-rotation energy levels of some GeC 2 isotopologues were calculated using a variational method. The vibrational bending mode ν 3 was found to be highly anharmonic, with the fundamental wavenumber being only 58 cm -1 . Vibrational progressions due to this mode were predicted for the v1=1, v2=1, and v2=2 states of GeC 2 . © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Energy loss of light ions scattered off Al(110) single crystal surfaces at low energy

    NARCIS (Netherlands)

    Hausmann, S; Hofner, C; Schlathölter, Thomas; Franke, H; Narmann, A; Heiland, W

    We present energy loss data taken after grazing incidence scattering of H+, H-0, He2+, He+, and He-0 off an Al(110) surface, The data is evaluated by means of a procedure that allows to extract surface electron density parameters. The obtained density parameters will be compared to those obtained

  2. Prediction of residential building energy consumption: A neural network approach

    International Nuclear Information System (INIS)

    Biswas, M.A. Rafe; Robinson, Melvin D.; Fumo, Nelson

    2016-01-01

    Some of the challenges to predict energy utilization has gained recognition in the residential sector due to the significant energy consumption in recent decades. However, the modeling of residential building energy consumption is still underdeveloped for optimal and robust solutions while this research area has become of greater relevance with significant advances in computation and simulation. Such advances include the advent of artificial intelligence research in statistical model development. Artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data. The development and validation of such models on one of the TxAIRE Research houses has been demonstrated in this paper. The TxAIRE houses have been designed to serve as realistic test facilities for demonstrating new technologies. The input variables used from the house data include number of days, outdoor temperature and solar radiation while the output variables are house and heat pump energy consumption. The models based on Levenberg-Marquardt and OWO-Newton algorithms had promising results of coefficients of determination within 0.87–0.91, which is comparable to prior literature. Further work will be explored to develop a robust model for residential building application. - Highlights: • A TxAIRE research house energy consumption data was collected in model development. • Neural network models developed using Levenberg–Marquardt or OWO-Newton algorithms. • Model results match well with data and statistically consistent with literature.

  3. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Science.gov (United States)

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  4. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  5. Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

  6. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  7. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  8. The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Directory of Open Access Journals (Sweden)

    César Hernández-Hernández

    2017-06-01

    Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.

  9. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    Science.gov (United States)

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  10. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  11. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  12. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Directory of Open Access Journals (Sweden)

    Supakorn Tirapat

    2017-01-01

    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  13. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    Science.gov (United States)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  14. State-of-the-Art Climate Predictions for Energy Climate Services

    Science.gov (United States)

    Torralba-Fernandez, Veronica; Davis, Melanie; Doblas-Reyes, Francisco J.; Gonzalez-Reviriego, Nube

    2015-04-01

    Climate predictions tailored to the energy sector represent the cutting edge in climate sciences to forecast wind power generation. At seasonal time scales, current energy practices use a deterministic approach based on retrospective climatology, but climate predictions have recently been shown to provide additional value. For this reason, probabilistic climate predictions of near surface winds can allow end users to take calculated, precautionary action with a potential cost savings to their operations. As every variable predicted in a coupled model forecast system, the prediction of wind speed is affected by biases. To overcome this, two different techniques for the post-processing of ensemble forecasts are considered: a simple bias correction and a calibration method. The former is based on the assumption that the reference and predicted distributions are well approximated by a normal distribution. The latter is a calibration technique which inflates the model variance, and the inflation of the ensemble is required in order to obtain a reliable outcome. Both methods use the "one-year out" cross-validated mode, and they provide corrected forecasts with improved statistical properties. The impact of these bias corrections on the quality of the ECMWF S4 predictions of near surface wind speed during winter is explored. To offer a comprehensive picture of the post-processing effect on the forecast quality of the system, it is necessary to use several scoring measures: rank histograms, reliability diagrams and skill maps. These tools are essential to assess different aspects of the forecasts, and to observe changes in their properties when the two methods are applied. This study reveals that the different techniques to correct the predictions produce a statistically consistent ensemble. However, the operations performed on the forecasts decrease their skill which correspond to an increase in the uncertainty. Therefore, even though the bias correction is fundamental

  15. Brain surface motion imaging to predict adhesions between meningiomas and the brain surface

    Energy Technology Data Exchange (ETDEWEB)

    Taoka, Toshiaki; Yamatani, Yuya; Akashi, Toshiaki; Miyasaka, Toshiteru; Emura, Tomoko; Kichikawa, Kimihiko [Nara Medical University, Department of Radiology, Nara (Japan); Yamada, Syuichi; Nakase, Hiroyuki [Nara Medical University, Department of Neurosurgery, Nara (Japan)

    2010-11-15

    ''Brain surface motion imaging'' (BSMI) is the subtraction of pulse-gated, 3D, heavily T2-weighted image of two different phases of cerebrospinal fluid (CSF) pulsation, which enables the assessment of the dynamics of brain surface pulsatile motion. The purpose of this study was to evaluate the feasibility of this imaging method for providing presurgical information about adhesions between meningiomas and the brain surface. Eighteen cases with surgically resected meningioma in whom BSMI was presurgically obtained were studied. BSMI consisted of two sets of pulse-gated, 3D, heavily T2-weighted, fast spin echo scans. Images of the systolic phase and the diastolic phase were obtained, and subtraction was performed with 3D motion correction. We analyzed the presence of band-like texture surrounding the tumor and judged the degree of motion discrepancy as ''total,'' ''partial,'' or ''none.'' The correlation between BSMI and surgical findings was evaluated. For cases with partial adhesions, agreements in the locations of the adhesions were also evaluated. On presurgical BSMI, no motion discrepancy was seen in eight cases, partial in six cases, and total in four cases. These presurgical predictions about adhesions and surgical findings agreed in 13 cases (72.2%). The locations of adhesions agreed in five of six cases with partial adhesions. In the current study, BSMI could predict brain and meningioma adhesions correctly in 72.2% of cases, and adhesion location could also be predicted. This imaging method appears to provide presurgical information about brain/meningioma adhesions. (orig.)

  16. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  17. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  18. Energy Exchange between Weakly Ionized Gas and a Metal Surface

    Science.gov (United States)

    Polikarpov, A. Ph.; Polikarpov, Ph. J.; Borisov, S. F.

    2008-12-01

    An attempt to describe heat exchange of low ionized gas with a metal surface has been made with the use of DSMC approach and kinetic Monte-Carlo method. Modeling is adhered to concrete experimental conditions at which thin tungsten wire is placed in plasma and dependence of a heat flow on wire surface temperature, gas pressure, gas nature and a degree of ionization is investigated. As a result of simulation temperature profiles near the wire surface for nitrogen and argon as well as dependence of relative heat flow in a gas/surface system on temperature and degree of ionization with consideration of energy accommodation have been obtained. In the case of nitrogen the chemical charge-transfer reaction is taken into account.

  19. Potential energy surface for ? dissociation including spin-orbit effects

    Science.gov (United States)

    Siebert, Matthew R.; Aquino, Adelia J. A.; de Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-01

    Previous experiments [J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation ( ? ) and found a one-dimensional distribution of translational energy, an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction ? → C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single-point (energy) calculations, and multi-reference energy calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the ? reactant has a substantial effect on the role of the SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for ? similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for ? , similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcalmol-1. Also, we find that, for this system, coupled-cluster single-point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  20. Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    Science.gov (United States)

    Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.

  1. Using gross energy improves metabolizable energy predictive equations for pet foods whereas undigested protein and fiber content predict stool quality.

    Directory of Open Access Journals (Sweden)

    Jean A Hall

    Full Text Available Because animal studies are labor intensive, predictive equations are used extensively for calculating metabolizable energy (ME concentrations of dog and cat pet foods. The objective of this retrospective review of digestibility studies, which were conducted over a 7-year period and based upon Association of American Feed Control Officials (AAFCO feeding protocols, was to compare the accuracy and precision of equations developed from these animal feeding studies to commonly used predictive equations. Feeding studies in dogs and cats (331 and 227 studies, respectively showed that equations using modified Atwater factors accurately predict ME concentrations in dog and cat pet foods (r²= 0.97 and 0.98, respectively. The National Research Council (NRC equations also accurately predicted ME concentrations in pet foods (r² = 0.97 for dog and cat foods. For dogs, these equations resulted in an average estimate of ME within 0.16% and 2.24% of the actual ME measured (equations using modified Atwater factors and NRC equations, respectively; for cats these equations resulted in an average estimate of ME within 1.57% and 1.80% of the actual ME measured. However, better predictions of dietary ME in dog and cat pet foods were achieved using equations based on analysis of gross energy (GE and new factors for moisture, protein, fat and fiber. When this was done there was less than 0.01% difference between the measured ME and the average predicted ME (r² = 0.99 and 1.00 in dogs and cats, respectively whereas the absolute value of the difference between measured and predicted was reduced by approximately 50% in dogs and 60% in cats. Stool quality, which was measured by stool score, was influenced positively when dietary protein digestibility was high and fiber digestibility was low. In conclusion, using GE improves predictive equations for ME content of dog and cat pet foods. Nondigestible protein and fiber content of diets predicts stool quality.

  2. Artificial neural network accurately predicts hepatitis B surface antigen seroclearance.

    Directory of Open Access Journals (Sweden)

    Ming-Hua Zheng

    Full Text Available BACKGROUND & AIMS: Hepatitis B surface antigen (HBsAg seroclearance and seroconversion are regarded as favorable outcomes of chronic hepatitis B (CHB. This study aimed to develop artificial neural networks (ANNs that could accurately predict HBsAg seroclearance or seroconversion on the basis of available serum variables. METHODS: Data from 203 untreated, HBeAg-negative CHB patients with spontaneous HBsAg seroclearance (63 with HBsAg seroconversion, and 203 age- and sex-matched HBeAg-negative controls were analyzed. ANNs and logistic regression models (LRMs were built and tested according to HBsAg seroclearance and seroconversion. Predictive accuracy was assessed with area under the receiver operating characteristic curve (AUROC. RESULTS: Serum quantitative HBsAg (qHBsAg and HBV DNA levels, qHBsAg and HBV DNA reduction were related to HBsAg seroclearance (P<0.001 and were used for ANN/LRM-HBsAg seroclearance building, whereas, qHBsAg reduction was not associated with ANN-HBsAg seroconversion (P = 0.197 and LRM-HBsAg seroconversion was solely based on qHBsAg (P = 0.01. For HBsAg seroclearance, AUROCs of ANN were 0.96, 0.93 and 0.95 for the training, testing and genotype B subgroups respectively. They were significantly higher than those of LRM, qHBsAg and HBV DNA (all P<0.05. Although the performance of ANN-HBsAg seroconversion (AUROC 0.757 was inferior to that for HBsAg seroclearance, it tended to be better than those of LRM, qHBsAg and HBV DNA. CONCLUSIONS: ANN identifies spontaneous HBsAg seroclearance in HBeAg-negative CHB patients with better accuracy, on the basis of easily available serum data. More useful predictors for HBsAg seroconversion are still needed to be explored in the future.

  3. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  4. Surface energy budget responses to radiative forcing at Summit, Greenland

    Science.gov (United States)

    Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.; Noone, David; Persson, P. Ola G.; Steffen, Konrad

    2017-02-01

    Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral

  5. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  6. Erosive potential of energy drinks on the dentine surface.

    Science.gov (United States)

    Pinto, Shelon C S; Bandeca, Matheus C; Silva, Carolina N; Cavassim, Rodrigo; Borges, Alvaro H; Sampaio, José E C

    2013-02-19

    Considering the current high consumption of energy drinks, the aim of the present study is to evaluate the influence of energy drinks in removing the smear layer and exposing dentinal tubules on root surface. Dentine root surfaces were exposed using a diamond bur. Forty movements of scaling were performed in the area prepared in order to create a smear layer. One hundred and thirty specimens were obtained from 35 teeth. Specimens were randomly distributed into 12 groups (n = 10) and divided into subgroups according to the application: topical (n = 5) and friction (n = 5). Twelve energy drinks were evaluated: RedBull, Burn, TNT, Flash Power, Flying Horse, Sports Drink, Ionic, Hot Power, Army Power, Gladiator and Bug. Distilled water was used as a control group. The specimens were analysed by scanning electron microscopy. Topical application: a significant influence of energy drinks on smear layer removal was found for FlyingHorse and Bug when compared with the control group. Friction application: significant smear layer removal was found for Burn, FlyingHorse, Gladiator, SportsDrinks, when compared with the control group. Comparing the different application forms, a statistically significant difference was found for Army Power. Considering the significant smear layer removal, energy drinks can be an important etiological factor for cervical dentine hypersensitivity.

  7. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  8. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme.

    Science.gov (United States)

    Sharma, Indu; Pattanayek, Sudip K

    2017-07-01

    The surface energy, a macroscopic property, depends on the chemical functionality and micro- and macroscopic roughness of the surface. The adsorption of two widely used proteins bovine serum albumin (BSA) and lysozyme on surfaces of four different chemical functionalities were done to find out the interrelation between macroscopic and microscopic properties. We have observed the secondary structure of protein after its adsorption. In addition, we observed the variation of surface energy of proteins due to variation in adsorption time, change in protein concentration and effect of a mixture of proteins. Surfaces of three different chemical functionalities namely, amine, hydroxyl and octyl were obtained through self-assembled monolayer on silica surfaces and were tested for responses towards adsorption of lysozyme and BSA. The adsorbed lysozyme has higher surface energy than the adsorbed BSA on amine and octyl surfaces. On hydroxyl functional surface, the surface energy due to the adsorbed lysozyme or BSA increases slowly with time. The surface energy of the adsorbed protein increases gradually with increasing protein concentration on hydrophobic surfaces. On hydrophilic surfaces, with increasing BSA concentration in bulk solution, the surface energy of the adsorbed protein on GPTMS and amine surfaces is maximum at 1μM concentration. During the adsorption from a mixture of BSA and lysozyme on octyl surface, first lysozyme adsorbs and subsequent BSA adsorption leads to a high surface energy. Copyright © 2016. Published by Elsevier B.V.

  9. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  10. Model Predictive Control of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model......'s are designed for each sea state using a model assuming a linear loss torque. The mean power results from two controllers are compared using both loss models. Simulation results show that MPC can outperform a reactive controller if a good model of the conversion losses is available....... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...

  11. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  12. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  13. Topographic forcing and related uncertainties on glacier surface energy balance in High Mountain Asia

    Science.gov (United States)

    Olson, M.; Rupper, S.; Shean, D. E.

    2017-12-01

    Topography directly influences the amount of global radiation, as well as other key energy flux terms, arriving on a glacier surface. This is particularly important in regions of variable and complex topography such as High Mountain Asia (HMA). In this region surface energy and mass balance estimates often rely heavily on modeling, and thus require accurate accounting of topography through available remote sensing platforms. Our previous work shows that topographic shading from surrounding terrain can alter the mean daily potential direct shortwave radiation by upwards of 20% for some valley glaciers. In this work, we find in regions of high topographic relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. This however, is largely dependent on the valley aspect and relative relief of nearby terrain. In addition, we examine the impact of topography, primarily topographic shading, on components of surface energy balance for a large sample of glaciers across different regions in HMA. Our results show that while the impact of topographic shading is highly variable throughout HMA, the magnitude of influence can often be predicted based on simple characteristics such as latitude, valley aspect, and orientation of the immediate surrounding topography. We also explore the uncertainty in topographic shading and in calculated surface energy due to the spatial resolution and accuracy of DEMs. In particular, we compare the shading and energy balance results utilizing a suite of DEMs, including 2 m, 8 m, and 30 m World View DEMs, 30 m ASTER GDEM, 30 m SRTM DEM, and 30 m ALOS DEM. These results will help us improve glacier energy and mass balance modeling accuracy, and demonstrate limitations and uncertainties when modeling changes in surface energy fluxes due to surrounding topography for mountain glaciers.

  14. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  15. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  16. Supramolecular Surface Photochemistry: Cascade Energy Transfer between Encapsulated Dyes Aligned on a Clay Nanosheet Surface.

    Science.gov (United States)

    Tsukamoto, Takamasa; Ramasamy, Elamparuthi; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2016-03-29

    Three coumarin derivatives (7-propoxy coumarin, coumarin-480, and coumarin-540a, 2, 3, and 4, respectively) having different absorption and emission spectra were encapsulated within a water-soluble organic capsule formed by the two positively charged ammonium-functionalized cavitand octaamine (OAm, 1). Guests 2, 3, and 4 absorb in ultraviolet, violet, and blue regions and emit in violet, blue, and green regions, respectively. Energy transfer between the above three coumarin@(OAm)2 complexes assembled on the surface of a saponite clay nanosheet was investigated by steady-state and time-resolved emission techniques. Judging from their emission and excitation spectra, we concluded that the singlet-singlet energy transfer proceeded from 2 to 3, from 2 to 4, and from 3 to 4 when OAm-encapsulated 2, 3, and 4 were aligned on a clay surface as two-component systems. Under such conditions, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were calculated to be 33, 36, and 50% in two-component systems. When all three coumarins were assembled on the surface and 2 was excited, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were estimated to be 32, 34, and 33%. A comparison of energy transfer efficiencies of the two-component and three-component systems revealed that excitation of 2 leads to emission from 4. Successful merging of supramolecular chemistry and surface chemistry by demonstrating novel multi-step energy transfer in a three-component dye encapsulated system on a clay surface opens up newer opportunities for exploring such systems in an artificial light-harvesting phenomenon.

  17. Low energy atomic and molecular collision with graphite surface

    International Nuclear Information System (INIS)

    Bercu, M.; Grecu, V. V.

    2002-01-01

    The interaction of atomic and molecular species of hydrogen with basal plane of graphite has been investigated by means of atomic cluster models of 10, 24 and 48 carbon atoms using Hartree-Fock - Linear Combination of Atomic Orbitals (HF-LCAO) theory at the ab-initio and semiempirical level of approximation. The last approach was based on an original package developed for carbon clusters. Atomic migration between consecutive basal planes was described by cluster models of two sheets of carbon atoms. Our contribution presents the theoretical results about atomic and molecular interactions with graphite. It was found for H atom bonding energy the value 2.6 eV, using the largest cluster model. The migration of H atoms above the surface and between consecutive basal planes was simulated by extended calculations of potential energy in each point of a mesh containing 450 points describing a local surface of 0.25 nm 2 . A 3D interpolation approach gives the image of a hypersurface potential energy projection at a given distance to the graphite surface. The semi-quantitative results have indicated two significant facts related to atomic species migration. The first is that H atom has the smallest displacement barrier along C-C bonds at a distance of 1.3 A from the basal plane. In the case of absorbed atoms between graphite basal planes an almost free motion channel has been found parallel to the surface. The interaction potential barrier for H atom collision with graphite surface at the center of the carbon ring has been calculated neglecting surface vibration modes and found to be 5.9 eV . The hyperfine interaction between the electron of hydrogen and the proton has been taken as a measure of the interaction between the incident atom and the target local states. The isotropic hyperfine constant obtained at the level of the semiempiric calculations was found to be 402 Gs at the equilibrium position of H atom above a C atom at a distance of 1.3 A. The corresponding value

  18. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  19. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  20. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located...

  1. Computational prediction of heat transfer to gas turbine nozzle guide vanes with roughened surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.M.; Jones, T.V. [Univ. of Oxford (United Kingdom). Dept. of Engineering Science; Lock, G.D. [Univ. of Bath (United Kingdom). Dept. of Mechanical Engineering; Dancer, S.N. [Rolls-Royce PLC, Derby (United Kingdom)

    1998-04-01

    The local Mach number and heat transfer coefficient over the aerofoil surfaces and endwalls of a transonic gas turbine nozzle guide vane have been calculated. the computations were performed by solving the time-averaged Navier-Stokes equations using a fully three-dimensional computational code (CFDS), which is well established at Rolls-Royce. A model to predict the effects of roughness has been incorporated into CFDS and heat transfer levels have been calculated for both hydraulically smooth and transitionally rough surfaces. The roughness influences the calculations in two ways; first the mixing length at a certain height above the surface is increased; second the wall function used to reconcile the wall condition with the first grid point above the wall is also altered. The first involves a relatively straightforward shift of the origin in the van Driest damping function description, the second requires an integration of the momentum equation across the wall layer. A similar treatment applies to the energy equation. The calculations are compared with experimental contours of heat transfer coefficient obtained using both thin-film gages and the transient liquid crystal technique. Measurements were performed using both hydraulically smooth and roughened surfaces, and at engine-representative Mach and Reynolds numbers. The heat transfer results are discussed and interpreted in terms of surface-shear flow visualization using oil and dye techniques.

  2. Study on the energy performance of glazing surfaces

    Directory of Open Access Journals (Sweden)

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  3. The importance of surface finish to energy performance

    Directory of Open Access Journals (Sweden)

    Smith Geoff B.

    2017-01-01

    Full Text Available Power generation in solar energy systems, thermal control in buildings and mitigation of the Urban Heat Island problem, are all sensitive to directional response to incoming radiation. The radiation absorption and emission profile also plays a crucial role in each system's response and depends strongly on surface finish. This important sensitivity needs wider recognition in materials data sheets, system modeling, plus in materials and environmental engineering. The impact of surface roughness on thermal response of natural and man-made external environments is examined. Important examples will be given of the role of surface finish within each class. Total emittance links to the way surface finish influences directional emittance E(θ. Smooth surface thermal emittance on PV module covers, many solar absorbers, some roof paints, polished concrete, and glass windows can be up to 15% different from insulator results based on fully diffuse models of the same material. Widespread evidence indicates smooth metals and low-E solar absorber surfaces cool faster, and smooth insulators slower than previously thought. Matt paint is cooler than low sheen paint under the same solar heating impacts and normal concrete cooler than polished. Emittance for water is the prime environmental example of oblique impacts as it reflects strongly at oblique incidence, which leads to a significant drop in E(θ. Ripples or waves however raise water's average emittance. A surprise in this work was the high sensitivity of total E and its angular components to roughness in the depth range of 0.1–0.8 μm, which are well under ambient thermal IR wavelengths of 3–30 μm but common in metal finishing. Parallel energy flows such as evaporation and convective cooling vary if emittance varies. Thermal image analysis can provide insights into angular radiative effects.

  4. Variational assimilation of land surface temperature observations for enhanced river flow predictions

    Science.gov (United States)

    Ercolani, Giulia; Castelli, Fabio

    2016-04-01

    Data assimilation (DA) has the potential of improving hydrologic forecasts. However, many issues arise in case it is employed for spatially distributed hydrologic models that describes processes in various compartments: large dimensionality of the inverse problem, layers governed by different equations, non-linear and discontinuous model structure, complex topology of domains such as surface drainage and river network.On the other hand, integrated models offer the possibility of improving prediction of specific states by exploiting observations of quantities belonging to other compartments. In terms of forecasting river discharges, and hence for their enhancement, soil moisture is a key variable, since it determines the partitioning of rainfall into infiltration and surface runoff. However, soil moisture measurements are affected by issues that could prevent a successful DA and an actual improvement of discharge predictions.In-situ measurements suffer a dramatic spatial scarcity, while observations from satellite are barely accurate and provide spatial information only at a very coarse scale (around 40 km).Hydrologic models that explicitly represent land surface processes of coupled water and energy balance provide a valid alternative to direct DA of soil moisture.They gives the possibility of inferring soil moisture states through DA of remotely sensed Land Surface Temperature (LST), whose measurements are more accurate and with a higher spatial resolution in respect to those of soil moisture. In this work we present the assimilation of LST data in a hydrologic model (Mobidic) that is part of the operational forecasting chain for the Arno river, central Italy, with the aim of improving flood predictions. Mobidic is a raster based, continuous in time and distributed in space hydrologic model, with coupled mass and energy balance at the surface and coupled groundwater and surface hydrology. The variational approach is adopted for DA, since it requires less

  5. Artificial upwelling using the energy of surface waves

    Science.gov (United States)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  6. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  7. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    International Nuclear Information System (INIS)

    Frisch, M.J.; Binkley, J.S.; Schaefer, H.F. III

    1984-01-01

    The relative energies of the stationary points on the FH 2 and H 2 CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H 2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Moller--Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H 2 →FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol -1 of the experimental value using the largest basis set considered. The qualitative features of the H 2 CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended

  8. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  9. Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Bouwman, K.R.; Pham, T.H.; Wilkins, S.; Hofman, T.

    2017-01-01

    Within hybrid electric vehicles (HEVs) predictive energy management strategies (EMSs) have the potential to reduce the fuel consumption compared to conventional EMSs, where the drive cycle is unknown. Typically, predictive EMSs require a future vehicle speed profile prediction. However, when

  10. Predicting Near-Surface Meteorological Variations over Different Vegetation Types

    NARCIS (Netherlands)

    Hutjes, R.W.A.; Klaassen, W.; Kruijt, B.; Veen, A.W.L.

    1991-01-01

    Meteorological conditions close to a surface are strongly influenced by the properties of the surface itself. As a result, input data for models calculating evaporation of surfaces differing from the measurement site need to be transformed. A transformation scheme proposed previously is tested on

  11. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  12. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  13. Surface energy absorbing layers produced by ion implantation

    International Nuclear Information System (INIS)

    Gurarie, V.N.

    1997-01-01

    Single crystals of magnesia have been ion implanted with 80 keV Si and Cr ions at variable doses and then subjected to testing in a shock plasma. The peak surface temperature has been calibrated by measuring the size and temperature deformation of the fragments formed by multiple microcracking during thermal shock. the crack density curves for MgO crystals demonstrate that in a wide range of thermal shock intensity the ion implanted crystals develop a system of microcracks of a considerably higher density than the unimplanted ones. The high density of cracks nucleated in the ion implanted samples results in the formation of a surface energy absorbing layer which effectively absorbs elastic strain energy induced by thermal shock. As a consequence the depth of crack penetration in the layer and hence the degree of fracture damage are decreased. the results indicate that a Si implant decreases the temperature threshold of cracking and simultaneously increases the crack density in MgO crystals. However, in MgO crystals implanted with Cr a substantial increase in the crack density is achieved without a noticeable decrease in the temperature threshold of fracture. This effect is interpreted in terms of different Cr and Si implantation conditions and damage. The mechanical properties of the energy-absorbing layer and the relation to implantation-induced lattice damage are discussed. 11 refs., 4 figs

  14. Protein energy malnutrition predicts complications in liver cirrhosis.

    Science.gov (United States)

    Huisman, Ellen J; Trip, Evelien J; Siersema, Peter D; van Hoek, Bart; van Erpecum, Karel J

    2011-11-01

    Protein energy malnutrition frequently occurs in liver cirrhosis. Hand-grip strength according to Jamar is most reliable to predict protein energy malnutrition. We aimed to determine whether protein energy malnutrition affects complication risk. In 84 cirrhotics, baseline nutritional state was determined and subsequent complications prospectively assessed. Influence of potentially relevant factors including malnutrition (by Jamar hand-grip strength) on complication rates were evaluated with univariate analysis. Effect of malnutrition was subsequently evaluated by multivariate logistic regression with adjustment for possible confounders. Underlying causes of cirrhosis were viral hepatitis in 31%, alcohol in 26%, and other in 43%. Baseline Child-Pugh (CP) class was A, B, or C in 58, 35, and 7%, respectively. Energy and protein intake decreased significantly with increasing CP class, with shift from proteins to carbohydrates. At baseline, according to Jamar hand-grip strength, malnutrition occurred in 67% (n=56). Malnutrition was associated with older age and higher CP class (CP class A 57%, B 79%, C 100%) but not with underlying disease or comorbidity. Complications occurred in 18 and 48% in well-nourished and malnourished patients, respectively, (P=0.007) during 13 ± 6 months follow-up. In multivariate analysis, malnutrition was an independent predictor of complications, after correcting for comorbidity, age, and CP score (adjusted odds ratio 4.230; 95% confidence interval 1.090-16.422; P=0.037). In univariate analysis, mortality (4 vs. 18%; P=0.1) tended to be worse in malnourished patients, but this trend was lost in multivariate analysis. Malnutrition is an independent predictor of complications in cirrhosis.

  15. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  16. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  17. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  18. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    % greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance......Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy...... covariance and scintillometry measurements from a reservoir in southeast Queensland, Australia. The work presented expands on a short study presented by McJannet et al. (2011) to include comparisons of eddy covariance measurements and scintillometer-derived predictions of surface energy fluxes under a wide...

  19. Surface Free Energy Determination of APEX Photosensitive Glass

    Directory of Open Access Journals (Sweden)

    William R. Gaillard

    2016-02-01

    Full Text Available Surface free energy (SFE plays an important role in microfluidic device operation. Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique. While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the polar component is lower, which is likely attributable to composition. The SFE was modified at each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be approximately the same at a value of 51 mJ·m−2. APEX exhibited inconsistent wetting behavior attributable to an inhomogeneous surface chemical composition. Means to produce more consistent wetting of photosensitive glass for microfluidic applications are discussed.

  20. Prediction of the far field noise from wind energy farms

    Science.gov (United States)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  1. Prediction of energy balance and utilization for solar electric cars

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  2. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  3. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    CERN Document Server

    Gripaios, Ben; Webber, Bryan

    2011-01-01

    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  4. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  5. Planckian energy scattering and surface terms in the gravitational action

    CERN Document Server

    Fabbrichesi, Marco E; Veneziano, Gabriele; Vilkovisky, G A

    1994-01-01

    This is a revised version of our previous paper by the same name and preprint number. It contains various changes, two figures and new results in sect.5. We propose a new approach to four-dimensional Planckian-energy scattering in which the phase of the ${\\cal S}$-matrix is written---to leading order in $\\hbar$ and to all orders in $R/b =Gs/J$---in terms of the surface term of the gravity action and of a boundary term for the colliding quanta. The proposal is checked at the leading order in $R/b$ and also against some known examples of scattering in strong gravitational fields.

  6. A simple model for the surface energy of ionic crystals

    International Nuclear Information System (INIS)

    Roman, E.; Tosi, M.P.

    1982-01-01

    The surface energy of ionic materials is empirically related to bulk properties (elastic constants, electronic dielectric constant and optical band gap) through an analysis of the cleavage force. This is evaluated at small and large separations of the two crystal halves from phonon dispersion curves and from van der Waals interactions, respectively, and these two limiting behaviours are connected by a scaling hypothesis introduced for metals by Kohn and Yaniv. The experimental data that are available for a few ionic crystals seem to satisfy the suggested relation, with an empirical universal parameter which has roughly the same value as determined for metals. (author)

  7. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low-energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  8. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  9. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  10. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    Science.gov (United States)

    Koput, Jacek

    2016-10-05

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state. © 2016 Wiley Periodicals, Inc.

  11. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement.

    Directory of Open Access Journals (Sweden)

    George A Tsianos

    2016-06-01

    Full Text Available Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2 were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms.

  12. Predicting the water-drop energy required to breakdown dry soil aggregates

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.

    1995-04-01

    The raindrop energy required to breakdown dry soil aggregates is an index of structural stability which has been found very useful in modelling soil erosion process and in evaluating the suitability of tillage implements for different soils. The aim of this research was to develop and validate a model for predicting the specific water-drop energy required to breakdown aggregates (D) as influenced by soil properties. Air-dry aggregates (2-4 mm in diameter), collected from 15 surface (0-20 cm) soils in north central Italy were used for this study. The actual and natural log-transformed D values were regressed on the soil properties. Clay content, wilting point moisture content (WP) and percent water-stable aggregates (WSA) > 2.0 mm were good predictors of D. Empirical models developed from either clay content or WP predicted D in 70% of the test soils whereas the model developed from WSA > 2.0 mm predicted D in 90% of the test soils. The correlation coefficients (r) between measured and predicted D were 0.961, 0.963 and 0.997 respectively, for models developed from clay, WP and WSA > 2.0 mm. The validity of these models need to be tested on other soils with a wider variation in properties than those used to developed the models. (author). 42 refs, 5 tabs

  13. Analysis of the free-energy surface of proteins from reversible folding simulations.

    Directory of Open Access Journals (Sweden)

    Lucy R Allen

    2009-07-01

    Full Text Available Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  14. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-03-22

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  15. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  16. The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces

    Science.gov (United States)

    Parsons, Drew F.; Salis, Andrea

    2015-04-01

    The relationship between surface charge and surface potential at the solid-liquid interface is often determined by a charge regulation process, the chemisorption of a potential determining ion such as H+. A subtle ion-specific effect can be observed when other ions compete with the primary potential determining ion to bind to a surface site. Site competition may involve alternative ions competing for a first binding site, e.g., metals ions competing with H+ to bind to a negatively charged oxide or carboxyl site. Second-binding sites with site competition may also be found, including amphoteric OH2+ sites, or anion binding to amine groups. In this work, a general theoretical model is developed to describe the competitive adsorption of ions at surface sites. Applied to the calculation of forces, the theory predicts a 20% increase in repulsion between titania surfaces in 1 mM NaCl, and a 25% reduction in repulsion between silica surfaces in 0.1M NaCl compared to calculations neglecting ion site competition.

  17. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    P. Kuipers Munneke

    2012-03-01

    Full Text Available Data collected by two automatic weather stations (AWS on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB, which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

  18. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction.

    Science.gov (United States)

    Chen, Ran; Riviere, Jim E

    2017-05-01

    The understanding of nano-bio interactions is deemed essential in the design, application, and safe handling of nanomaterials. Proper characterization of the intrinsic physicochemical properties, including their size, surface charge, shape, and functionalization, is needed to consider the fate or impact of nanomaterials in biological and environmental systems. The characterizations of their interactions with surrounding chemical species are often hindered by the complexity of biological or environmental systems, and the drastically different surface physicochemical properties among a large population of nanomaterials. The complexity of these interactions is also due to the diverse ligands of different chemical properties present in most biomacromolecules, and multiple conformations they can assume at different conditions to minimize their conformational free energy. Often these interactions are collectively determined by multiple physical or chemical forces, including electrostatic forces, hydrogen bonding, and hydrophobic forces, and calls for multidimensional characterization strategies, both experimentally and computationally. Through these characterizations, the understanding of the roles surface physicochemical properties of nanomaterials and their surface interactions with biomacromolecules can play in their applications in biomedical and environmental fields can be obtained. To quantitatively decipher these physicochemical surface interactions, computational methods, including physical, statistical, and pharmacokinetic models, can be used for either analyses of large amounts of experimental characterization data, or theoretical prediction of the interactions, and consequent biological behavior in the body after administration. These computational methods include molecular dynamics simulation, structure-activity relationship models such as biological surface adsorption index, and physiologically-based pharmacokinetic models. WIREs Nanomed Nanobiotechnol 2017

  19. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  20. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  1. An Ab Initio Based Potential Energy Surface for Water

    Science.gov (United States)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  2. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  3. Variations in FASST Predictions of Soil Surface Temperatures

    National Research Council Canada - National Science Library

    Peck, Lindamae

    2006-01-01

    ..., initial volumetric soil moisture content, bulk density of the dry soil material, albedo (sunny days), and porosity. The thermal conductivity of the dry soil material has a minor effect on predicted soil temperature...

  4. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  5. CERES Energy Balanced and Filled(EBAF) Surface Monthly means data in netCDF

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Surface product provides computed monthly mean surface radiative fluxes...

  6. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  7. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  8. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  9. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  10. A prediction of mars seismicity from surface faulting

    Science.gov (United States)

    Golombek, M.P.; Banerdt, W.B.; Tanaka, K.L.; Tralli, D.M.

    1992-01-01

    The shallow seismicity of Mars has been estimated by measurement of the total slip on faults visible on the surface of the planet throughout geologic time. Seismicity was calibrated with estimates based on surface structures on the moon and measured lunar seismicity that includes the entire seismogenic lithosphere. Results indicate that Mars is seismically active today, with a sufficient number of detectable marsquakes to allow seismic investigations of its interior.

  11. Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network

    Science.gov (United States)

    Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan

    2018-01-01

    In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.

  12. Modeling Potential Energy Surfaces: From First-Principle Approaches to Empirical Force Fields

    Directory of Open Access Journals (Sweden)

    Pietro Ballone

    2013-12-01

    Full Text Available Explicit or implicit expressions of potential energy surfaces (PES represent the basis of our ability to simulate condensed matter systems, possibly understanding and sometimes predicting their properties by purely computational methods. The paper provides an outline of the major approaches currently used to approximate and represent PESs and contains a brief discussion of what still needs to be achieved. The paper also analyses the relative role of empirical and ab initio methods, which represents a crucial issue affecting the future of modeling in chemical physics and materials science.

  13. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau

    NARCIS (Netherlands)

    Chen, Xuelong; Su, Zhongbo; Ma, Y.; Yang, K.; Wang, B.

    2013-01-01

    Surface solar radiation is an important parameter in surface energy balance models and in estimation of evapotranspiration. This study developed a DEM based radiation model to estimate instantaneous clear sky solar radiation for surface energy balance system to obtain accurate energy absorbed by the

  14. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  15. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    Science.gov (United States)

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  16. U.S. Navy Surface Ship Fleet: Propulsion Energy Evaluation, and Identification of Cost Effective Energy Enhancement Devices

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Karafiath, Gabor

    2006-01-01

    .... Navy surface ship fleet was prepared. This information was used to identify eleven U.S. Navy surface ship classes as candidates for consideration with regard to retrofit of energy enhancement devices...

  17. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  18. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    Science.gov (United States)

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    International Nuclear Information System (INIS)

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  20. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter

    2011-01-01

    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct...

  1. Predicting fire severity using surface fuels and moisture

    Science.gov (United States)

    Pamela G. Sikkink; Robert E. Keane

    2012-01-01

    Fire severity classifications have been used extensively in fire management over the last 30 years to describe specific environmental or ecological impacts of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire severity classifications need to be more objective, predictive, and ultimately more useful to fire management and planning. Our...

  2. Structure determination of disordered organic molecules on surfaces from the Bragg spots of low-energy electron diffraction and total energy calculations

    International Nuclear Information System (INIS)

    Poon, H.C.; Weinert, M.; Saldin, D.K.; Stacchiola, D.; Zheng, T.; Tysoe, W.T.

    2004-01-01

    We show that an analysis of the intensity versus energy variation of Bragg spots due to low-energy electron diffraction from a disordered overlayer of molecules on a crystal surface allows a much more convenient method of determining the local adsorption geometries of such molecules than previously analyzed weak diffuse diffraction patterns. For the case of methanol on Pd(111), we show that the geometry determined by this means from experimental diffraction data is in excellent agreement with the predictions of density functional total energy calculations

  3. High-Resolution Specification of the Land and Ocean Surface for Improving Regional Mesoscale Model Predictions

    Science.gov (United States)

    Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.

    2008-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts

  4. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  5. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  6. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  7. Exploring Multiple Potential Energy Surfaces: Photochemistry of Small Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Satoshi Maeda

    2012-01-01

    Full Text Available In theoretical studies of chemical reactions involving multiple potential energy surfaces (PESs such as photochemical reactions, seams of intersection among the PESs often complicate the analysis. In this paper, we review our recipe for exploring multiple PESs by using an automated reaction path search method which has previously been applied to single PESs. Although any such methods for single PESs can be employed in the recipe, the global reaction route mapping (GRRM method was employed in this study. By combining GRRM with the proposed recipe, all critical regions, that is, transition states, conical intersections, intersection seams, and local minima, associated with multiple PESs, can be explored automatically. As illustrative examples, applications to photochemistry of formaldehyde and acetone are described. In these examples as well as in recent applications to other systems, the present approach led to discovery of many unexpected nonadiabatic pathways, by which some complicated experimental data have been explained very clearly.

  8. Regional warming of hot extremes accelerated by surface energy fluxes

    Science.gov (United States)

    Donat, M. G.; Pitman, A. J.; Seneviratne, S. I.

    2017-07-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model-simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.

  9. Improved DFT Potential Energy Surfaces via Improved Densities.

    Science.gov (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  10. Energy Prediction versus Energy Performance of Green Buildings in Malaysia. Comparison of Predicted and Operational Measurement of GBI Certified Green Office in Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Zaid Suzaini M

    2016-01-01

    Full Text Available Forward from the sustainability agenda of Brundtland in 1987 and the increasing demand for energy efficient buildings, the building industry has taken steps in meeting the challenge of reducing its environmental impact. Initiatives such as ‘green’ or ‘sustainable’ design have been at the forefront of architecture, while green assessment tools have been used to predict the energy performance of building during its operational phase. However, there is still a significant hap between predicted or simulated energy measurements compared to actual operational energy consumption, or is more commonly referred as the ‘performance gap’. This paper tries to bridge this gap by comparing measured operational energy consumption of a Green Building Index (GBI certified office building in Kuala Lumpur, with its predicted energy rating qualification.

  11. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  12. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  13. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  14. The puckering free-energy surface of proline

    Directory of Open Access Journals (Sweden)

    Di Wu

    2013-03-01

    Full Text Available Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χj (j = 1∼5 as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ2 pathway (χ2 is about the Cβ—Cγ bond is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

  15. On the sources of global land surface hydrologic predictability

    Directory of Open Access Journals (Sweden)

    S. Shukla

    2013-07-01

    Full Text Available Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic predictability at seasonal lead times (i.e., 1–6 months comes from knowledge of initial hydrologic conditions (IHCs and seasonal climate forecast skill (FS. In this study we quantify the contributions of two primary components of IHCs – soil moisture and snow water content – and FS (of precipitation and temperature to seasonal hydrologic predictability globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the variable infiltration capacity (VIC macroscale hydrology model, one based on ensemble streamflow prediction (ESP and another based on Reverse-ESP (Rev-ESP, both for a 47 yr re-forecast period (1961–2007. We compare cumulative runoff (CR, soil moisture (SM and snow water equivalent (SWE forecasts from each experiment with a VIC model-based reference data set (generated using observed atmospheric forcings and estimate the ratio of root mean square error (RMSE of both experiments for each forecast initialization date and lead time, to determine the relative contribution of IHCs and FS to the seasonal hydrologic predictability. We find that in general, the contributions of IHCs to seasonal hydrologic predictability is highest in the arid and snow-dominated climate (high latitude regions of the Northern Hemisphere during forecast periods starting on 1 January and 1 October. In mid-latitude regions, such as the Western US, the influence of IHCs is greatest during the forecast period starting on 1 April. In the arid and warm temperate dry winter regions of the Southern Hemisphere, the IHCs dominate during forecast periods starting on 1 April and 1 July. In equatorial humid and monsoonal climate regions, the contribution of FS is generally higher than IHCs through most of the year. Based on our findings, we argue that despite the limited FS

  16. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  17. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-photoemission spectroscopy measurements. This comparison shows that the modified Delta SCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2 adsorbed on ruthenium (0001) we map out a two-dimensional part of the potential energy surfaces in the ground state...

  18. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  19. Comparison of equations for predicting energy expenditure from accelerometer counts in children

    DEFF Research Database (Denmark)

    Nilsson, A; Brage, S; Riddoch, C

    2008-01-01

    calorimeter-based (CAL) equation (mixture of activities). Predicted physical activity energy expenditure (PAEE) was the main outcome variable. In comparison with DLW-predicted PAEE, both laboratory-derived equations significantly (P

  20. Prediction of average annual surface temperature for both flexible and rigid pavements

    Directory of Open Access Journals (Sweden)

    Karthikeyan LOGANATHAN

    2017-12-01

    Full Text Available The surface temperature of pavements is a critical attribute during pavement design. Surface temperature must be measured at locations of interest based on time-consuming field tests. The key idea of this study is to develop a temperature profile model to predict the surface temperature of flexible and rigid pavements based on weather parameters. Determination of surface temperature with traditional techniques and sensors are replaced by a newly developed method. The method includes the development of a regression model to predict the average annual surface temperature based on weather parameters such as ambient air temperature, relative humidity, wind speed, and precipitation. Detailed information about temperature and other parameters are extracted from the Federal Highway Administration's (FHWA Long Term Pavement Performance (LTPP online database. The study was conducted on 61 pavement sections in the state of Alabama for a 10-year period. The developed model would predict the average annual surface temperature based on the known weather parameters. The predicted surface temperature model for asphalt pavements was very reliable and can be utilized while designing a pavement. The study was also conducted on seven rigid pavement sections in Alabama to predict their surface temperature, in which a successful model was developed. The outcome of this study would help the transportation agencies by saving time and effort invested in expensive field tests to measure the surface temperature of pavements.

  1. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  2. Improved Modeling and Prediction of Surface Wave Amplitudes

    Science.gov (United States)

    2017-05-31

    data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented... advantages of the membrane surface wave technique are that 1) it is orders of magnitude faster than 3-dimensional finite-difference; and 2) it...0.5 km depth. Although the CMT sources should more accurately reproduce the observed signals from each event, they have two disadvantages : 1) in the

  3. A grey NGM(1,1, k) self-memory coupling prediction model for energy consumption prediction.

    Science.gov (United States)

    Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling

    2014-01-01

    Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span.

  4. A Grey NGM(1,1, k) Self-Memory Coupling Prediction Model for Energy Consumption Prediction

    Science.gov (United States)

    Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling

    2014-01-01

    Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span. PMID:25054174

  5. Adaptive control of the packet transmission period with solar energy harvesting prediction in wireless sensor networks.

    Science.gov (United States)

    Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan

    2015-04-24

    A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  6. Adaptive Control of the Packet Transmission Period with Solar Energy Harvesting Prediction in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kideok Kwon

    2015-04-01

    Full Text Available A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  7. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  8. Predicting Biological Age from a Skin Surface Capacitive Analysis

    Science.gov (United States)

    Bevilacqua, Alessandro; Gherardi, Alessandro; Ferri, Massimo

    The skin is the largest (and the most exposed) organ of the body both in terms of surface area and weight. Its care is of great importance for both aesthetics and health issues. Often, the skin appearance gives us information about the skin health status as well as hints at the biological age. Therefore, the skin surface characterization is of great significance for dermatologists as well as for cosmetic scientists in order to evaluate the effectiveness of medical or cosmetic treatments. So far, no in vivo measurements regarding skin topography characterization could be achieved routinely to evaluate skin aging. This work describes how a portable capacitive device, normally used for fingerprint acquisition, can be utilized to achieve measures of skin aging routinely. The capacitive images give a high resolution (50 μm) representation of skin topography, in terms of wrinkles and cells. In this work, we have addressed the latter: through image segmentation techniques, cells have been localized and identified and a feature related to their area distribution has been generated. Accurate experiments accomplished in vivo show how the feature we conceived is linearly related to skin aging. Besides, since this finding has been achieved using a low cost portable device, this could boost research in this field as well as open doors to an application based on an embedded system.

  9. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  10. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    Science.gov (United States)

    Cuxart, Joan; Wrenger, Burkhard; Martínez-Villagrasa, Daniel; Reuder, Joachim; Jonassen, Marius O.; Jiménez, Maria A.; Lothon, Marie; Lohou, Fabienne; Hartogensis, Oscar; Dünnermann, Jens; Conangla, Laura; Garai, Anirban

    2016-07-01

    The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB), for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.

  11. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    Directory of Open Access Journals (Sweden)

    J. Cuxart

    2016-07-01

    Full Text Available The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB, for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.

  12. Estimated venous return surface and cardiac output curve precisely predicts new hemodynamics after volume change.

    Science.gov (United States)

    Sugimachi, Masaru; Sunagawa, Kenji; Uemura, Kazunori; Kamiya, Atsunori; Shimizu, Shuji; Inagaki, Masashi; Shishido, Toshiaki

    2010-01-01

    In our extended Guyton's model, the ability of heart to pump blood is characterized by a cardiac output curve and the ability of vasculature to pool blood by a venous return surface. These intersect in a three-dimensional coordinate system at the operating right atrial pressure, left atrial pressure, and cardiac output. The baseline cardiac output curve and venous return surface and their changes after volume change would predict new hemodynamics. The invasive methods needed to precisely characterize cardiac output curve and venous return surface led us to aim at estimating cardiac output curve and venous return surface from a single hemodynamic measurement. Using the average values for two logarithmic function parameters, and for two slopes of a surface, we were able to estimate cardiac output curve and venous return surface. The estimated curve and surface predicted new hemodynamics after volume change precisely.

  13. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  14. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  15. Potential energy surface and binding energy in the presence of an external electric field: modulation of anion-π interactions for graphene-based receptors.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Marek, Radek

    2014-02-14

    Measuring the binding energy or scanning the potential energy surface (PES) of the charged molecular systems in the presence of an external electric field (EEF) requires a careful evaluation of the origin-dependency of the energy of the system and references. Scanning the PES for charged or purely ionic systems for obtaining the intrinsic energy barriers needs careful analysis of the electric work applied on ions by the EEF. The binding energy in the presence of an EEF is different from that in the absence of an electric field as the binding energy is an anisotropic characteristic which depends on the orientation of molecules with respect to the EEF. In this contribution we discuss various aspects of the PES and the concept of binding energy in the presence of an EEF. In addition, we demonstrate that the anion-π bonding properties can be modulated by applying a uniform EEF, which has a more pronounced effect on the larger, more polarizable π-systems. An analogous behavior is presumed for cation-π systems. We predict that understanding the phenomenon introduced in the present account has enormous potential, for example, for separating charged species on the surface of polarizable two-dimensional materials such as graphene or the surface of carbon nanotubes, in desalination of water.

  16. Evaluation of fitting functions for the representation of an O(3P)+H2 potential energy surface. I

    International Nuclear Information System (INIS)

    Wagner, A.F.; Schatz, G.C.; Bowman, J.M.

    1981-01-01

    The DIM surface of Whitlock, Muckerman, and Fisher for the O( 3 P)+H 2 system is used as a test case to evaluate the usefulness of a variety of fitting functions for the representation of potential energy surfaces. Fitting functions based on LEPS, BEBO, and rotated Morse oscillator (RMO) forms are examined. Fitting procedures are developed for combining information about a small portion of the surface and the fitting function to predict where on the surface more information must be obtained to improve the accuracy of the fit. Both unbiased procedures and procedures heavily biased toward the saddle point region of the surface are investigated. Collinear quasiclassical trajectory calculations of the reaction rate constant and one and three dimensional transition state theory rate constant calculations are performed and compared for selected fits and the exact DIM test surface. Fitting functions based on BEBO and RMO forms are found to give quite accurate results

  17. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    Science.gov (United States)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and

  18. The role of clouds in the surface energy balance over the Amazon forest

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.; Humphries, E.J. Jr.

    1998-01-01

    Deforestation in the Amazon region will initially impact the energy balance at the land surface through changes in land cover and surface hydrology. However, continuation of this human activity will eventually lead to atmospheric feedbacks, including changes in cloudiness which may play an important role in the final equilibrium of solar and terrestrial radiation at the surface. In this study, the different components of surface radiation over an undisturbed forest in the Amazon region are computed using data from the Amazon region micrometerological experiment (ARME). Several measures of cloudiness are defined: two estimated from the terrestrial radiation measurements, and one from the solar radiation measurements. The sensitivity of the surface fluxes of solar and terrestrial radiation to natural variability in cloudiness is investigated to infer the potential role of the cloudiness feedback in the surface energy balance. The results of this analysis indicate that a 1% decrease in cloudiness would increase net solar radiation by ca. 1.6 W/m 2 . However, the overall magnitude of this feedback, due to total deforestation of the Amazon forest, is likely to be of the same order as the magnitude of the decrease in net solar radiation due to the observed increase in surface albedo following deforestation. Hence, the total change in net solar radiation is likely to have a negligible magnitude. In contrast to this conclusion, we find that terrestrial radiation is likely to be more strongly affected; reduced cloudiness will decrease net terrestrial radiation; a 1% decrease in cloudiness induces a reduction in net terrestrial radiation of ca. 0.7 W/m 2 ; this process augments the similar effects of the predicted warming and drying in the boundary layer. Due to the cloudiness feedback, the most significant effect of large-scale deforestation on the surface energy balance is likely to be in the modification of the terrestrial radiation field rather than the classical albedo

  19. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  20. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Science.gov (United States)

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  1. High-accuracy water potential energy surface for the calculation of infrared spectra

    Science.gov (United States)

    Mizus, Irina I.; Kyuberis, Aleksandra A.; Zobov, Nikolai F.; Makhnev, Vladimir Yu.; Polyansky, Oleg L.; Tennyson, Jonathan

    2018-03-01

    Transition intensities for small molecules such as water and CO2 can now be computed with such high accuracy that they are being used to systematically replace measurements in standard databases. These calculations use high-accuracy ab initio dipole moment surfaces and wave functions from spectroscopically determined potential energy surfaces (PESs). Here, an extra high-accuracy PES of the water molecule (H216O) is produced starting from an ab initio PES which is then refined to empirical rovibrational energy levels. Variational nuclear motion calculations using this PES reproduce the fitted energy levels with a standard deviation of 0.011 cm-1, approximately three times their stated uncertainty. The use of wave functions computed with this refined PES is found to improve the predicted transition intensities for selected (problematic) transitions. A new room temperature line list for H216O is presented. It is suggested that the associated set of line intensities is the most accurate available to date for this species. This article is part of the theme issue `Modern theoretical chemistry'.

  2. High-accuracy water potential energy surface for the calculation of infrared spectra.

    Science.gov (United States)

    Mizus, Irina I; Kyuberis, Aleksandra A; Zobov, Nikolai F; Makhnev, Vladimir Yu; Polyansky, Oleg L; Tennyson, Jonathan

    2018-03-13

    Transition intensities for small molecules such as water and CO 2 can now be computed with such high accuracy that they are being used to systematically replace measurements in standard databases. These calculations use high-accuracy ab initio dipole moment surfaces and wave functions from spectroscopically determined potential energy surfaces (PESs). Here, an extra high-accuracy PES of the water molecule (H 2 16 O) is produced starting from an ab initio PES which is then refined to empirical rovibrational energy levels. Variational nuclear motion calculations using this PES reproduce the fitted energy levels with a standard deviation of 0.011 cm -1 , approximately three times their stated uncertainty. The use of wave functions computed with this refined PES is found to improve the predicted transition intensities for selected (problematic) transitions. A new room temperature line list for H 2 16 O is presented. It is suggested that the associated set of line intensities is the most accurate available to date for this species.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  3. Breaking the polar-nonpolar division in solvation free energy prediction.

    Science.gov (United States)

    Wang, Bao; Wang, Chengzhang; Wu, Kedi; Wei, Guo-Wei

    2018-02-05

    Implicit solvent models divide solvation free energies into polar and nonpolar additive contributions, whereas polar and nonpolar interactions are inseparable and nonadditive. We present a feature functional theory (FFT) framework to break this ad hoc division. The essential ideas of FFT are as follows: (i) representability assumption: there exists a microscopic feature vector that can uniquely characterize and distinguish one molecule from another; (ii) feature-function relationship assumption: the macroscopic features, including solvation free energy, of a molecule is a functional of microscopic feature vectors; and (iii) similarity assumption: molecules with similar microscopic features have similar macroscopic properties, such as solvation free energies. Based on these assumptions, solvation free energy prediction is carried out in the following protocol. First, we construct a molecular microscopic feature vector that is efficient in characterizing the solvation process using quantum mechanics and Poisson-Boltzmann theory. Microscopic feature vectors are combined with macroscopic features, that is, physical observable, to form extended feature vectors. Additionally, we partition a solvation dataset into queries according to molecular compositions. Moreover, for each target molecule, we adopt a machine learning algorithm for its nearest neighbor search, based on the selected microscopic feature vectors. Finally, from the extended feature vectors of obtained nearest neighbors, we construct a functional of solvation free energy, which is employed to predict the solvation free energy of the target molecule. The proposed FFT model has been extensively validated via a large dataset of 668 molecules. The leave-one-out test gives an optimal root-mean-square error (RMSE) of 1.05 kcal/mol. FFT predictions of SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 challenge sets deliver the RMSEs of 0.61, 1.86, 1.64, 0.86, and 1.14 kcal/mol, respectively. Using a test set of 94

  4. Surface Energy Characteristics of Toner Particles by Automated Inverse Gas Chromatography

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Wouters, M.E.L.; Bos, M.; van den Berg, J.W.A.; Vancso, Gyula J.

    2002-01-01

    Inverse gas chromatography (IGC) was applied to the surface energy study of surfaces of toner particles. The dispersive component of the surface energy was determined for three toner materials by infinite dilution IGC. The values obtained were comparable to the values obtained from contact angle

  5. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  6. Predicting singlet-triplet energy splittings with projected Hartree-Fock methods.

    Science.gov (United States)

    Rivero, Pablo; Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-08-22

    Hartree-Fock (HF) and density functional theory (DFT) methods are known for having problems in predicting singlet-triplet energy splittings when the system displays significant diradical character. Multireference methods are traditionally advocated to deal with the spin-contamination problem inherent in broken-symmetry mean-field methods. In the present work, spin-contamination is rigorously eliminated by means of a symmetry projection approach, carried out in a variation-after-projection fashion, recently implemented in our research group. We here explore the performance of a variety of projected Hartree-Fock (PHF) approaches (SUHF, KSUHF, SGHF, and KSGHF) in predicting singlet-triplet energy gaps in a broad set of diradical systems: small diatomic molecules, carbenes and silenes, and a few larger molecules (trimethylenemethane and benzyne isomers). For most of these systems, accurate experimental data is available in the literature. Additionally, we assess the quality of the geometrical parameters obtained in SUHF-based optimizations for some of the systems considered. Our results indicate that PHF methods yield high-quality multireference wave functions, providing a good description of the ground state potential surface as well as an accurate singlet-triplet splitting gap, all within a modest mean-field computational cost.

  7. Prediction of hydrocarbon surface seepage potential using infiltrometer data

    Science.gov (United States)

    Connors, J. J.; Jackson, J. L.; Engle, R. A.; Connors, J. L.

    2017-12-01

    Environmental regulations addressing above-ground storage tank (AST) spill control activities typically require owners/operators to demonstrate that local soil permeability values are low enough to adequately contain released liquids while emergency-response procedures are conducted. Frequently, geotechnical borings and soil samples/analyses, and/or monitoring well slug-test analyses, are used to provide hydraulic conductivity data for the required calculations. While these techniques are useful in assessing hydrological characteristics of the subsurface, they do not always assess the uppermost surface soil layer, where the bulk of the containment can occur. This layer may have been subject to long-term permeability-reduction by activities such as compaction by vehicular and foot traffic, micro-coatings by hydrophobic pollutants, etc. This presentation explores the usefulness of dual-ring infiltrometers, both in field and bench-scale tests, to rapidly acquire actual hydraulic conductivity values of surficial soil layers, which can be much lower than subsurface values determined using more traditional downhole geotechnical and hydrogeological approaches.

  8. Experimental High-Resolution Land Surface Prediction System for the Vancouver 2010 Winter Olympic Games

    Science.gov (United States)

    Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.

    2008-05-01

    The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.

  9. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  10. Prediction and correlation of surface tension of naphtha reformate and crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, E.I.; Al-Sahhaf, T.A.; Fahim, M.A. [Kuwait University (Kuwait). Chemical Engineering Dept.

    1995-04-01

    Six methods were tested for the prediction of the surface tension of naphtha reformate and crude oil fractions. The corresponding-state method gave the lowest deviation from experimental values for single cuts. The surface tension-density correlation method gave the lowest deviation for a blend of several cuts. 12 refs., 14 tabs.

  11. Prediction of viscosities and surface tensions of fuels using a new corresponding states model

    DEFF Research Database (Denmark)

    Queimada, A.J.; Rolo, L.I.; Caco, A.I.

    2006-01-01

    While some properties of diesels are cheap, easy and fast to measure, such as densities, others such as surface tensions and viscosities are expensive and time consuming. A new approach that uses some basic information such as densities to predict viscosities and surface tensions is here proposed...

  12. Modeling Smart Energy Systems for Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    Integrating large amounts of renewable energy sources like wind and solar power introduces large uctuations in the power production. Either this energy must be stored or consumed right away. Storage solutions are very expensive and not applicable everywhere. So utilizing all of this green energy...... as it is produced requires a very exible and controllable power consumption. Examples of controllable electric loads are heat pumps in buildings and Electric Vehicles (EVs) that are expected to play a large role in the future danish energy system. These units in a smart energy system can potentially oer exibility...... with green and cheap electricity. This situation occurs when there is a lot of excess wind power in the system which is re ected in the electricity price and in turn creates an incentive to absorb the energy. In this paper a decentralized control strategy is investigated where prices indirectly in uence...

  13. Validation of predictive equations for resting energy expenditure in adult outpatients and inpatients

    NARCIS (Netherlands)

    Weijs, P.J.M.; Kruizenga, H.M.; Van Dijk, A.E.; van der Meij, B.S.; Langius, J.A.E.; Knol, D.L.; Strack v schijndel, R.J.M.; van Bokhorst-de van der Schueren, M.A.E.

    2008-01-01

    Background & aims: When individual energy requirements of adult patients cannot be measured by indirect calorimetry, they have to be predicted with an equation. The aim of this study was to analyze which resting energy expenditure (REE) predictive equation was the best alternative to indirect

  14. Can the Gibbs free energy of adsorption be predicted efficiently and accurately: an M05-2X DFT study.

    Science.gov (United States)

    Michalkova, A; Gorb, L; Hill, F; Leszczynski, J

    2011-03-24

    This study presents new insight into the prediction of partitioning of organic compounds between a carbon surface (soot) and water, and it also sheds light on the sluggish desorption of interacting molecules from activated and nonactivated carbon surfaces. This paper provides details about the structure and interactions of benzene, polycyclic aromatic hydrocarbons, and aromatic nitrocompounds with a carbon surface modeled by coronene using a density functional theory approach along with the M05-2X functional. The adsorption was studied in vacuum and from water solution. The molecules studied are physisorbed on the carbon surface. While the intermolecular interactions of benzene and hydrocarbons are governed by dispersion forces, nitrocompounds are adsorbed also due to quite strong electrostatic interactions with all types of carbon surfaces. On the basis of these results, we conclude that the method of prediction presented in this study allows one to approach the experimental level of accuracy in predicting thermodynamic parameters of adsorption on a carbon surface from the gas phase. The empirical modification of the polarized continuum model leads also to a quantitative agreement with the experimental data for the Gibbs free energy values of the adsorption from water solution.

  15. Developing equations to predict surface dose and therapeutic interval in bolused electron fields: A Monte Carlo Study

    Science.gov (United States)

    Jabbari, Nasrollah; Khalkhali, Hamid Reza

    2017-07-01

    In this research, we aim to investigate the influence of different materials, as a bolus, on the low-energy electron beam dose distributions and to develop equations for predicting surface dose based on bolus thickness, as well as the therapeutic interval based on surface dose. All the Monte Carlo (MC) calculations and measurements were conducted on a Siemens PRIMUS linac. Based on EGSnrc MC code, BEAMnrc system was used to model a Siemens linac and generate phase-space files for three electron beams (6, 8, and 10 MeV). The particles were transported from the phase-space files to the bolus materials and the simulated water phantom using DOSXYZnrc. Various materials with different thicknesses were examined as a bolus, and appropriate equations were determined for each material and electron beam. The comparison of percent depth dose (PDD) curves and beam profiles, using MC, with the measured data demonstrated that the calculated values properly matched with the measurements. The results indicated that the use of bolus materials with the density of higher than soft tissue can increase both surface dose and therapeutic interval simultaneously. This finding arises from the fact that the required bolus thickness for achieving the therapeutic surface dose decreases in the case of high-density materials. Two series of prediction equations were proposed for predicting the surface dose based on bolus thickness and the therapeutic interval based on surface dose. These equations are able to calculate properly the bolus thickness required for producing a therapeutic surface dose (above 90%) for any therapeutic interval.

  16. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  17. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites.

    Science.gov (United States)

    Khoshkava, V; Kamal, M R

    2013-09-09

    Dispersion quality and polymer-filler interaction are important factors in determining the final properties of polymer nanocomposites. Surface energy of nanocrystalline cellulose (NCC) and some polymers (polypropylene, PP, and polylactic acid, PLA) was measured at room and high temperatures. NCC had higher polarity and surface energy than PP and PLA at room temperature but had a lower surface energy at higher temperatures. The effect of surface modification with alkenyl succinic anhydride (ASA) on NCC surface energy at room and high temperature was studied. Total surface energy of NCC was lowered after surface modification. Thermodynamic work of adhesion for PP/NCC and PLA/NCC was lowered by NCC surface modification. A thermodynamic analysis is proposed to estimate the dispersion energy, based on surface energy measurements at room and high temperatures. Also, a dispersion factor is defined to provide a quantitative indication of the dispersibility of nanoparticles in a polymer matrix under various conditions. The required dispersion energy was reduced by lowering the interfacial tension. On the other hand, it increased as the quality of NCC dispersion (i.e., the nanoparticle surface area) in the system was improved. Surface modification of NCC with ASA had a negative effect on the compatibility between NCC and PLA, whereas it had a positive influence on compatibility between PP and NCC.

  18. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    Science.gov (United States)

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  20. Effect of surface free energy on PDMS transfer in microcontact printing and its application to ToF-SIMS to probe surface energies.

    Science.gov (United States)

    Yang, Li; Shirahata, Naoto; Saini, Gaurav; Zhang, Feng; Pei, Lei; Asplund, Matthew C; Kurth, Dirk G; Ariga, Katsuhiko; Sautter, Ken; Nakanishi, Takashi; Smentkowski, Vincent; Linford, Matthew R

    2009-05-19

    Although polydimethylsiloxane (PDMS) transfer during microcontact printing (microCP) has been observed in previous reports, which generally focused on only one or a few different substrates, in this work we investigate the extent of PDMS transfer onto a series of surfaces with a wide range of hydrophobicities using an uninked, unpatterned PDMS stamp. These surfaces include clean silicon, clean titanium, clean gold, "dirty" silicon, polystyrene, Teflon, surfaces modified with PEG, amino, dodecyl, and hexadecyl monolayers, and also two loose molecular materials. The PDMS transferred onto planar surfaces is, in general, easily detected by wetting and spectroscopic ellipsometry. More importantly, it is detected by time-of-flight secondary ion mass spectrometry (ToF-SIMS) because of the sensitivity of this technique to PDMS. The effect of surface free energy on PDMS transfer in microcontact printing is investigated, and the relationship between the amount of PDMS in ToF-SIMS spectra and the surface tensions of initial surfaces is revealed. We show that PDMS transfer can be applied as a probe of surface free energies using ToF-SIMS, where PDMS preferentially transfers onto more hydrophilic surface features during stamping, with little being transferred onto very hydrophobic surface features. Multivariate curve resolution (MCR) analysis of the ToF-SIMS image data further confirms and clarifies these results. Our data lend themselves to the hypothesis that it is the free energy of the surface that plays a major role in determining the degree of PDMS transfer during microCP.

  1. Surface potential effects in low-energy current image diffraction patterns observed on the Al(001) surface

    International Nuclear Information System (INIS)

    Fine structure observed in high-resolution low-energy electron diffraction (LEED) measurements near the energy threshold for emergence of new beams has been attributed to surface barrier effects. Recently, the surface barrier has been suggested as the source of the fine structure observed in current image diffraction (CID) patterns obtained by rastering the primary beam across an Al(001) crystal surface at a constant energy. This suggestion was based on kinematic arguments which correlated the emergence angle for a new electron beam with the observed structure in the CID pattern. In this work, the angular dependence of the elastic component of the total crystal reflectivity is calculated at constant energy. The calculations are based on full dynamical theories such as used in LEED but incorporating different surface barrier models to account for the saturating image potential. The results are compared with the experimental CID results

  2. Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation

    International Nuclear Information System (INIS)

    Abdul-Kader, A.M.; Turos, A.; Radwan, R.M.; Kelany, A.M.

    2009-01-01

    Surface free energy of biocompatible polymers is important factor which affects the surface properties such as wetting, adhesion and biocompatibility. In the present work, the change in the surface free energy of ultra-high molecular weight polyethylene (UHMWPE) samples, which is produced by electron beam and gamma ray irradiation were, investigated. Mechanism of the changes in surface free energy induced by irradiations of doses ranging from 25 to 500 kGy was studied. FTIR technique was applied for sample analysis. Contact angle measurements showed that wettability and surface free energy of samples have increased with increasing the irradiation dose, where the values of droplet contact angle of the samples decrease gradually with increasing the radiation dose. The increase in the wettability and surface free energy of the irradiated samples are attributed to formation of hydrophilic groups on the polymer surface by the oxidation, which apparently occurs by exposure of irradiated samples to the air.

  3. Energy management in hybrid electric vehicles: benefit of prediction

    NARCIS (Netherlands)

    Keulen, T. van; Jager, B. de; Kessels, J.T.B.A.; Steinbuch, M.

    2010-01-01

    Hybrid vehicles require a supervisory algorithm, often referred to as energy management strategy, which governs the drivetrain components. In general the energy management strategy objective is to minimize the fuel consumption subject to constraints on the components, vehicle performance and driver

  4. Validation of a predictive model for smart control of electrical energy storage

    NARCIS (Netherlands)

    Homan, Bart; van Leeuwen, Richard Pieter; Smit, Gerardus Johannes Maria; Zhu, Lei; de Wit, Jan B.

    2016-01-01

    The purpose of this paper is to investigate the applicability of a relatively simple model which is based on energy conservation for model predictions as part of smart control of thermal and electric storage. The paper reviews commonly used predictive models. Model predictions of charging and

  5. Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prediction and enhancement of vehicle interior noise due to high frequency excitation, based on computer simulation, allows the application of the technology at the...

  6. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  7. In vitro effect of energy drinks on human enamel surface

    Directory of Open Access Journals (Sweden)

    Marise Sano Suga MATUMOTO

    Full Text Available Abstract Introduction Energy drinks (ED possess low pH and citric acid in their composition, making them potentially erosive beverages that can contribute to the high dental erosion rates found currently in the general population and also in young people. Objective To evaluate the mean pH and titratable acidity of commercial ED and the influence of a brand of ED on the superficial microhardness of human enamel. Material and method Ten commercial ED were selected and the pH of two lots of each ED with and without gas was obtained. Acid titration was conducted with the addition of NaOH aliquots until the pH 7 was reached. Eighteen human enamel specimens were allocated in three groups (N=6, Red Bull (RB, Red Bull Light (RBL and distilled water (C, submitted to an acid challenge with the ED, six consecutive times, with 12 hours intervals, during three days. Knoop microhardness was measured before and after the acid challenge. Result All ED brands tested presented low pH levels ranging from 2.1 to 3.2. Regarding titratable acidity, it was found that the amount of base required promoting the neutralization of the solutions ranged from 1200μL to 3750μL. Samples of human enamel in the RB and RBL groups submitted to the acid challenge presented significantly decreased Knoop microhardness when compared with the group C. Conclusion All ED examined have potential to promote mineral loss due to the low pH and high titratable acidity. The ED analyzed promoted significant mineral losses on the dental enamel surface.

  8. Monitoring and Prediction in Smart Energy Systems via Multi-timescale Nexting

    OpenAIRE

    Feldmaier, Johannes; Meyer, Dominik; Shen, Hao; Diepold, Klaus

    2016-01-01

    Reliable prediction of system status is a highly demanded functionality of smart energy systems, which can enable users or human operators to react quickly to potential future system changes. By adopting the multi-timescale nexting method, we develop an architecture of human-in-the-loop energy control system, which is capable of casting short-term predictive information about the specific smart energy system. The developed architecture does either require a system model nor additional acquisi...

  9. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, John A. [Univ. of Alabama, Birmingham, AL (United States). Material Science & Engineering Dept.

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  10. Deposition of Ultrathin Nano-Hydroxyapatite Films on Laser Micro-Textured Titanium Surfaces to Prepare a Multiscale Surface Topography for Improved Surface Wettability/Energy

    Directory of Open Access Journals (Sweden)

    Maria Surmeneva

    2016-10-01

    Full Text Available The primary aim of this study was to analyse the correlation between topographical features and chemical composition with the changes in wettability and the surface free energy of microstructured titanium (Ti surfaces. Periodic microscale structures on the surface of Ti substrates were fabricated via direct laser interference patterning (DLIP. Radio-frequency magnetron sputter deposition of ultrathin nanostructured hydroxyapatite (HA films was used to form an additional nanoscale grain morphology on the microscale-structured Ti surfaces to generate multiscale surface structures. The surface characteristics were evaluated using atomic force microscopy and contact angle and surface free energy measurements. The structure and phase composition of the HA films were investigated using X-ray diffraction. The HA-coated periodic microscale structured Ti substrates exhibited a significantly lower water contact angle and a larger surface free energy compared with the uncoated Ti substrates. Control over the wettability and surface free energy was achieved using Ti substrates structured via the DLIP technique followed by the deposition of a nanostructured HA coating, which resulted in the changes in surface chemistry and the formation of multiscale surface topography on the nano- and microscale.

  11. Estimating radiative feedbacks from stochastic fluctuations in surface temperature and energy imbalance

    Science.gov (United States)

    Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.

    2017-12-01

    Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and

  12. Minimum energy shapes of one-side-pinned static drops on inclined surfaces.

    Science.gov (United States)

    Thampi, Sumesh P; Govindarajan, Rama

    2011-10-01

    The shape that a liquid drop will assume when resting statically on a solid surface inclined to the horizontal is studied here in two dimensions. Earlier experimental and numerical studies yield multiple solutions primarily because of inherent differences in surface characteristics. On a solid surface capable of sustaining any amount of hysteresis, we obtain the global, and hence unique, minimum energy shape as a function of equilibrium contact angle, drop volume, and plate inclination. It is shown, in the energy minimization procedure, how the potential energy of this system is dependent on the basis chosen to measure it from, and two realistic bases, front-pinned and back-pinned, are chosen for consideration. This is at variance with previous numerical investigations where both ends of the contact line are pinned. It is found that the free end always assumes Young's equilibrium angle. Using this, simple equations that describe the angles and the maximum volume are then derived. The range of parameters where static drops are possible is presented. We introduce a detailed force balance for this problem and study the role of the wall in supporting the drop. We show that a portion of the wall reaction can oppose gravity while the other portion aids it. This determines the maximum drop volume that can be supported at a given plate inclination. This maximum volume is the least for a vertical wall, and is higher for all other wall inclinations. This study can be extended to three-dimensional drops in a straightforward manner and, even without this, lends itself to experimental verification of several of its predictions.

  13. Fluvial and climate controls on the surface energy balance in a large lowland river

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2013-12-01

    Partitioning of radiant and turbulent energy into evaporation and absorption in a river channel is controlled by climate and streamflow characteristics, and controls the water and energy balance. Atmosphere-surface interactions, coupled with advective processes, drive the heterogeneity of heat storage and exchange over longitudinal profiles whose hydraulic and thermal patterns are crucial for survival of migratory and resident fishes and subject to alteration by humans. Over 100 large-scale flow experiments have been conducted globally to measure abiotic and biotic responses to streamflow, yet none has been utilized to elucidate large-scale physical controls on the surface energy balance of a river. In this paper, we describe a synoptic method by which net solar radiation and turbulent heat fluxes were calculated over the length of a river from time series of hydroclimatological and fluvial conditions measured during a long-term large-scale flow experiment. We examine what are the dominant physical controls to the surface energy balance in a lowland river when surface water stage varies with flow releases in a 240-km reach of the San Joaquin River, California, USA. We developed an energy balance model integrated with advective exchange of heat utilizing spatially-distributed predictions of water surface elevation, inundated surface area, and velocity from an existing hydraulic model that accounts for losses and gains over the length of the river. Absorption of radiation along the river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient. Results show that over the solar spectrum, the absorption coefficient varies by seven orders of magnitude, while flow depth varies by two orders of magnitude over time and distance. Observations and modeling show that (1) discharge is controlled mainly by flow releases, diversions, and exchanges with

  14. SCANNING ELECTRON-MICROSCOPIC EVALUATION OF THE FRACTURED SURFACES OF CANINE CALCULI FROM SUBSTRATA WITH DIFFERENT SURFACE FREE-ENERGY

    NARCIS (Netherlands)

    UYEN, HMW; JONGEBLOED, WL; BUSSCHER, HJ

    1991-01-01

    The strength of adhesion between dental calculus and enamel or dentin surfaces determines the ease with which the calculus can be removed by brushing or professional dental treatment. In this study, we examined the adhesion of canine calculi formed on substrata with different surface free energies

  15. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    Science.gov (United States)

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  16. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    Directory of Open Access Journals (Sweden)

    Nicolas Panel

    2017-09-01

    Full Text Available PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  17. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    Science.gov (United States)

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  18. Scalable Prediction of Energy Consumption using Incremental Time Series Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Noor, Muhammad Usman

    2013-10-09

    Time series datasets are a canonical form of high velocity Big Data, and often generated by pervasive sensors, such as found in smart infrastructure. Performing predictive analytics on time series data can be computationally complex, and requires approximation techniques. In this paper, we motivate this problem using a real application from the smart grid domain. We propose an incremental clustering technique, along with a novel affinity score for determining cluster similarity, which help reduce the prediction error for cumulative time series within a cluster. We evaluate this technique, along with optimizations, using real datasets from smart meters, totaling ~700,000 data points, and show the efficacy of our techniques in improving the prediction error of time series data within polynomial time.

  19. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  20. Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface.

    Science.gov (United States)

    Zhou, Xueyao; Nattino, Francesco; Zhang, Yaolong; Chen, Jun; Kroes, Geert-Jan; Guo, Hua; Jiang, Bin

    2017-11-22

    A fifteen-dimensional global potential energy surface for the dissociative chemisorption of methane on the rigid Ni(111) surface is developed by a high fidelity fit of ∼200 000 DFT energy points computed using a specific reaction parameter density functional designed to reproduce experimental data. The permutation symmetry and surface periodicity are rigorously enforced using the permutation invariant polynomial-neural network approach. The fitting accuracy of the potential energy surface is thoroughly investigated by examining both static and dynamical attributes of CHD 3 dissociation on the frozen surface. This potential energy surface is expected to be chemically accurate as after correction for surface temperature effects it reproduces the measured initial sticking probabilities of CHD 3 on Ni(111) for various incidence conditions.

  1. Using a coupled groundwater/surface-water model to predict climate-change impacts to lakes in the Trout Lake Watershed, northern Wisconsin

    Science.gov (United States)

    Hunt, Randall; Walker, John F.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John; Webb, Richard M.T.; Semmens, Darius J.

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes.

  2. Stochastic Model Predictive Control with Applications in Smart Energy Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Edlund, Kristian; Mølbak, Tommy

    2012-01-01

    In response to growing concerns related to environmental issues, limited resources and security of supply, the energy industry is changing. One of the most significant developments has been the penetration of renewable energy sources. In Denmark, the share of wind power generation is expected...... be accounted for. In conventional MPC, the stochastic effects on the constraints is handled by constraint back-off and the MPC problem can still be solved by solution of either a linear program or a quadratic program. Treating the constraints as probabilistic constraints provides a more systematic approach...... function). This is convenient for energy systems, since some constraints are very important to satisfy with a high probability, whereas violation of others are less prone to have a large economic penalty. In MPC applications the control action is obtained by solving an optimization problem at each sampling...

  3. Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Kim, Won-Tae; Tae, Choon-Soeb; Zaheeruddin, M.

    2004-01-01

    This study examined the temperature dependent regression models of energy consumption as a function of the length of the measurement period. The methodology applied was to construct linear regression models of daily energy consumption from 1 day to 3 months data sets and compare the annual heating energy consumption predicted by these models with actual annual heating energy consumption. A commercial building in Daejon was selected, and the energy consumption was measured over a heating season. The results from the investigation show that the predicted energy consumption based on 1 day of measurements to build the regression model could lead to errors of 100% or more. The prediction error decreased to 30% when 1 week of data was used to build the regression model. Likewise, the regression model based on 3 months of measured data predicted the annual energy consumption within 6% of the measured energy consumption. These analyses show that the length of the measurement period has a significant impact on the accuracy of the predicted annual energy consumption of buildings

  4. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    Science.gov (United States)

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  5. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    Science.gov (United States)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  6. Surface influence on convoy electron emission at low energies

    International Nuclear Information System (INIS)

    Sanchez, E.A.

    1988-01-01

    It is studied the dependence of the production of convoy electrons induced by H + - 60 KeV with surface conditions of Al targets by in situ deposition of Na and O. The conclusion is that convoy electron production increases with the work function of the surface. (A.C.A.S.) [pt

  7. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  8. Application of neural networks for the prediction of energy use in supermarket buildings

    Energy Technology Data Exchange (ETDEWEB)

    Suh, T.J.; Tassou, S.A.; Datta, D. [Brunel Univ., Uxbridge (United Kingdom); Marriott, D. [Safeway Stores 6 Millington, Middx (United Kingdom)

    1996-12-31

    This paper discusses the application of neural networks to predict energy consumption in commercial buildings. To date, many researchers have demonstrated that neural networks can be more reliable energy predictors than the traditional statistical approaches and can also form the basis for predictive controllers of HVAC equipment. This paper shows the preliminary results of research work at Brunel University for predicting the variation of electricity consumption in a supermarket building based on a neural network. A comparison of the prediction performance of the neural network and a traditional regression approach is presented.

  9. Quantitative Prediction of Stone Fragility From Routine Dual Energy CT

    DEFF Research Database (Denmark)

    Ferrero, Andrea; Montoya, Juan C; Vaughan, Lisa E

    2016-01-01

    RATIONALE AND OBJECTIVES: Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphologic features from dual-energy computed tomography (CT) images and assess their relationship to stone fragil...

  10. Energy savings in mobile broadband network based on load predictions

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pedersen, Torben Bach; Sørensen, Troels Bundgaard

    2012-01-01

    Abstract—The deployment of new network equipment is resulting in increasing energy consumption in mobile broadband networks (MBNs). This contributes to higher CO2 emissions. Over the last 10 years MBNs have grown considerably, and are still growing to meet the evolution in traffic volume carried...

  11. Integrating prediction, provenance, and optimization into high energy workflows

    Energy Technology Data Exchange (ETDEWEB)

    Schram, M.; Bansal, V.; Friese, R. D.; Tallent, N. R.; Yin, J.; Barker, K. J.; Stephan, E.; Halappanavar, M.; Kerbyson, D. J.

    2017-10-01

    We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.

  12. 75 FR 7457 - Notice of Public Hearing on Stone Energy Corporation Proposed Surface Water Withdrawal and...

    Science.gov (United States)

    2010-02-19

    ... projects follow: Stone Energy Corporation D-2009-13-1. An application for approval of a surface water... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing on Stone Energy Corporation Proposed Surface Water Withdrawal and Natural Gas Well Site SUMMARY: Because of the high level of public interest...

  13. Modelling evapotranspiration using the surface energy balance systems (sebs) and landsat tm data (rabat region, morocco)

    NARCIS (Netherlands)

    Kwast, J. van der; Jong, S.M. de

    2004-01-01

    Modelling and understanding the surface energy balance is important for assessing the re-distribution of moisture and heat in soil and atmosphere. The Surface Energy Balance System (SEBS) estimates turbulent heat fluxes using satellite earth observation data in the visible, near infrared, and

  14. On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods.

    Science.gov (United States)

    Michalski; Hardy; Saramago

    1998-12-01

    The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor-electron acceptor components of surface free energy) and the Owens-Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor-acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens-Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity. Copyright 1998 Academic Press.

  15. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  16. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  17. The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface

    NARCIS (Netherlands)

    Kollet, S.J.; Cvijanovic, I.; Schüttemeyer, D.; Maxwell, R.M.; Moene, A.F.; Bayer, P.

    2009-01-01

    In land surface models, which account for the energy balance at the land surface, subsurface heat transport is an important component that reciprocally influences ground, sensible, and latent heat fluxes and net radiation. In most models, subsurface heat transport parameterizations are commonly

  18. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  19. Smoothing of wind farm output power using prediction based flywheel energy storage system

    Science.gov (United States)

    Islam, Farzana

    Being socially beneficial, economically competitive and environment friendly, wind energy is now considered to be the world's fastest growing renewable energy source. However, the stochastic nature of wind imposes a considerable challenge in the optimal management and operation of wind power system. Wind speed prediction is critical for wind energy conversion system since it greatly influences the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. This thesis focuses on integration of energy storage system with wind farm, considering wind speed prediction in the control scheme to overcome the problems associated with wind power fluctuations. In this thesis, flywheel energy storage system (FESS) with adjustable speed rotary machine has been considered for smoothing of output power in a wind farm composed of a fixed speed wind turbine generator (FSWTG). Since FESS has both active and reactive power compensation ability, it enhances the stability of the system effectively. An efficient energy management system combined with supervisory control unit (SCU) for FESS and wind speed prediction has been developed to improve the smoothing of the wind farm output effectively. Wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction scheme including data error tolerance and ease in adaptability. The model for prediction with ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions.

  20. Components of near-surface energy balance derived from satellite soundings – Part 1: Net available energy

    OpenAIRE

    K. Mallick; A. Jarvis; G. Wohlfahrt; G. Kiely; T. Hirano; A. Miyata; S. Yamamoto; L. Hoffmann

    2014-01-01

    This paper introduces a relatively simple method for recovering global fields of near-surface net available energy (the sum of the sensible and latent heat flux or the difference between the net radiation and surface heat accumulation) using satellite visible and infra-red products derived from the AIRS (Atmospheric Infrared Sounder) and MODIS (MOderate Resolution Imaging Spectroradiometer) platforms. The method focuses on first specifying net surface radiation by con...

  1. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    Science.gov (United States)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  2. An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters

    Science.gov (United States)

    Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.

    2016-07-01

    Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.

  3. Incident energy dependence of scattering behavior of water molecules on Si (100) and graphite surfaces

    Science.gov (United States)

    Kihara, G.; Kotsubo, Y.; Yoshimoto, Y.; Kinefuchi, I.; Takagi, S.

    2016-11-01

    The interaction between water molecules and solid surfaces has a great impact on water vapor flows in nanostructures. We conduct molecular beam scattering experiments covering the incident energy range corresponding to the thermal energy at room temperature to investigate the scattering behavior of water molecules on silicon and graphite surfaces. The incident energy dependence of the scattering distributions exhibits opposite trends on these surfaces. Molecular dynamics simulations reveal that the difference is caused by the inertia effect of the incident molecules and the surface corrugations.

  4. Fault type predictions from stress distributions on planetary surfaces - Importance of fault initiation depth

    Science.gov (United States)

    Golombek, M. P.

    1985-01-01

    The prediction of fault type on planetary surfaces from model stresses calculated at depth is discussed. These fault-type predictions yield different faults than those predicted using the surface criteria commonly employed in geophysical models. For elastic-plate flexure models of mascon loading on the moon, stresses calculated at the surface predict the occurrence of strike-slip faulting at the radial distance where grabens are found. Normal faults bounding lunar grabens and thrust faults responsible for wrinkle ridges are analyzed. It is found that the former initiate at the mechanical discontinuity that separates the breccia of the megaregolith from in situ fractured rock and that the latter initiate at the mechanical discontinuity between basalt layers and the underlying basin floor. The difference between elastic constants for the outer few kilometers of brecciated megaregolith and the underlying lunar lithosphere are evaluated. Superposing nonisotropic stresses resulting from the weight of overburden to the depth of the relevant mechanical discontinuity yield stresses that predict wrinkle ridges in the basin centers and grabens outside the basin margin, and eliminate the predicted zone of strike-slip faults.

  5. The formation energy for steps and kinks on cubic transition metal surfaces

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollàr, Janos

    1999-01-01

    We have used our first-principles database of surface energies for metals in conjunction with the concept of vicinal surfaces to derive the energies of formation of monoatomic steps and corresponding kinks on close-packed surface facets of bcc and fee transition metals. The entries in the database...... allow for a direct calculation of the energies of a number of important steps. For the remaining steps and for all the kinks the energies of formation have been estimated from pair potential expansions of the entries in the database. (C) 1999 Elsevier Science B.V. All rights reserved....

  6. Energy predictions. [Briefs on 33 charts, figures, and graphs

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, D.A.

    1977-01-01

    Briefs describe 33 charts, graphs, and schematics offering some recent history and perspectives on the world and U.S. energy situation and the problems for survival facing the world. Of interest is Figure 28, showing the Club of Rome's model of the earth in terms of resource consumption, food, money, people, pollution, etc. A computer was asked to extend recent history into the future and results indicate a collapse of the industrialized system towards an agrarian culture around the year 2025. It is noted that the model did not consider technological initiative or man's willingness to change lifestyles. The final (33) schematic is a guesstimate of noticeable impact timescales, indicating when research projects on transition or ultimate energy sources at LASL might be expected to yield impact. (MCW)

  7. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  8. Effect of Lowering Laser Energy on the Surface Roughness of Human Corneal Lenticules in SMILE.

    Science.gov (United States)

    Ji, Yong Woo; Kim, Minseo; Kang, David Sung Yong; Reinstein, Dan Z; Archer, Timothy J; Choi, Jin Young; Kim, Eung Kweon; Lee, Hyung Keun; Seo, Kyoung Yul; Kim, Tae-Im

    2017-09-01

    To determine the effect of lowering femtosecond laser energy on the surface quality of the intrastromal interface during small incision lenticule extraction (SMILE). Forty age- and diopter-matched female patients (40 eyes) with moderate myopia received SMILE with different energy levels (100 to 150 nJ) and fixed spot separation (4.5 μm). Five human corneal lenticules from each energy group were evaluated by atomic force microscopy and scanning electron microscopy (SEM). Both anterior and posterior surface characteristics of the lenticules were assessed. All measurements of surface roughness were approximately three times higher and in the anterior and posterior surface of the lenticules with the energy level of 150 nJ than with 100 nJ (P < .001). Furthermore, atomic force microscopy analysis found that energy differences of 15 nJ or more made a significant difference in surface roughness at energy levels of 115 nJ or higher. Interestingly, there was no significant difference in all roughness values of both surfaces among the 100, 105, and 110 nJ groups. In addition, all values of surface roughness were significantly positively correlated with laser energy for both anterior and posterior surfaces of the lenticule (P < .001). Consistent with atomic force microscopy results, SEM also showed that the SMILE lenticules in the higher laser energy group had more irregular surfaces. Lowering laser energy levels can improve surface quality of the lenticule of SMILE. To achieve better visual outcomes with faster recovery after the procedure, it is recommended to reduce the laser energy to less than 115 nJ at a spot separation of 4.5 μm. [J Refract Surg. 2017;33(9):617-624.]. Copyright 2017, SLACK Incorporated.

  9. Vehicle Interior Noise Prediction Using Energy Finite Element Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...

  10. Theoretical predictions for pp and panti p elastic scattering in the TeV energy domain

    International Nuclear Information System (INIS)

    Bourrely, C.; Martin, A.

    1984-01-01

    We present theoretical predictions on total cross-sections and elastic scattering in the TeV energy domain obtained from the present experimental situation at the ISR and the panti p Collider. (orig.)

  11. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  12. Energy dependent neutron sputtering and surface damage cross sections

    International Nuclear Information System (INIS)

    Odette, G.R.; Doiron, D.R.; Kennerley, R.J.

    1976-01-01

    The results clearly indicate that damage function analysis might be usefully applied to define both the neutron and primary recoil energy dependence of sputtering yields. Even with relatively large data errors, it appears that it is possible to both detect the existence and indicate the form of the deviation of sputtering yield from linear damage energy dependence (if such deviation exists). This information would be very useful in developing improved models of the sputtering phenomena

  13. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Science.gov (United States)

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  14. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  15. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...... Institute of Physics. [http://dx.doi.org/10.1063/1.4742153]...

  16. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by mea...

  17. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    the seasonal time scale, the net longwave radiation is the largest energy loss term at the experi- mental site. The seasonal variation in the energy sink term is small compared to that in the energy source term. 1. Introduction. Land surface temperature is an important meteoro- logical variable and is required in many practi-.

  18. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  19. 4H-SiC surface energy tuning by nitrogen up-take

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  20. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems

    OpenAIRE

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at des...

  1. Evaluation of a Regression Prediction Model for Surface Roughness of Wood-Polyethylene Composite (wpc)

    Science.gov (United States)

    Shi, Wenyong; Ma, Yan; Yang, Chunmei; Jiang, Bin; Li, Zhe

    Milling processing is an important way to obtain wood-polyethylene composite (WPC) end products. In order to improve the processing efficiency and surface quality of WPC and meet the practical application requirements, this paper focussed on morphology and roughness of the WPC-milled surface and studied surface quality changes under different cutting parameters and milling methods through multi-parameters milling experiments. The milling surface morphology and roughness of WPC were analyzed and measured during cut-in, cutting and cut-out sections. It also revealed the affect rule of different cutting parameters and milling methods on milled surface morphology and roughness. The results show that the milling surface roughness of WPC products with wood powder content of 70% is significantly larger than the one whose wood powder content is 60%, and defects such as holes are also relatively more. Finally, a surface roughness prediction model was established based on the mathematical regression method and its multi-factor simulation was carried out. A comparative analysis of predictive and experimental values was performed to verify the reliability of the model. It could also provide theoretical guidance and technical guarantee for high processing quality of WPC milling and cutting.

  2. A methodology for the prediction of offshore wind energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.J.; Watson, G.M. [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Holt, R.J. [Univ. of East Anglia, Climatic Research Unit, Norwich (United Kingdom)] Barthelmie, R.J. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Zuylen, E.J. van [Ecofys Energy and Environment, Utrecht (Netherlands)] Cleijne, J.W. [Kema Sustainable, Arnhem (Netherlands)

    1999-03-01

    There are increasing constraints on the development of wind power on land. Recently, there has been a move to develop wind power offshore, though the amount of measured wind speed data at potential offshore wind farm sites is sparse. We present a novel methodology for the prediction of offshore wind power resources which is being applied to European Union waters. The first stage is to calculate the geostrophic wind from long-term pressure fields over the sea area of interest. Secondly, the geostrophic wind is transformed to the sea level using WA{sup s}P, taking account of near shore topography. Finally, these values are corrected for land/sea climatology (stability) effects using an analytical Coastal discontinuity Model (CDM). These values are further refined using high resolution offshore data at selected sites. The final values are validated against existing offshore datasets. Preliminary results are presented of the geostrophic wind speed validation in European Union waters. (au)

  3. A Web Application for Validating and Disseminating Surface Energy Balance Evapotranspiration Estimates for Hydrologic Modeling Applications

    Science.gov (United States)

    Schneider, C. A.; Aggett, G. R.; Nevo, A.; Babel, N. C.; Hattendorf, M. J.

    2008-12-01

    The western United States face an increasing threat from drought - and the social, economic, and environmental impacts that come with it. The combination of diminished water supplies along with increasing demand for urban and other uses is rapidly depleting surface and ground water reserves traditionally allocated for agricultural use. Quantification of water consumptive use is increasingly important as water resources are placed under growing tension by increased users and interests. Scarce water supplies can be managed more efficiently through use of information and prediction tools accessible via the internet. METRIC (Mapping ET at high Resolution with Internalized Calibration) represents a maturing technology for deriving a remote sensing-based surface energy balance for estimating ET from the earth's surface. This technology has the potential to become widely adopted and used by water resources communities providing critical support to a host of water decision support tools. ET images created using METRIC or similar remote- sensing based processing systems could be routinely used as input to operational and planning models for water demand forecasting, reservoir operations, ground-water management, irrigation water supply planning, water rights regulation, and for the improvement, validation, and use of hydrological models. The ET modeling and subsequent validation and distribution of results via the web presented here provides a vehicle through which METRIC ET parameters can be made more accessible to hydrologic modelers. It will enable users of the data to assess the results of the spatially distributed ET modeling and compare with results from conventional ET estimation methods prior to assimilation in surface and ground water models. In addition, this ET-Server application will provide rapid and transparent access to the data enabling quantification of uncertainties due to errors in temporal sampling and METRIC modeling, while the GIS-based analytical

  4. Predictive tool of energy performance of cold storage in agrifood industries: The Portuguese case study

    International Nuclear Information System (INIS)

    Nunes, José; Neves, Diogo; Gaspar, Pedro D.; Silva, Pedro D.; Andrade, Luís P.

    2014-01-01

    Highlights: • A predictive tool for assessment of the energy performance in agrifood industries that use cold storage is developed. • The correlations used by the predictive tool result from the greatest number of data sets collected to date in Portugal. • Strong relationships between raw material, energy consumption and volume of cold stores were established. • Case studies were analyzed that demonstrate the applicability of the tool. • The tool results are useful in the decision-making process of practice measures for the improvement of energy efficiency. - Abstract: Food processing and conservation represent decisive factors for the sustainability of the planet given the significant growth of the world population in the last decades. Therefore, the cooling process during the manufacture and/or storage of food products has been subject of study and improvement in order to ensure the food supply with good quality and safety. A predictive tool for assessment of the energy performance in agrifood industries that use cold storage is developed in order to contribute to the improvement of the energy efficiency of this industry. The predictive tool is based on a set of characteristic correlated parameters: amount of raw material annually processed, annual energy consumption and volume of cold rooms. Case studies of application of the predictive tool consider industries in the meat sector, specifically slaughterhouses. The results obtained help on the decision-making of practice measures for improvement of the energy efficiency in this industry

  5. Oxidative stress prediction: A preliminary approach using a response surface based technique.

    Science.gov (United States)

    Sierra, M; Bragg-Gonzalo, L; Grasa, J; Muñoz, M J; González, D; Miana-Mena, F J

    2018-02-01

    A response surface was built to predict the lipid peroxidation level, generated in an iron-ascorbate in vitro model, of any organ, which is correlated with the oxidative stress injury in biological membranes. Oxidative stress studies are numerous, usually performed on laboratory animals. However, ethical concerns require validated methods to reduce the use of laboratory animals. The response surface described here is a validated method to replace animals. Tissue samples of rabbit liver, kidney, heart, skeletal muscle and brain were oxidized with different concentrations of FeCl 3 (0.1 to 8mM) and ascorbate (0.1mM), during different periods of time (0 to 90min) at 37°C. Experimental data obtained, with lipid content and antioxidant activity of each organ, allowed constructing a multidimensional surface capable of predicting, by interpolation, the lipid peroxidation level of any organ defined by its antioxidant activity and fat content, when exposed to different oxidant conditions. To check the predictive potential of the technique, two more experiments were carried out. First, in vitro oxidation data from lung tissue were collected. Second, the antioxidant capacity of kidney homogenates was modified by adding melatonin. Then, the response surface generated could predict lipid peroxidation levels produced in these new situations. The potential of this technique could be reinforced using collaborative databases to reduce the number of animals in experimental procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression

    NARCIS (Netherlands)

    Ysebaert, T.; Meire, P.; Herman, P.M.J.; Verbeek, H.

    2002-01-01

    This study aims at contributing to the development of statistical models to predict macrobenthic species response to environmental conditions in estuarine ecosystems. Ecological response surfaces are derived for 10 estuarine macrobenthic species. Logistic regression is applied on a large data set,

  7. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  8. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  9. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  10. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    Science.gov (United States)

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  11. Sea surface temperature predictions using a multi-ocean analysis ensemble scheme

    Science.gov (United States)

    Zhang, Ying; Zhu, Jieshun; Li, Zhongxian; Chen, Haishan; Zeng, Gang

    2017-08-01

    This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982-2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.

  12. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  13. The use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1987-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distribution are discussed in therms of advantages and disadvantages of each. The scattering potential, which is the primary nonstructural parameter needed for analysis, is discussed in terms of recent experimental results. The structures of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo (111) surface and missing row reconstructions on the Au (110) and Pt (110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au (110) and Pt (110) surfaces and reconstructed Mo (111) surfaces, and to ordering of adsorbates on Mo

  14. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-09-01

    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.

  15. Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

  16. Earthquake Energy Distribution along the Earth Surface and Radius

    International Nuclear Information System (INIS)

    Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Suele, B.; Wang, K.; Panza, G.F.

    2010-07-01

    The global earthquake catalog of seismic events with M W ≥ 7.0, for the time interval from 1950 to 2007, shows that the depth distribution of earthquake energy release is not uniform. The 90% of the total earthquake energy budget is dissipated in the first ∼30km, whereas most of the residual budget is radiated at the lower boundary of the transition zone (410 km - 660 km), above the upper-lower mantle boundary. The upper border of the transition zone at around 410 km of depth is not marked by significant seismic energy release. This points for a non-dominant role of the slabs in the energy budged of plate tectonics. Earthquake number and energy release, although not well correlated, when analysed with respect to the latitude, show a decrease toward the polar areas. Moreover, the radiated energy has the highest peak close to (±5 o ) the so-called tectonic equator defined by Crespi et al. (2007), which is inclined about 30 o with respect to the geographic equator. At the same time the presence of a clear axial co- ordination of the radiated seismic energy is demonstrated with maxima at latitudes close to critical (±45 o ). This speaks about the presence of external forces that influence seismicity and it is consistent with the fact that Gutenberg-Richter law is linear, for events with M>5, only when the whole Earth's seismicity is considered. These data are consistent with an astronomical control on plate tectonics, i.e., the despinning (slowing of the Earth's angular rotation) of the Earth's rotation caused primarily by the tidal friction due to the Moon. The mutual position of the shallow and ∼660 km deep earthquake energy sources along subduction zones allows us to conclude that they are connected with the same slab along the W-directed subduction zones, but they may rather be disconnected along the opposed E-NE-directed slabs, being the deep seismicity controlled by other mechanisms. (author)

  17. Energy Utilization and Environmental Health: Methods for Prediction and Evaluation of Impact on Human Health.

    Science.gov (United States)

    Wadden, Richard A., Ed.

    A variety of socio-economic criteria are suggested for the choice of how best to utilize energy resources. One of the most significant of these criteria is the prediction and evaluation of existing and potential human health effects of recovery and usage of various energy resources. Suggestions are made for incorporation of these methods in site…

  18. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    Science.gov (United States)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  19. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  20. Predictability of the Power Output of Three Wave Energy Technologies in the Danish North Sea

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Jensen, N. E. Helstrup; Sørensen, H. C.

    2011-01-01

    The paper addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...

  1. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    International Nuclear Information System (INIS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan; Şenay, Volkan

    2016-01-01

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  2. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    Energy Technology Data Exchange (ETDEWEB)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2016-03-25

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  3. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various...... transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics...... in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong....

  4. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  5. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  6. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  7. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  8. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  9. Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrils.

    Science.gov (United States)

    Khakalo, Alexey; Filpponen, Ilari; Rojas, Orlando J

    2017-04-10

    The state of dispersion and the interactions between a polymer and a filler in a nanocomposite crucially define its properties and performance. The affinity of polylactide (PLA) with vegetable and animal proteins (casein, gelatin, soy protein isolate, and hydrolysate) is investigated and their role as eco-friendly dispersants and compatibilizers of cellulose nanofibrils (CNF) is elucidated. The affinity of the proteins with PLA is determined by using sensograms acquired by electroacoustic (quartz crystal microgravimetry) and optical (surface plasmon resonance) techniques. The surface energy of PLA increases upon protein adsorption while the opposite effect is observed for CNF, under identical experimental conditions. A significant improvement in the thermodynamic work of adhesion for PLA/CNF systems is predicted by application of the denatured proteins at low concentrations (∼20% and ∼15% enhancement with soy protein and casein at pH 3 and pH 8, respectively). We offer a robust method to screen denatured proteins and to tailor the wettability and material compatibility in the synthesis of bionanocomposites based on CNF and PLA.

  10. Prediction of electric energy consumption in Cuba for the period 2000-2015

    International Nuclear Information System (INIS)

    Garcia Rodirguez, B

    1999-01-01

    This paper consists on a prediction of the growth in electric energy consumption in Cuba, for the period 2000-2015 and with respect to 1990, it also considers the specific features of the National Electroenergetic System. Validated Guidelines in accordance with the Delphi method, which incorporates the basis characteristics considered by international programs for these predictions, were used for this purpose. From the analysis of the behaviour in power consumption of the different consumers and of the expected changes in them according to the expected scenarios, a prediction on the growth in the demand of electric energy is made

  11. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  12. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  13. Analysis of meteorological data and the surface energy balance of Keqicar Glacier, Tien Shan, China

    Science.gov (United States)

    Zhang, Y.; Liu, S.; Fujita, K.; Han, H.; Li, J.

    2009-04-01

    Northwestern China currently experiences a climate change with fundamental consequences for the hydrological cycle. In the strongly arid region where water resources are essential for agriculture and food production, glaciers represent important water resources, contributing significantly to streamflow. The debris is an important glaciological feature of the region and has major impact on melt rates. It is essential to understand and quantify the interaction of climate and sub-debris melt in order to assess the current situation and to predict future water yield. Note that the surface energy balance determines glacier melt. However, little is known about the variability characteristics of the surface energy fluxes in this region. For this reason, we set up two automatic weather stuation (AWSs) in the ablation area of Keqicar Glacier. Keqicar Glacier is located in the Tarim River basin (largest inland river basin in China), southwestern Tien Shan, China. It is a representative debris-covered glacier with a length of 26.0 km and a total surface area of 83.6 km2. The thickness of the debris layer varies from 0.0 to 2.50 m in general. In some places large rocks are piled up to several meters. In this study, we report on analysis of meteorological data for the period 1 July-13 September 2003, from two automatic weather stations, aimed at studying the relationship between climate and ablation. One station is located on the lower part of the ablation area where the glacier is covered by debris layer, and the other near the equilibrium line altitude (ELA). All sensors were sampled every 10 seconds, and data were stored as hourly averages. The stations were visited regularly for maintenance at two weeks intervals depending on the weather conditions and location of the AWS. A total of 17 ablation stakes were drilled into the glacier at different elevations to monitor glacier melt during the study period. Readings were taken regularly in connection with AWS maintenance. The

  14. A machine learning approach for predicting the relationship between energy resources and economic development

    Science.gov (United States)

    Cogoljević, Dušan; Alizamir, Meysam; Piljan, Ivan; Piljan, Tatjana; Prljić, Katarina; Zimonjić, Stefan

    2018-04-01

    The linkage between energy resources and economic development is a topic of great interest. Research in this area is also motivated by contemporary concerns about global climate change, carbon emissions fluctuating crude oil prices, and the security of energy supply. The purpose of this research is to develop and apply the machine learning approach to predict gross domestic product (GDP) based on the mix of energy resources. Our results indicate that GDP predictive accuracy can be improved slightly by applying a machine learning approach.

  15. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.

    Science.gov (United States)

    Komoto, Keenan T; Kowalczyk, Tim

    2016-10-06

    To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.

  16. An adaptive short-term prediction scheme for wind energy storage management

    International Nuclear Information System (INIS)

    Blonbou, Ruddy; Monjoly, Stephanie; Dorville, Jean-Francois

    2011-01-01

    Research highlights: → We develop a real time algorithm for grid-connected wind energy storage management. → The method aims to guarantee, with ±5% error margin, the power sent to the grid. → Dynamic scheduling of energy storage is based on short-term energy prediction. → Accurate predictions reduce the need in storage capacity. -- Abstract: Efficient forecasting scheme that includes some information on the likelihood of the forecast and based on a better knowledge of the wind variations characteristics along with their influence on power output variation is of key importance for the optimal integration of wind energy in island's power system. In the Guadeloupean archipelago (French West-Indies), with a total wind power capacity of 25 MW; wind energy can represent up to 5% of the instantaneous electricity production. At this level, wind energy contribution can be equivalent to the current network primary control reserve, which causes balancing difficult. The share of wind energy is due to grow even further since the objective is set to reach 118 MW by 2020. It is an absolute evidence for the network operator that due to security concerns of the electrical grid, the share of wind generation should not increase unless solutions are found to solve the prediction problem. The University of French West-Indies and Guyana has developed a short-term wind energy prediction scheme that uses artificial neural networks and adaptive learning procedures based on Bayesian approach and Gaussian approximation. This paper reports the results of the evaluation of the proposed approach; the improvement with respect to the simple persistent prediction model was globally good. A discussion on how such a tool combined with energy storage capacity could help to smooth the wind power variation and improve the wind energy penetration rate into island utility network is also proposed.

  17. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  18. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  19. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Science.gov (United States)

    Alkhaier, F.; Su, Z.; Flerchinger, G. N.

    2012-07-01

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS) to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012). The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  20. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems

    Science.gov (United States)

    Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda

    2014-05-01

    Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.

  1. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Directory of Open Access Journals (Sweden)

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  2. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, Nicholas F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C2H3 and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  3. Energy band structure, fermi surfaces, magnetization densities, and properties of the rare-earths and actinides

    International Nuclear Information System (INIS)

    Freeman, A.J.

    1977-01-01

    Some aspects of the predictions of energy band theory for both the rare earths and actinides and their comparison with experiment are discussed. Recent developments in assessing eigenfunction behavior are emphasized. 5 figures

  4. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show......We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...

  5. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    International Nuclear Information System (INIS)

    Crusius, Johann-Philipp; Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-01-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C 2 H 4 O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide

  6. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  7. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  8. Greek long-term energy consumption prediction using artificial neural networks

    International Nuclear Information System (INIS)

    In this paper artificial neural networks (ANN) are addressed in order the Greek long-term energy consumption to be predicted. The multilayer perceptron model (MLP) has been used for this purpose by testing several possible architectures in order to be selected the one with the best generalizing ability. Actual recorded input and output data that influence long-term energy consumption were used in the training, validation and testing process. The developed ANN model is used for the prediction of 2005-2008, 2010, 2012 and 2015 Greek energy consumption. The produced ANN results for years 2005-2008 were compared with the results produced by a linear regression method, a support vector machine method and with real energy consumption records showing a great accuracy. The proposed approach can be useful in the effective implementation of energy policies, since accurate predictions of energy consumption affect the capital investment, the environmental quality, the revenue analysis, the market research management, while conserve at the same time the supply security. Furthermore it constitutes an accurate tool for the Greek long-term energy consumption prediction problem, which up today has not been faced effectively.

  9. Using Electronic Energy Derivative Information in Automated Potential Energy Surface Construction for Vibrational Calculations.

    Science.gov (United States)

    Sparta, Manuel; Hansen, Mikkel B; Matito, Eduard; Toffoli, Daniele; Christiansen, Ove

    2010-10-12

    The availability of an accurate representation of the potential energy surface (PES) is an essential prerequisite in an anharmonic vibrational calculation. At the same time, the high dimensionality of the fully coupled PES and the adverse scaling properties with respect to the molecular size make the construction of an accurate PES a computationally demanding task. In the past few years, our group tested and developed a series of tools and techniques aimed at defining computationally efficient, black-box protocols for the construction of PESs for use in vibrational calculations. This includes the definition of an adaptive density-guided approach (ADGA) for the construction of PESs from an automatically generated set of evaluation points. Another separate aspect has been the exploration of the use of derivative information through modified Shepard (MS) interpolation/extrapolation procedures. With this article, we present an assembled machinery where these methods are embedded in an efficient way to provide both a general machinery as well as concrete computational protocols. In this framework we introduce and discuss the accuracy and computational efficiency of two methods, called ADGA[2gx3M] and ADGA[2hx3M], where the ADGA recipe is used (with MS interpolation) to automatically define modest sized grids for up to two-mode couplings, while MS extrapolation based on, respectively, gradients only and gradients and Hessians from the ADGA determined points provides access to sufficiently accurate three-mode couplings. The performance of the resulting potentials is investigated in vibrational coupled cluster (VCC) calculations. Three molecular systems serve as benchmarks: a trisubstituted methane (CHFClBr), methanimine (CH2NH), and oxazole (C3H3NO). Furthermore, methanimine and oxazole are addressed in accurate calculations aiming to reproduce experimental results.

  10. New approaches to predicting surface fuel moisture in south east Australian forests

    Science.gov (United States)

    Sheridan, Gary; Nyman, Petter; Hawthorne, Sandra; Bovill, William; Walsh, Sean; Baillie, Craig; Duff, Thomas; Tolhurst, Kevin; Lane, Patrick

    2016-04-01

    The capacity to predict of the moisture content (FMC) of fine surface fuels in mountainous south east Australian forests has improved dramatically in recent years due to the convergence of several new technologies, including i) improved process-based account-keeping type FMC models, ii) improved understanding and representation of topographic effects (aspect, drainage position, elevation) on surface fuel and soil moisture, iii) improved methods for downscaling weather variables (eg. rainfall/throughfall, short-wave radiation) using digital elevation models and airborne LIDaR, and, iv) new in-situ sensor technologies (fuelsticks, capacitance sensors, Ibuttons) for continuously monitoring surface fuels and within-litter micro-climate conditions, generating datasets of unprecedented temporal resolution and continuity for model development and testing under real field conditions across a broad range of forests, landscapes and climates. In this study the combined improvements in predictive capacity were quantified by comparing the field FMC observations with predictions from traditional, widely used operational FMC models, and with two new process-based models, including improved spatial parameterisation provided by the new technologies outlined above. The results are interpreted in the context of planned-burning decision making and outcomes, and bushfire modelling and management. The initial results showed that the new approaches to FMC prediction offered substantial improvements over the traditional methods and could be reasonably implemented at operational scales.

  11. Surface energy balance measurements in the Mexico City: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  12. Relationships between surface energy analysis and functional characteristics of dairy powders.

    Science.gov (United States)

    Kondor, Anett; Hogan, Sean A

    2017-12-15

    Surface energetics of demineralised whey (DMW), skimmed milk (SMP), phosphocasein (PCN) and infant milk formula (IMF) powders were determined by inverse gas chromatography (IGC). All four milk powders were amphoteric in nature with the dispersive (apolar) component of surface energy dominating the specific (polar) contribution. PCN and IMF had the highest and lowest extent of surface heterogeneity, respectively. PCN also demonstrated the poorest functional properties of the powders examined. In contrast, IMF had excellent flow and rehydration properties. Thermodynamic work of cohesion was highest in PCN and may have contributed to inadequate rehydration behaviour. Glass transition temperature of IMF powder, determined by IGC, suggested a surface dominated by lactose. Surface heterogeneity provided a better indicator of functional behaviour than total surface energy. IGC is a useful complementary technique for chemical and structural analysis of milk powders and allows improved insight into the contribution of surface and bulk factors to functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fine powder flow under humid environmental conditions from the perspective of surface energy.

    Science.gov (United States)

    Karde, Vikram; Ghoroi, Chinmay

    2015-05-15

    The influence of humidity on surface energetics and flow behavior of fine pharmaceutical powders was investigated. Amorphous and crystalline fine powders with hydrophilic (Corn starch and Avicel PH105) and hydrophobic (ibuprofen) nature were considered for this study. The surface energy was determined using surface energy analyzer and flow behavior was measured in terms of unconfined yield stress (UYS) using a shear tester. The study showed that unlike hydrophobic ibuprofen powder, surface energy and flow of hydrophilic excipient powders were affected by relative humidity (RH). The Lifshitz-van der Waals dispersive (γ(LW)) component of surface energy barely changed with varying RH for all pharmaceutical powders. For hydrophilic excipients, the specific component of surface energy (γ(SP)) was found to increase with increasing RH. Furthermore, for these excipients, flow deterioration at elevated RH was observed due to increased capillary bridge formation. Detailed analysis showed that γ(SP) component of surface energy can be an effective indicator for flow behavior of fine powders under varying humid conditions. The present study also brought out the existence of different regimes of probable interparticle forces which dictate the bulk flow behavior of fine hydrophilic powder under humid conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Predicting muscle fatigue: a response surface approximation based on proper generalized decomposition technique.

    Science.gov (United States)

    Sierra, M; Grasa, J; Muñoz, M J; Miana-Mena, F J; González, D

    2017-04-01

    A novel technique is proposed to predict force reduction in skeletal muscle due to fatigue under the influence of electrical stimulus parameters and muscle physiological characteristics. Twelve New Zealand white rabbits were divided in four groups ([Formula: see text]) to obtain the active force evolution of in vitro Extensor Digitorum Longus muscles for an hour of repeated contractions under different electrical stimulation patterns. Left and right muscles were tested, and a total of 24 samples were used to construct a response surface based in the proper generalized decomposition. After the response surface development, one additional rabbit was used to check the predictive potential of the technique. This multidimensional surface takes into account not only the decay of the maximum repeated peak force, but also the shape evolution of each contraction, muscle weight, electrical input signal and stimulation protocol. This new approach of the fatigue simulation challenge allows to predict, inside the multispace surface generated, the muscle response considering other stimulation patterns, different tissue weight, etc.

  15. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  16. A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?

    Science.gov (United States)

    Monerie, Paul-Arthur; Robson, Jon; Dong, Buwen; Dunstone, Nick

    2017-10-01

    We assess the ability of the DePreSys3 prediction system to predict the summer (JJAS) surface-air temperature over North East Asia. DePreSys3 is based on a high resolution ocean-atmosphere coupled climate prediction system ( 60 km in the atmosphere and 25 km in the ocean), which is full-field initialized from 1960 to 2014 (26 start-dates). We find skill in predicting surface-air temperature, relative to a long-term trend, for 1 and 2-5 year lead-times over North East Asia, the North Atlantic Ocean and Eastern Europe. DePreSys3 also reproduces the interdecadal evolution of surface-air temperature over the North Atlantic subpolar gyre and North East Asia for both lead times, along with the strong warming that occurred in the mid-1990s over both areas. Composite analysis reveals that the skill at capturing interdecadal changes in North East Asia is associated with the propagation of an atmospheric Rossby wave, which follows the subtropical jet and modulates surface-air temperature from Europe to Eastern Asia. We hypothesise that this `circumglobal teleconnection' pattern is excited over the Atlantic Ocean and is related to Atlantic multi-decadal variability and the associated changes in precipitation over the Sahel and the subtropical Atlantic Ocean. This mechanism is robust for the 2-5 year lead-time. For the 1 year lead-time the Pacific Ocean also plays an important role in leading to skill in predicting SAT over Northeast Asia. Increased temperatures and precipitation over the western Pacific Ocean was found to be associated with a Pacific-Japan like-pattern, which can affect East Asia's climate.

  17. Nonequilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: Prediction of the Friction.

    Science.gov (United States)

    Mendonça, Ana C F; Pádua, Agílio A H; Malfreyt, Patrice

    2013-03-12

    We report nonequilibrium molecular dynamics of ionic liquids interacting with metallic surfaces. A specific set of interaction parameters for ionic liquids composed of alkylammonium cations and alkylsulfonate anions with an iron surface, which has been previously developed (J. Chem. Theory Comput.2012, 8, 3348) is used here. We develop a procedure for a quantitative prediction of the friction coefficient at different loads and shear rates. The simulated friction coefficient agrees very well with the available experimental ones. The dependence of friction on the load, shear velocity, surface topology, and length of alkyl side chains in the ionic liquid is also investigated. The changes in the frictional forces are explained in terms of the specific arrangements and orientations of groups forming the ionic liquid at the vicinity of the surface.

  18. Predicted transport of pyrethroid insecticides from an urban landscape to surface water.

    Science.gov (United States)

    Jorgenson, Brant; Fleishman, Erica; Macneale, Kate H; Schlenk, Daniel; Scholz, Nathaniel L; Spromberg, Julann A; Werner, Inge; Weston, Donald P; Xiao, Qingfu; Young, Thomas M; Zhang, Minghua

    2013-11-01

    The authors developed a simple screening-level model of exposure of aquatic species to pyrethroid insecticides for the lower American River watershed (California, USA). The model incorporated both empirically derived washoff functions based on existing, small-scale precipitation simulations and empirical data on pyrethroid insecticide use and watershed properties for Sacramento County, California, USA. The authors calibrated the model to in-stream monitoring data and used it to predict daily river pyrethroid concentration from 1995 through 2010. The model predicted a marked increase in pyrethroid toxic units starting in 2000, coincident with an observed watershed-wide increase in pyrethroid use. After 2000, approximately 70% of the predicted total toxic unit exposure in the watershed was associated with the pyrethroids bifenthrin and cyfluthrin. Pyrethroid applications for aboveground structural pest control on the basis of suspension concentrate categorized product formulations accounted for greater than 97% of the predicted total toxic unit exposure. Projected application of mitigation strategies, such as curtailment of structural perimeter band and barrier treatments as recently adopted by the California Department of Pesticide Regulation, reduced predicted total toxic unit exposure by 84%. The model also predicted that similar reductions in surface-water concentrations of pyrethroids could be achieved through a switch from suspension concentrate-categorized products to emulsifiable concentrate-categorized products without restrictions on current-use practice. Even with these mitigation actions, the predicted concentration of some pyrethroids would continue to exceed chronic aquatic life criteria. © 2013 SETAC.

  19. Constructing a multidimensional free energy surface like a spider weaving a web.

    Science.gov (United States)

    Chen, Changjun

    2017-10-15

    Complete free energy surface in the collective variable space provides important information of the reaction mechanisms of the molecules. But, sufficient sampling in the collective variable space is not easy. The space expands quickly with the number of the collective variables. To solve the problem, many methods utilize artificial biasing potentials to flatten out the original free energy surface of the molecule in the simulation. Their performances are sensitive to the definitions of the biasing potentials. Fast-growing biasing potential accelerates the sampling speed but decreases the accuracy of the free energy result. Slow-growing biasing potential gives an optimized result but needs more simulation time. In this article, we propose an alternative method. It adds the biasing potential to a representative point of the molecule in the collective variable space to improve the conformational sampling. And the free energy surface is calculated from the free energy gradient in the constrained simulation, not given by the negative of the biasing potential as previous methods. So the presented method does not require the biasing potential to remove all the barriers and basins on the free energy surface exactly. Practical applications show that the method in this work is able to produce the accurate free energy surfaces for different molecules in a short time period. The free energy errors are small in the cases of various biasing potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Predicting protein-protein interface residues using local surface structural similarity

    Directory of Open Access Journals (Sweden)

    Jordan Rafael A

    2012-03-01

    Full Text Available Abstract Background Identification of the residues in protein-protein interaction sites has a significant impact in problems such as drug discovery. Motivated by the observation that the set of interface residues of a protein tend to be conserved even among remote structural homologs, we introduce PrISE, a family of local structural similarity-based computational methods for predicting protein-protein interface residues. Results We present a novel representation of the surface residues of a protein in the form of structural elements. Each structural element consists of a central residue and its surface neighbors. The PrISE family of interface prediction methods uses a representation of structural elements that captures the atomic composition and accessible surface area of the residues that make up each structural element. Each of the members of the PrISE methods identifies for each structural element in the query protein, a collection of similar structural elements in its repository of structural elements and weights them according to their similarity with the structural element of the query protein. PrISEL relies on the similarity between structural elements (i.e. local structural similarity. PrISEG relies on the similarity between protein surfaces (i.e. general structural similarity. PrISEC, combines local structural similarity and general structural similarity to predict interface residues. These predictors label the central residue of a structural element in a query protein as an interface residue if a weighted majority of the structural elements that are similar to it are interface residues, and as a non-interface residue otherwise. The results of our experiments using three representative benchmark datasets show that the PrISEC outperforms PrISEL and PrISEG; and that PrISEC is highly competitive with state-of-the-art structure-based methods for predicting protein-protein interface residues. Our comparison of PrISEC with PredUs, a recently

  1. First principles predictions of electron tunneling rates between atoms and crystalline surfaces

    Science.gov (United States)

    Neidfeldt, Keith

    Charge transfer is a critical process that controls many important reactions such as photosynthesis, corrosion, and catalysis. We developed a quantitative method for calculating charge transfer rates using periodic density functional theory (DFT). This approach allows us to model from first principles the interaction between an adsorbate and arbitrary material surfaces. By deconvoluting the projected density of states of the ionization level of the atom, we can determine its width, which is proportional to the charge transfer rate. These rates can be used to predict important properties such as adsorbate excited state lifetimes and neutralization fractions for scattered ions. By comparing neutralization fractions for Li scattering off of Al(001) to experimental data, we validated our first principles method of predicting charge transfer rates. While our results are consistent with the classic Langmuir-Gurney (LG) model of adsorption for nearly-free-electron-like metal surfaces, we find several important deviations caused by the actual electronic structure of more complicated material surfaces. For example, we find that the d-band of transition metal surfaces mediates an intra-atomic hybridization of the Li ionization level. Secondly, we find that surface-projected band gaps (e.g., in Cu(111)) enhance the lifetimes of alkali atoms above surfaces containing such band gaps. In addition, our method allows us to also study atoms interacting with non-metallic surfaces where the LG model does not apply. For example, we find that alkali charge transfer rates are controlled by dangling bonds on covalently-bonded surfaces (e.g., Si(001)-(2xl)) instead of by the traditional image potential.

  2. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    OpenAIRE

    Prokhorenko Valentyn I.; Morizumi Takefumi; Halpin Alexei; Johnson Philip J. M.; Ernst Oliver P.; Dwayne Miller R. J.

    2013-01-01

    We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP) mode.

  3. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Prokhorenko Valentyn I.

    2013-03-01

    Full Text Available We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP mode.

  4. Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from lagrangian drifters

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Saji, P.K.; Almeida, A.M.

    Trajectories of 412 satellite-tracked drifting buoys deployed in the tropical Indian Ocean have been analyzed to document the surface circulation and kinetic energy field. Only drifters drogued at 15 m depth and having drag area ratio greater than...

  5. The PyPES library of high quality semi-global potential energy surfaces.

    Science.gov (United States)

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-05

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib. © 2015 Wiley Periodicals, Inc.

  6. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  7. Relation between bulk compressibility and surface energy of electron-hole liquids

    International Nuclear Information System (INIS)

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  8. Latent Heat Flux Estimate Through an Energy Water Balance Model and Land Surface Temperature from Remote Sensing

    Science.gov (United States)

    Corbari, Chiara; Sobrino, Jose A.; Mancini, Marco; Hidalgo, Victoria

    2011-01-01

    Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of precipitation between runoff and infiltration. Moreover, surface soil moisture controls the redistribution of the incoming solar radiation on land surface into sensible and latent heat fluxes. Recent developments have been made to improve soil moisture dynamics predictions with hydrologic land surface models (LSMs) that compute water and energy balances between the land surface and the low atmosphere. However, most of the time soil moisture is confined to an internal numerical model variable mainly due to its intrinsic space and time variability and to the well known difficulties in assessing its value from remote sensing as from in situ measurements. In order to exploit the synergy between hydrological distributed models and thermal remote sensed data, FEST-EWB, a land surface model that solves the energy balance equation, was developed. In this hydrological model, the energy budget is solved looking for the representative thermodynamic equilibrium temperature (RET) defined as the land surface temperature that closes the energy balance equation. So using this approach, soil moisture is linked to the latent heat flux and then to LST. In this work the relationship between land surface temperature and soil moisture is analysed using LST from AHS (airborne hyperspectral scanner), with a spatial resolution of 2-4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the thermodynamic equilibrium temperature from the energy water balance model. Moreover soil moisture measurements were carried out during the airborne overpasses and then compared with SM from the hydrological model. An improvement of this well known inverse relationship between soil moisture and land surface temperature is obtained when the thermodynamic approach is used. The analysis of the scale effects of the different

  9. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  10. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  11. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chinnadurai, T.; Vendan, S.A.

    2016-07-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  12. Heart rate during basketball game play and volleyball drills accurately predicts oxygen uptake and energy expenditure.

    Science.gov (United States)

    Scribbans, T D; Berg, K; Narazaki, K; Janssen, I; Gurd, B J

    2015-09-01

    There is currently little information regarding the ability of metabolic prediction equations to accurately predict oxygen uptake and exercise intensity from heart rate (HR) during intermittent sport. The purpose of the present study was to develop and, cross-validate equations appropriate for accurately predicting oxygen cost (VO2) and energy expenditure from HR during intermittent sport participation. Eleven healthy adult males (19.9±1.1yrs) were recruited to establish the relationship between %VO2peak and %HRmax during low-intensity steady state endurance (END), moderate-intensity interval (MOD) and high intensity-interval exercise (HI), as performed on a cycle ergometer. Three equations (END, MOD, and HI) for predicting %VO2peak based on %HRmax were developed. HR and VO2 were directly measured during basketball games (6 male, 20.8±1.0 yrs; 6 female, 20.0±1.3yrs) and volleyball drills (12 female; 20.8±1.0yrs). Comparisons were made between measured and predicted VO2 and energy expenditure using the 3 equations developed and 2 previously published equations. The END and MOD equations accurately predicted VO2 and energy expenditure, while the HI equation underestimated, and the previously published equations systematically overestimated VO2 and energy expenditure. Intermittent sport VO2 and energy expenditure can be accurately predicted from heart rate data using either the END (%VO2peak=%HRmax x 1.008-17.17) or MOD (%VO2peak=%HRmax x 1.2-32) equations. These 2 simple equations provide an accessible and cost-effective method for accurate estimation of exercise intensity and energy expenditure during intermittent sport.

  13. Low energy ionization effect of He atoms at surfaces

    Science.gov (United States)

    Muda, Y.; Newns, D. M.

    1988-06-01

    The low energy ionization effect, which seems so surprising on the basis of the Massey criterion, has been explained by a dynamical calculation working with a diabatic 1s level of He whose behaviour is determined from the projectile-target correlation diagram. Quasi-realistic hopping matrix elements and the He trajectory based on a Molière potential are employed. Using a spinless time dependent Newns-Anderson Hamiltonian, the ionization probability Pion has been calculated exactly within the present model by the method of Muda and Hanawa. It is found that Pion amounts to a significant value even at low incident energies ( E0) below 1 keV in He → Si collision, where the Si substrate is represented by a linear chain (LC) of 30 Si 3s orbitals. In He → Cu collision, where the Cu substrate is approximated by a LC of 30 Cu 4s orbitals, Pion is very small for E0 below 1 keV, but it is appreciable above 1 keV. The ratio of Pion( Cu)/ Pion(Si) in the region 1 ≦ E0 ≦ 2 keV is in good agreement with that derived from a recent experiment.

  14. Protein-Nanoparticle Interactions: Improving Immobilized Lytic Enzyme Activity and Surface Energy Effects

    Science.gov (United States)

    Downs, Emily Elizabeth

    Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein

  15. Wrinkling Prediction in Deep Drawing by Using Response Surface Methodology and Artificial Neural Network

    OpenAIRE

    Rafizadeh, Hossein; Azimifar, Farhad; Foode, Puya; Foudeh, Mohammad Reza; Keymanesh, Mohammad

    2017-01-01

    The objective of this study is to predict influences of tooling parameters such as die and punch radius, blank holder force and friction coefficient between the die and the blank surfaces in a deep drawing process on the wrinkling height in aluminium AA5754 by using the response surface methodology (RSM) and an artificial neural network (ANN). The 3D finite element method (FEM), i.e. the Abaqus software, is employed to model the deep drawing process. In order to investigate the accuracy of th...

  16. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  17. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J.; Sánchez, M. Jesús; Martínez-Ramírez, S.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  18. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw

    Evaporation of water from soil and its transpiration by vegetation together form a ux between the land and the atmosphere called evapotranspiration (ET). ET is a key factor in many natural and anthropogenic processes. It forms the basis of the hydrological cycle and has a strong inuence on local...... climate, weather and numerous biophysical processes, such as plant productivity. As energy is required for ET to occur, it also forms a link between the land-surface energy uxes and water uxes. Therefore, to be able to obtain reliable estimates of ET, reliable estimates of the other land-surface energy...... of this study was to look at, and improve, various approaches for modelling the land-surface energy uxes at different spatial scales. The work was done using physically-based Two-Source Energy Balance (TSEB) approach as well as semi-empirical \\Triangle" approach. The TSEB-based approach was the main focus...

  19. Changes in surface energy partitioning in China over the past three decades

    Science.gov (United States)

    Qian, Yitian; Hsu, Pang-Chi; Cheng, Chi-Han

    2017-05-01

    Surface energy balance and the partitioning of sensible heat flux (SHF) and latent heat flux (LHF) play key roles in land-atmosphere feedback. However, the lack of long-term observations of surface energy fluxes, not to mention spatially extensive ones, limits our understanding of how the surface energy distribution has responded to a warming climate over recent decades (1979-2009) at the national scale in China. Using four state-of-the-art reanalysis products with long-term surface energy outputs, we identified robust changes in surface energy partitioning, defined by the Bowen ratio (BR = SHF/LHF), over different climate regimes in China. Over the past three decades, the net radiation showed an increasing trend over almost the whole of China. The increase in available radiative energy flux, however, was balanced by differential partitioning of surface turbulent fluxes, determined by local hydrological conditions. In semi-arid areas, such as Northeast China, the radiative energy was transferred largely into SHF. A severe deficiency in near-surface and soil moistures led to a significant decreasing trend in LHF. The combined effect of increased SHF and decreased LHF resulted in significant upward trends in the BR and surface warming over Northeast China. In contrast, in the wet monsoon regions, such as southern China, increased downward net radiation favored a rise in LHF rather than in SHF, leading to a significant decreasing trend in the BR. Meanwhile, the increased LHF partly cancelled out the surface warming. The warming trend in southern China was smaller than that in Northeast China. In addition to impacts on heat-related events, the changes in the BR also reflected recent cases of extreme drought in China. Our results indicate that information regarding the BR may be valuable for drought monitoring, especially in regions prone to such conditions.

  20. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches

    Directory of Open Access Journals (Sweden)

    Reza Rawassizadeh

    2015-09-01

    Full Text Available As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.