WorldWideScience

Sample records for surface energy density

  1. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  2. Improved DFT Potential Energy Surfaces via Improved Densities.

    Science.gov (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  3. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  4. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  5. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    Science.gov (United States)

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  6. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  7. Potential energy surface of the reaction of imidazole with peroxynitrite: Density functional theory study

    Science.gov (United States)

    Gogonea, Valentin

    This article presents a theoretical investigation of the reaction mechanism of imidazole nitration by peroxynitrite using density functional theory calculations. Understanding this reaction mechanism will help in elucidating the mechanism of guanine nitration by peroxynitrite, which is one of the assumed chemical pathways for damaging DNA in cells. This work focuses on the analysis of the potential energy surface (PES) for this reaction in the gas phase. Calculations were carried out using Hartree-Fock (HF) and density functional theory (DFT) Hamiltonians with double-zeta basis sets ranging from 6-31G(d) to 6-31++G(d,p), and the triple-zeta basis set 6-311G(d). The computational results reveal that the reaction of imidazole with peroxynitrite in gas phase produces the following species: (i) hydroxide ion and 2-nitroimidazole, (ii) hydrogen superoxide ion and 2-nitrosoimidazole, and (iii) water and 2-nitroimidazolide. The rate-determining step is the formation of a short-lived intermediate in which the imidazole C2 carbon is covalently bonded to peroxynitrite nitrogen. Three short-lived intermediates were found in the reaction path. These intermediates are involved in a proton-hopping transport from C2 carbon to the terminal oxygen of the OO moiety of peroxynitrite via the nitroso (ON) oxygen. Both HF and DFT calculations (using the Becke3-Lee-Yang-Parr functional) lead to similar reaction paths for proton transport, but the landscape details of the PES for HF and DFT calculations differ. This investigation shows that the reaction of imidazole with peroxynitrite produces essentially the same types of products (nitro- and nitroso-) as observed experimentally in the reaction of guanine with peroxynitrite, which makes the former reaction a good model to study by computation the essential characteristics of the latter reaction. Nevertheless, the computationally determined activation energy for imidazole nitration by peroxynitrite in the gas phase is 84.1 kcal

  8. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by mea...

  9. Active Free Surface Density Maps

    Science.gov (United States)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  10. Energy band structure, fermi surfaces, magnetization densities, and properties of the rare-earths and actinides

    International Nuclear Information System (INIS)

    Freeman, A.J.

    1977-01-01

    Some aspects of the predictions of energy band theory for both the rare earths and actinides and their comparison with experiment are discussed. Recent developments in assessing eigenfunction behavior are emphasized. 5 figures

  11. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  12. Nuclear Energy Density Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kortelainen, Erno M [ORNL; Lesinski, Thomas [ORNL; More, J. [Argonne National Laboratory (ANL); Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Sarich, J. [Argonne National Laboratory (ANL); Schunck, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Wild, S. [Argonne National Laboratory (ANL)

    2010-01-01

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  13. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  14. General Fit-Basis Functions and Specialized Coordinates in an Adaptive Density-Guided Approach to Potential Energy Surfaces

    DEFF Research Database (Denmark)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide

    . This results in a decreased number of single point calculations required during the potential construction. Especially the Morse-like fit-basis functions are of interest, when combined with rectilinear hybrid optimized and localized coordinates (HOLCs), which can be generated as orthogonal transformations......The overall shape of a molecular energy surface can be very different for different molecules and different vibrational coordinates. This means that the fit-basis functions used to generate an analytic representation of a potential will be met with different requirements. It is therefore worthwhile...... single point calculations when constructing the molecular potential. We therefore present a uniform framework that can handle general fit-basis functions of any type which are specified on input. This framework is implemented to suit the black-box nature of the ADGA in order to avoid arbitrary choices...

  15. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  16. Block-Localized Density Functional Theory (BLDFT), Diabatic Coupling, and Their Use in Valence Bond Theory for Representing Reactive Potential Energy Surfaces

    Science.gov (United States)

    Cembran, Alessandro; Song, Lingchun; Mo, Yirong; Gao, Jiali

    2010-01-01

    A multistate density functional theory in the framework of the valence bond model is described. The method is based on a block-localized density functional theory (BLDFT) for the construction of valence-bond-like diabatic electronic states and is suitable for the study of electron transfer reactions and for the representation of reactive potential energy surfaces. The method is equivalent to a valence bond theory with the treatment of the localized configurations by using density functional theory (VBDFT). In VBDFT, the electron densities and energies of the valence bond states are determined by BLDFT. A functional estimate of the off-diagonal matrix elements of the VB Hamiltonian is proposed, making use of the overlap integral between Kohn–Sham determinants and the exchange-correlation functional for the ground state substituted with the transition (exchange) density. In addition, we describe an approximate approach, in which the off-diagonal matrix element is computed by wave function theory using block-localized Kohn–Sham orbitals. The key feature is that the electron density of the adiabatic ground state is not directly computed nor used to obtain the ground-state energy; the energy is determined by diagonalization of the multistate valence bond Hamiltonian. This represents a departure from the standard single-determinant Kohn–Sham density functional theory. The multistate VBDFT method is illustrated by the bond dissociation of H2+ and a set of three nucleophilic substitution reactions in the DBH24 database. In the dissociation of H2+, the VBDFT method yields the correct asymptotic behavior as the two protons stretch to infinity, whereas approximate functionals fail badly. For the SN2 nucleophilic substitution reactions, the hybrid functional B3LYP severely underestimates the barrier heights, while the approximate two-state VBDFT method overcomes the self-interaction error, and overestimates the barrier heights. Inclusion of the ionic state in a three

  17. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  18. High energy density laboratory astrophysics

    International Nuclear Information System (INIS)

    Remington, Bruce A

    2005-01-01

    High energy density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued at these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets and accreting compact objects (such as neutron stars and black holes). In this paper, we review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade

  19. Relationships between the distribution of O atoms on partially oxidized metal (Al, Ag, Cu, Ti, Zr, Hf) surfaces and the adsorption energy: A density-functional theory study

    Science.gov (United States)

    Houska, J.; Kozak, T.

    2017-06-01

    We investigate the oxidation of selected metal (Al, Ag, Cu, Ti, Zr, and Hf) surfaces by the density functional theory. We go through a wide range of (233 per metal) distributions of O atoms on a partially oxidized metal surface. First, we focus on the qualitative information whether the preferred distribution of O atoms is heterogeneous (stoichiometric oxide + metal) or homogeneous (substoichiometric oxide). We find that the former is energetically preferred, e.g., for Al, while the latter is energetically preferred, e.g., for Ti, Zr, and Hf. Second, we provide the quantitative values of adsorption energies corresponding to the energetically preferred O atom distributions for various partial coverages of various metals by O. Third, we discuss and show an example of implications of the aforementioned findings for the understanding and simulations of sputtering.

  20. States of high energy density

    International Nuclear Information System (INIS)

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  1. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    Science.gov (United States)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  2. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    Abstract. The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy ...

  3. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    Science.gov (United States)

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-12-12

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.

  4. Employing general fit-bases for construction of potential energy surfaces with an adaptive density-guided approach

    Science.gov (United States)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove

    2018-02-01

    We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.

  5. STIR Proposal For Research Area 2.1.2 Surface Energy Balance: Transient Soil Density Impacts Land Surface Characteristics and Characterization

    Science.gov (United States)

    2015-12-22

    and K.J. Coughlam. 1976. The nature of changes in bulk density with water content in a cracking clay . Aust. J. Soil Res. 15:27-37. Brooks, R. H... density . Parameter Bulk density Mg m -3 1.1 1.25 1.4 Clay loam r 0.091 0.088 0.084 s 0.522 0.480 0.441 Ks (cm d -1 ) 53.2 22.5 9.6 Silt... density = 1.25 Mg m-3 were estimated with ROSETTA (Schaap et al., 2001). Parameter Bulk density Mg m -3 1.1 1.25 1.4 Clay loam r 0.080 0.088

  6. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  7. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...

  8. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    dissociation of these groups, result into a pH dependent surface charge whose density can be measured by acid-base titration. The surface charge density determined by such method is essentially measured relative to the unknown condition of the oxide/liquid interface prior to reagent addition (i.e. at the point of zero ...

  9. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    2014-04-30

    Apr 30, 2014 ... The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry ...

  10. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    Abstract. We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at z = 3.32 Å. It was observed ...

  11. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the ...

  12. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  13. Density and surface tension of ionic liquids.

    Science.gov (United States)

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

    2010-12-30

    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS.

  14. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  15. High Energy Density Capacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  16. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  17. Energy density of marine pelagic fish eggs

    DEFF Research Database (Denmark)

    Riis-Vestergaard, J.

    2002-01-01

    Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul...

  18. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    CNMs (0.7 mg/cm2) as compared to metallic foils (5-10 mg/cm2). We show that the energy density of the fully foldable battery with CMF current collectors can be up to 2-fold higher than conventional LIBs at realistic mass loading (5mg/cm2) of the electrode materials. Therefore, not only does the CMF impart shape conformability, it also significantly boosts the energy density of the device by removing the dead weight of the batteries. Silicon (Si) shows enormous potential as the next generation anode material in Lithium-ion batteries due to its high energy denisty. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. Such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. In Chapters 4 and 5, we propose two solutions to incorporate Si films in foldable batteries. We show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current-collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface by creating a slippery interface and reducing the stress transfer across the interface. The graphene-draped Si films on CNM exhibit long cycle life (> 1000 charge/discharge steps) with an average specific capacity of 806 mAh/g. The volumetric capacity averaged over 1000 cycles of charge/discharge is 2821 mAh/cm3 which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration. In Chapter 5, an alternate strategy has been explored to stabilize

  19. Diffuse Waves and Energy Densities Near Boundaries

    Science.gov (United States)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  20. Energy density of marine pelagic fish eggs

    DEFF Research Database (Denmark)

    Riis-Vestergaard, J.

    2002-01-01

    Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul......(-1) of total egg volume is derived for most species spawning eggs without visible oil globules. The energy density of eggs with oil globules is predicted by (σ) over cap = 1.34 + 40.61 x (J mul(-1)) where x is the fractional volume of the oil globule. (C) 2002 The Fisheries Society of the British...

  1. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  2. Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  3. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...... amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  4. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  5. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...... inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical...... accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are

  6. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    KAUST Repository

    Jedidi, Abdesslem

    2015-11-13

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  7. Condensation energy density in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Matsushita, Teruo; Kiuchi, Masaru; Haraguchi, Teruhisa; Imada, Takeki; Okamura, Kazunori; Okayasu, Satoru; Uchida, Satoshi; Shimoyama, Jun-ichi; Kishio, Kohji

    2006-01-01

    The relationship between the condensation energy density and the anisotropy parameter, γ a , has been derived for Bi-2212 superconductors in various anisotropic states by analysing the critical current density due to columnar defects introduced by heavy ion irradiation. The critical current density depended on the size of the defects, determined by the kind and irradiation energy of the ions. A significantly large critical current density of 17.0 MA cm -2 was obtained at 5 K and 0.1 T even for the defect density of a matching field of 1 T in a specimen irradiated with iodine ions. The dependence of the critical current density on the size of the defects agreed well with the prediction from the summation theory of pinning forces, and the condensation energy density could be obtained consistently from specimens irradiated with different ions. The condensation energy density obtained increased with decreasing γ a over the entire range of measurement temperature, and reached about 60% of the value for the most three-dimensional Y-123 observed by Civale et al at 5 K. This gives the reason for the very strong pinning in Bi-2212 superconductors at low temperatures. The thermodynamic critical field obtained decreased linearly with increasing temperature and extrapolated to zero at a certain characteristic temperature, T * , lower than the critical temperature, T c . T * , which seems to be associated with the superconductivity in the block layers, was highest for the optimally doped specimen. This shows that the superconductivity becomes more inhomogeneous as the doped state of a superconductor deviates from the optimum condition

  8. Density dependence of the nuclear energy-density functional

    Science.gov (United States)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  9. NEW CONCEPTS AND TEST METHODS OF CURVE PROFILE AREA DENSITY IN SURFACE: ESTIMATION OF AREAL DENSITY ON CURVED SPATIAL SURFACE

    OpenAIRE

    Hong Shen

    2011-01-01

    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...

  10. Instabilities in the Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Kortelainen, Erno M [ORNL; Lesinski, Thomas [ORNL

    2010-01-01

    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

  11. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  12. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  13. Energy density and localization of particles

    OpenAIRE

    Terno, Daniel R.

    2002-01-01

    We consider the use of the energy density for describing a localization of relativistic particles. This method is consistent with the causality requirements. The related positive operator valued measure is presented. The probability distributions for one particle states are given explicitly.

  14. Strongly Interacting Matter at High Energy Density

    International Nuclear Information System (INIS)

    McLerran, L.

    2008-01-01

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N c arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma

  15. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  16. Effects of rational surface density on resistive g turbulence

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Sugama, H.; Horton, W.

    1993-01-01

    The Beklemishev-Horton theory states that the anomalous transport coefficient is proportional to the density of rational surfaces provided that the interaction between the modes localized around different rational surfaces is weak compared with modes of the same helicity. The authors examine the effects of the density of states ρ using resistive g turbulence in 2D (single-helicity) and 3D (multi-helicity) simulations. They find that the modes with different helicities do not equipartition the available energy, but rather the coalescence or inverse cascade effect is strong so that a few low order mode rational surfaces receive most of the energy. The quasilinear flattening at the surfaces is a strong effect and they use bifurcation theory to derive that the effective diffusivity increases as χ eff = χ 0 ρ/(1 - Cρ) where C is a constant determined by interaction integrals. For a sufficiently high density of states Cρ ≤ 1, the higher order nonlinear interaction must be taken into account

  17. High energy density, long life energy storage capacitor dielectric system

    International Nuclear Information System (INIS)

    Nichols, D.H.; Wilson, S.R.

    1977-01-01

    The evolution of energy storage dielectric systems shows a dramatic improvement in life and joule density, culminating in a 50% to 300% life improvement of polypropylene film-paper-phthalate ester over paper-castor oil depending on service. The physical and electrical drawbacks of castor oil are not present in the new system, allowing the capacitor designer to utilize the superior insulation resistance, dielectric strength, and corona resistance to full advantage. The result is longer life for equal joule density or greater joule density for equal life. Field service proof of the film-Geconol system superiority is based on 5 megajoule in operation and 16 megajoule on order

  18. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  19. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  20. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries.

    Science.gov (United States)

    Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong

    2018-01-01

    Li/CF x is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GF x ) with superior performance through a direct gas fluorination method. We find that the so-called "semi-ionic" C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GF x in comparison with sp 2 C content in the GF x , morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GF x decreases. Thus, by optimizing semi-ionic C-F content in our GF x , we obtain the optimal x of 0.8, with which the GF 0.8 exhibits a very high energy density of 1,073 Wh kg -1 and an excellent power density of 21,460 W kg -1 at a high current density of 10 A g -1 . More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  1. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry.

    Science.gov (United States)

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S

    2017-03-15

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to

  2. The economics of obesity: dietary energy density and energy cost.

    Science.gov (United States)

    Drewnowski, Adam; Darmon, Nicole

    2005-07-01

    Highest rates of obesity and diabetes in the United States are found among the lower-income groups. The observed links between obesity and socioeconomic position may be related to dietary energy density and energy cost. Refined grains, added sugars, and added fats are among the lowest-cost sources of dietary energy. They are inexpensive, good tasting, and convenient. In contrast, the more nutrient-dense lean meats, fish, fresh vegetables, and fruit generally cost more. An inverse relationship between energy density of foods (kilojoules per gram) and their energy cost (dollars per megajoule) means that the more energy-dense diets are associated with lower daily food consumption costs and may be an effective way to save money. However, economic decisions affecting food choice may have physiologic consequences. Laboratory studies suggest that energy-dense foods and energy-dense diets have a lower satiating power and may result in passive overeating and therefore weight gain. Epidemiologic analyses suggest that the low-cost energy-dense diets also tend to be nutrient poor. If the rise in obesity rates is related to the growing price disparity between healthy and unhealthy foods, then the current strategies for obesity prevention may need to be revised. Encouraging low-income families to consume healthier but more costly foods to prevent future disease can be construed as an elitist approach to public health. Limiting access to inexpensive foods through taxes on frowned upon fats and sweets is a regressive measure. The broader problem may lie with growing disparities in incomes and wealth, declining value of the minimum wage, food imports, tariffs, and trade. Evidence is emerging that obesity in America is a largely economic issue.

  3. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively....... Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence...

  4. Observable to explore high density behaviour of symmetry energy

    OpenAIRE

    Sood, Aman D.

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  5. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  6. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  7. Energy loss of light ions scattered off Al(110) single crystal surfaces at low energy

    NARCIS (Netherlands)

    Hausmann, S; Hofner, C; Schlathölter, Thomas; Franke, H; Narmann, A; Heiland, W

    We present energy loss data taken after grazing incidence scattering of H+, H-0, He2+, He+, and He-0 off an Al(110) surface, The data is evaluated by means of a procedure that allows to extract surface electron density parameters. The obtained density parameters will be compared to those obtained

  8. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    . ... include manufacture of aerospace housing, automotive and jet engines and lead acid batteries. [2]. In specialised ... diameter of one hydrated ion) from the surface of the oxide (ψd) are normally measured through methods such as ...

  9. Energy density and energy flow of plasmonic waves in bilayer graphene

    Science.gov (United States)

    Moradi, Afshin

    2017-07-01

    The propagation of plasmonic waves in bilayer graphene is studied based on the classical electrodynamics. The interactions between conduction electrons confined to move on the surface of each layer are taken into account via the two-dimensional linearized hydrodynamic model. The energy theorem of electrodynamics is cast in a form which yields expressions for energy density and energy flow of p-polarized surface plasmon polariton waves in bilayer graphene. Numerical results show that the presence of two layers causes the appearance of two branches in the dispersion relation that introduce alterations in the physical behavior of the energy, power flow and the energy transport velocity, in comparison with the results of monolayer graphene.

  10. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...... and resampling. This is illustrated by searching for meta-GGA type functionals that outperform current meta-GGAs while allowing for error estimation....

  11. Density content of nuclear symmetry energy from nuclear observables

    Indian Academy of Sciences (India)

    The density content of nuclear symmetry energy remains poorly constrained. Our recent results for the density content of the nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are.

  12. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  13. Building a Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  14. Biofilm Surface Density Determines Biocide Effectiveness

    Directory of Open Access Journals (Sweden)

    Sara Bas

    2017-12-01

    Full Text Available High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones.

  15. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  16. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...

  17. Estimation of the space density of low surface brightness galaxies

    NARCIS (Netherlands)

    Briggs, FH

    1997-01-01

    The space density of low surface brightness and tiny gas-rich dwarf galaxies are estimated for two recent catalogs: the Arecibo Survey of Northern Dwarf and Low Surface Brightness Galaxies and the Catalog of Low Surface Brightness Galaxies, List II. The goals are (1) to evaluate the additions to the

  18. Energy density of relic gravity waves from inflation

    International Nuclear Information System (INIS)

    Sahni, V.

    1990-01-01

    We evaluate both the spectral energy density and the total energy density for relic gravity waves produced during the transition from an early inflationary phase to a matter-dominated Friedmann-Robertson-Walker-type expansion: a∼t c (c μν =8πG left-angle T μν right-angle. In the case of power-law and quasiexponential inflation we find that the ratio of the energy density of gravity waves to the background matter density increases with time, as gravity waves with longer wavelengths and larger amplitudes enter the horizon at successively later epochs. This could lead to the energy density of gravity waves becoming comparable to the energy density of matter at late times, if inflation commenced at Planckian energies

  19. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  20. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  1. Analysis of surface degradation of high density polyethylene (HDPE ...

    Indian Academy of Sciences (India)

    Unknown

    Analysis of surface degradation of high density polyethylene (HDPE) insulation ... ammonium chloride as the contaminant, in high density polyethylene ..... liquid in the material. When diffusion is driven by the concentration gradient and if there is no chemical change between liquid and material, this would result in mass.

  2. Energy Density and Weight Loss: Feel Full on Fewer Calories

    Science.gov (United States)

    ... categories in the Mayo Clinic Healthy Weight Pyramid. Vegetables Most vegetables are very low in calories but ... relationship between dietary energy density and energy intake. Physiology & Behavior. 2009;97:609. Rouhani MH, et al. ...

  3. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  4. Bond energy decomposition analysis for subsystem density functional theory

    NARCIS (Netherlands)

    Beyhan, S.M.; Gotz, A.W.; Visscher, L.

    2013-01-01

    We employed an explicit expression for the dispersion (D) energy in conjunction with Kohn-Sham (KS) density functional theory and frozen-density embedding (FDE) to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein

  5. Device for radiometric measurement, e.g. of surface density

    International Nuclear Information System (INIS)

    Gregor, J.; Kopl, F.

    1973-01-01

    A design is described of a device for radiometric measurements, such as of material surface density, thickness of coating layers, surface moisture, and for the analysis of chemical composition. The device uses backscattered radiation indicated by two ionization chambers with gas filling; the radiation source is placed in between the chambers. (J.K.)

  6. Clustering and Symmetry Energy in a Low Density Nuclear Gas

    International Nuclear Information System (INIS)

    Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.

    2007-01-01

    Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation

  7. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    Science.gov (United States)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  8. Trivial constraints on orbital-free kinetic energy density functionals

    Science.gov (United States)

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  9. Mineral micronutrient density characterization using energy ...

    African Journals Online (AJOL)

    A Clustered-Bar-Graphing test was used to obtain Ca, K, Fe, Zn, Cu, Mn as variation-picking elements which were turned into MRS X-variables upon which fruit species mineral-density variation was determined. Significant (p < 0.05) FMDVAR x MRS and phyto-region x FMDVAR interactions were detected. Rhus spp had ...

  10. Estimation on Local Energy Density in Relativistic Heavy Ion Collisions

    Science.gov (United States)

    Ma, Zhong-Biao; Miao, Hong; Gao, Chong-Shou

    2003-02-01

    Energy density for the central region in relativistic heavy ion collisions can be estimated via the pseudorapidity distribution of transverse energy. The way to estimate the local energy density for the central region in relativistic heavy ion collisions is proposed, in which only final state particles emitted from the same source are included. The arrived energy density in NA49 experiments is about 1.03 GeV/fm3. The project supported in part by National Natural Science Foundation of China under Grant No. 90103019, and the Doctoral Program Foundation of Institution of Higher Education, the National Education Commission of China under Grant No. 2000000147

  11. Determination of electron density, mass density and calcium fraction by mass of soft and osseous tissues by dual energy CT

    International Nuclear Information System (INIS)

    Henson, P.W.

    1989-01-01

    Techniques of CT analysis of trabecular regions are concerned with bone mineral assessment, with considerable attention being paid to the effect of unknown fat content. Information concerning mass density and electron density might provide a more complete picture but is not normally obtained. A method for the calculation of mass and electron density, as well as the fraction of calcium by mass, is described and requires only a measurement of effective beam energy on the skin in addition to the CT numbers from a dual energy scan. The method uses the six major elements, H, C, N, O, P and Ca as compartments for the analysis and can also be applied to soft tissue by using only the first four. The calculated mass fraction of Ca is found to be sensitive to fat content and difference between surface and internal energies which can lead to serious underestimates below a fraction of about 0.04. Mass and electron density results are independent of fat content and only marginally affected by energy differences. Results were obtained with simple materials confirming mass density can be calculated to the order of 3% and electron density to considerably better than 1%. 23 refs., 8 tabs

  12. Fast foods, energy density and obesity: a possible mechanistic link.

    Science.gov (United States)

    Prentice, A M; Jebb, S A

    2003-11-01

    Fast foods are frequently linked to the epidemic of obesity, but there has been very little scientific appraisal of a possible causal role. Here we review a series of studies demonstrating that the energy density of foods is a key determinant of energy intake. These studies show that humans have a weak innate ability to recognise foods with a high energy density and to appropriately down-regulate the bulk of food eaten in order to maintain energy balance. This induces so called 'passive over-consumption'. Composition data from leading fast food company websites are then used to illustrate that most fast foods have an extremely high energy density. At some typical outlets the average energy density of the entire menus is approximately 1100 kJ 100 g(-1). This is 65% higher than the average British diet (approximately 670 kJ 100 g(-1)) and more than twice the energy density of recommended healthy diets (approximately 525 kJ 100 g(-1)). It is 145% higher than traditional African diets (approximately 450 kJ 100 g(-1)) that probably represent the levels against which human weight regulatory mechanisms have evolved. We conclude that the high energy densities of many fast foods challenge human appetite control systems with conditions for which they were never designed. Among regular consumers they are likely to result in the accidental consumption of excess energy and hence to promote weight gain and obesity.

  13. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2009-01-05

    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  14. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  15. Dietary energy density and the metabolic syndrome among Iranian women.

    Science.gov (United States)

    Esmaillzadeh, A; Azadbakht, L

    2011-05-01

    In a comparison of women worldwide, Iranian women were found to have the highest prevalence of the metabolic syndrome. Furthermore, specific characteristics of diet in Middle-Eastern countries might provide additional information on the diet-disease relations. This study was performed to assess the association between dietary energy density and prevalence of the metabolic syndrome among Iranian women. Usual dietary intakes were assessed in a cross-sectional study of 486 Iranian adult women by the use of a food frequency questionnaire. Dietary energy density was calculated as each individual's reported daily energy intake (kcal/d) into total weight of foods (excluding beverages) consumed (g/d). Anthropometric measures, fasting plasma glucose, serum lipid profiles and blood pressure were evaluated. The metabolic syndrome was defined according to Adult Treatment Panel III guidelines. Mean dietary energy density was 1.77 ± 0.35 kcal/g. Individuals in the top tertile of dietary energy density had 80% (odds ratio: 1.80; 95% confidence interval: 1.17, 3.15) greater odds of having the metabolic syndrome. Even after further adjustment for body mass index, this association remained significant. Higher dietary energy density was also significantly associated with greater odds of having abdominal adiposity (4.23; 2.51, 7.18), high-serum triacylglycerol concentrations (3.55; 2.31, 5.93) and low-serum high-density lipoprotein cholesterol levels (1.80; 1.13, 2.84). No overall significant associations were found between higher dietary energy density and risk of having elevated blood pressure or abnormal glucose homeostasis. Higher dietary energy density was significantly associated with a greater risk of the metabolic syndrome and most of its components. Further studies are required to focus on lowering dietary energy density as a probable strategy for preventing metabolic syndrome.

  16. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Schaefer, H.F. III.

    1976-01-01

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  17. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  18. Postmortem validation of breast density using dual-energy mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer

  19. Postmortem validation of breast density using dual-energy mammography

    OpenAIRE

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...

  20. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  1. Power Spectral Density Evaluation of Laser Milled Surfaces

    Directory of Open Access Journals (Sweden)

    Raoul-Amadeus Lorbeer

    2017-12-01

    Full Text Available Ablating surfaces with a pulsed laser system in milling processes often leads to surface changes depending on the milling depth. Especially if a constant surface roughness and evenness is essential to the process, structural degradation may advance until the process fails. The process investigated is the generation of precise thrust by laser ablation. Here, it is essential to predict or rather control the evolution of the surfaces roughness. Laser ablative milling with a short pulse laser system in vacuum (≈1 Pa were performed over depths of several 10 µm documenting the evolution of surface roughness and unevenness with a white light interference microscope. Power spectral density analysis of the generated surface data reveals a strong influence of the crystalline structure of the solid. Furthermore, it was possible to demonstrate that this effect could be suppressed for gold.

  2. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  3. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  4. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  5. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  6. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be

  7. Variation In Surface Water Vapour Density Over Four Nigerian Stations

    African Journals Online (AJOL)

    The surface water vapour density ρ has been studied using monthly averages of temperature and relative humidity at four selected weather stations in Nigeria for the years 1987 to 1991. It is found that during the dry season months of November to March, ρ is higher at night by an average of about 9.9% than during the day ...

  8. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    Science.gov (United States)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-07-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  9. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  10. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  11. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  12. THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY

    International Nuclear Information System (INIS)

    Burkert, Andreas; Hartmann, Lee

    2013-01-01

    Studies by Lada et al. and Heiderman et al. have suggested that star formation mostly occurs above a threshold in gas surface density Σ of Σ c ∼ 120 M ☉ pc –2 (A K ∼ 0.8). Heiderman et al. infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area Σ SFR with increasing Σ, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of Σ SFR , approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of Σ SFR versus Σ in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A ∼ Σ –3 for low-mass regions and A ∼ Σ –1 for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada et al. similarly does not demand a particular threshold for star formation and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse

  13. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  14. Surface energy and surface tension of liquid metal nanodrops

    Directory of Open Access Journals (Sweden)

    Shebzukhov A.A.

    2011-05-01

    Full Text Available A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  15. Surface energy and surface tension of liquid metal nanodrops

    Science.gov (United States)

    Shebzukhova, M. A.; Shebzukhov, A. A.

    2011-05-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  16. Surface energy and surface tension of liquid metal nanodrops

    OpenAIRE

    Shebzukhov A.A.; Shebzukhova M.A.

    2011-01-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  17. Analysis of flame surface density measurements in turbulent premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Halter, Fabien [Institut PRISME, Universite d' Orleans, 45072 Orleans (France); Chauveau, Christian; Goekalp, Iskender [Institut de Combustion, Aerothermique, Reactivite et Environnement, Centre National de la Recherche Scientifique, 45071 Orleans (France); Veynante, Denis [Laboratoire E.M2.C, Centre National de la Recherche Scientifique, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2009-03-15

    In premixed turbulent combustion, reaction rates can be estimated from the flame surface density. This parameter, which measures the mean flame surface area available per unit volume, may be obtained from algebraic expressions or by solving a transport equation. In this study, detailed measurements were performed on a Bunsen-type burner fed with methane/air mixtures in order to determine the local flame surface density experimentally. This burner, located in a high-pressure combustion chamber, allows investigation of turbulent premixed flames under various flow, mixture, and pressure conditions. In the present work, equivalence ratio was varied from 0.6 to 0.8 and pressure from 0.1 to 0.9 MPa. Flame front visualizations by Mie scattering laser tomography are used to obtain experimental data on the instantaneous flame front dynamics. The exact equation given by Pope is used to obtain flame surface density maps for different flame conditions. Some assumptions are made in order to access three-dimensional information from our two-dimensional experiments. Two different methodologies are proposed and tested in term of global mass balance (what enters compared to what is burned). The detailed experimental flame surface data provided for the first time in this work should progressively allow improvement of turbulent premixed flame modeling approaches. (author)

  18. Ultimate energy density of observable cold baryonic matter.

    Science.gov (United States)

    Lattimer, James M; Prakash, Madappa

    2005-03-25

    We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.

  19. Constraining the density dependence of the symmetry energy

    International Nuclear Information System (INIS)

    Lynch, W.G.; Zhang, Y.; Coupland, D.; Danielewicz, P; Famiano, M.; Li, Z.; Tsang, B.

    2009-01-01

    Full text: The density dependence of the symmetry energy plays an important role in nuclear masses, fission barriers, collective excitations, and neutron skin thicknesses of neutron-rich nuclei. It also governs many properties of the neutron stars such as their radii, the thickness of their inner crusts, phase transitions in the stellar interior, seismic activity, and cooling rates. Experiments are beginning to provide constraints on the density dependence of the symmetry energy at sub-saturation densities. This talk will review the measurements and some of the constraints that have been obtained so far. (author)

  20. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  1. Gravitational lensing by a smoothly variable surface mass density

    Science.gov (United States)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  2. The relation between food price, energy density and diet quality

    Directory of Open Access Journals (Sweden)

    Margareta Bolarić

    2013-01-01

    Full Text Available Low energy density diet, high in fruits and vegetables, is related to lower obesity risk and to better health status, but is more expensive. High energy density diet, high in added sugar and fats, is more affordable, but is related to higher obesity and chronic diseases risk. The aim of this study was to report prices according to energy density (low vs. high of food items and to show how food affordability could affect food choice and consumers’ health. Data was collected for 137 raw and processed foods from three purchase sites in Zagreb (one representative for supermarket, one smaller shop and green market. Results showed that low energy density food is more expensive than high energy density food (for example, the price of 1000 kcal from green zucchini (15 kcal/100 g is 124.20 kn while the price of 1000 kcal from sour cream (138 kcal/100 g is 13.99 kn. Food energy price was significantly different (p<0.05 between food groups with highest price for vegetable products (159.04 ± 36.18 kn/1000 kcal and raw vegetables (97.90 ± 50.13 kn/1000 kcal and lowest for fats (8.49 ± 1.22 kn/1000 kcal and cereals and products (5.66 ± 0.76 kn/1000 kcal. Negative correlation (Spearman r=-0.72, p<0.0001 was observed for energy density (kcal/100 g and price of 1000 kcal. Therefore, it is advisable to develop strategies in order to reduce price of low energy density food and encourage its intake since it would improve diet quality, which could lead to better costumers’ health.

  3. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  4. Density content of nuclear symmetry energy from nuclear observables

    Indian Academy of Sciences (India)

    2014-10-11

    Oct 11, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 5 ... The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. ... Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India ...

  5. Surface determinants of low density lipoprotein uptake by endothelial cells

    International Nuclear Information System (INIS)

    Goeroeg, P.; Pearson, J.D.

    1984-01-01

    The surface sialic acid content of aortic endothelial cells in vitro was substantially lower in sparse cultures than at confluence. Binding of LDL to endothelial cells did not change at different culture densities and was unaffected by brief pretreatment with neuraminidase to partially remove surface sialic acid residues. In contrast, internalisation of LDL declined by a factor of 3 between low density cell cultures and confluent monolayers; neuraminidase pretreatment increased LDL uptake and the effect was most marked (>10-fold) at confluence. Pretreatment with cationised ferritin, which removed most of the surface sialic acid residues as well as glycosaminoglycans, increased LDL internalisation by up to 20-fold, again with most effect on confluent monolayers. Thus LDL uptake is inversely correlated with sialic acid content. We conclude that changes in the surface density of sialic acid (and possibly other charged) residues significantly modulate endothelial LDL uptake, and suggest that focal increases in LDL accumulation during atherogenesis may be related to alterations in endothelial endocytic properties at sites of increased cell turnover or damage. (author)

  6. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  7. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    Science.gov (United States)

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  8. Graphene supercapacitor with both high power and energy density

    Science.gov (United States)

    Yang, Hao; Kannappan, Santhakumar; Pandian, Amaresh S.; Jang, Jae-Hyung; Lee, Yun Sung; Lu, Wu

    2017-11-01

    Supercapacitors, based on fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage using highly porous electrode materials. However, their low energy density excludes them from many potential applications that require both high energy density and high power density performances. Using a scalable nanoporous graphene synthesis method involving an annealing process in hydrogen, here we show supercapacitors with highly porous graphene electrodes capable of achieving not only a high power density of 41 kW kg-1 and a Coulombic efficiency of 97.5%, but also a high energy density of 148.75 Wh kg-1. A high specific gravimetric and volumetric capacitance (306.03 F g-1 and 64.27 F cm-3) are demonstrated. The devices can retain almost 100% capacitance after 7000 charging/discharging cycles at a current density of 8 A g-1. The superior performance of supercapacitors is attributed to their ideal pore size, pore uniformity, and good ion accessibility of the synthesized graphene.

  9. Nanodrop on a nanorough solid surface: Density functional theory considerations

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2008-07-01

    The density distributions and contact angles of liquid nanodrops on nanorough solid surfaces are determined on the basis of a nonlocal density functional theory. Two kinds of roughness, chemical and physical, are examined. The former considers the substrate as a sequence of two kinds of semi-infinite vertical plates of equal thicknesses but of different natures with different strengths for the liquid-solid interactions. The physical roughness involves an ordered set of pillars on a flat homogeneous surface. Both hydrophobic and hydrophilic surfaces were considered. For the chemical roughness, the contact angle which the drop makes with the flat surface increases when the strength of the liquid-solid interaction for one kind of plates decreases with respect to the fixed value of the other kind of plates. Such a behavior is in agreement with the Cassie-Baxter expression derived from macroscopic considerations. For the physical roughness on a hydrophobic surface, the contact angle which a drop makes with the plane containing the tops of the pillars increases with increasing roughness. Such a behavior is consistent with the Wenzel formula developed for macroscopic drops. For hydrophilic surfaces, as the roughness increases the contact angle first increases, in contradiction with the Wenzel formula, which predicts for hydrophilic surfaces a decrease of the contact angle with increasing roughness. However, a further increase in roughness changes nonmonotonously the contact angle, and at some roughness, the drop disappears and only a liquid film is present on the surface. It was also found that the contact angle has a periodic dependence on the volume of the drop.

  10. Diurnal and seasonal variations of surface water vapour density ...

    African Journals Online (AJOL)

    Diurnal and seasonal variations of surface water vapour density over some meteorological stations in Nigeria. ... Ife Journal of Science ... the three Sahelian stations, was 5.29±0.39; while during the rainy season, they were 21.72±1.22, 19.60±0.12 and 19.47±0.07 for the Southern, Midland and Northern regions respectively.

  11. Relic entropy generation, and relic gravitons as a consequence of energy density and energy flux density as derived from GR

    International Nuclear Information System (INIS)

    Beckwith, A W

    2008-01-01

    First of all, we outline a well known result. I.e. the formation of energy density and energy flux density for de Sitter space time, assuming close to mono chromatic close to plane wave generation of spin two gravitons. This is done in the context of an emergent vacuum energy field being introduced at the onset of the initial space time singularity. We reference entropy generation by multiple brane- anti brane combinations leading to an initial soliton-instanton formation. We close then with observations we think are pertinent to entropy increase and also the variation of statistical noise about the CMBR spectra. This ties in with possible new species of detectable 'neutrinos' in ways which lead to an extension of the standard model, and ties in with possible spin two graviton generation of both entropy and structure formation initially, in accordance with a starting point for our analysis of inflation being due to emergent field energy density from a prior universe.

  12. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  13. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located...

  14. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    Science.gov (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  15. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    Science.gov (United States)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  16. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  17. Influence of electropolishing current densities on sulfur generation at niobium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P.V., E-mail: tyagipv@ornl.gov [The Graduate University for Advanced Studies, Tsukuba, Ibaraki (Japan); Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2013-11-15

    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm{sup 2}) and low (≈30 mA/cm{sup 2}) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  18. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  19. Surface energy absorbing layers produced by ion implantation

    International Nuclear Information System (INIS)

    Gurarie, V.N.

    1997-01-01

    Single crystals of magnesia have been ion implanted with 80 keV Si and Cr ions at variable doses and then subjected to testing in a shock plasma. The peak surface temperature has been calibrated by measuring the size and temperature deformation of the fragments formed by multiple microcracking during thermal shock. the crack density curves for MgO crystals demonstrate that in a wide range of thermal shock intensity the ion implanted crystals develop a system of microcracks of a considerably higher density than the unimplanted ones. The high density of cracks nucleated in the ion implanted samples results in the formation of a surface energy absorbing layer which effectively absorbs elastic strain energy induced by thermal shock. As a consequence the depth of crack penetration in the layer and hence the degree of fracture damage are decreased. the results indicate that a Si implant decreases the temperature threshold of cracking and simultaneously increases the crack density in MgO crystals. However, in MgO crystals implanted with Cr a substantial increase in the crack density is achieved without a noticeable decrease in the temperature threshold of fracture. This effect is interpreted in terms of different Cr and Si implantation conditions and damage. The mechanical properties of the energy-absorbing layer and the relation to implantation-induced lattice damage are discussed. 11 refs., 4 figs

  20. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  1. Simultaneous solution of the geoid and the surface density anomalies

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.

    2012-04-01

    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  2. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    0.022 fm. In the following sections, we present some of our recent results [12,13] for the values of. L(ρ0) and rskin of 208Pb extracted using empirical values of the volume symmetry energy and surface symmetry energy coefficients [14] estimated ...

  3. Diagnostic group differences in temporomandibular joint energy densities.

    Science.gov (United States)

    Gallo, L M; Iwasaki, L R; Gonzalez, Y M; Liu, H; Marx, D B; Nickel, J C

    2015-04-01

    Cartilage fatigue, due to mechanical work, may account for precocious development of degenerative joint disease in the temporomandibular joint (TMJ). This study compared energy densities (mJ/mm³) in TMJs of three diagnostic groups. Sixty-eight subjects (44 women, 24 men) gave informed consent. Diagnostic criteria for temporomandibular disorders (DC/TMD) and imaging were used to group subjects according to presence of jaw muscle or joint pain (+P) and bilateral disk displacement (+DD). Subjects (+P+DD, n=16; -P+DD, n=16; and -P-DD, n=36) provided cone-beam computed tomography and magnetic resonance images, and jaw-tracking data. Numerical modeling was used to determine TMJ loads (Fnormal). Dynamic stereometry was used to characterize individual-specific data of stress-field dynamics during 10 symmetrical jaw-closing cycles. These data were used to estimate tractional forces (Ftraction). Energy densities were then calculated as W/Q (W=work done or mechanical energy input=tractional force×distance of stress-field translation, Q=volume of cartilage). anova and Tukey-Kramer post hoc analyses tested for intergroup differences. Mean±standard error energy density for the +P+DD group was 12.7±1.5 mJ/mm³ and significantly greater (all adjusted p<0.04) when compared to -P+DD (7.4±1.4 mJ/mm³) and -P-DD (5.8±0.9 mJ/mm³) groups. Energy densities in -P+DD and -P-DD groups were not significantly different. Diagnostic group differences in energy densities suggest that mechanical work may be a unique mechanism, which contributes to cartilage fatigue in subjects with pain and disk displacement. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Density functional theory and an experimentally-designed energy functional of electron density.

    Science.gov (United States)

    Miranda, David A; Bueno, Paulo R

    2016-09-21

    We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.

  5. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  6. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  7. Internal wave energy flux from density perturbations in nonlinear stratifications

    Science.gov (United States)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  8. Density-scaling exponents and virial potential-energy correlation ...

    Indian Academy of Sciences (India)

    This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...

  9. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  10. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...

  11. Changes in the viscosity and energy density of weaning maize ...

    African Journals Online (AJOL)

    The effect of replacing 25% of the basic maize flour with groundnut paste (w/w) and/or 10% of the liquid ingredients with fresh dairy milk (v/v) on the viscosity and energy density of weaning maize porridge was investigated in a 2• fractional factorial experiment. Other factors investigated included (i) particle size of the flour (ii) ...

  12. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    International Nuclear Information System (INIS)

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-01-01

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  13. Density content of nuclear symmetry energy from nuclear observables

    Indian Academy of Sciences (India)

    nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are summarized. Keywords. ... the difference between the neutron and proton root mean square (r.m.s.) radii. The cor- relation of ...

  14. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    Research Articles Volume 82 Issue 3 March 2014 pp 515-527 ... In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry ... School of Physics and Material Science, Thapar University, Patiala 147 004, India ...

  15. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  16. Effect of ion beam energy on density, roughness & uniformity of Co film deposited using ion beam sputtering system

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay; Lodha, G. S.

    2012-06-01

    Cobalt (Co) films were prepared, using ion beam sputtering technique. Films were prepared by varying beam voltage from 700 to 1100 V at room temperature. The influence of ion beam energy on the density, surface roughness and thickness uniformity of Co film was investigated. X-ray reflectivity study shows that surface roughness of film decreases with increasing beam energy and lowest surface roughness of 1.3 Å was achieved for 1000 V beam voltage at 4 cm3/min Ar gas flow. The density of the film was 93% of bulk density of Co. These ultra low roughness films are very promising for studying the magnetic properties of Co films.

  17. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  18. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  19. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  20. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  1. An interface energy density-based theory considering the coherent interface effect in nanomaterials

    Science.gov (United States)

    Yao, Yin; Chen, Shaohua; Fang, Daining

    2017-02-01

    To characterize the coherent interface effect conveniently and feasibly in nanomaterials, a continuum theory is proposed that is based on the concept of the interface free energy density, which is a dominant factor affecting the mechanical properties of the coherent interface in materials of all scales. The effect of the residual strain caused by self-relaxation and the lattice misfit of nanomaterials, as well as that due to the interface deformation induced by an external load on the interface free energy density is considered. In contrast to the existing theories, the stress discontinuity at the interface is characterized by the interface free energy density through an interface-induced traction. As a result, the interface elastic constant introduced in previous theories, which is not easy to determine precisely, is avoided in the present theory. Only the surface energy density of the bulk materials forming the interface, the relaxation parameter induced by surface relaxation, and the mismatch parameter for forming a coherent interface between the two surfaces are involved. All the related parameters are far easier to determine than the interface elastic constants. The effective bulk and shear moduli of a nanoparticle-reinforced nanocomposite are predicted using the proposed theory. Closed-form solutions are achieved, demonstrating the feasibility and convenience of the proposed model for predicting the interface effect in nanomaterials.

  2. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    Science.gov (United States)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  3. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  4. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  5. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  6. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  7. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    Science.gov (United States)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  8. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    Science.gov (United States)

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other

  9. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    International Nuclear Information System (INIS)

    Tachikawa, Hiroto

    2017-01-01

    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  10. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp

    2017-02-28

    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  11. A novel strain energy density algorithm for laser-induced micro-hollows

    Science.gov (United States)

    Çelen, Serap

    2015-07-01

    Mechanical adaptation and stability of implants are dependent on strain energy density algorithms of their surfaces. These applications are in their early stage, but theoretical predictions show us that we can manufacture very strong, flexible biomaterial surface which has a shock absorbing ability. Laser micro-machining is a clean tool for biomedical industry. The purpose of this manuscript is to consolidate a laser micro-machining method for imitating lotus effect on commercially pure titanium specimen surfaces and to develop a novel strain energy density algorithm. Novel 3D nelumbo leafs were prepared using a fiber laser (λ=1060 nm) with 200-250 ns pulse durations and optimum operation parameters were suggested.

  12. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  13. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 6. Adhesion energy, surface ... 2 G A Adebayo1. Department of Physics, University of Agriculture, Abeokuta, Nigeria; Department of Pure and Applied Physics, College of Pure and Applied Science, Caleb University, Imota, Lagos, Nigeria ...

  14. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  15. Density-waves instability and a skyrmion lattice on the surface of strong topological insulators

    Science.gov (United States)

    Baum, Yuval; Stern, Ady

    2012-11-01

    In this work we analyze the instability conditions for spin-density-wave (SDW) formation on the surface of strong topological insulators. We find that for a certain range of Fermi energies and strength of interactions the SDW state is favored compared to the unmagnetized and the uniform-magnetization states. We also find that the SDWs are of spiral nature and, for a certain range of parameters, a Skyrmion lattice may form on the surface. We show that this phase may have a nontrivial Chern number even in the absence of an external magnetic field.

  16. Modeling butadiene adsorption on oxidized graphene surface using density functional theory

    Science.gov (United States)

    Akimenko, Ju. Y.; Akimenko, S. S.; Gorbunov, V. A.

    2017-08-01

    In this paper, the process of chemisorption of cis-butadiene rubber on the surface of oxidized graphene was studied using the density functional theory. The polymer is interacting to a quinone group, an oxygen bridge, and an OH group which was differently located on the surface of the graphene sheet. Based on the calculated value of ΔG298, the possibility of spontaneous formation of the bond between butadiene rubber and these functional groups was estimated. The features of the temperature dependence of the change in free Gibbs energy for thermodynamically possible coupled systems are considered.

  17. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  18. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)

  19. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  20. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  1. A fast gauge for energy flux density measurement

    Science.gov (United States)

    Garcia, Jorge; Bana de Schor, Beatriz

    1990-01-01

    Herein, the design and characterization of a fast energy flux density gauge are described. The gauge is based on a thermoelectrical pair with the junction made of a thin layer of silver. High absorptivity is attained by an electrolytic deposit of platinum black on the silver coat. Dynamic calibration gives a response time below 100 microsec. Computer methods to obtain the energy flux density from temperature-time history were evaluated. The results of the tests performed with igniters of pelleted boron/potassium nitrate and black powder, used in solid propellant ignition, are shown. The gauge developed can be applied to fast processes which require small response time. The gauge does not need previous calibration, it is resistant to vibrations and accelerations, and, at the same time, it is small in size, economical, and easy to build.

  2. Model dependence in the density content of nuclear symmetry energy

    International Nuclear Information System (INIS)

    Mondal, C.; Agrawal, B.K.; Singh, S.K.; Patra, S.K.; Centelles, M.; Viñas, X.; Colò, G.; Roca-Maza, X.; Paar, N.

    2014-01-01

    Apart from very few light nuclei, all nuclear systems in nature, starting from tiny finite nuclei to huge astrophysical objects like neutron stars, are asymmetric. Densities of these systems vary over a wide range. So, accurate knowledge of symmetry energy over a wide range of density is very essential to understand several phenomena in finite nuclei as well as in neutron stars. We have shown using a representative set of systematically varied mean models that the correlation of symmetry energy slope parameter with the neutron skin thickness in 208 Pb nucleus has a noticeable amount of model dependence. The investigations in order to unveil the source of the model dependence in such correlations are underway

  3. Energy and particle densities from oxygen-induced nuclear reactions

    International Nuclear Information System (INIS)

    Garpman, S.; Albrecht, R.; Awes, T.C.

    1988-01-01

    Charged particle multiplicity and pseudo-rapidity distributions observed in 16 O induced nuclear collisions at 60 and 200 A GeV are presented in conjunction with forward and transverse energy distributions. From the measurements estimates of the supreme energy density obtained in central 16 O + 197 Au collisions at 200 A GeV yield a value of about 3 GeV/fm 3 seemingly enough to fulfill the presumptions for chiral symmetry restoration. The target mass dependence on the pseudo-rapidity densities is examined using a power law parametrization. The data are also compared to simulations from the Lund model (Fritiof) for nucleus-nucleus collisions. 15 refs., 7 figs

  4. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  5. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  6. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  7. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  8. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  9. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  10. High Energy Density Nastic Structures Using Biological Transport Mechanisms

    Science.gov (United States)

    2007-02-28

    DATES COVERED Final Progress Report; 9/27/04 to 11/30/06 4. TITLE AND SUBTITLE High Energy Density Nastic Structures Using Biological Transport...permeable membranes. This concept is based on the pressurization of cells similar to the process that plants use to maintain homeostasis and regulate...cell function. In all plant systems, the transport of ions and fluid produce localized pressure changes (called turgor pressure) that perform many

  11. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  12. Density Functional Methods for Shock Physics and High Energy Density Science

    Science.gov (United States)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies

    Science.gov (United States)

    Muttaqien, Fahdzi; Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Shiozawa, Yuichiro; Mukai, Kozo; Koitaya, Takanori; Yoshimoto, Shinya; Yoshinobu, Jun; Morikawa, Yoshitada

    2017-09-01

    We investigated the adsorption of CO2 on the flat, stepped, and kinked copper surfaces from density functional theory calculations as well as the temperature programmed desorption and X-ray photoelectron spectroscopy. Several exchange-correlation functionals have been considered to characterize CO2 adsorption on the copper surfaces. We used the van der Waals density functionals (vdW-DFs), i.e., the original vdW-DF (vdW-DF1), optB86b-vdW, and rev-vdW-DF2, as well as the Perdew-Burke-Ernzerhof (PBE) with dispersion correction (PBE-D2). We have found that vdW-DF1 and rev-vdW-DF2 functionals slightly underestimate the adsorption energy, while PBE-D2 and optB86b-vdW functionals give better agreement with the experimental estimation for CO2 on Cu(111). The calculated CO2 adsorption energies on the flat, stepped, and kinked Cu surfaces are 20-27 kJ/mol, which are compatible with the general notion of physisorbed species on solid surfaces. Our results provide a useful insight into appropriate vdW functionals for further investigation of related CO2 activation on Cu surfaces such as methanol synthesis and higher alcohol production.

  14. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  15. Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study

    Science.gov (United States)

    Fan, Chen; Zhu, Yi-An; Xu, Yue; Zhou, Yan; Zhou, Xing-Gui; Chen, De

    2012-07-01

    Density functional theory calculations have been conducted to explore the physical origin of the synergistic effect over Ni-based surface alloys using methane dissociation as a probe reaction. Some late transition metal atoms (M = Cu, Ru, Rh, Pd, Ag, Pt, and Au) are substituted for surface Ni atoms to examine the variation in electronic structure and adsorption property of Ni(111). Two types of threefold hollow sites, namely, the Ni2M and Ni3 sites, are taken into account. The calculated results indicate that the variation in the CHx adsorption energy at the Ni2M and Ni3 sites is dominated by the ensemble and ligand effect, respectively, and the other factors such as surface and adsorbate distortion and electrostatic interaction affect the catalytic properties of the bimetallic surfaces to a smaller extent. Both the Brønsted-Evans-Polanyi relationship and the scaling correlation hold true on the Ni-based bimetallic surfaces. With the combination of these two linear energy relations, the corrected binding energy of atomic C is found to be a good descriptor for representing the catalytic activity of the alloyed surfaces. Considering the compromise between the catalytic activity and catalyst stability, we suggest that the Rh/Ni catalyst is a good candidate for methane dissociation.

  16. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations.

    Science.gov (United States)

    Horn, Paul R; Head-Gordon, Martin

    2016-02-28

    In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.

  17. Surface regulated arsenenes as Dirac materials: From density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian, E-mail: niannianyu@whut.edu.cn; Wang, Jiafu, E-mail: jasper@whut.edu.cn

    2017-02-01

    Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  18. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    Science.gov (United States)

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  19. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  20. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-photoemission spectroscopy measurements. This comparison shows that the modified Delta SCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2 adsorbed on ruthenium (0001) we map out a two-dimensional part of the potential energy surfaces in the ground state...

  1. Obtaining evapotranspiration and surface energy fluxes with ...

    African Journals Online (AJOL)

    In this study, SEBAL (Surface Energy Balance Algorithm for Land), a remote sensing based evapotranspiration model, has been applied with Landsat ETM+ sensor for the estimation of actual ... The land uses in this study area consists of irrigated agriculture, rain-fed agriculture and livestock grazing. The obtained results ...

  2. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  3. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  4. Energy-Pressure-Velocity Filtered Mass Density Function

    Science.gov (United States)

    Nik, Mehdi B.; Givi, Peyman; Madnia, Cyrus; Pope, Stephen B.

    2010-11-01

    A new methodology termed "energy-pressure-velocity filtered mass density function" (EPV-FMDF) is developed for large eddy simulation of high speed turbulent flows. This is an extension of the previously developed "velocity filtered density function" (V-FDF) method [1] in low speed flows. To account for the effect of compressibility, the formulation includes two additional thermodynamic variables: the pressure and the internal energy. This is the most general form of the FDF for high speed flow simulations. The EPV-FMDF is obtained by solving its transport equation, in which the effects of convection appear in a closed form. The unclosed terms are modeled in a fashion similar to that in RANS-PDF methods. The modeled EPV-FMDF transport equation is solved by a Lagrangian Monte Carlo method and is employed for LES of a temporally developing mixing layer at several values of the convective Mach number. The predicted results are assessed by comparison with direct numerical simulation (DNS) data.[4pt] [1] Gicquel, L. Y. M., Givi, P., Jaberi, F. A., and Pope, S. B., Velocity Filtered Density Function for Large Eddy Simulation of Turbulent Flows, Phys. Fluids, 14 (3):1196-1213 (2002).

  5. Potential energy surface of triplet O4.

    Science.gov (United States)

    Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G

    2018-03-28

    We present a global ground-state potential energy surface (PES) for the triplet spin state of O 4 that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic spin-conserving O 2 -O 2 collisions. The surface is based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation; the active space has 16 electrons in 12 orbitals. The global ground-state potential energy surface was fitted by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction potential to 10 180 electronic structure data points. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions. The geometries calculated and used for the fit include geometry scans corresponding to dissociative and vibrationally excited diatom-diatom collisions of O 2 , scans corresponding to O 3 interacting with O, additional geometries identified by running trajectories, and geometries along linear synchronous transit paths connecting randomly selected points. The global O 4 PES includes subsurfaces describing the interaction of diatomic molecules with other diatomic molecules or interactions of triatomic molecules and an atom. The interaction of ozone with a ground-state oxygen atom occurs on the triplet O 4 surface, and our surface includes high-energy points with O 3 -O geometries as well as O 2 -O 2 geometries and O 2 -O-O geometries.

  6. Covariance analysis for energy density functionals and instabilities

    International Nuclear Information System (INIS)

    Roca-Maza, X; Colò, G; Paar, N

    2015-01-01

    We present the covariance analysis of two successful nuclear energy density functionals (EDFs), (i) a non-relativistic Skyrme functional built from a zero-range effective interaction, and (ii) a relativistic nuclear EDF based on density dependent meson–nucleon couplings. The covariance analysis is a useful tool for understanding the limitations of a model, the correlations between observables and the statistical errors. We show, for our selected test nucleus 208 Pb, that when the constraint on a property A included in the fit is relaxed, correlations with other observables B become larger; on the other hand, when a strong constraint is imposed on A, the correlations with other properties become very small. We also provide a brief review, partly connected with the covariance analysis, of some instabilities displayed by several EDFs currently used in nuclear physics. (paper)

  7. Electromagnetic potentials basis for energy density and power flux

    International Nuclear Information System (INIS)

    Puthoff, H E

    2016-01-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone. (paper)

  8. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.

  9. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  10. High Energy Density Physics and Exotic Acceleration Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, T.

    2004-10-11

    The reported results and discussions in the Working Group on High Energy Density Physics and Exotic Acceleration Concepts are summarized. The working group focused largely on laser-generated proton and ion beams from solid targets, but also considered laser vacuum acceleration results, active media accelerator proposals, ferroelectric-based accelerator technology advances and beam conditioning concepts for free electron lasers. The charge to the working group was to develop a laser-based proton injector exceeding current capabilities in at least one important parameter.

  11. Formation energies of rutile metal dioxides using density functional theory

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Hansen, Heine Anton; Rossmeisl, Jan

    2009-01-01

    We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially......, Ge, Ti, Cr, Nb, W, Mo, and V, using the electrochemical series as reference. The mean absolute error of the formation energy is 0.29 eV using the revised Perdew-Burke-Ernzerhof (PBE) GGA functional. We believe that the reason for the success is due to the reference level being H-2 and H2O and not O-2...

  12. Natural Units for Nuclear Energy Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kortelainen, Erno M [ORNL; Furnstahl, R. J. [Ohio State University; Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2010-01-01

    Naive dimensional analysis based on chiral effective theory, when adapted to nuclear energy density functionals, prescribes natural units and a hierarchy of contributions that could be used to constrain fits of generalized functionals. By applying these units, a large sample of Skyrme parametrizations is examined for naturalness, which is signaled by dimensionless coupling constants of order one. The bulk of the parameters are found to be natural, with an underlying scale consistent with other determinations. Significant deviations from unity are associated with deficiencies in the corresponding terms of particular functionals or with an incomplete optimization procedure.

  13. Nuclear clustering in the energy density functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, J.-P., E-mail: jean-paul.ebran@cea.fr [CEA,DAM,DIF, F-91297 Arpajon (France); Khan, E. [Institut de Physique Nucléaire, Université Paris-Sud CEA, IN2P3 CNRS, F-91406 Orsay Cedex (France); Nikšić, T.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)

    2015-10-15

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  14. Research of the Ion Current Density Influence on the Glass-Ceramics Surface Defects Forming under Ion-Beam Processing

    Directory of Open Access Journals (Sweden)

    V. G. Pozdnyakov

    2015-01-01

    Full Text Available Development of modern optics is primarily determined by manufacturing accuracy of the working surfaces of optical parts. Therefore, at the last stage of manufacturing optical parts the ion-beam treatment is applied. This method uses spraying the high-energy ions of heavy gases on the surface of a solid body. After an intense ion treatment there are microscopic defects, resembling chips, on the surface of polycrystalline glass. The aim of this work is to study distribution of the surface density of defects by sizes, depending on the density of ion current.Accelerator with an anode layer and a focused ion beam was used as an ion source. The accelerator worked on argon and created ion beam with Gaussian distribution of current density along the radius. The excess positive charge of the ion beam was compensated owing to ionization of residual gas. To eliminate the influence of slow ions with peripheral regions of the ion beam, the etching was performed through a circular aperture with a diameter of 40 mm.Surface treatment of the sample was carried out at the discharge voltage of 3800 V and current of 50 mA for 30 min. The maximum ion current density on the sample surface was 20.2 A/m2 and a power density was of 5.4·104 W/m2 .Distribution of defects by size was measured in three areas of the treated surface corresponding to different densities of ion current, namely: 20.2 A/m2 , 11.3A/m2 , and 3.4 A/m2 . Their number per area unit defines a density of defects.The results show that with increasing ion current density the density of defects on the surface of polycrystalline glass decreases. Thus a view of distribution function of defect density according to size is changed: density of small defects is reduced, and density of large ones increases. Also with increasing ion current density is observed an increase in the size of defects: a 6 times increase of the average size of defects results in 1.6 times increasing ion current density.These data will

  15. Local kinetic-energy density of the Airy gas

    DEFF Research Database (Denmark)

    Vitos, Levente; Johansson, B.; Kollár, J.

    2000-01-01

    The Airy gas model is used to derive an expression for the local kinetic energy in the linear potential approximation. The expression contains an explicit Laplacian term 2/5((h) over bar(2)/2m)del(mu)(2)(r) that, according to jellium surface calculations, must be a universal feature of any accurate...... local description. Applied to the noble gases the expression reduces the errors by a factor of 50 over previous results obtained by the linear potential approximation....

  16. Surface analysis with low energy ion scattering

    International Nuclear Information System (INIS)

    Taglauer, E.; Heiland, W.

    1976-01-01

    Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de

  17. Descriptions of carbon isotopes within the energy density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  18. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  19. Methyl Butanoate Adsorption on MoS2 Surface: A Density Functional Theory Investigation

    Directory of Open Access Journals (Sweden)

    Prabowo Wahyu Aji Eko

    2018-01-01

    Full Text Available Methyl butanoate is one of the compound which is obtained from triglyceride molecule. It has hydrocarbon components and hence may produce hydrocarbon through hydrodeoxygenation (HDO or decarbonylation (DCO processes. The first step to uncover the underlying mechanism of HDO or DCO is to find the active site of methyl butanoate adsorption over the catalyst. This study attempts to investigate the active site of methyl butanoate adsorption on MoS2 surface. Stable bonding configuration for methyl butanoate adsorption on MoS2 is investigated by using density functional theory (DFT. This investigation consists of geometry optimisation and adsorption energy calculations. The stable configuration of methyl butanoate adsorption on MoS2 surface is found to be on top of Mo atom in Mo-edge surface.

  20. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  1. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  2. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  3. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  4. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Ruberto, C.; Lundqvist, Bengt

    2010-01-01

    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types......, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111......) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs...

  5. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kóspál, Ágnes; Moór, Attila; Ábrahám, Peter [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); Kastner, Joel H., E-mail: amhughes@astro.wesleyan.edu [Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-04-20

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  6. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  7. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  8. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  9. Understanding and controlling the rest potential of carbon nanotube-based supercapacitors for energy density enhancement

    Science.gov (United States)

    Yoo, Young-Eun; Park, Jinwoo; Kim, Woong

    2018-03-01

    We present a novel method for enhancing the energy density of an electrical double layer capacitor (EDLC). Surface modification of single-walled carbon nanotube (SWNT) electrodes significantly affects the rest potential (E0) of EDLCs; acid treatment and polyethyleneimine (PEI) coating of SWNTs shift E0 toward more positive and more negative values, respectively. Adjusting E0 towards the center of the electrolyte stability window can increase the cell voltage and hence the energy density. PEI coating on SWNTs increases the cell voltage from 0.8 V to 1.7 V in tetrabutylammonium perchlorate (TBAP)/tetrahydrofuran (THF) electrolyte, and from 2.5 V to 3.1 V in tetraethylammonium tetrafluoroborate (TEABF4)/3-cyanopropionic acid methyl ester (CPAME), respectively. Moreover, PEI-SWNT EDLCs exhibit excellent cycling stability (92% of capacitance retention over 10000 cycles). We attribute the shift in E0 to a change in the Fermi level of SWNTs owing to the surface charge modification. Injection of electrical charge into PEI-SWNTs consistently yielded similar trends and thus validated our hypothesis. Our results may help to push various electrolytes that have been overlooked so far to new frontiers for obtaining high energy-density supercapacitors.

  10. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  11. Global scenarios of urban density and its impacts on building energy use through 2050

    OpenAIRE

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L.; Fragkias, Michail; Li, Xiaoma; Seto, Karen C.

    2017-01-01

    Urban density significantly impacts urban energy use and the quality of life of urban residents. Here, we provide a global-scale analysis of future urban densities and associated energy use in the built environment under different urbanization scenarios. The relative importance of urban density and energy-efficient technologies varies geographically. In developing regions, urban density tends to be the more critical factor in building energy use. Large-scale retrofitting of building stock lat...

  12. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  13. Density, Viscosity and Surface Tension of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tricyanomethanide with Benzothiophene.

    Science.gov (United States)

    Domańska, Urszula; Królikowska, Marta; Walczak, Klaudia

    2014-01-01

    The effects of temperature and composition on the density and viscosity of pure benzothiophene and ionic liquid (IL), and those of the binary mixtures containing the IL 1-butyl-1-methylpyrrolidynium tricyanomethanide ([BMPYR][TCM] + benzothiophene), are reported at six temperatures (308.15, 318.15, 328.15, 338.15, 348.15 and 358.15) K and ambient pressure. The temperature dependences of the density and viscosity were represented by an empirical second-order polynomial and by the Vogel-Fucher-Tammann equation, respectively. The density and viscosity variations with compositions were described by polynomials. Excess molar volumes and viscosity deviations were calculated and correlated by Redlich-Kister polynomial expansions. The surface tensions of benzothiophene, pure IL and binary mixtures of ([BMPYR][TCM] + benzothiophene) were measured at atmospheric pressure at four temperatures (308.15, 318.15, 328.15 and 338.15) K. The surface tension deviations were calculated and correlated by a Redlich-Kister polynomial expansion. The temperature dependence of the interfacial tension was used to evaluate the surface entropy, the surface enthalpy, the critical temperature, the surface energy and the parachor for pure IL. These measurements have been provided to complete information of the influence of temperature and composition on physicochemical properties for the selected IL, which was chosen as a possible new entrainer in the separation of sulfur compounds from fuels. A qualitative analysis on these quantities in terms of molecular interactions is reported. The obtained results indicate that IL interactions with benzothiophene are strongly dependent on packing effects and hydrogen bonding of this IL with the polar solvent.

  14. Periodic density functional theory calculations of bulk and the (010 surface of goethite

    Directory of Open Access Journals (Sweden)

    Sparks Donald L

    2008-05-01

    Full Text Available Abstract Background Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT calculations were performed on the mineral goethite and its (010 surface, using the Vienna Ab Initio Simulation Package (VASP. Results Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H2O layer and solvated (three H2O layers (010 surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H2O showed a significantly lower potential energy for the former. Conclusion Surface Fe-O and (FeO-H bond lengths are reported that may be useful in surface complexation models (SCM of the goethite (010 surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H2O layers above the surface, indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces.

  15. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  16. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  17. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  18. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  19. Building a universal nuclear energy density functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, Witold [Univ. of Tennessee, Knoxville, TN (United States)

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  20. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  1. Fabrication and demonstration of high energy density lithium ion microbatteries

    Science.gov (United States)

    Sun, Ke

    density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.

  2. Multiple charge density wave states at the surface of TbT e3

    Science.gov (United States)

    Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; Singh, Manoj; Walmsley, Philip; Fisher, Ian R.; Boyer, Michael C.

    2016-11-01

    We studied TbT e3 using scanning tunneling microscopy (STM) in the temperature range of 298-355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk qCDW=0.30 ±0.01 c* . However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW states coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbT e3 . Finally, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature TCDW.

  3. Near Surface Stoichiometry in UO2: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Jianguo Yu

    2015-01-01

    Full Text Available The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110 surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT calculations. On the basis of the point-defect model (PDM, a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.

  4. Density functional theory formulation for fluid adsorption on correlated random surfaces

    Science.gov (United States)

    Aslyamov, Timur; Khlyupin, Aleksey

    2017-10-01

    We provide novel random surface density functional theory (RSDFT) formulation in the case of geometric heterogeneous surfaces of solid media which is essential for the description of thermodynamic properties of confined fluids. The major difference of our theoretical approach from the existing ones is a stochastic model of solid surfaces which takes into account the correlation properties of geometry. The main building blocks are effective fluid-solid potentials developed in the work of Khlyupin and Aslyamov [J. Stat. Phys. 167, 1519 (2017)] and geometry-based modification of the Helmholtz free energy for Lennard-Jones fluids. The efficiency of RSDFT is demonstrated in the calculation of argon and nitrogen low temperature adsorption on real heterogeneous surfaces (BP280 carbon black). These results are in good agreement with experimental data published in the literature. Also several models of corrugated materials are developed in the framework of RSDFT. Numerical analysis demonstrates a strong influence of surface roughness characteristics on adsorption isotherms. Thus the developed formalism provides a connection between a rigorous description of the stochastic surface and confined fluid thermodynamics.

  5. Non-empirical energy density functional for the nuclear structure

    International Nuclear Information System (INIS)

    Rot ival, V.

    2008-09-01

    The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)

  6. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  7. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  8. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  9. Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.; Wade, David C.

    2011-01-01

    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.

  10. Adsorption of atomic nitrogen and oxygen on [Formula: see text] surface: a density functional theory study.

    Science.gov (United States)

    Breedon, M; Spencer, M J S; Yarovsky, I

    2009-04-08

    The adsorption of atomic nitrogen and oxygen on the ([Formula: see text]) crystal face of zinc oxide (ZnO) was studied. Binding energies, workfunction changes, vibrational frequencies, charge density differences and electron localization functions were calculated. It was elucidated that atomic oxygen binds more strongly than nitrogen, with the most stable [Formula: see text] structure exhibiting a binding energy of -2.47 eV, indicating chemisorption onto the surface. Surface reconstructions were observed for the most stable minima of both atomic species. Positive workfunction changes were calculated for both adsorbed oxygen and nitrogen if the adsorbate interacted with zinc atoms. Negative workfunction changes were calculated when the adsorbate interacted with both surface oxygen and zinc atoms. Interactions between the adsorbate and the surface zinc atoms resulted in ionic-type bonding, whereas interactions with oxygen atoms were more likely to result in the formation of covalent-type bonding. The positive workfunction changes correlate with an experimentally observed increase in resistance of ZnO conductometric sensor devices.

  11. Surface Energy Balance System (SEBS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  12. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  13. A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2012-05-15

    A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

  14. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces

    DEFF Research Database (Denmark)

    Jones, Glenn; Studt, Felix; Abild-Pedersen, Frank

    2011-01-01

    Using density functional theory calculations we show that the adsorption energies for C2Hx-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws...

  15. Systematics of nuclear densities, deformations and excitation energies within the context of the generalized rotation-vibration model

    Energy Technology Data Exchange (ETDEWEB)

    Chamon, L.C., E-mail: luiz.chamon@dfn.if.usp.b [Departamento de Fisica Nuclear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil)

    2010-11-30

    We present a large-scale systematics of charge densities, excitation energies and deformation parameters for hundreds of heavy nuclei. The systematics is based on a generalized rotation-vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation.

  16. Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface.

    Science.gov (United States)

    Zhou, Xueyao; Nattino, Francesco; Zhang, Yaolong; Chen, Jun; Kroes, Geert-Jan; Guo, Hua; Jiang, Bin

    2017-11-22

    A fifteen-dimensional global potential energy surface for the dissociative chemisorption of methane on the rigid Ni(111) surface is developed by a high fidelity fit of ∼200 000 DFT energy points computed using a specific reaction parameter density functional designed to reproduce experimental data. The permutation symmetry and surface periodicity are rigorously enforced using the permutation invariant polynomial-neural network approach. The fitting accuracy of the potential energy surface is thoroughly investigated by examining both static and dynamical attributes of CHD 3 dissociation on the frozen surface. This potential energy surface is expected to be chemically accurate as after correction for surface temperature effects it reproduces the measured initial sticking probabilities of CHD 3 on Ni(111) for various incidence conditions.

  17. Theoretical foundations for reconstruction of the materials density by means of two-energy radiography

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    In non-destructive testing of building constructions, concrete structures, granular and powder materials, mixtures, alloys, etc. it is often very important to determine their mass and/or surface density. Density decreases or increases with respect to the standard values can substantially lower the quality of functional materials, as well strength of joints and constructions. In this paper, we have shown theoretically that the most complete solution of the inverse problem of quantitative reconstruction of the density profile can be given by means of two-energy radiography. A general expressions has been obtained for the surface density of an arbitrary material. Theoretically, the accuracy of the method is within several percent. An important point is that the approach proposed does not require any preliminary knowledge about physical or chemical composition of the tested object. This allows the use of the developed algorithm for universal testing of various construction objects in building and industry, including situations of prolonged service, when the chemical structure can get substantially changed. Among possible applications of the new method there are control testing in building and building industry, railway and vehicle transport, diagnostics of oil and gas pipes, hydrotechnical constructions (dams), etc

  18. Learning about the energy density of liquid and semi-solid foods

    NARCIS (Netherlands)

    Hogenkamp, P.S.; Stafleu, A.; Mars, M.; Graaf, de C.

    2012-01-01

    BACKGROUND: People learn about a food's satiating capacity by exposure and consequently adjust their energy intake. OBJECTIVE: To investigate the effect of energy density and texture on subsequent energy intake adjustments during repeated consumption. DESIGN: In a randomized crossover design,

  19. Strongly Dipolar Polythiourea and Polyurea Dielectrics with High Electrical Breakdown, Low Loss, and High Electrical Energy Density

    Science.gov (United States)

    Wu, Shan; Burlingame, Quinn; Cheng, Zhao-Xi; Lin, Minren; Zhang, Q. M.

    2014-12-01

    Dielectric materials with high electric energy density and low loss are of great importance for applications in modern electronics and electrical systems. Strongly dipolar materials have the potential to reach relatively higher dielectric constants than the widely used non-polar or weakly dipolar polymers, as well as a much lower loss than that of nonlinear high K polymer dielectrics or polymer-ceramic composites. To realize the high energy density while maintaining the low dielectric loss, aromatic polythioureas and polyureas with high dipole moments, high dipole densities, tunable molecular structures and dielectric properties were investigated. High energy density (>24 J/cm3), high breakdown strength (>800 MV/m), and high charge-discharge efficiency (>90%) can be achieved in the new polymers. The molecular structure and film surface morphology were also studied; it is of great importance to optimize the fabrication process to make high-quality thin films.

  20. Dietary Energy Density in the Australian Adult Population from National Nutrition Surveys 1995 to 2012.

    Science.gov (United States)

    Grech, Amanda Lee; Rangan, Anna; Allman-Farinelli, Margaret

    2017-12-01

    It is hypothesized that the observed proliferation of energy-dense, nutrient-poor foods globally is an important contributing factor to the development of the obesity epidemic. However, evidence that the population's dietary energy density has increased is sparse. The World Cancer Research Fund recommends that dietary energy density be energy density of the Australian population has changed between 1995 and 2012. A secondary analysis of two cross-sectional Australian national nutrition surveys from 1995 and 2011/2012 was conducted. Participants of the surveys included adults aged 18 years and older (1995 n=10,986 and 2011/2012 n=9,435) completing 24-hour dietary recalls, including a second recall for a subset of the population (10.4% in 1995 and 64.6% in 2011/2012). Outcome measures included the change in dietary energy density (calculated as energy/weight of food [kcal/g] for food only) between surveys. The National Cancer Institute method for "estimating ratios of two dietary components that are consumed nearly every day" was used to determine the usual distribution and the percentage of participants reporting energy density energy density was 1.59 (0.26) kcal/g and 1.64 (0.32) kcal/g (Penergy-density recommendations. For those aged 70 years and older, the percentage with energy density energy density energy density has increased between the two surveys and few people consumed low energy-dense diets in line with recommendations. The change was largely due to increased energy density of older adult's diets, while young adults had high dietary energy density at both time points. These data suggest efforts now focus on the evaluation of the role of modifying energy density of the diet to reduce the risk of weight gain in adults. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  1. Characterization of lacunae density in pictorial surfaces using GIS software

    Directory of Open Access Journals (Sweden)

    Frederico Henriques

    2010-01-01

    Full Text Available This study deals with the application of simple image-processing techniques, in a geographic information system (GIS environment, on a detailed digital photography of a retabular painting. The aim is to register semi-automatically the lacunae density, through reclassification, and point density estimation. The digital photography image used on the exercise displays a detail of a 16th century panel painting named "Resurrection of Lazarus", from the Rotunda of Christ Convent, in Tomar, Portugal. The final result is a thematic pathology map of lacunae type.

  2. The molar surface Gibbs energy and prediction of surface tension of [Cnpy][DCA] (n = 3, 4, 5)

    International Nuclear Information System (INIS)

    Xing, Nannan; Dai, Bing; Ma, Xiaoxue; Wei, Jie; Pan, Yi; Guan, Wei

    2016-01-01

    Highlights: • The molar surface Gibbs energy, g s was put forword. • A new Eötvös equation is obtained. The molar surface enthalpy, h, is a temperature-independent constant. • By using g s and n D , the surface tensions of [C n py][DCA] (n = 3, 4, 5) were estimated. - Abstract: Three pyridinium-based ionic liquids of [C n py][DCA] (n = 3, 4, 5) (N-alkyl-pyridinium dicyanamide) were prepared and characterized by 1 H NMR ( 1 H nuclear magnetic resonance) spectroscopy, 13 C NMR ( 13 C nuclear magnetic resonance) spectroscopy. Their densities, surface tensions and refractive indices were measured at different temperatures. The molar surface Gibbs energy, g s , critical temperature, T c and Eötvös empirical parameter related to polarity, k E , were also calculated. In terms of the concept of molar surface Gibbs energy, g s , a new Eötvös equation was obtained. It is found that the slope of the new Eötvös equation is the molar surface entropy of the ILs and the intercept is the molar surface enthalpy which is a temperature-independent constant. By using the refractive index and the molar surface Gibbs energy, an equation to predict surface tension of the ILs was derived and the predicted values of the surface tension of [C n py][DCA] (n = 3, 4, 5) are all most the same with the corresponding experimental values.

  3. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    Science.gov (United States)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; Baxamusa, Salmaan H.; Lepró, Xavier; Ehrmann, Paul

    2017-11-01

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we do not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. We have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.

  4. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.

    Science.gov (United States)

    Bernstein, Nicole J; Akhade, Sneha A; Janik, Michael J

    2014-07-21

    Carbon dioxide electroreduction offers the possibility of producing hydrocarbon fuels using energy from renewable sources. Herein, we use density functional theory to analyze the feasibility of CO2 electroreduction on a Fe(100) surface. Experimentally, iron is nonselective for hydrocarbon formation. A simplistic analysis of low-coverage reaction intermediate energies for the paths to produce CH4 and CH3OH from CO2 suggests Fe(100) could be more active than Cu(111), currently the only metallic catalyst to show selectivity towards hydrocarbon formation. We consider a series of impediments to CO2 electroreduction on Fe(100) including O*/OH* (* denotes surface bound species) blockage of active surface sites; competitive adsorption effects of H*, CO* and C*; and iron carbide formation. Our results indicate that under CO2 electroreduction conditions, Fe(100) is predicted to be covered in C* or CO* species, blocking any C-H bond formation. Further, bulk Fe is predicted to be unstable relative to FeCx formation at potentials relevant to CO2 electroreduction conditions.

  5. Initial oxidation of gallium arsenide (001)-β2(2 x 4) surface using density functional theory.

    Science.gov (United States)

    Kim, Dae-Hee; Kim, Dae-Hyun; Kim, Yeong-Cheol

    2014-10-01

    The initial oxidation of a gallium arsenide (001)-β2(2 x 4) surface with an oxygen molecule was investigated using density functional theory. The oxygen molecule was adsorbed on the surface without any energy barrier. The dissociation of the oxygen molecule on the first arsenic layer had two dissociation paths; the inter-dimer and intra-dimer. The inter-dimer dissociation was the dominant dissociation path based on the energy barriers. The two dissociated oxygen atoms preferred breaking the arsenic-gallium back-bond to form arsenic-oxygen-gallium bonds. Our results are in good agreement with literature of the scanning tunneling microscope study.

  6. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  7. Plasma guns for controlled fusion at megagauss energy-densities

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Peter J [Los Alamos National Laboratory; Roderick, Norman F [UNM; Degnan, James H [AFRL; Frese, Michael H [NUMEREX

    2008-01-01

    Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.

  8. Upgrading of biorenewables to high energy density fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  9. The Atlas High-Energy Density Physics Project

    Science.gov (United States)

    Davis, Harold A.

    1998-11-01

    Atlas is a pulsed-power facility under development at Los Alamos National Laboratory to drive high-energy density experiments. It is optimized for materials properties and hydrodynamics experiments under extreme conditions. The system is designed to implode heavy liner loads ( ~ 50 g) with a peak current of 30 MA delivered in 4 μs. Atlas will be operational near the end of 2000 and is designed to provide 100 shots per year. The Atlas capacitor bank consists of an array of 240-kV Marx modules storing a total of 23 MJ. The bank is resistively damped to limit fault currents and capacitor voltage reversal and will have 16 nH total initial inductance. The current is propagated radially from the Marx generators to the one-meter radius by 24 vertical, triplate, oil-insulated transmission lines. A combination of flat and conical, radially converging transmission lines will deliver the current to the load from the one-meter radius. A prototype Marx generator has been successfully tested at full charge voltage. For many applications the Atlas liner will be a nominal 50-gram-aluminum cylinder with ~ 5-cm radius and 4-cm length. Implosion velocities exceeding 1.4 cm/μs are predicted. Using composite inner layers and a variety of interior target designs, a wide array of experiments in cm^3 volumes may be performed.---Sponsored by US DOE under contract W-7405-ENG-36

  10. Building A Universal Nuclear Energy Density Functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Furnstahl, Dick [The Ohio State Univ., Columbus, OH (United States); Horoi, Mihai [Central Michigan Univ., Mount Pleasant, MI (United States); Lusk, Rusty [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, Witek [Univ. of Tennessee, Knoxville, TN (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James [Iowa State Univ., Ames, IA (United States)

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  11. A generalized model for estimating the energy density of invertebrates

    Science.gov (United States)

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  12. Ion energy distributions and densities in the plume of Enceladus

    Science.gov (United States)

    Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter

    2016-10-01

    Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local

  13. Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors

    International Nuclear Information System (INIS)

    Cao, Yi; Lin, Baoping; Sun, Ying; Yang, Hong; Zhang, Xueqin

    2015-01-01

    Highlights: • The electrode made by LNF-0.7 possessed excellent performance (719 F g −1 ) at Na 2 SO 4 electrolyte • LNF-0.7//LNF-0.7 symmetric supercapacitor device were firstly prepared • The maximum energy density of 81.4 Wh·kg −1 are achieved at a power density of 500W·kg −1 • This symmetric supercapacitor also shows an excellent cycling life - Abstract: The series La x Sr 1−x NiO 3−δ (0.3≤x≤1) nanofibers (LNF-x) samples are prepared by using electrospun method. We investigate the structure and the electrochemical properties of LNF-x in detail. As a result, LNF-x nanofibers present a perovskite structure, and the LNF-0.7 sample with high specific surface area display remarkable performance as an electrode material for supercapacitors. The maximum specific capacitance value of 719 F·g −1 at a current density of 2 A·g −1 , which retains 505 F·g −1 at a high current density of 20 A·g −1 , is obtained for LNF-0.7 electrode in 1 M Na 2 SO 4 aqueous electrolyte. Moreover, the LNF-0.7//LNF-0.7 symmetric supercapacitor device using 1 M Na 2 SO 4 aqueous solution is successfully demonstrated. The capacitor device can operate at a cell voltage as high as 2 V, and it exhibits an energy density of 30.5 Wh·kg −1 at a high power density of 10 kW·kg −1 and a high energy density of 81.4 Wh·kg −1 at a low power density of 500 W·kg −1 . More importantly, this symmetric supercapacitor also shows an excellent cycling performance with 90% specific capacitance retention after 2000 charging and discharging cycles. Those results offer a suitable design of electrode materials for high-performance supercapacitors

  14. Strain Energy Density in the Elastodynamics of the Spacetime Continuum and the Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We investigate the strain energy density of the spacetime continuum in the Elasto- dynamics of the Spacetime Continuum by applying continuum m echanical results to strained spacetime. The strain energy density is a scalar. W e find that it is separated into two terms: the first one expresses the dilatation energy density (the “mass” longitu- dinal term while the second one expresses the distortion en ergy density (the “massless” transverse term. The quadratic structure of the energy rel ation of Special Relativity is found to be present in the theory. In addition, we find that the kinetic energy pc is car- ried by the distortion part of the deformation, while the dil atation part carries only the rest-mass energy. The strain energy density of the electrom agnetic energy-momentum stress tensor is calculated. The dilatation energy density (the rest-mass energy density of the photon is found to be 0 as expected. The transverse dis tortion energy density is found to include a longitudinal electromagnetic energy fl ux term, from the Poynting vector, that is massless as it is due to distortion, not dilatation, of the spacetime con- tinuum. However, because this energy flux is along the direct ion of propagation (i.e. longitudinal, it gives rise to the particle aspect of the el ectromagnetic field, the photon.

  15. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  16. Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface--a density functional theoretical study.

    Science.gov (United States)

    Bothra, Pallavi; Periyasamy, Ganga; Pati, Swapan K

    2013-04-21

    The complete hydrogenation mechanisms of CO2 are explored on Ni(110) surface catalyst using density functional theory. We have studied the possible hydrogenation mechanism to form product methane from the stable adsorption-co-adsorption intermediates of CO2 and H2 on Ni(110) surface. Our computations clearly elucidate that the mechanism for the formation of methyl, methoxy and methane moieties from carbon dioxide on the nickel catalyst. Moreover, our studies clearly show that the methane formation via hydroxyl carbonyl intermediate requires a lower energy barrier than via carbon monoxide and formate intermediates on the Ni(110) surface.

  17. Probing the density dependence of the symmetry energy by nucleon flow

    Science.gov (United States)

    Fan, Xiao-Hua; Yong, Gao-Chan; Zuo, Wei

    2018-03-01

    In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, sensitive regions of some nucleon observables to the nuclear symmetry energy are studied. It is found that the symmetry-energy-sensitive observable n /p ratio in the 132Sn+124Sn reaction at 0.3 GeV/nucleon in fact just probes the density-dependent symmetry energy below the density of 1.5 ρ0 and effectively probes the density-dependent symmetry energy around or somewhat below the saturation density. Nucleon elliptic flow can probe the symmetry energy from the low-density region to the high-density region when changing the incident beam energies from 0.3 to 0.6 GeV/nucleon in the semi-central 132Sn+124Sn reaction. And nucleon transverse and elliptic flows in the semi-central 197Au+197Au reaction at 0.6 GeV/nucleon are more sensitive to the high-density behavior of the nuclear symmetry energy. One thus concludes that nucleon observables in the heavy reaction system and with higher incident beam energy are more suitable to be used to probe the high-density behavior of the symmetry energy. The present study may help one to get more specific information about the density-dependent symmetry energy from nucleon flow observable in heavy-ion collisions at intermediate energies.

  18. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density

    International Nuclear Information System (INIS)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.

    1979-01-01

    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do not adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches

  19. High Energy Density Li-Ion Batteries Designed for Low Temperature Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art Li-ion batteries do not fully meet the energy density, power density and safety requirements specified by NASA for future exploration missions....

  20. Density-functional calculations of the surface tension of liquid Al and Na

    Science.gov (United States)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  1. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  2. Artificial upwelling using the energy of surface waves

    Science.gov (United States)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  3. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  4. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  5. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Science.gov (United States)

    Lourenço-Martins, Hugo; Kociak, Mathieu

    2017-10-01

    Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].

  6. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  7. Density functional theory in surface chemistry and catalysis

    Science.gov (United States)

    Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337

  8. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  9. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  10. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  11. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    International Nuclear Information System (INIS)

    Zhang, PengFei; Qiu, Aici; Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian

    2016-01-01

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10 21 /cm 3 ), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  12. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...

  13. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  14. HI observations of low surface brightness galaxies : Probing low-density galaxies

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS; vanderHulst, JM

    1996-01-01

    We present Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) 21-cm HI observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low HI surface densities, about a factor of

  15. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu

    2013-01-01

    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  16. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    OpenAIRE

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25?Wh?l?1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167?Wh?l?1 is demonstrated with a near-neutral 5.0?M ZnI2 electrolyte. Nuclear magnetic resonance study and density functio...

  17. An approximate geostrophic streamfunction for use in density surfaces

    Science.gov (United States)

    McDougall, Trevor J.; Klocker, Andreas

    An approximate expression is derived for the geostrophic streamfunction in approximately neutral surfaces, φn, namely φ={1}/{2}Δpδ˜˜-{1}/{12}{T}/{bΘρ}ΔΘΔ-∫0pδ˜˜ dp'. This expression involves the specific volume anomaly δ˜˜ defined with respect to a reference point (S,Θ˜˜,p˜˜) on the surface, Δ p and ΔΘ are the differences in pressure and Conservative Temperature with respect to p˜˜ and Θ˜˜, respectively, and TbΘ is the thermobaric coefficient. This geostrophic streamfunction is shown to be more accurate than previously available choices of geostrophic streamfunction such as the Montgomery streamfunction. Also, by writing expressions for the horizontal differences on a regular horizontal grid of a localized form of the above geostrophic streamfunction, an over-determined set of equations is developed and solved to numerically obtain a very accurate geostrophic streamfunction on an approximately neutral surface; the remaining error in this streamfunction is caused only by neutral helicity.

  18. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  19. Localization and quantification of hydrophobicity: The molecular free energy density (MolFESD) concept and its application to sweetness recognition

    Science.gov (United States)

    Jäger, Robert; Schmidt, Friedemann; Schilling, Bernd; Brickmann, Jürgen

    2000-10-01

    A method for the localization, the quantification, and the analysis of hydrophobicity of a molecule or a molecular fragment is presented. It is shown that the free energy of solvation for a molecule or the transfer free energy from one solvent to another can be represented by a surface integral of a scalar quantity, the molecular free energy surface density (MolFESD), over the solvent accessible surface of that molecule. This MolFESD concept is based on a model approach where the solvent molecules are considered to be small in comparison to the solute molecule, and the solvent can be represented by a continuous medium with a given dielectric constant. The transfer energy surface density for a 1-octanol/water system is empirically determined employing a set of atomic increment contributions and distance dependent membership functions measuring the contribution of the increments to the surface value of the MolFESD. The MolFESD concept can be well used for the quantification of the purely hydrophobic contribution to the binding constants of molecule-receptor complexes. This is demonstrated with the sweeteners sucrose and sucralose and various halogen derivatives. Therein the relative sweetness, which is assumed to be proportional to the binding constant, nicely correlates to the surface integral over the positive, hydrophobic part of the MolFESD, indicating that the sweetness receptor can be characterized by a highly flexible hydrophobic pocket instead of a localized binding site.

  20. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation...

  1. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  2. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various...... transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics...... in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong....

  3. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.

    Science.gov (United States)

    Qin, Wu; Li, Xin; Bian, Wen-Wen; Fan, Xiu-Juan; Qi, Jing-Yao

    2010-02-01

    There is increasing attention in the unique biological and medical properties of graphene, and it is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. Despite the importance of biomolecules-graphene interactions, a detailed understanding of the adsorption mechanism and features of biomolecules onto the surfaces of graphene is lacking. To address this, we have performed density functional theory (DFT) and molecular dynamics (MD) methods exploring the adsorption geometries, adsorption energies, electronic band structures, adsorption isotherms, and adsorption dynamics of l-leucine (model biomolecule)/graphene composite system. DFT calculations confirmed the energetic stability of adsorption model and revealed that electronic structure of graphene can be controlled by the adsorption direction of l-leucine. MD simulations further investigate the potential energy and van der Waals energy for the interaction processes of l-leucine/graphene system at different temperatures and pressures. We find that the van der Waals interaction between the l-leucine and the graphene play a dominant role in the adsorption process under a certain range of temperature and pressure, and the l-leucine molecule could be adsorbed onto graphene spontaneously in aqueous solution.

  4. Adsorption and activation of methane and methanol on Pt(100) surface: a density functional study

    International Nuclear Information System (INIS)

    Moussounda, P.S.

    2006-11-01

    The activation of methane (CH 4 ) and methanol (CH 3 OH) on Pt(100) surface has been investigated using density functional theory calculations based on plane-wave basis and pseudo-potential. We optimised CH 4 /Pt(100) system. The calculated adsorption energies over the top, bridge and hollow sites are small, weakly dependent on the molecular orientation. The nature of the CH 4 -Pt interaction was examined through the electronic structure changes. The adsorption of methyl (CH 3 ) and hydrogen (H) and the co-adsorption of CH 3 +H were also calculated. From these results, we examined the dissociation of CH 4 to CH 3 +H, and the activation energies found are in good agreement with the experimental and theoretical values. The activation of CH 3 OH/Pt(100) has been studied. All the sites have almost the same adsorption energy. The adsorption of oxygen (O) and the co-adsorption of CH 4 and O were also examined. In addition, the formation of CH 3 OH assuming a one-step mechanism step via the co-adsorption of CH 4 +O has been studied and the barrier height was found to be high. (authors)

  5. Effects of energy content and energy density of pre-portioned entrées on energy intake.

    Science.gov (United States)

    Blatt, Alexandria D; Williams, Rachel A; Roe, Liane S; Rolls, Barbara J

    2012-10-01

    Pre-portioned entrées are commonly consumed to help control portion size and limit energy intake. The influence of entrée characteristics on energy intake, however, has not been well studied. We determined how the effects of energy content and energy density (ED, kcal/g) of pre-portioned entrées combine to influence daily energy intake. In a crossover design, 68 non-dieting adults (28 men and 40 women) were provided with breakfast, lunch, and dinner on 1 day a week for 4 weeks. Each meal included a compulsory, manipulated pre-portioned entrée followed by a variety of unmanipulated discretionary foods that were consumed ad libitum. Across conditions, the entrées were varied in both energy content and ED between a standard level (100%) and a reduced level (64%). Results showed that in men, decreases in the energy content and ED of pre-portioned entrées acted independently and added together to reduce daily energy intake (both P breakfast and lunch, but at dinner and for the entire day the effects depended on the interaction of the two factors (P portioned entrées affect daily energy intake and could influence the effectiveness of such foods for weight management.

  6. Toward a global description of nuclear charge radii: Exploring the Fayans energy density functional

    Science.gov (United States)

    Reinhard, P.-G.; Nazarewicz, W.

    2017-06-01

    Background: Binding energies and charge radii are fundamental properties of atomic nuclei. When inspecting their particle-number dependence, both quantities exhibit pronounced odd-even staggering. While the odd-even effect in binding energy can be attributed to nucleonic pairing, the origin of staggering in charge radii is less straightforward to ascertain. Purpose: In this work, we study the odd-even effect in binding energies and charge radii, and systematic behavior of differential radii, to identify the underlying components of the effective nuclear interaction. Method: We apply nuclear density functional theory using a family of Fayans and Skyrme energy density functionals fitted to similar data sets but using different optimization protocols. We inspect various correlations between differential charge radii, odd-even staggering in energies and radii, and nuclear matter properties. The Fayans functional is assumed to be in the local FaNDF0 form. Detailed analysis is carried out for medium-mass and heavy semimagic nuclei with a particular focus on the Ca chain. Results: By making the surface and pairing terms dependent on density gradients, the Fayans functional offers the superb simultaneous description of odd-even staggering effects in energies and charge radii. Conversely, when the data on differential radii are added to the pool of fit observables, the coupling constants determining the strengths of the gradient terms of Fayans functional are increased by orders of magnitude. The Skyrme functional optimized in this work with the generalized Fayans pairing term offers results of similar quality. We quantify these findings by performing correlation analysis based on the statistical linear regression technique. The nuclear matter parameters characterizing Fayans and Skyrme functionals optimized to similar data sets are fairly close. Conclusion: The Fayans paring functional, with its generalized density dependence, significantly improves the description of

  7. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  8. High Energy-Density Lithium-Sulfur Batteries with Extended Cycle Life, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional lithium-ion batteries demonstrate great potential for energy storage applications but they face some major challenges such as low energy density and...

  9. Chemically and Thermally Stable High Energy Density Silicone Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 -- 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed...

  10. Energy density and velocity of electromagnetic waves in lossy chiral medium

    International Nuclear Information System (INIS)

    Vorobyev, O B

    2014-01-01

    The average energy density of the macroscopic quasimonochromatic electromagnetic field U ts (t,r) in a linear passive chiral lossy medium described by the constitutive E–H relations is determined using a microscopic model. According to the model, U ts (t,r) is equal to the sum of the average energy densities of the electromagnetic field in free space U t0 (t,r) and electromagnetic oscillations in structural elements U s (t,r) induced by the electromagnetic wave. Making use of the Poynting theorem, the energy density U ts (t,r)≥U t0 (t,r) and power density of losses are derived as functions of the Poynting vector, polarization of the electromagnetic waves, phase shift between the field vectors and refractive index of a chiral medium. The exact energy velocity of the quasimonochromatic electromagnetic waves satisfying relativistic causality is determined using U ts (t,r). The approximate energy velocities of the quasimonochromatic electromagnetic wave are determined using energy density components approximating U ts (t,r) (e.g., the sum of the positive energy densities of the macroscopic electric and magnetic fields as well as the energy density of magnetoelectric cross-coupling). Comparison of the exact and approximate energy velocities with the group velocity in the case of a chiral lossy medium with a single-resonant frequency clarifies the concept of the electromagnetic energy and demonstrates the fundamental significance of the exact energy velocity. (paper)

  11. All-Nitrogen Compounds as High Energy Density Materials

    National Research Council Canada - National Science Library

    Baum, Kurt; Willer, Rodney L; Bottaro, Jeffrey; Petrie, Mark; Penwell, Paul; Dodge, Allen; Malhotra, Ripu

    2005-01-01

    .... Enhanced dissolving power, density and compatibilities with a wide range of propellant ingredients make ionic liquids a very attractive class of materials for advanced state-of-the-art propulsion systems...

  12. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-03-30

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  13. Efficient energy transfer and increase of energy density of magnetically charged flywheels

    International Nuclear Information System (INIS)

    Hinterdorfer, T.

    2014-01-01

    Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of

  14. Surface density profile and surface tension of the one-component classical plasma

    International Nuclear Information System (INIS)

    Ballone, P.; Senatore, G.; Trieste Univ.; Tosi, M.P.; Oxford Univ.

    1982-08-01

    The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)

  15. Newly discovered failure mode in high energy density, energy storage capacitors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Kemp, E.L.

    1978-07-01

    High energy density pulse capacitors, typified by the 10-kV, 170-μF unit, have become widely used in recent years. These units primarily were designed for lower cost and higher energy per unit volume. The life characteristics of these units have never been determined fully, but they have already been shown capable of lives much longer than originally expected. The Los Alamos Scientific Laboratory is now conducting an extended program to determine the long-term capabilities of these capacitors. This program is aimed not only at finding the statistical parameters of the failure distribution but also at determining the physical failure modes characteristic of such units. Recently, a new failure mode was found. This failure mode has prevented test samples of polypropylene-paper-dioctyl phthalate units from actually reaching the true potential life of the insulation. In this report, the new failure mechanism is examined and suggestions are made that could eliminate the failure mode

  16. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  17. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  18. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  19. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.

    2009-01-01

    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  20. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  1. Energy Density, Energy Intake, and Body Weight Regulation in Adults12345

    Science.gov (United States)

    Karl, J. Philip; Roberts, Susan B.

    2014-01-01

    The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750

  2. Interfacial Coupling Effect in Organic/Inorganic Nanocomposites with High Energy Density.

    Science.gov (United States)

    Pan, Zhongbin; Yao, Lingmin; Zhai, Jiwei; Yao, Xi; Chen, Haydn

    2018-02-06

    Organic/inorganic nanocomposites (OINs) can be potentially used as high-performance capacitors due to their rapid charge-discharge capability along with respectable power density. The coupling effect of the filler/matrix interface plays a prominent role in the dielectric and electric properties of OINs. Along with a review of contemporary theoretical models, recent advances in interfacial optimization to improve energy density through careful interface control and design are also presented. Possible mechanisms that may improve energy density and potential applications for high-energy-density capacitors are also highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. the use of energy pattern factor (epf) in estimating wind power density

    African Journals Online (AJOL)

    Dogara M. D et. al

    Factor of Kaduna was estimated to be 1.03 and from the energy pattern factor, the average annual available wind power density was calculated to be 222.13 W/m2. This calculated wind power density falls within the stipulated values under wind power class 4 of the National Renewable Energy Laboratory (NREL) of the US.

  4. A high energy density all solid-state tungsten-air battery.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Xu, Nansheng; Romito, Kevin; Huang, Kevin

    2013-06-14

    An all solid-state tungsten-air battery is reported here, which is based on a new metal-air chemistry, featuring decoupled design of electrodes and energy storage. Benefited from higher specific density and better redox kinetics of tungsten, the new tungsten-air battery exhibits roughly higher energy density (W h L(-1)) than the previously reported iron-air battery.

  5. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  6. The relationship between personal net energy use and the urban density of solar buildings

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, W.; Athienitis, A. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Kennedy, C. [Toronto Univ., ON (Canada). Dept. of Civil Engineering; Kesik, T. [Toronto Univ., ON (Canada). Faculty of Architecture Landscape and Design

    2009-06-15

    In order to promote sustainable development, urban areas should be planned in a manner to minimize energy use and greenhouse gas (GHG) emissions. This paper looked at housing energy, building-integrated solar energy collection, and personal transportation energy in an effort to quantitatively compare different housing forms and densities. The 3 housing forms used to establish trends in energy use as a function of housing density in Toronto were low-density detached homes, medium-density townhouses and high-density high-rises. This multi-disciplinary study proved the importance of collaboration between building designers and urban planners. The objective of the study was to quantify the importance of balancing transportation energy and solar energy availability for buildings, in the context of net operational energy use. It focused on the dichotomous relationship between the density of solar housing and household energy use. The following 2 scenarios were studied: (1) the base case in which average new home performance, average vehicle fleet, and nominal solar collector efficiency were examined, and (2) the efficient case in which energy efficiency measures and ground source heat pumps (GSHP) were added to the homes. The vehicle fleet was upgraded to plug-in hybrids and the solar collector efficiency was doubled. The results show that only when all systems are made to be extremely efficient does the low-density development result in lower net energy use. Therefore, this study emphasized the need to consider new housing developments in the context of their surroundings. The amount of solar energy available per person decreases approximately linearly as density increases. The results suggest that urban form should not be driven by solar energy availability alone, but rather the consideration of all major energy sources and sinks. 34 refs., 12 tabs., 4 figs.

  7. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  8. High energy-density liquid rocket fuel performance

    Science.gov (United States)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  9. Constraints on the density dependence of the symmetry energy from heavy-ion collisions

    Science.gov (United States)

    Tsang, M. B.; Chajecki, Z.; Coupland, D.; Danielewicz, P.; Famiano, F.; Hodges, R.; Kilburn, M.; Lu, F.; Lynch, W. G.; Winkelbauer, J.; Youngs, M.; Zhang, Y. X.

    2011-04-01

    Constraints on the equation of state (EoS) for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at subsaturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of symmetry energy at subsaturation density.

  10. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  11. The Talbot-Lau x-ray deflectometer: a refraction-based electron density diagnostic for High Energy Density experiments

    Science.gov (United States)

    Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar; Theobald, Wolfgang; Bromage, Jake; Regan, Sean; Klein, Sallee; Vescovi, Milenko; Munoz-Cordovez, Gonzalo; Valenzuela-Villaseca, Vicente; Villanueva, Francisca; Veloso, Felipe

    2017-10-01

    Talbot-Lau X-ray Deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The diagnostic delivers refraction, attenuation, elemental composition, and scatter information from a single-shot Moiré image. A Talbot-Lau interferometer was benchmarked using laser-target and X-pinch x-ray backlighters. Grating survival and electron density mapping were demonstrated for: a) 25-29 J, 8-30 ps laser pulses using Cu targets and b) a 4 x 25 µm copper X-pinch driven by a 400kA/350ns generator. X-ray backlighter quality was assessed in order to optimize areal electron density gradient retrieval and electron density mapping. TXD enabled accurate areal electron density detection with high contrast (>25%) and spatial resolution of 50 µm in the high-power laser experiments, while a higher spatial resolution <27 µm and lower contrast (<15%) were found in pulsed power experiments, thus demonstrating the potential of TXD as an electron density diagnostic for HED plasmas. DENA0002955; FONDECYT N1171412.

  12. Microhardness and Deformation Storage Energy Density of NiTi Thin Films

    Science.gov (United States)

    Li, Yonghua; Wang, Xiaodong; Zheng, Weitao; Meng, Fanling

    The NiTi thin films were deposited onto copper substrates by magnetron sputtering. Tensile tests were carried out on CSS-44100 electron universal test-machine. X-ray diffraction profile Fourier analysis method has been used to study the mechanical properties of deformation NiTi thin films. The surface micrographs of the NiTi thin film were obtained using scanning electron microscopy (SEM). It has been found that the dislocation density and the deformation storage energy density increased with elongation increased. Microhardness was calculated from the dislocation data. The results showed that the microhardness values were not in a good agreement between calculated values and measured values. The oxide layer on the surface of NiTi thin film affects the measured values of microhardness. The Vickers hardness measured values are larger than the calculated values. The experimental results showed that a series of parallel cracks grew in a concerted fashion across the thin film and the cracks were equally spaced.

  13. Energy expressions in density-functional theory using line integrals.

    NARCIS (Netherlands)

    van Leeuwen, R.; Baerends, E.J.

    1995-01-01

    In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along

  14. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density

    KAUST Repository

    Kurra, Narendra

    2014-09-10

    Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top-down photolithographic process and bottom-up chemical synthesis is employed to fabricate the micro-pseudocapacitors (μ-pseudocapacitors). The resulting Ni(OH)2-based devices show several excellent characteristics including high-rate redox activity up to 500 V s-1 and an areal cell capacitance of 16 mF cm-2 corresponding to a volumetric stack capacitance of 325 F cm-3. This volumetric capacitance is two-fold higher than carbon and metal oxide based μ-supercapacitors with interdigitated electrode architecture. Furthermore, these μ-pseudocapacitors show a maximum energy density of 21 mWh cm-3, which is superior to the Li-based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ-pseudocapacitors are shown to be capable of powering a light-emitting diode.

  15. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  16. Adsorption and dissociation of H2O on Al(1 1 1) surface by density functional theory calculation

    International Nuclear Information System (INIS)

    Guo, F.Y.; Long, C.G.; Zhang, J.; Zhang, Z.; Liu, C.H.; Yu, K.

    2015-01-01

    Highlights: • O 2 on Al(1 1 1) surface can spontaneously dissociate, but H 2 O can not. • H 2 O, OH and H on top sites are favorable on Al(1 1 1) surface. • O on the hollow (fcc) site is preferred. • O which plays a key role in the dissociate reaction of H 2 O. - Abstract: Using the first-principles calculations method based on the density functional theory, we systematically study the adsorption behavior of a single molecular H 2 O on a clean and a pre-adsorbed O atom Al(1 1 1) surface, and also its corresponding dissociation reactions. The equilibrium configuration on top, bridge, and hollow (fcc and hcp) site were determined by relaxation of the system relaxation. The adsorptions of H 2 O, OH and H on top sites are favorable on the Al(1 1 1) surface, while that of O on the hollow (fcc) site is preferred. The results show that the hydrogen atom dissociating from H 2 O needs a 248.32 kJ/mol of energy on clean Al(1 1 1) surface, while the dissociating energy decreases to 128.53 kJ/mol with the aid of the O absorption. On the other hand, these phenomena indicate that the dehydrogenated reaction energy barrier of the pre-adsorbed O on metal surface is lower than that of on a clean one, because O can promote the dehydrogenation of H 2 O

  17. Change in dietary energy density after implementation of the Texas Public School Nutrition Policy.

    Science.gov (United States)

    Mendoza, Jason A; Watson, Kathy; Cullen, Karen Weber

    2010-03-01

    Consumption of energy-dense foods has been associated with rising obesity rates and the metabolic syndrome. Reducing dietary energy density is an important strategy to address obesity, but few studies have examined the effect of nutrition policies on children's energy density. The study's objective was to assess the impact of the Texas Public School Nutrition Policy on children's energy density by using a pre- and post-policy evaluation. Analysis of variance/covariance and nonparametric tests compared energy density after the Texas policy change to intakes at baseline. Two years of lunch food records were collected from middle school students in Southeast Texas at three public middle schools: baseline (2001-2002) and 1 year after implementation of the Texas Policy (2005-2006). Students recorded the amount and source of foods consumed. The Texas Public School Nutrition Policy was designed to promote a healthy school environment by restricting portion sizes of high-fat and high-sugar snacks and sweetened beverages, fat content of foods, and serving of high-fat vegetables like french fries. Energy density (kcal/g): energy density-1 was the energy of foods only (no beverages) divided by the gram weight and has been previously associated with obesity and insulin resistance; energy density-2 included all food and beverages to give a complete assessment of all sources of calories. Following implementation of the Texas policy, students' energy density-1 significantly decreased from 2.80+/-1.08 kcal/g to 2.17+/-0.78 kcal/g (PNutrition Policy was associated with desirable reductions in energy density, which suggests improved nutrient intake as a result of student school lunch consumption. Copyright 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  18. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces.

    Science.gov (United States)

    Castelino, Kenneth; Kannan, Balaji; Majumdar, Arun

    2005-03-01

    The surface grafting density of biomolecules is an important factor for quantitative assays using a wide range of biological sensors. We use a fluorescent measurement technique to characterize the immobilization density of thiolated probe DNA on gold and hybridization efficiency of target DNA as a function of oligonucleotide length and salt concentration. The results indicate the dominance of osmotic and hydration forces in different regimes of salt concentration, which was used to validate previous simulations and to optimize the performance of surface-stress based microcantilever biosensors. The difference in hybridization density between complementary and mismatched target sequences was also measured to understand the response of these sensors in base-pair mismatch detection experiments. Finally, two different techniques for immobilizing proteins on gold were considered and the surface densities obtained in both cases were compared.

  19. Casimir energy density for spherical universes in n-dimensional spacetime

    International Nuclear Information System (INIS)

    Oezcan, Mustafa

    2006-01-01

    We consider the Casimir effect for the massless conformal scalar field in an n-dimensional, closed, static universe. We calculate the renormalized vacuum energy density using the covariant point-splitting method, the mode-sum regularization and the renormalized vacuum energy with the zeta-function regularization. We observe that all odd spacetime dimensions give us the zero renormalized vacuum energy density. For even spacetime dimensions the renormalized vacuum energy density oscillates in sign. The result agrees with three regularization techniques. The Casimir energy density for spherical universes in n-dimensional spacetime is regarded as interesting both to understand the correspondence between the sign of the effect and the dimension of manifold in topology and as a key to confirming the Casimir energy for half spherical universes (manifold with boundary) in n-dimensional spacetime

  20. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  1. Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.

    2007-01-01

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron

  2. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  3. On the energy-momentum density of gravitational plane waves

    International Nuclear Information System (INIS)

    Dereli, T; Tucker, R W

    2004-01-01

    By embedding Einstein's original formulation of general relativity into a broader context, we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor T G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary spacetime. For plane-fronted gravitational waves helicity-2 polarized (graviton) states can be identified carrying non-zero energy and momentum

  4. Study of excitation energy dependence of nuclear level density parameter

    International Nuclear Information System (INIS)

    Mohanto, G.; Nayak, B.K.; Saxena, A.

    2016-01-01

    In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei

  5. Measurement of sound power and absorption in reverberation chambers using energy density.

    Science.gov (United States)

    Nutter, David B; Leishman, Timothy W; Sommerfeldt, Scott D; Blotter, Jonathan D

    2007-05-01

    Reverberation chamber measurements typically rely upon spatially averaged squared pressure for the calculation of sound absorption, sound power, and other acoustic values. While a reverberation chamber can provide an approximately diffuse sound field, variations in sound pressure consistently produce uncertainty in measurement results. This paper explores the benefits of using total energy density or squared particle velocity magnitude (kinetic energy density) instead of squared pressure (potential energy density) for sound absorption and sound power measurements. The approaches are based on methods outlined in current ISO standards. The standards require a sufficient number of source-receiver locations to obtain suitable measurement results. The total and kinetic energy densities exhibit greater spatial uniformity at most frequencies than potential energy density, thus requiring fewer source-receiver positions to produce effective results. Because the total energy density is typically the most uniform of the three quantities at low frequencies, its use could also impact the usable low-frequency ranges of reverberation chambers. In order to employ total and kinetic energy densities for sound absorption measurements, relevant energy-based impulse responses were developed as part of the work for the assessment of sound field decays.

  6. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  7. High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric energy harvesting utilizes materials that generate an electrical current when subjected to a temperature gradient, or simply, a hot and cold source of...

  8. Modeling of a nanoscale flexoelectric energy harvester with surface effects

    Science.gov (United States)

    Yan, Zhi

    2017-04-01

    This work presents the modeling of a beam energy harvester scavenging energy from ambient vibration based on the phenomenon of flexoelectricity. By considering surface elasticity, residual surface stress, surface piezoelectricity and bulk flexoelectricity, a modified Euler-Bernoulli beam model for the energy harvester is developed. After deriving the requisite energy expressions, the extended Hamilton's principle and the assumed-modes method are employed to obtain the discrete electromechanical Euler-Lagrange's equations. Then, the expressions of the steady-state electromechanical responses are given for harmonic base excitation. Numerical simulations are conducted to show the output voltage and the output power of the flexoelectric energy harvesters with different materials and sizes. Particular emphasis is given to the surface effects on the performance of the energy harvesters. It is found that the surface effects are sensitive to the beam geometries and the surface material constants, and the effect of residual surface stress is more significant than that of the surface elasticity and the surface piezoelectricity. The axial deformation of the beam is also considered in the model to account for the electromechanical coupling due to piezoelectricity, and results indicate that piezoelectricity will diminish the output electrical quantities for the case investigated. This work could lead to the development of flexoelectric energy harvesters that can make the micro- and nanoscale sensor systems autonomous.

  9. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...... are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  10. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  11. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  12. Effect of cathode component on the energy density of lithium-sulfur battery

    International Nuclear Information System (INIS)

    Choi, Yun Seok; Kim, Seok; Choi, Soo Seok; Han, Ji Sung; Kim, Jan Dee; Jeon, Sang Eun; Jung, Bok Hwan

    2004-01-01

    The effect of the carbon black types and the sulfur particle size on the discharge capacity or the utilization of sulfur was investigated for the cathode having high loading of sulfur. The DBP (dibutyl phthalate) absorption number of the used carbon black has a strong effect on the utilization while the specific surface area is not so critical to it. It was also found that the sulfur particle size is a factor having an effect on the utilization. We have improved the cathode component and achieved the utilization of about 50%. By using that cathode, the volumetric energy density of about 330 Wh/l was obtained for the full size Li-S battery (3.8 mm thickness, 35 mm width and 62 mm height)

  13. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  14. Lower Bound on the Energy Density in Classical and Quantum Field Theories.

    Science.gov (United States)

    Wall, Aron C

    2017-04-14

    A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.

  15. Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean

    Science.gov (United States)

    Ibrahim, C.; Chane-Ming, F.; Barthe, C.; Kuleshov, Y.

    2010-05-01

    Tropical cyclone (TC) activity is diagnosed through convective gravity waves (GWs) observed in the upper troposphere (UT)/lower stratosphere (LS) above Tromelin island (15.53°S, 54.31°E) in the tropical southwest Indian Ocean. Monthly and weekly GW total energy densities derived from daily GPS windsonde data are compared with Outgoing Longwave Radiation (OLR) and TC hours in the vicinity of Tromelin. A relationship between GW energy density and TC activity is observed in the LS, for the TC season 2001/2002. Moreover TCs (local convection) produce GWs with total energy density mostly higher (lower) than 12 J kg-1. A 10-season climatology (1997/1998-2006/2007) confirms that large values of GW total energy density in the LS are associated with weak values of OLR during the TC passage. Monthly total, kinetic and potential GW energy densities within 2000 km radius of Tromelin can be estimated using linear relationships with TC hours for a threshold of above 6 TC days per month. A linear relationship also exists between weekly GW total energy density in the LS and the activity of intense TCs above a threshold of 2 TC days per week within 1000 km radius of Tromelin. GW energy density in the LS could be used as a possible index to investigate TC activity in the UT/LS.

  16. [Cost and energy density of diet in Brazil, 2008-2009].

    Science.gov (United States)

    Ricardo, Camila Zancheta; Claro, Rafael Moreira

    2012-12-01

    This study aimed to evaluate the relationship between the cost and energy density of diet consumed in Brazilian households. Data from the Brazilian Household Budget Survey (POF 2008/2009) were used to identify the main foods and their prices. Similar items were grouped, resulting in a basket of 67 products. Linear programming was applied for the composition of isoenergetic baskets, minimizing the deviation from the average household diet. Restrictions were imposed on the inclusion of items and the energy contribution of the various food groups. A reduction in average cost of diet was applied at intervals of R$0.15 to the lowest possible cost. We identified an inverse association between energy density and cost of diet (p energy density. Restrictions on the diet's cost resulted in the selection of diets with higher energy density, indicating that cost of diet may lead to the adoption of inadequate diets in Brazil.

  17. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  18. Learning about the energy density of liquid and semi-solid foods

    NARCIS (Netherlands)

    Hogenkamp, P.S.; Stafleu, A.; Mars, M.; Graaf C. de

    2012-01-01

    Background:People learn about a food's satiating capacity by exposure and consequently adjust their energy intake.Objective:To investigate the effect of energy density and texture on subsequent energy intake adjustments during repeated consumption.Design:In a randomized crossover design,

  19. Microscopic description of triaxiality in Ru isotopes with covariant energy density functional theory

    Science.gov (United States)

    Shi, Z.; Li, Z. P.

    2018-03-01

    Background: Triaxiality in nuclear low-lying states has attracted great interest for many years. Recently, reduced transition probabilities for levels near the ground state in 110Ru have been measured and provided strong evidence of a triaxial shape of this nucleus. Purpose: The aim of this work is to provide a microscopic study of low-lying states for Ru isotopes with A ≈100 and to examine in detail the role of triaxiality and the evolution of quadrupole shapes with the isospin and spin degrees of freedom. Method: Low-lying excitation spectra and transition probabilities of even-even Ru isotopes are described at the beyond-mean-field level by solving a five-dimensional collective Hamiltonian with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1. Results: The calculated energy surfaces, low-energy spectra, and intraband and interband transition rates, as well as some characteristic collective observables, such as E (4g.s . +) /E (2g.s . +) ,E (2γ+) /E (4g.s . +) , and B (E 2 ;2g.s . +→0g.s . +) and γ -band staggerings, are in good agreement with the available experimental data. Conclusions: The main features of the experimental low-lying excitation spectra and electric transition rates are well reproduced and, thus, strongly support the onset of triaxiality in the low-lying excited states of Ru isotopes around 110Ru.

  20. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors

    Science.gov (United States)

    Hou, Jianhua; Jiang, Kun; Tahir, Muhammad; Wu, Xiaoge; Idrees, Faryal; Shen, Ming; Cao, Chuanbao

    2017-12-01

    The development of green and clean synthetic techniques to overcome energy requirements have motivated the researchers for the utilization of sustainable biomass. Driven by this desire we choose rice as starting materials source. After the explosion effect, the precursor is converted into puffed rice with a honeycomb-like structures composed of thin sheets. These honeycomb-like macrostructures, effectively prevent the cross-linking tendency towards the adjacent nanosheets during activation process. Furthermore, tuneable micro/mesoporous structures with ultrahigh specific surface areas (SBET) are successfully designed by KOH activation. The highest SBET of 3326 m2 g-1 with optimized proportion of small-mesopores is achieved at 850 °C. The rice-derived porous N-doped carbon nanosheets (NCS-850) are used as the active electrode materials for supercapacitors. It exhibites high specific capacitance specifically of 218 F g-1 at 80 A g-1 in 6 M KOH and a high-energy density of 104 Wh kg-1 (53 Wh L-1) in the ionic liquid electrolytes. These are the highest values among the reported biomass-derived carbon materials for the best of our knowledge. The present work demonstrates that the combination of "puffing effect" and common chemical activation can turn natural products such as rice into functional products with prospective applications in high-performance energy storage devices.

  1. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  2. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... ter in the events of big bang, supernova explosions, and in the interior of neutron stars. Therefore, it becomes possible to understand the thermodynamical properties of strongly interacting matter. In addition to the reaction conditions, the symmetry energy, i.e. the isospin-dependent part of nuclear equation ...

  3. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... ments (LMFs) (2 ≤ A ≤ 4) and enhance the production of intermediate mass fragments. (IMFs) (5 ≤ A ≤ Atot/6) and heavy mass fragments (HMFs) (5 ≤ A ≤ Atot/3). How- ever, larger incident energies result in more violent collision producing a large number of. Pramana – J. Phys., Vol. 82, No. 3, March ...

  4. The National Ignition Facility - applications for inertial fusion energy and high-energy-density science

    International Nuclear Information System (INIS)

    Campbell, E.M.; Hogan, W.J.

    1999-01-01

    Research in inertial fusion sciences and applications worldwide is making dramatic progress. The National Ignition Facility (NIF) in the US and the Laser MegaJoule (LMJ) in France are being built to achieve fusion ignition in the laboratory. Experiments that have been done on current Inertial Confinement Fusion (ICF) facilities in the US and around the world have demonstrated that the drive characteristics required for ignition are now well understood and a new plan for inertial fusion energy development has been put together by the community. Besides examining the conditions necessary for fusion ignition, targets were designed without fusion capsules. Equilibrium temperatures of hundreds of electron volts and megabar pressures were used to study astrophysical processes and measure equations of states at these extreme conditions. Recent studies of laser-matter interactions with femtosecond lasers have revealed some startling new phenomena due to the ability to achieve irradiances >1020 W cm-2. This paper will review recent results in fusion and high energy density science achieved by high intensity lasers at LLNL and will look ahead to what may achieved on NIF. (author)

  5. Microscopically-Based Energy Density Functionals for Nuclei Using the Density Matrix Expansion. I: Implementation and Pre-Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Kortelainen, Erno M [ORNL; Bogner, S. K. [Michigan State University, East Lansing; Duguet, T. [CEA, Saclay, France; Furnstahl, R. J. [Ohio State University; Gebremariam, B. [Michigan State University, East Lansing; Schunck, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2010-01-01

    In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically-based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction in {chi}^{2} compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  6. The symmetry energy at suprasaturation density and the ASY-EOS experiment at GSI

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2017-01-01

    Full Text Available The ASY-EOS experiment at GSI laboratory measured the direct and elliptic flow of neutrons and light charged particles in the reaction 197Au+197 Au at 400 A MeV incident energy. The ratio of elliptic flow of neutrons with respect to that of the light charged particles was used as main experimental observable to probe the density dependence of the symmetry energy term of the nuclear equation of state. Results, obtained by comparison of the experimental data with the UrQMD model predictions, strongly support a moderately soft to linear density dependence of the symmetry energy at suprasaturation densities below 2ρ0.

  7. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    International Nuclear Information System (INIS)

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-01-01

    The neutron spectrum from the 55 Mn(d,n) 56 Fe reaction has been measured at E d = 7 MeV. The level density of 56 Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type 57 Fe( 3 He, aγ) 56 Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the γ-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy

  8. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  10. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1-2) × 105 N m-2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  11. Chemical bonding in view of electron charge density and kinetic energy density descriptors.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-05-01

    Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. 2008 Wiley Periodicals, Inc.

  12. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  13. Surface technologies 2006-Alternative energies and policy options

    International Nuclear Information System (INIS)

    Rose, Lars

    2007-01-01

    Surfaces are the immediate contact between anything in our world. Literally, every industry utilizes coatings and surface modifications in order to create surfaces tailored to specific needs, protect underlying substrates, or modify their behavior. Surface and coating technologies are essential to a large variety of different industrial sectors, including transportation, manufacturing, food and biomedical engineering, energy, resources, and materials science and technology. The present paper explains the limitations for alternative energy technologies, with a focus on fuel cell technology development and the alternative energy sector, based on the outcomes of presentations and facilitated discussion groups during a Canadian national workshop series. Options for technological improvements of alternative energy systems are presented in combination with national and international policy choices, which could positively influence research and development in the alternative energy sector

  14. Isotope Generated Electron Density in Silicon Carbide Direct Energy Converters

    Science.gov (United States)

    2006-10-01

    Blanchard, James P. Stretching the Boundaries of Nuclear Technology. The Bridge 32.4 (2002): 29-34. 2. Ahearne, John F. The Future of Nuclear... James . The Daintiest Dynamos. IEEE Spectrum Sept. 2004, 36-41. 5. Lal, A.; Blanchard, James . By Harvesting Energy From Radioactive Specks...ODDRE (R&AT) THE PENTAGON WASHINGTON DC 20301-3080 US ARMY TRADOC BATTLE LAB INTEGRATION & TECHL DIRCTRT ATTN ATCD-B 10 WHISTLER LANE FT

  15. Dietary energy density was associated with diet quality in Brazilian adults and older adults.

    Science.gov (United States)

    Mendes, Aline; Pereira, Jaqueline Lopes; Fisberg, Regina Mara; Marchioni, Dirce Maria Lobo

    2016-02-01

    Cross-sectional and longitudinal studies present association of low dietary energy density with higher intake of vitamins, minerals and dietary fiber, lower intake of fat, and better balance of macronutrients. The objective of this study was to verify the relationship between dietary energy density and diet quality measured by an index of diet quality. This study used data from 496 adults and 445 older adults of cross-sectional population-based survey from São Paulo conducted in 2008-2009, Brazil. Dietary intake data was assessed by two 24-h dietary recalls. Dietary energy density values were calculated based on foods only method. Dietary energy density and revised Brazilian Health Eating Index and its components, were estimated by usual intake using Multiple Source Method. The relationship between dietary energy density and the total revised Brazilian Health Eating Index and its components were assessed by Gaussian family log-link model for each age group. The analyses showed an inverse association between dietary energy density and total revised Brazilian Health Eating Index in adults (T2:β = 0.96, p energy density and nine of twelve revised Brazilian Health Eating Index components in adult and/or older adults groups. Dietary energy density was associated with diet quality in Brazilian adults and older adults regardless of sex, per capita household income, body mass index, physical activity level, current smoking habits status, alcohol beverage drinking status and usual energy intake (kilocalories) from beverages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    Science.gov (United States)

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Surface density of dark matter haloes on galactic and cluster scales

    Science.gov (United States)

    Del Popolo, A.; Cardone, V. F.; Belvedere, G.

    2013-02-01

    In this paper, we analysed the correlation between the central surface density and the halo core radius of galaxies, and cluster of galaxies dark matter (DM) haloes, in the framework of the secondary infall model. We used Del Popolo secondary infall model taking into account ordered and random angular momentum, dynamical friction and DM adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that r* (the halo characteristic radius) is not a universal quantity as claimed by Donato et al. and Gentile et al. On the contrary, we find a correlation with the halo mass M200 in agreement with Cardone & Tortora, Boyarsky et al. and Napolitano, Romanowsky & Tortora, but with a significantly smaller scatter, namely 0.16 ± 0.05. We also consider the baryon column density finding this latter being indeed a constant for low-mass systems, such as dwarfs, but correlating with mass with a slope of α = 0.18 ± 0.05. In the case of the surface density of DM for a system composed only of DM, as in dissipationless simulations, we get α = 0.20 ± 0.05. These results leave little room for the recently claimed universality of (dark and stellar) column density.

  18. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  19. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  20. Dual hierarchical biomimic superhydrophobic surface with three energy states

    Science.gov (United States)

    Chen, Ming-Hung; Hsu, Tsung-Hsing; Chuang, Yun-Ju; Tseng, Fan-Gang

    2009-07-01

    A low hysteresis surface prepared by two-length-scaled hierarchical textures to mimic the Lotus effect is proposed. The fabricated textures incorporate self-masked nanorods on microextrusions. A high static contact angle (160°) and low hysteresis (˜2.7°) are obtained and comparable to the surface properties of a natural lotus leaf. The stability of hydrophobicity is described with respect to three energy states (nonwetting, microwetting, and nanowetting) based on dynamic contact angle analysis by droplet impinging onto the surface. The estimated texture-induced energy barrier based on the principle of energy conservation is in good agreement to those estimated from Laplace's law.

  1. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  2. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  3. High Energy Density Solid State Li-ion Battery with Enhanced Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  4. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  5. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  6. High Energy Density Li-ion Batteries Designed for Low Temperature Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NEI Corporation proposes to develop a mixed metal oxide nanocomposite cathode that is designed for delivering high energy density with good rate performance at low...

  7. Knot soliton in DNA and geometric structure of its free-energy density.

    Science.gov (United States)

    Wang, Ying; Shi, Xuguang

    2018-03-01

    In general, the geometric structure of DNA is characterized using an elastic rod model. The Landau model provides us a new theory to study the geometric structure of DNA. By using the decomposition of the arc unit in the helical axis of DNA, we find that the free-energy density of DNA is similar to the free-energy density of a two-condensate superconductor. By using the φ-mapping topological current theory, the torus knot soliton hidden in DNA is demonstrated. We show the relation between the geometric structure and free-energy density of DNA and the Frenet equations in differential geometry theory are considered. Therefore, the free-energy density of DNA can be expressed by the curvature and torsion of the helical axis.

  8. Advanced Cathode Material For High Energy Density Lithium-Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  9. High energy density additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these...

  10. Improving the energy density of hydraulic hybrid vehicles (HHVS) and evaluating plug-in HHVS.

    Science.gov (United States)

    2010-10-01

    This report describes analyses performed by researchers at The University of Toledo (UT) in : collaboration with researchers at the University of Detroit Mercy (UDM) on the project : Improving the Energy Density of Hydraulic Hybrid Vehicles (HHVs)...

  11. High-energy-density physics foundation of inertial fusion and experimental astrophysics

    CERN Document Server

    Drake, R Paul

    2018-01-01

    The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation ...

  12. Lightweight High Energy Density Capacitors for NASA AMPS and PPUs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR proposal addresses the development of lightweight, high energy density DC-link capacitors that are a key component of inverters used power...

  13. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    Science.gov (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Probing the spectral density of the surface electromagnetic fields through scattering of waveguide photons.

    Science.gov (United States)

    Chen, Guang-Yin

    2016-02-10

    The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface.

  15. Effects of Consuming Preloads with Different Energy Density and Taste Quality on Energy Intake and Postprandial Blood Glucose

    Directory of Open Access Journals (Sweden)

    Siew Ling Tey

    2018-01-01

    Full Text Available Consumption of reduced energy dense foods and drink has the potential to reduce energy intake and postprandial blood glucose concentrations. In addition, the taste quality of a meal (e.g., sweet or savoury may play a role in satiation and food intake. The objective of this randomised crossover study was to examine whether energy density and taste quality has an impact on energy intake and postprandial blood glucose response. Using a preload design, participants were asked to consume a sweet (“Cheng Teng” or a savoury (broth preload soup in high energy density (HED; around 0.50 kcal/g; 250 kcal or low energy density (LED; around 0.12 kcal/g; 50 kcal in mid-morning and an ad libitum lunch was provided an hour after the preload. Participants recorded their food intake for the rest of the day after they left the study site. Energy compensation and postprandial blood glucose response were measured in 32 healthy lean males (mean age = 28.9 years, mean BMI = 22.1 kg/m2. There was a significant difference in ad libitum lunch intake between treatments (p = 0.012, with higher intake in sweet LED and savoury LED compared to sweet HED and savoury HED. Energy intake at subsequent meals and total daily energy intake did not differ between the four treatments (both p ≥ 0.214. Consumption of HED preloads resulted in a larger spike in postprandial blood glucose response compared with LED preloads, irrespective of taste quality (p < 0.001. Energy density rather than taste quality plays an important role in energy compensation and postprandial blood glucose response. This suggests that regular consumption of low energy-dense foods has the potential to reduce overall energy intake and to improve glycemic control.

  16. Energy distribution of interface state density in Si band gap of ...

    African Journals Online (AJOL)

    The energy distribution of interface states density, Dit, in the Si bandgap of Hafnium silicate based Metal-Oxide-Semiconductor Capacitors (MOS-C) has been studied using the alternating current (ac) conductance method. The interface trap density was higher in the upper half of the bandgap than in the lower half.

  17. Energy density calculations for ball-lightning-like luminous silicon balls

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Gerson S; Ferreira, Joacy V; Bastos, Cristiano C; Dos Santos, Marcus V; Pavao, Antonio C [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Pernambuco (Brazil)

    2010-05-11

    The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m{sup -3}, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model. (methodological notes)

  18. METHODOLOGICAL NOTES: Energy density calculations for ball-lightning-like luminous silicon balls

    Science.gov (United States)

    Paiva, Gerson S.; Ferreira, Joacy V.; Bastos, Cristiano C.; dos Santos, Marcus V.; Pavão, Antonio C.

    2010-05-01

    The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m-3, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model.

  19. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2008-03-01

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  20. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  1. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS : NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms : Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery. We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  2. Report of the Interagency Task Force on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  3. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, Gilad, E-mail: zorn@ge.com; Castner, David G. [National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, Washington 98195-1653 (United States); Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi, E-mail: Mingdi-Yan@uml.edu [Department of Chemistry, Portland State University, Portland, Oregon 97207-0751 (United States)

    2015-03-15

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

  4. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization

    International Nuclear Information System (INIS)

    Zorn, Gilad; Castner, David G.; Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi

    2015-01-01

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution

  5. Surface tension and density of binary lead and lead-free Sn-based solders

    Science.gov (United States)

    Kaban, I.; Mhiaoui, S.; Hoyer, W.; Gasser, J.-G.

    2005-12-01

    The surface tension and density of the liquid Sn60Pb40, Sn90Pb10, Sn96.5Ag3.5 and Sn97Cu3 solder alloys (wt%) have been determined experimentally over a wide temperature interval. It is established that the surface tension of liquid Sn90Pb10 is about 7% higher than that of a traditional Sn60Pb40 solder and that the surface tension of Sn96.5Ag3.5 and Sn97Cu3 alloys is about 12% higher than that of Sn60Pb40. The analytical expressions for the temperature dependences of the surface tension and density are given.

  6. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  7. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  8. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    International Nuclear Information System (INIS)

    Holcomb, C.D.; Outcalt, S.L.

    1997-01-01

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m 3 , and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of ±0.02 K, pressures with a precision of ±0.1% of full scale, densities with a precision of ±0.5 kg/m 3 , surface tensions with a precision of ±0.2 mN/m, and compositions with a precision of ±0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus

  9. On Averaging Timescales for the Surface Energy Budget Closure Problem

    Science.gov (United States)

    Grachev, A. A.; Fairall, C. W.; Persson, O. P. G.; Uttal, T.; Blomquist, B.; McCaffrey, K.

    2017-12-01

    An accurate determination of the surface energy budget (SEB) and all SEB components at the air-surface interface is of obvious relevance for the numerical modelling of the coupled atmosphere-land/ocean/snow system over different spatial and temporal scales, including climate modelling, weather forecasting, environmental impact studies, and many other applications. This study analyzes and discusses comprehensive measurements of the SEB and the surface energy fluxes (turbulent, radiative, and ground heat) made over different underlying surfaces based on the data collected during several field campaigns. Hourly-averaged, multiyear data sets collected at two terrestrial long-term research observatories located near the coast of the Arctic Ocean at Eureka (Canadian Archipelago) and Tiksi (East Siberia) and half-hourly averaged fluxes collected during a year-long field campaign (Wind Forecast Improvement Project 2, WFIP 2) at the Columbia River Gorge (Oregon) in areas of complex terrain. Our direct measurements of energy balance show that the sum of the turbulent sensible and latent heat fluxes systematically underestimate the available energy at half-hourly and hourly time scales by around 20-30% at these sites. This imbalance of the surface energy budget is comparable to other terrestrial sites. Surface energy balance closure is a formulation of the conservation of energy principle (the first law of thermodynamics). The lack of energy balance closure at hourly time scales is a fundamental and pervasive problem in micrometeorology and may be caused by inaccurate estimates of the energy storage terms in soils, air and biomass in the layer below the measurement height and above the heat flux plates. However, the residual energy imbalance is significantly reduced at daily and monthly timescales. Increasing the averaging time to daily scales substantially reduces the storage terms because energy locally entering the soil, air column, and vegetation in the morning is

  10. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  12. Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...

    Indian Academy of Sciences (India)

    s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

  13. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.

    Science.gov (United States)

    Egger, David A; Liu, Zhen-Fei; Neaton, Jeffrey B; Kronik, Leeor

    2015-04-08

    A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.

  14. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  15. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  16. Cathode Materials for High Energy Density Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lefèvre G.

    2017-01-01

    Li2MnSiO4 has a large theoretical specific capacity (333 mAh/g through exchange of 2 lithium ions per formula unit. The thermal stability due to strong Si-O bonds makes LiMnSiO a very promising material for future energy storage in space applications. Preparation in inert atmosphere showed beneficial improvements of LMSO’s electrochemical properties. Nano-sizing and carbon coating have been effective ways to improve electronic conductivity and therefore electrochemical performance. Up to 1.66 Li per formula unit can be re-inserted in the 1st cycle. XRD analysis showed complete amorphization of Li2MnSiO4 after the 1st charge at 4.8 V with complete modification of the charge/discharge curves in the next cycles. Increasing the carbon coating ratio limits capacity loss during cycling but did not avoid amorphization. Finally influence of voltage window on structure stability was investigated. Careful choice of upper limit voltage has been showed to stabilize Li2MnSiO4 structure but for now is still limited to low Li+ insertion/extraction from the host material.

  17. Surface solar radiation from geostationary satellites for renewable energy

    Science.gov (United States)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  18. Density function theoretical investigation on the Ni3PP structure and the hydrogen adsorption property of the Ni2P(0001) surface

    OpenAIRE

    Ariga, Hiroko; Kawashima, Mayumi; Takakusagi, Satoru; Asakura, Kiyotaka

    2013-01-01

    The electronic and structural properties of a phosphorus-terminated structure of Ni2P(0001) surface (Ni3PP) are investigated by density functional theory (DFT) calculations. Phosphorus adsorption largely stabilizes the Ni2P(0001) surface by creating Ni-P bonds on the Ni trimer. Atomic hydrogen can adsorb on the topmost P site although its adsorption energy is much lower than its adsorption energy on the Ni trimer site of the Ni3P2 surface. Our results suggest that the Ni trimer is the key fac...

  19. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  20. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  1. Intermolecular potential energy surface for CS2 dimer.

    Science.gov (United States)

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. Copyright © 2010 Wiley Periodicals, Inc.

  2. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    Science.gov (United States)

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  3. Extending pairing energy density functional using pairing rotational moments of inertia

    Science.gov (United States)

    Hinohara, Nobuo

    2018-02-01

    The pairing energy density functionals (EDFs) that include the spatial derivative and kinetic terms of the pair densities are discussed. The coupling constants of the pairing EDF are adjusted to reproduce the experimental pairing rotational moment of inertia, and the pair-density derivative terms are shown to systematically improve the values of the pairing rotational moments of inertia in Sn and Pb isotopes. It is pointed out that the conventional average pairing gaps overestimate the experimental odd–even mass staggering in the presence of the pair-density derivative terms.

  4. Surface of Maximums of AR(2 Process Spectral Densities and its Application in Time Series Statistics

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2017-09-01

    Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2 process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.

  5. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface

  6. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    Science.gov (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  7. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    Science.gov (United States)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  8. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    Science.gov (United States)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  9. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  10. Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.

    Science.gov (United States)

    Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali

    2017-10-05

    Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.

  11. Excitation energy and angular momentum dependence of the nuclear level densities

    International Nuclear Information System (INIS)

    Razavi, R.; Kakavand, T.; Behkami, A. N.

    2007-01-01

    We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.

  12. User's guide for SLWDN9, a code for calculating flux-surfaced-averaging of alpha densities, currents, and heating in non-circular tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Miley, G.M.

    1980-03-01

    The code calculates flux-surfaced-averaged values of alpha density, current, and electron/ion heating profiles in realistic, non-circular tokamak plasmas. The code is written in FORTRAN and execute on the CRAY-1 machine at the Magnetic Fusion Energy Computer Center

  13. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  14. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    Science.gov (United States)

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-09

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  15. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  16. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (pFast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  17. Effects of dietary energy density and L-carnitine supplementation on ...

    African Journals Online (AJOL)

    The present study was conducted to determine the effects of dietary metabolisable energy (ME) density and L-carnitine supplementation on the performance, carcass traits and blood parameters of broiler chickens. The experiment was designed with three levels of dietary energy (low, medium and high) and two levels of ...

  18. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  19. Influence of the Ion Treatment Regime on Defects Density and Surface Destruction of the Polycrystalline Glass

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available The ion beam technology is used for finish treatment of large-scale optic parts to achieve highest precision and minimal surface roughness. The surface roughness increases during the ion treatment of polycrystalline materials in contrast to usual optic materials. This is caused, first, by polycrystalline structure of material and, second, by micro-defects appearing on its surface. The aim of the work is to investigate the influence of ion processing conditions on the amount of defects formed on the polycrystalline glass CO-115M.As an ion source, was used the anode layer accelerator with electromagnetically focusing ion beam and with excess charge compensation on the residual gas. The ion accelerator provided Gaussian ion current distribution on the treated sample surface. The accelerator had three operation conditions: 1 – Ud = 2 kV, Id = 110 mA; 2 – Ud = 3 kV, Id = 110 mA; 3 – Ud = 3,8 kV, Id = 50 mA (Ud – discharge voltage, Id – discharge current. Processing time was 30 min.For quantitative estimation of surface destruction degree the surface defects density was used which is equal to the ratio of total area of defects within the region under consideration to entire area. Defects area was calculated using the microphotography of treated surface.The investigations have shown that the defects occurred as microscopic chips in all operation conditions of treatment. The defects density distribution corresponds to ion current distribution on the sample surface. With increasing ion current power density a size of defects has grown and their amount has increased. With the constant power density an increasing acceleration voltage results in decreasing density of defects. It was shown that a process of appearing defects is of the threshold nature. For each accelerated voltage there is a power density at which defects do not appear. The work results may be useful to choose the ion beam processing operation conditions in manufacturing large

  20. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  1. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l-1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l-1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  2. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  3. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  4. Surface tension and density of liquid In-Sn-Zn alloys

    Science.gov (United States)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  5. Highly collimated monoenergetic target-surface electron acceleration in near-critical-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J. Y. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, K.; Ma, Y.; Zhao, J. R.; Yan, W. C.; Ma, J. L.; Wei, Z. Y. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Li, D. Z. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Aeschlimann, M. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Zhang, J. [Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-30

    Optimized-quality monoenergetic target surface electron beams at MeV level with low normalized emittance (0.03π mm mrad) and high charge (30 pC) per shot have been obtained from 3 TW laser-solid interactions at a grazing incidence. The 2-Dimension particle-in-cell simulations suggest that electrons are wake-field accelerated in a large-scale, near-critical-density preplasma. It reveals that a bubble-like structure as an accelerating cavity appears in the near-critical-density plasma region and travels along the target surface. A bunch of electrons are pinched transversely and accelerated longitudinally by the wake field in the bubble. The outstanding normalized emittance and monochromaticity of such highly collimated surface electron beams could make it an ideal beam for fast ignition or may serve as an injector in traditional accelerators.

  6. The urban canyon and building energy use: Urban density versus daylight and passive solar gains

    DEFF Research Database (Denmark)

    Strømann-Andersen, Jakob Bjørn; Sattrup, Peter Andreas

    2011-01-01

    of low-energy buildings in a north-European setting is affected by their context.This study uses a comprehensive suite of climate-based dynamic thermal and daylight simulations to describe how these primary factors in the passive energy properties of buildings are affected by increases in urban density......The link between urban density and building energy use is a complex balance between climatic factors and the spatial, material and use patterns of urban spaces and the buildings that constitute them. This study uses the concept of the urban canyon to investigate the ways that the energy performance.......It was found that the geometry of urban canyons has an impact on total energy consumption in the range of up to +30% for offices and +19% for housing, which shows that the geometry of urban canyons is a key factor in energy use in buildings. It was demonstrated how the reflectivity of urban canyons plays...

  7. Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy

    Science.gov (United States)

    Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.

    2017-05-01

    The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.

  8. Measurement of total sound energy density in enclosures at low frequencies

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2008-01-01

    Many acoustic measurements rely on determining the total sound energy in an enclosure; and this quantity is usually estimated by measuring the mean square pressure at a number of discrete positions. Almost 30 years ago it was shown theoretically that the normalised spatial variance of the total...... measurement of the total sound energy density (in air) has required an elaborate arrangement based on finite different approximations using at least four matched pressure microphones; therefore the method has never come into use. However, with the advent of a three-dimensional particle velocity transducer...... sound energy density (potential and kinetic) is one third of the normalised spatial variance of the potential energy density (the mean square pressure) in a reverberant sound field above the Schroeder frequency. About ten years later this prediction was confirmed experimentally. However, until recently...

  9. Ab initio Potential Energy Surface for H-H2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  10. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  11. Density-matrix simulation of small surface codes under current and projected experimental noise

    Science.gov (United States)

    O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.

    2017-09-01

    We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.

  12. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  13. Surface nanostructuring of LiNbO3 by high-density electronic excitations

    International Nuclear Information System (INIS)

    El-Said, A.S.; Wilhelm, R.A.; Facsko, S.; Trautmann, C.

    2013-01-01

    Lithium niobate (LiNbO 3 ) single crystals were irradiated with high energy gold ions (0.5–2.2 GeV) at the UNILAC (GSI) and with 150-keV highly charged xenon ions from an EBIT (Electron Beam Ion Trap, HZDR). The surfaces of the irradiated crystals were analyzed by scanning force microscopy showing very similar topographic changes. Swift heavy ions and slow highly charged ions produce hillock-like nanostructures on the surface. In both cases, the energy deposition of the ions is characterized by dense localized electronic excitations and efficient transfer to the lattice. Furthermore, the irradiation results in a shift in the band gap energy as evidenced by UV–Vis absorption spectroscopy. Specific modifications (e.g. hillock size, energy loss threshold) induced by slow highly charged ions are discussed in comparison with effects due to the electronic energy loss by swift heavy ions

  14. Surface nanostructuring of LiNbO{sub 3} by high-density electronic excitations

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Lab, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Wilhelm, R.A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2013-11-15

    Lithium niobate (LiNbO{sub 3}) single crystals were irradiated with high energy gold ions (0.5–2.2 GeV) at the UNILAC (GSI) and with 150-keV highly charged xenon ions from an EBIT (Electron Beam Ion Trap, HZDR). The surfaces of the irradiated crystals were analyzed by scanning force microscopy showing very similar topographic changes. Swift heavy ions and slow highly charged ions produce hillock-like nanostructures on the surface. In both cases, the energy deposition of the ions is characterized by dense localized electronic excitations and efficient transfer to the lattice. Furthermore, the irradiation results in a shift in the band gap energy as evidenced by UV–Vis absorption spectroscopy. Specific modifications (e.g. hillock size, energy loss threshold) induced by slow highly charged ions are discussed in comparison with effects due to the electronic energy loss by swift heavy ions.

  15. The effect of activation agent on surface morphology, density and porosity of palm shell and coconut shell activated carbon

    Science.gov (United States)

    Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.

    2017-09-01

    Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.

  16. Density, viscosity, surface tension, and spectroscopic properties for binary system of 1,2-ethanediamine + diethylene glycol

    International Nuclear Information System (INIS)

    Li, Lihua; Zhang, Jianbin; Li, Qiang; Guo, Bo; Zhao, Tianxiang; Sha, Feng

    2014-01-01

    Graphical abstract: Excess property of the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG). - Highlights: • Densities and viscosities of EDA + DEG at 298.15–318.150 K were listed. • Thermodynamics data of EDA + DEG at 298.15–318.15 K were calculated. • Surface tension of EDA + DEG at 298.15 K was measured. • Intermolecular interaction of EDA with DEG was discussed. - Abstract: This paper reports density and viscosity data at T = 298.15, 303.15, 308.15, 313.15, and 318.15 K and surface tension data at 298.15 K for the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG) as a function of composition under atmospheric pressure. From the experimental density and viscosity data, the excess molar volume and viscosity deviation were calculated, and the results were fitted to a Redlich–Kister equation to obtain the coefficients and to estimate the standard deviations between the experimental and calculated quantities. Based on the kinematic viscosity data, enthalpy of activation for viscous flow, entropy of activation for the viscous flow, and Gibbs energies of activation of viscous flow were calculated. In addition, based on Fourier transform infrared spectra, UV–vis spectra, and electrical conductivity for the system EDA + DEG with various concentrations, intermolecular interaction of EDA with DEG was discussed

  17. Cowichan Valley energy mapping and modelling. Report 2 - Energy consumption and density mapping. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The second task in the overall project was the mapping of regional energy consumption density. Combined with the findings from task one, this enables comparison of energy consumption density per area unit with the renewable energy resource availability. In addition, it provides an energy baseline against which future energy planning activities can be evaluated. The mapping of the energy consumption density was divided into categories to correspond with local British Columbia Assessment Authority (BCAA) reporting. The residential sub-categories were comprised of single family detached dwellings, single family attached dwellings, apartments, and moveable dwellings. For commercial and industrial end-users the 14 sub-categories are also in line with BCAA as well as the on-going provincial TaNDM project of which the CVRD is a partner. The results of task two are documented in this report. (LN)

  18. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, Keith [Farasis Energy Inc; Slater, Michael [Farasis Energy Inc

    2018-03-14

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The major technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.

  19. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  20. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    Science.gov (United States)

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  1. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.

    Science.gov (United States)

    Dash, Ranjan; Pannala, Sreekanth

    2016-06-17

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.

  2. Link between Food Energy Density and Body Weight Changes in Obese Adults.

    Science.gov (United States)

    Stelmach-Mardas, Marta; Rodacki, Tomasz; Dobrowolska-Iwanek, Justyna; Brzozowska, Anna; Walkowiak, Jarosław; Wojtanowska-Krosniak, Agnieszka; Zagrodzki, Paweł; Bechthold, Angela; Mardas, Marcin; Boeing, Heiner

    2016-04-20

    Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., -0.53 kg when low energy density foods were eaten (95% CI: -0.88, -0.19). In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction.

  3. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie

    2013-02-07

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.

  4. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    International Nuclear Information System (INIS)

    Reimund, Kevin K.

    2015-01-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π(1+√w -1 ), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at "maximum power density operating pressure" requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  5. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    Energy Technology Data Exchange (ETDEWEB)

    Reimund, Kevin K. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; McCutcheon, Jeffrey R. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; Wilson, Aaron D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  6. A new experimental method for determining liquid density and surface tension

    Science.gov (United States)

    Chou, Kjo-Chih; Hu, Jian-Hong

    1991-02-01

    A summary concerning the measurement of liquid density relying on the Archimedes principle has been presented, based on which a new effective method with a specially designed bob for determining liquid density has been suggested. The application of this method to ethyl alcohol solution and liquid glycerol, as well as a theoretical error analysis, shows that this new method is significant, because not only can it simplify the procedure of measurement but it can also offer more precise results. Besides, this method can further provide surface tension or contact angle simultaneously. It is expected that this new method will find its application in hightemperature melts.

  7. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    Science.gov (United States)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  8. Novel method for the simultaneous estimation of density and surface tension of liquids

    International Nuclear Information System (INIS)

    Thirunavukkarasu, G.; Srinivasan, G.J.

    2003-01-01

    The conventional Hare's apparatus generally used for the determination of density of liquids has been modified by replacing its vertical arms (glass tubes) with capillary tubes of 30 cm length and 0.072 cm diameter. When the columns of liquids are drawn through the capillary tubes with reduced pressure at the top of the liquid columns and kept at equilibrium with the atmospheric pressure acting on the liquid surface outside the capillary tubes, the downward pressure due to gravity of the liquid columns has to be coupled with the pressure arising due to the effect of surface tension of the liquids. A fresh expression for the density and surface tension of liquids has been arrived at while equating the pressure balancing system for the two individual liquid columns of the modified Hare's apparatus. The experimental results showed that the proposed method is precise and accurate in the simultaneous estimation of density and surface tension of liquids, with an error of less than 5%

  9. Surface tension and orthobaric densities for vibrating square well dumbbells. I.

    Science.gov (United States)

    Chapela, Gustavo A; Alejandre, José

    2010-03-14

    Surface tensions and liquid-vapor orthobaric densities are calculated for a wide variety of vibrating square well dumbbells using discontinuous molecular dynamics simulations. The size of the vibration well, the elongation or bond distance of the two particles of the dumbbell, the asymmetry in size (and interaction range) of the two particles, and the depth of the interaction well are the variables whose effects are systematically evaluated in this work. Extensive molecular dynamics simulations were carried out and the orthobaric liquid-vapor densities are compared with those obtained previously by other authors using different methods of simulation for rigid and vibrating square well dumbbells. Surface tension values are reported for the first time for homonuclear and heteronuclear vibrating square well dumbbells as well as for all the simulated series. The molecular dynamics results of tangent homonuclear dumbbells are compared with those from Monte Carlo simulations also obtained in this work, as a way of checking the order of magnitude of the molecular dynamics results. The size of the vibration well is shown to have a small influence on the resulting properties. Decreasing elongation and the size of the second particle increase critical temperatures, liquid densities, and surface tensions. Moderate increases in the depth of the interaction well have the same effect. For larger asymmetries of the depth of the interaction well on the dumbbell particles, a strong association phenomenon is observed and the main effects are a maximum on the critical temperature for increasing well depth and a decrease in the surface tension.

  10. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-07-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  11. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  12. A Density Functional Tight Binding Study of Acetic Acid Adsorption on Crystalline and Amorphous Surfaces of Titania

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2015-02-01

    Full Text Available We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101, rutile (110 and (B-TiO2 (001, as well as to the surface of amorphous (a- TiO2 is compared with the same computational setup. On all surfaces, bidentate configurations are identified as providing the strongest adsorption energy, Eads = −1.93, −2.49 and −1.09 eV for anatase, rutile and (B-TiO2, respectively. For monodentate configurations, the strongest Eads = −1.06, −1.11 and −0.86 eV for anatase, rutile and (B-TiO2, respectively. Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of adsorption energies and with the lowest energy configuration having stronger bonding than that of the crystalline counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the band gap vs. the bulk, molecular adsorption caused no appreciable effect on the band structure around the gap in any of the systems.

  13. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    International Nuclear Information System (INIS)

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2014-01-01

    The density dependence of the symmetry energy around saturation density, characterized by the slope parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate for L is obtained from experimental data on neutron skins extracted from antiprotonic atoms. We also discuss the ability of parity-violating elastic electron scattering to obtain information on the neutron skin thickness in 208 Pb and to constrain the density dependence of the nuclear symmetry energy. The size and shape of the neutron density distribution of 208 Pb predicted by mean-field models is briefly addressed. We conclude with a comparative overview of the L values predicted by several existing determinations. (orig.)

  14. Probing the symmetry energy at low density using observable from neck fragmentation

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2014-03-01

    Full Text Available Semi-peripheral collisions of 64Ni + 124Sn in direct and inverse kinematics, at 35 A MeV incident energy, are studied to characterize the dynamical origin and align-ments properties of fragments emission at midrapidity. This emission is partly due to the fragmentation of a transient neck joining the projectile and target in the early stages of the reaction. Recently we exploited observable from neck fragmentation to constraint the density dependence of the symmetry energy. In this contribution we focus on the density evolution of the mid-rapidity source. An experimental survey is suggested to check if data are consistent with the formation of neck fragments in a dilute density region in contact with the projectile-like and target-like spectators at normal saturation density.

  15. Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images

    International Nuclear Information System (INIS)

    Alves, H.; Lima, I.; Lopes, R.T.

    2014-01-01

    Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition

  16. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    DEFF Research Database (Denmark)

    Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...... on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate....

  17. Cosmological constant problem and renormalized vacuum energy density in curved background

    Science.gov (United States)

    Kohri, Kazunori; Matsui, Hiroki

    2017-06-01

    The current vacuum energy density observed as dark energy ρdarksimeq 2.5×10-47 GeV4 is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρvacuumsimeq m2H2 where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρvacuumsimeq m2H2 appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m lesssim MPl.

  18. Surface/interfacial free energies and the surface tension of uranium dioxide

    International Nuclear Information System (INIS)

    Deshpande, M.S.; Desai, P.D.; Solomon, A.A.

    1984-01-01

    The purpose of this study is to review literature on surface/interfacial free energies and surface tension of UO/sub 2 +- x/. The data available in the literature are reviewed and critical evaluation and analyses of the available data are made by comparing them not only with each other, but also with the estimated values based on the available theoretical models. In light of the complexity of the material and the problems associated with the available literature data, no recommendations of surface/interfacial free energies and surface tension values are possible at this time. However, an attempt is made to point out problems associated with the data in general and also to develop procedures that can be used to analyze surface energies

  19. Towards improved local hybrid functionals by calibration of exchange-energy densities

    International Nuclear Information System (INIS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-01-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities

  20. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Xue, E-mail: fanx@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-10-30

    Graphical abstract: Low-energy electron irradiation was proposed to nanocrystallize the top-surface of the as-deposited amorphous carbon film, and sp{sup 2} nanocrystallites formed in the film top-surface within 4 nm thickness. Display Omitted - Abstract: We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp{sup 2} nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp{sup 2} nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp{sup 2} nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  1. Energy density of a dissipative polarizable solid by a Lagrangean formalism

    International Nuclear Information System (INIS)

    Englman, R.; Yahalom, A.

    2003-01-01

    A Lagrangean for the dynamics of an electromagnetic field in a dispersive and dissipative material is constructed (adapting some ideas by Bekenstein and Hannay) and an expression for the energy density that is positive is obtained from it. The expression contains extra (sink) degrees of freedom that represent dissipating modes. In simplified cases the sink modes can be eliminated to yield an energy density expression in terms of the electromagnetic fields, the polarization and the magnetization only, but which contains parameters associated with the sink modes. The method of adding extra modes can be used to set up a Lagrangean formalism for dissipative systems in general, such that will reinstate time-translation invariance and will yield a unique energy density

  2. Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2012-12-01

    Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian

  3. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Science.gov (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  4. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  5. Color ferromagnetic vacuum states in QCD and two-loop energy densities

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Ninomiya, M.

    1979-12-01

    Two-loop energy densities of color ferromagnetic states are obtained using the β-function calculated to two-loop approximation and the exact formula for the energy density of such a state. This is used to derive bounds on the MIT bag constant correcting the previous bound in one-loop approximation. For a constant field color ferromagnetic ansatz state the bound on the QCD scale parameter Λsub(p) 3 -vacuum ansatz with two-loop and instanton correction gives Λsub(p)<= 0.16 GeV. Tt is stressed that the 'perturbative vacuum', which is identified with the inside bag state is a somewhat ill defined concept due to a path-dependence in the integral giving the energy density. (Auth.)

  6. A density functional study on properties of a Cu{sub 3}Zn material and CO adsorption onto its surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qian-Lin, E-mail: qltang@xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Duan, Xiao-Xuan; Liu, Bei; Wei, An-Qing; Liu, Sheng-Long [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Wang, Qi, E-mail: qwang@mail.xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Liang, Yan-Ping, E-mail: ypliang@mail.xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Ma, Xiao-Hua [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China)

    2016-02-15

    Graphical abstract: Periodic first-principles calculations have been utilized to evaluate the bulk and surface properties of a Cu{sub 3}Zn alloy. - Highlights: • The bulk and surface properties of a DO{sub 23}-Cu{sub 3}Zn alloy were studied with DFT-GGA. • The stability of Cu{sub 3}Zn surfaces correlates with the coordination of surface atoms. • Both the (1 1 4) and (2 1 4) facets are most likely observed in Cu{sub 3}Zn alloy particles. • Covalent bonding influences overwhelmingly the adsorption between CO and Cu{sub 3}Zn. - Abstract: Prior experimental and theoretical efforts have provided strong evidence that the formation of α-brass such as Cu{sub 3}Zn alloys in Cu/ZnO/Al{sub 2}O{sub 3} CO{sub 2}/CO hydrogenation catalysts enhances dramatically the catalytic activity toward methanol synthesis. In this work, a density functional theory (DFT) slab model has been adopted to get information concerning the bulk and surface properties of DO{sub 23}-like Cu{sub 3}Zn and to explore CO molecular adsorption, which will help pave the way to future rationalization of the impact of surface alloying on Cu/ZnO-based catalysis for CO{sub 2} and CO hydrogenations. Our calculations imply that the bulk modulus and cohesive energy of the binary solid solution lie between the corresponding ones for the individual components, but only the former quantity equals its composition weighted average. From the DFT-computed surface energies, the stability of Cu{sub 3}Zn surfaces was predicted to be reinforced in the sequence (1 1 0) < (1 0 1) < (1 1 1) < (1 0 0) = (0 0 1) < (2 1 4) < (1 1 4), which can be interpreted as sensitive to the density change of surface dangling bonds. The downward shifts in the C–O stretch frequency measured experimentally over methanol synthesis catalysts at successively elevated reduction temperatures were correctly reproduced by the present simulation for the adsorption of CO to take place at Cu{sub 3}Zn(1 1 4), Cu{sub 3}Zn(2 1 4) and, as a reference

  7. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  8. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  9. On the energy confinement in the TM-G tokamak with high plasma density

    International Nuclear Information System (INIS)

    Stefanovskij, A.M.

    1986-01-01

    Energy confinement time τ E , when plasma density changing, has been measured at the TM-G-tokamak device with a graphite discharge chamber. The measurements have been carried out in three different discharge modes with a similar stability margin on the limiter (q L )=3) and with different values of the discharge current of a longitudinal field (I p =20, 40 and 60 kA, V T =0.8; 1.6 and 2.4 T). On the basis of experimental data analysis the conclusion is made that saturation of τ E (n e ) dependence at high plasma density occurs due to current channel compression and violation of a ''self-consistent'' profile of current density. Drift wave excitation at densities similar to the limiting Murakami density can also play an important role

  10. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    Science.gov (United States)

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  11. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Farzin; Nouranian, Sasan, E-mail: sasan@olemiss.edu; Mahdavi, Mina [University of Mississippi, Department of Chemical Engineering (United States); Al-Ostaz, Ahmed [University of Mississippi, Department of Civil Engineering (United States)

    2016-11-15

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  12. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Energy density and weight change in a long-term weight-loss trial

    Directory of Open Access Journals (Sweden)

    Welsh Ericka M

    2009-08-01

    Full Text Available Abstract Background Health risks linked to obesity and the difficulty most have in achieving weight loss underscore the importance of identifying dietary factors that contribute to successful weight loss. Methods This study examined the association between change in dietary energy density and weight loss over time. Subjects were 213 men and women with BMI of 30–39 kg/m2 and without chronic illness enrolled in 2004 in a randomized trial evaluating behavioral treatments for long-term weight loss. Subjects completed a 62-item food frequency questionnaire at baseline and at 6, 12, and 18 months. Results Pearson correlations between BMI and energy density (kcals/g of solid food at baseline were not significantly different from zero (r = -0.02, p = 0.84. In a longitudinal analysis, change in energy density was strongly related to change in BMI. The estimated β for change in BMI (kg/m2 of those in the quartile representing greatest decrease in energy density at 18 months compared to those in the quartile with the least was -1.95 (p = 0.006. The association was especially strong in the first six months (estimated β = -1.43, the period with greatest weight loss (mean change in BMI = -2.50 kg/m2 from 0–6 months vs. 0.23 kg/m2 from 12–18 months and the greatest contrast with respect to change in energy density. Conclusion Decreased energy density predicted weight loss in this 18 month weight loss study. These findings may have important implications for individual dietary advice and public health policies targeting weight control in the general population

  14. A Small Angle Neutron Scattering Study of Cylindrical nanoparticle with Controlled Surface Charge Density

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    Surfactant molecules in aqueous solution self assemble into various micellar structures such as sphere, rod, vesicle, and lamellar, above critical micelle concentration (CMC). Self-assembled surfactants systems, therefore, have been very popular as templates for preparing various nanostructured materials. Due to their dynamic nature, however, micellar structures are very susceptible to solution conditions such as temperature, concentration, pH and pressure, limiting their applications. In this study, we have developed rigid rod-like nanoparticles with controlled surface charge density by the free radical polymerization of cationic surfactants with polymerizable counterions, cetyltrimethylammonium 4- vinylbenzoate (CTVB), with varying concentration of sodium styrenesulfonate (NaSS). The structure and surface charge density of the nanoparticles were characterized by small angle neutron scattering (SANS) and zeta potential measurements

  15. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  16. Inversion of gravity and gravity gradiometry data for density contrast surfaces using Cauchy-type integrals

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu

    2014-01-01

    We introduce a new method of modeling and inversion of potential field data generated by a density contrast surface. Our method is based on 3D Cauchy-type integral representation of the potential fields. Traditionally, potential fields are calculated using volume integrals of the domains occupied...... by anomalous masses subdivided into prismatic cells. This discretization is computationally expensive, especially in a 3D case. The Cauchy-type integral technique makes it possible to represent the gravity field and its gradients as surface integrals. This is especially significant in the solution of problems...

  17. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  18. Positron study of electron momentum density and Fermi surface in titanium and zirconium

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Osawa, Makoto; Tanigawa, Shoichiro; Matsumoto, Makoto; Shiotani, Nobuhiro.

    1989-01-01

    The three dimensional electron-positron momentum densities have been obtained on Ti and Zr from measurements of two dimensional angular correlation of positron annihilation radiation followed by an image reconstruction technique based on direct Fourier transformation. Augmented-plane wave band structure calculations have been carried out and the results are compared with the experiments. Agreement between the experiment and the theory leads to a conclusion that both Ti and Zr have electron surface sheets which are centered at H and hole surface sheets which are running along the Γ-A axis. (author)

  19. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2015-04-01

    A nanodrop of a test fluid placed on a smooth surface of a solid material of nonuniform density which covers a rough solid surface (hidden roughness) is examined, on the basis of the density functional theory (DFT), in the presence of an external perturbative force parallel to the surface. The contact angles which the drop profile makes with the surface at the leading edges of the drop are determined as functions of drop size and perturbative external force. A critical sticking force, defined as the largest value of the perturbative force for which the drop remains at equilibrium, is determined and its dependence on the size of the drop is explained on the basis of the shape of the interaction potential generated by the solid in vicinity of the leading edges of the drop. For even larger values of the perturbative force no drop-like solution of the Euler-Lagrange equation of the DFT was found. The upper bound of the inclination angle of a surface containing a macroscopic drop is estimated on the basis of results obtained for nanodrops and some experimental results are interpreted. The main conclusion is that the hidden roughness has a similar effect on the drop features as the traditionally considered physical and chemical roughnesses.

  20. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.