WorldWideScience

Sample records for surface energy coatings

  1. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    International Nuclear Information System (INIS)

    Sun, C.-C.; Lee, S.-C.; Dai, S.-B.; Tien, S.-L.; Chang, C.-C.; Fu, Y.-S.

    2007-01-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications

  2. Topography and surface energy dependent calcium phosphate formation on Sol-Gel derived TiO2 coatings.

    Science.gov (United States)

    Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika

    2006-09-12

    Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

  3. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  5. A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface

    International Nuclear Information System (INIS)

    Bhattacharya, Madhuchhanda; Basak, Tanmay

    2013-01-01

    This work presents a theoretical analysis on savings of energy during an endothermic reaction under microwave heating compared to conventional heating and shows the use of metal coated bounding surface to enhance the energy savings in otherwise low saving zones. Main thrust of this work is the quantification of energy savings for various probable microwave heating scenarios that may arise either due to varying reactor dimension (2L) over thin, intermediate and thick regimes or due to varying dielectric properties of the reactor. The analysis considers detailed transport equations in conjunction with Helmholtz equation for microwave propagation within a semiinfinite batch reactor. Simulations show that use of microwave can significantly save energy (as high as 60%) depending on reactor configuration. Simulations also show efficient use of metal coated bounding surface to enhance energy savings for reactors with 2L/λ eff = 0.5n−0.25, where n = 1, 2, 3… and λ eff is wavelength of microwave within the reactor. The enhancement is found to be 2 and 1.5 times at 2L/λ eff = 0.25 and 0.75, respectively. Various regions of efficient use of metal coated bounding surface for different microwave heating scenarios have been identified in a series of master curves. - Highlights: • This work simulates chemical reaction under microwave radiation using detailed model. • Simulations are presented in presence or absence of metal coated bounding surface. • Savings of energy under microwave have been analyzed for various probable scenarios. • Simulations show significant savings of energy under microwave heating. • Simulations show the potential of metal coated bounding surface to further enhance energy savings

  6. Electron curing of surface coatings

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1974-01-01

    The technical development of electron curing of surface coatings has received great impetus since 1970 from dramatic changes in the economics of the conventional thermal process. The most important of these changes are reviewed, including: the Clear Air Act, increasing cost and restrictive allocation of energy, decreased availability and increased costs of solvents, competitive pressure for higher line productivity. The principles of free-radical initiated curing as they pertain to industrial coatings are reviewed. Although such electron initiated processes have been under active development for at least two decades, high volume production applications on an industrial scale have only recently appeared. These installations are surveyed with emphasis on the developments in machinery and coatings which have made this possible. The most significant economic advantages of electron curing are presented. In particular, the ability of electron curing to eliminate substrate damage and to eliminate the curing station (oven) as the pacing element for most industrial surface coating curing applications is discussed. Examples of several new processes of particular interest in the textile industry are reviewed, including the curing of transfer cast urethane films, flock adhesives, and graftable surface finishes

  7. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Science.gov (United States)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  8. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  9. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  10. Control of surface topography in biomimetic calcium phosphate coatings.

    Science.gov (United States)

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  11. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    Science.gov (United States)

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  12. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  13. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  14. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  15. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  16. Nanocomposite tribological coatings with "chameleon" surface adaptation

    Science.gov (United States)

    Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.

    2002-07-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept

  17. Nanocomposite tribological coatings with 'chameleon' surface adaptation

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Fitz, T.A.; Hu, J.J.; Zabinski, J.S.

    2002-01-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed 'chameleon' because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its 'skin' chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS 2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS 2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS 2 /DLC coatings against steel and Si 3 N 4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 deg. C in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS 2 for sliding in dry N 2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 deg. C (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS 2 /DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design

  18. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    International Nuclear Information System (INIS)

    Coulon, J.F.; Tournerie, N.; Maillard, H.

    2013-01-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m 2 to 70 mJ/m 2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  19. Surface Modifications with Laser Synthesized Mo Modified Coating

    Science.gov (United States)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  20. SURFACE MODIFICATIONS WITH LASER SYNTHESIZED Mo MODIFIED COATING

    OpenAIRE

    LU SUN; HAO CHEN; BO LIU

    2013-01-01

    Mg–Cu–Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg–Cu–Al–B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. ...

  1. From metallurgical coatings to surface engineering

    International Nuclear Information System (INIS)

    Sproul, William D.

    2003-01-01

    The history of the Vacuum Metallurgy Division (VMD), which is now the Advanced Surface Engineering Division (ASED), of the American Vacuum Society is reviewed briefly. The focus of the VMD moved from vacuum melting of materials to metallurgical coatings. The division sponsored two conferences, the Conference on Vacuum Metallurgy and the International Conference on Metallurgical Coatings. As the interest in vacuum metallurgy eventually subsided, interest grew in the deposition of metallurgical coatings. However, the emphasis at the Metallurgical Coatings conference has changed from just depositing coatings to surface engineering of a component. Today, the challenge is to use the tools of surface engineering with advances in deposition technology such as high-power pulsed sputtering. To align itself with the changing interests of the majority of its members, the VMD changed its name to the ASED

  2. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  3. Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.

    Science.gov (United States)

    Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali

    2016-11-23

    Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.

  4. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  5. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    Science.gov (United States)

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  6. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  7. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  8. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  9. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    International Nuclear Information System (INIS)

    Liu Wenyong; Luo Yuting; Sun Linyu; Wu Ruomei; Jiang Haiyun; Liu Yuejun

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: ► Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. ► Superhydrophobic surfaces with a high water contact angle of 162° and a low rolling angle of 2° were obtained. ► The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low

  10. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  11. Spontaneous Emission and Energy Transfer Rates Near a Coated Metallic Cylinder

    OpenAIRE

    BRADLEY, LOUISE

    2014-01-01

    PUBLISHED The spontaneous emission and energy transfer rates of quantum systems in proximity to a dielectrically coated metallic cylinder are investigated using a Green's tensor formalism. The excitation of surface plasmon modes can significantly modify these rates. The spontaneous emission and energy transfer rates are investigated as a function of the material and dimensions of the core and coating, as well as the emission wavelength of the donor. For the material of the core we consider...

  12. Surface modification of beta-tricalcium phosphate scaffolds with topological nanoapatite coatings

    International Nuclear Information System (INIS)

    Zhang Faming; Chang Jiang; Lu Jianxi; Ning Congqin

    2008-01-01

    A biomimetic process was developed to create a modulable surface topography of nanocrystalline apatite on pure beta-tricalcium phosphate (β-TCP) scaffolds. The scaffolds were immersed in a newly revised simulated body fluid (R n -SBF) to produce nanocrystalline apatite. The obtained surfaces were investigated using scanning electric microscopy, energy dispersion spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electric microscopy. Nanoparticulates apatite were produced on the surface of the scaffolds for 1 day's soaking; increasing soaking to 3 days led to the formation of a surface covered by needle-like apatite nanocrystals; and a surface coating of needle-like apatite clusters was created after two weeks' soaking in the R n -SBF without bicarbonate ion concentrations. The increase of bicarbonate ion concentrations progressively in the R n -SBF provided a surface entirely coated with a nanostructured thick layer of apatite. These apatite nanostructures were low-crystalline bone-like apatite. The mechanisms for the apatite formation and transition of surface topographies were also discussed. Therefore, a variety of surface topography of nanoapatite coatings on the β-TCP scaffolds can be obtained using this method, which may enhance cell adhesion to the scaffolds for bone tissue engineering applications

  13. Saving energy with paint. Coating with ceramic globules; Energie besparen met verf. Coating met keramische bolletjes

    Energy Technology Data Exchange (ETDEWEB)

    Willemse, R. [Coateq Coatings, Haarlem (Netherlands)

    2011-07-01

    The special paint coating of ThermoShield saves energy. The coating consists for 50% of hollow, vacuum ceramic globules. The waterborne damp-open coating with capillary function resists rain water and removes redundant water in case of draught and it reflects sunlight. [Dutch] Met de speciale verfcoating ThermoShield kan energie worden bespaard. De coating bestaat voor 50% uit holle, vacuum getrokken keramische bolletjes. De watergedragen damp-open coating met capillaire werking stoot bij regen water af en voert bij droogte overtollig vocht af en reflecteert zonlicht.

  14. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Faria, Amanda N. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Ramos, Ana P., E-mail: anapr@ffclrp.usp.br [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil)

    2016-05-01

    Graphical abstract: - Highlights: • CaCO{sub 3} continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO{sub 3} particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO{sub 3} deposited as thin films for this propose is unknown. Here, we report the growth of CaCO{sub 3} continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca{sup 2+}, exposed to CO{sub 2} (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO{sub 3} film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ{sub s}) were accessed. The presence of HAp increased the wettability and γ{sub s} of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO{sub 3} thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  15. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    International Nuclear Information System (INIS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-01-01

    Graphical abstract: - Highlights: • CaCO 3 continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO 3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO 3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO 3 continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca 2+ , exposed to CO 2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO 3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ s ) were accessed. The presence of HAp increased the wettability and γ s of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO 3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  16. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  17. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  18. Determination of surface energies of hot-melt extruded sugar-starch pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2018-02-01

    Hot-melt extruded sugar-starch pellets are an alternative for commercial sugar spheres, but their coating properties remain to be studied. Both the European Pharmcopoeia 8.6 and the United States Pharmacopoeia 40 specify the composition of sugar-starch pellets without giving requirements for the manufacturing process. Due to various fabrication techniques, the physicochemical properties of pellets may differ. Therefore, the adhesion energies of three coating dispersions (sustained, enteric and immediate release) on different types of pellets were investigated. In this context, the surface energies of various kinds of corn starch (normal, waxy, high-amylose) and sucrose pellets were analyzed using the sessile drop method, whereas the surface tensions of the coating dispersions were examined using the pendant drop method. The adhesion forces were calculated from the results of these studies. Furthermore, sugar spheres were characterized in terms of particle size distribution, porosity and specific surface area. An increase of the pellets' sucrose content leads to a more porous surface structure, which gives them an enhanced wetting behavior with coating dispersions. The adhesion energies of extruded sugar-starch pellets are similar to those of commercial sugar spheres, which comply with pharmacopeial requirements. Both types of pellets are equally suited for coating.

  19. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  20. Antibacterial effect of doxycycline-coated dental abutment surfaces

    International Nuclear Information System (INIS)

    Xing, Rui; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Haugen, Håvard J; Witsø, Ingun L; Lönn-Stensrud, Jessica; Jugowiec, Dawid

    2015-01-01

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA–3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm −2 resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA–3 h coated with a higher amount of Doxy compared to that of 1 mA–1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis. (paper)

  1. Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films

    Directory of Open Access Journals (Sweden)

    Emerson Aparecido Floriano

    2010-12-01

    Full Text Available The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110 and (101 surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110 and (101 surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101 surface, which presents direct bandgap transition.

  2. Surface structure of Cr0.5 Ti0.5N coatings after heavy ions irradiation and annealing

    International Nuclear Information System (INIS)

    Kislitsin, Sergey; Gorlachev, Igor; Uglov, Vladimir

    2015-01-01

    Results of surface structure investigations of TiCrN coating on carbon steel after irradiation by helium, krypton and xenon heavy ions are reported in the present publication. The series of Cr50Ti50N coatings on carbon steel with thickness of 50,..., 300 nm were formed by vacuum arc deposition techniques. Specimens with TiCrN coating on carbon steel were irradiated by low energy 4 He +1 (22 keV) and 4 He +2 (40 keV) ions and high energy Xe +18 and Kr +14 ions with energy of 1.5 MeV/nucleon. Fluence of He ions was 1.0x10 17 ion.cm -2 , fluence of Xe and Kr ions was 5x10 14 -1.0x10 15 ion.cm -2 , irradiation temperature did not exceed 150 deg. C. Study of surface structure was performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Methods of Roentgen diffractometry and Rutherford backscattering was applied for determination of structure and thickness of coating. In case of irradiation with Xe +18 and Kr +14 ions an investigation of surface morphology and structure was done after successive two hours vacuum annealing of irradiated samples at temperatures 400 deg. C, 500 deg. C and 600 deg. C. It was shown that after irradiation by Xe and Kr ions on the surface of coating convexities appear, surface density of which correlates with ion flux. In the case of Xe, ions irradiation generated convexities of spherical and elongated shape with dimensions ranging from ten to hundreds nm. In the case of Kr ions, only spherical globules were generated, dimensions of which are 10-30 nm. The most likely explanation of observed surface damage is that: convexities on the surface are generated at ion bombardment of specimens with coating. Convexities are the traces of ions passing through coating and they are due to structural reconstruction at energy release along a trajectory of ions braking. Convexities of elongated shape represent overlapping traces from two passing ions. When the projective range of Xe and Kr ions exceeds coating thickness, damage

  3. Combinatorial and high-throughput screening of the effect of siloxane composition on the surface properties of crosslinked siloxane-polyurethane coatings.

    Science.gov (United States)

    Ekin, Abdullah; Webster, Dean C

    2007-01-01

    Libraries of siloxane-polyurethane coatings were designed, formulated, and screened using high-throughput experimentation. Four independent variables that were analyzed were the molecular weight of poly(dimethylsiloxane) (PDMS), presence or absence of poly(epsilon-caprolactone) (PCL) blocks attached to the PDMS backbone, the length of the PCL blocks, and the siloxane polymer level in the coating formulations. In addition to the siloxane libraries (3-aminopropyl-terminated PDMS and poly(epsilon-caprolactone)-poly(dimethylsiloxane)-poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers), the coating formulation included a trifunctional isocyanate crosslinker, trifunctional poly(epsilon-caprolactone) polyol, 2,4-pentanedione (pot-life extender), dibutyltin diacetate (catalyst), and a blend of solvents. The resulting coatings were analyzed for their surface energy and pseudobarnacle adhesion both before and after aging the coatings for 30 days in water. The water and methylene iodide contact angle averages increase with increasing molecular weight of PDMS. Coatings prepared from PCL-PDMS-PCL triblock copolymers have lower surface energies than coatings prepared from 3-aminopropyl-terminated PDMS; however, lower pseudobarnacle adhesion results were obtained for the coatings prepared from 3-aminopropyl-terminated PDMS than coatings prepared from PCL-PDMS-PCL triblock copolymers. The siloxane polymer level in the coating formulations does not have a significant effect on the surface energy of the coatings, but it resulted in higher pseudobarnacle adhesion.

  4. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Nainaparampil, Jose

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL's feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  5. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  6. Electron beam irradiating process for rendering rough or topographically irregular surface substrates smooth; and coated substrates produced thereby

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1979-01-01

    This disclosure involves a novel process for instantaneous electron-beam curing of very thin low viscosity, solventless coating upon rough, irregular or textured surfaces of a substrate such as paper or the like. Through rather critical timing and energy adjustment procedures, the coating firmly adheres to the surface before the coating can conform to the roughness or texture contour or substantially penetrate into the surface. By this method a solidified very smooth outer surface is provided for the substrate that is particularly used for metalization and other finished layerings. (author)

  7. The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties

    Energy Technology Data Exchange (ETDEWEB)

    Jerman, Ivan; Kozelj, Matjaz; Orel, Boris [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2010-02-15

    Thickness-Insensitive Spectrally Selective (TISS) paint coatings were made of fluoropolymer resin binder (Lumiflon (LF), Asahi Glass Co., Ltd., Japan) and their water- and oil-repellent properties were obtained (contact angle: {theta}{sub water}{proportional_to}150 , {theta}{sub n-hexadecane}{proportional_to}55 ) by the addition of Polyhedral Oligomeric Silsesquioxane (POSS) characterized by amino (AP), isooctyl (IO) and perfluoro (PF) groups (i.e. AP{sub 2}IO{sub 4}PF{sub 2}) attached on the silsesquioxane cube (-SiO{sub 3/2}){sub 8}. Paint dispersions were made by modifying of black spinel pigment with trisilanol isobutyl (IB{sub 7}T{sub 7}(OH){sub 3}) POSS dispersant and with a single-capped silane isobutyltrimethoxysilane (IBTMS). Infrared and {sup 29}Si NMR spectra measurements were used for the identification of the structural characteristic of the corresponding POSS compounds. Surface free energy values of the pure cross-linked (no pigment added) LF binder which was determined from the measured contact angles for water, diiodomethane and formamide revealed the {gamma}{sup tot} value of the LF unpigmented resin with added AP{sub 2}IO{sub 4}PF{sub 2} T{sub 8} POSS was about 16.4 mN/m, which led to the {theta}{sub water}{proportional_to}110 , indicating enhancement of the hydrophobicity of the pure LF resin binder ({theta}{sub water}{proportional_to}89 ). SEM micrographs, which were used for the assessment of the TISS paint coating surface morphology confirmed the beneficial dispersive effect of IB{sub 7} T{sub 7}(OH){sub 3} dispersant as compared to the IBTMS silane. The presence of large Aluminium flake pigment and finely ground black pigment led to the formation of TISS paint coating surface, which exhibited bi-hierarchical roughness, resulting in water sliding angles of less than 10 , indicating the possible self-cleaning effect ({theta}{sub water}>150 and {theta}{sub n-hexadecane}{proportional_to}55 ). The use of POSS dispersant and POSS low surface energy

  8. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  9. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    Science.gov (United States)

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  11. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  12. Self-assembled hemocompatible coating on poly (vinyl chloride) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zha Zhengbao; Ma Yan; Yue Xiuli; Liu Meng [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150001 (China); Dai Zhifei, E-mail: zhifei.dai@hit.edu.cn [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-15

    A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe{sup 3+}/Hep and DS/Fe{sup 3+}/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe{sup 3+}/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe{sup 3+}/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.

  13. Radiation properties modeling for plasma-sprayed-alumina-coated rough surfaces for spacecrafts

    International Nuclear Information System (INIS)

    Li, R.M.; Joshi, Sunil C.; Ng, H.W.

    2006-01-01

    Spacecraft thermal control materials (TCMs) play a vital role in the entire service life of a spacecraft . Most of the conventional TCMs degrade in the harmful space environment . In the previous study, plasma sprayed alumina (PSA) coating was established as a new and better TCM for spacecrafts, in view of its stability and reliability compared to the traditional TCMs . During the investigation, the surface roughness of PSA was found important, because the roughness affects the radiative heat exchange between the surface and its surroundings. Parameters such as root-mean-square roughness cannot properly evaluate surface roughness effects on radiative properties of opaque surfaces . Some models have been developed earlier to predict the effects, such as Davies' model , Tang and Buckius's statistical geometric optics model . However, they are valid only in their own specific situations. In this paper, an energy absorption geometry model was developed and applied to investigate the roughness effects with the help of 2D surface profile of PSA coated substrate scanned at micron level. This model predicts effective normal solar absorptance (α ne ) and effective hemispherical infrared emittance (ε he ) of a rough PSA surface. These values, if used in the heat transfer analysis of an equivalent, smooth and optically flat surface, lead to the prediction of the same rate of heat exchange and temperature as that of for the rough PSA surface. The model was validated through comparison between a smooth and a rough PSA coated surfaces. Even though not tested for other types of materials, the model formulation is generic and can be used to incorporate the rough surface effects for other types of thermal coatings, provided the baseline values of normal solar absorptance (α n ) and hemispherical infrared emittance (ε h ) are available for a generic surface of the same material

  14. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    International Nuclear Information System (INIS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  15. Nanomechanical properties of hydroxyapatite (HAP) with DAB dendrimers (poly-propylene imine) coatings onto titanium surfaces

    International Nuclear Information System (INIS)

    Charitidis, Costas A.; Skarmoutsou, Amalia; Tsetsekou, Athena; Brasinika, Despina; Tsiourvas, Dimitris

    2013-01-01

    Highlights: ► The synthesis of hydroxyapatite (HAP) nanoparticles in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB). ► The nanomechanical properties of different HAP-DAB coatings onto titanium surfaces. ► Wear resistance and adhesion properties of the synthesized coatings quantified by nanoindentation data analysis. -- Abstract: Coatings of hydroxyapatite (HAP) nanorods onto titanium surfaces were synthesized with the aim to improve coatings’ mechanical properties and adhesion to the substrate. The coatings are consisting of HAP nanorods synthesized in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB) bearing 32 amine end groups employing varying calcium: dendrimer ratios and varying hydrothermal treatments. The quality, surface morphology and structure of the coatings were characterized with X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy dispersive microanalysis. Wear resistance and adhesion properties of the coatings onto titanium substrates were studied through nanoindentation analysis. The experimental conditions, namely the calcium: dendrimer molar ratio and the hydrothermal treatment temperature were carefully selected; thus, it was possible to produce coatings of high hardness and elastic modulus values (ranging between 1–4.5 GPa and 40–150 GPa, respectively) and/or high wear resistance and plastic deformation values

  16. Nanomechanical properties of hydroxyapatite (HAP) with DAB dendrimers (poly-propylene imine) coatings onto titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Charitidis, Costas A., E-mail: charitidis@chemeng.ntua.gr [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou, Zografou, 15780 Athens (Greece); Skarmoutsou, Amalia [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou, Zografou, 15780 Athens (Greece); Tsetsekou, Athena; Brasinika, Despina [School of Mining Engineering and Metallurgy, National Technical University of Athens, Iroon Polytechniou, Zografou, 15780 Athens (Greece); Tsiourvas, Dimitris [National Centre for Scientific Research “Demokritos”, Institute of Physical Chemistry, Agia Paraskevi, 15310 Athens (Greece)

    2013-04-20

    Highlights: ► The synthesis of hydroxyapatite (HAP) nanoparticles in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB). ► The nanomechanical properties of different HAP-DAB coatings onto titanium surfaces. ► Wear resistance and adhesion properties of the synthesized coatings quantified by nanoindentation data analysis. -- Abstract: Coatings of hydroxyapatite (HAP) nanorods onto titanium surfaces were synthesized with the aim to improve coatings’ mechanical properties and adhesion to the substrate. The coatings are consisting of HAP nanorods synthesized in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB) bearing 32 amine end groups employing varying calcium: dendrimer ratios and varying hydrothermal treatments. The quality, surface morphology and structure of the coatings were characterized with X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy dispersive microanalysis. Wear resistance and adhesion properties of the coatings onto titanium substrates were studied through nanoindentation analysis. The experimental conditions, namely the calcium: dendrimer molar ratio and the hydrothermal treatment temperature were carefully selected; thus, it was possible to produce coatings of high hardness and elastic modulus values (ranging between 1–4.5 GPa and 40–150 GPa, respectively) and/or high wear resistance and plastic deformation values.

  17. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    Science.gov (United States)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  18. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  19. Surface characteristics of coated polyester fabric with reduced graphene oxide and polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-03-30

    Graphical abstract: - Highlights: • PET in form of film or membrane is hydrophobic and its wetting behavior follows the Wenzel wetting theory. In the form of textile materials it shows hydrophilicity. • rGO coated PET fabric shows hydrophobicity and its wetting behavior places between Wenzel and Cassie–Baxter models. • PET coated fabric by PPy shows superhydrophobicity and its wetting behavior is consistence with Cassie–Baxter model. • Due to oxidation of the rGO during in situ synthesis of PPy the rGO–PPy coated PET shows hydrophilicity. - Abstract: In this study, the influence of coating polyethylene terephthalate (PET) fabric with reduced graphene oxide (rGO) and polypyrrole (PPy), individually or in combination (rGO–PPy), on surface chemistry and roughness (focusing on wetting behavior), were analyzed systematically. Characterization was carried out by observing the topography (atomic force microscopy – AFM) and stating surface analysis (X-ray photoelectron spectroscopy – XPS), contact angles (goniometry), water shedding angles, and surface energy values of the samples. The results showed that the contact angles of pristine (uncoated), GO and rGO–PPy coated samples were 0°, while it was 92°, 123° and 151° for hot pressed (2nd pristine sample), rGO and PPy samples, respectively. A zero contact angle for PET sample was due to its wicking ability. Results were interpreted with Young, Wenzel and Cassie Baxter equations. It was found that PPy coated samples were consistent with Cassie–Baxter equation, while rGO placed between Wenzel and Cassie–Baxter wetting models.

  20. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  1. Surface studies of Os Re W alloy-coated impregnated tungsten cathodes

    International Nuclear Information System (INIS)

    Ares Fang, C.S.; Maloney, C.E.

    1990-01-01

    Impregnated tungsten cathodes half-coated with Re/W (or Os/W) alloy and Os Re W alloy at right angles were studied to compare the effects of Os Re W alloy coatings on the electron emission and emission mechanisms. Constant surface metal compositions of 32% Os--29% Re--39% W and 35% Os--26% Re--39% W were obtained from the activated surfaces initially coated with 40% Os--40% Re--20% W and 35% Os--45% Re--20% W alloys, respectively. Thermionic emission microscopy measurements showed that the Os Re W alloy-coated surface gives an average effective work function of 0.29, 0.08, and 0.03 eV lower than the uncoated, Re/W and Os/W alloy-coated surfaces. An effective work function of 1.73 eV was obtained from an activated Os Re W alloy surface. Auger studies exhibited a smaller BaO coverage and a higher barium coverage in excess of BaO stoichiometry on the Os Re W alloy-coated surface compared to the uncoated, Re/W and Os/W alloy-coated surfaces

  2. Analyses of Biofilm on Implant Abutment Surfaces Coating with Diamond-Like Carbon and Biocompatibility.

    Science.gov (United States)

    Huacho, Patricia Milagros Maquera; Nogueira, Marianne N Marques; Basso, Fernanda G; Jafelicci Junior, Miguel; Francisconi, Renata S; Spolidorio, Denise M P

    2017-01-01

    The aim of this study was to evaluate the surface free energy (SFE), wetting and surface properties as well as antimicrobial, adhesion and biocompatibility properties of diamond-like carbon (DLC)-coated surfaces. In addition, the leakage of Escherichia coli through the abutment-dental implant interface was also calculated. SFE was calculated from contact angle values; R a was measured before and after DLC coating. Antimicrobial and adhesion properties against E. coli and cytotoxicity of DLC with human keratinocytes (HaCaT) were evaluated. Further, the ability of DLC-coated surfaces to prevent the migration of E. coli into the external hexagonal implant interface was also evaluated. A sterile technique was used for the semi-quantitative polymerase chain reaction (semi-quantitative PCR). The surfaces showed slight decreases in cell viability (p0.05). It was concluded that DLC was shown to be a biocompatible material with mild cytotoxicity that did not show changes in R a, SFE, bacterial adhesion or antimicrobial properties and did not inhibit the infiltration of E. coli into the abutment-dental implant interface.

  3. Method of coating the interior surface of hollow objects with a diffusion coating

    Science.gov (United States)

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  4. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    Science.gov (United States)

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  5. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    Science.gov (United States)

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  6. Enhanced propellant performance via environmentally friendly curable surface coating

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2017-06-01

    Full Text Available Surface coating of granular propellants is widely used in a multiplicity of propellants for small, medium and large caliber ammunition. All small caliber ball propellants exhibit burning progressivity due to application of effective deterrent coatings. Large perforated propellant grains have also begun utilizing plasticizing and impregnated deterrent coatings with the purpose of increasing charge weights for greater energy and velocity for the projectile. The deterrent coating and impregnation process utilizes volatile organic compounds (VOCs and hazardous air pollutants (HAPs which results in propellants that need to be forced air dried which impacts air quality. Propellants undergo temperature fluctuations during their life. Diffusion coefficients vary exponentially with variations in temperature. A small temperature increase can induce a faster migration, even over a short period of time, which can lead to large deviations in the concentration. This large concentration change in the ammunition becomes a safety or performance liability. The presence of both polymeric deterrents and nitroglycerin(NG in the nitrocellulose matrix and organic solvents leads to higher diffusion rates. This results in continued emissions of VOCs and HAPs. Conventional polymers tend to partition within the propellant matrix. In other words, localized mixing can occur between the polymer and underlying propellant. This is due to solvent induced softening of the polymer vehicle over the propellant grain. In effect this creates a path where migration can occur. Since nitrate esters, like NG, are relatively small, it can exude to the surface and create a highly unstable and dangerous situation for the warfighter. Curable polymers do not suffer from this partitioning due to “melting” because no VOC solvents are present. They remain surface coated. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and

  7. A study on the surface roughness of a thin HSQ coating on a fine milled surface

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Hansen, Hans Nørgaard; Pranov, Henrik

    2014-01-01

    The paper discusses a novel application of a thin layer coating on a metallic machined surface with particular attention to roughness of the coating compared to the original surface before coating. The coating is a nominally 1 μm film of Hydrogen Silsesquioxane (HSQ) which is commonly used in the...... in the semiconductor industry in the manufacture of integrated circuits. The work piece is a fine peripheral-milled tool steel surface which is widely used in industrial applications. Roughness improvement after the application of HSQ coating is reported....

  8. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  9. Surface coating for blood-contacting devices

    Science.gov (United States)

    Nair, Ajit Kumar Balakrishnan

    The major problems always encountered with the blood-contacting surfaces are their compatibility, contact blood damage, and thrombogenicity. Titanium nitride (TiN) is a hard, inert, ceramic material that is widely used in the engineering industry. TiN has been proven to be a good biomaterial in its crystalline form, in orthopedic, and in tissue implant applications. This dissertation describes a method to coat amorphous TiN on the blood-contacting surfaces of certain medical devices using the room-temperature sputtering process and to characterize, to test, and to evaluate the coating for a reliable, durable, and compatible blood-contacting surface The blood-compatibility aspects were evaluated with standard, established protocols and procedures to prove the feasibility. An amorphous TiN coating is developed, characterized, tested, and blood compatibility evaluated by applying to the blood-contacting surfaces of stainless steel, catheters, and blood filters. The flexibility characteristics were proven by applying it to the diaphragms of the pulsatile pneumatic ventricular assist device. The results show that amorphous titanium nitride is flexible and adherent to polymeric substrates like polyurethane and polyester. Blood compatibility evaluation showed comparable results with catheters and superior behavior with stainless steel and polyester filters. It is concluded that amorphous titanium nitride can be considered to be applied to the surfaces of some of the medical devices in order to improve blood compatibility.

  10. Effect of photocatalytic and hydrophobic coatings on brewery surface microorganisms.

    Science.gov (United States)

    Priha, O; Laakso, J; Tapani, K; Levänen, E; Kolari, M; Mäntylä, T; Storgårds, E

    2011-11-01

    The aim of this study was to determine whether process hygiene in the beverage industry could be improved by applying new coating techniques to process surfaces. Photocatalytic titanium dioxide (TiO(2)) and hydrophobic coatings applied to stainless steel with or without added antimicrobial compounds were studied in laboratory attachment tests and in a 15-month process study. No clear reductions in numbers of attached microbes were obtained with photocatalytic coatings, except for coatings to which silver had been added. These TiO(2)+Ag coatings reduced microbial coverage in laboratory studies and in some process samples. Hydrophobic coatings reduced the area coverage of microorganisms in 4-h laboratory studies but did not affect colony counts in laboratory or process studies. The surfaces had changed from hydrophobic into hydrophilic during the process study. The coatings did not mechanically fully withstand process conditions; part of the hydrophobic coatings had peeled off, most of the precipitated Ag had dissolved, and some of the TiO(2) coatings were damaged. In conclusion, functional coatings have potential for reducing microbial loads on beverage industry surfaces, but these coatings need further development.

  11. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  12. Effects of laser radiation on surfaces and coatings

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1985-01-01

    A summary is given of the principal aspects of laser-induced damage to polished optical surfaces and dielectric, thin-film, high-reflectivity and antireflective coatings. Methods for producing porous antireflective surfaces and coatings and their damage properties are also reviewed. Finally, new areas of basic research to solve current and future problems are addressed

  13. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  14. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  15. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    International Nuclear Information System (INIS)

    Chakradhar, R.P.S.; Kumar, V. Dinesh; Rao, J.L.; Basu, Bharathibai J.

    2011-01-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108 o , however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155 o and less than 5 o respectively. The surface properties such as surface free energy (γ p ), interfacial free energy (γ pw ), and the adhesive work (W pw ) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  16. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Science.gov (United States)

    Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ˜108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy ( γp), interfacial free energy ( γpw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  17. Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity

    International Nuclear Information System (INIS)

    Steele, Adam; Bayer, Ilker; Moran, Stephen; Cannon, Andrew; King, William P.; Loth, Eric

    2010-01-01

    A conformal coating process is presented to transform surfaces with inherent micro-morphology into superhydrophobic surfaces with hierarchical surface structure using wet chemical spray casting. Nanocomposite coatings composed of zinc oxide nanoparticles and organosilane quaternary nitrogen compound are dispersed in solution for application. The coating is applied to a micro-patterned polydimethylsiloxane substrate with a regular array of cylindrical microposts as well as a surface with random micro-structure for the purpose of demonstrating improved non-wettability and a superhydrophobic state for water droplets. Coating surface morphology is investigated with an environmental scanning electron microscope and surface wettability performance is characterized by static and dynamic contact angle measurements.

  18. Method and coating composition for protecting and decontaminating surfaces

    Science.gov (United States)

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  19. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth.

    Science.gov (United States)

    Nielsen, C K; Subbiahdoss, G; Zeng, G; Salmi, Z; Kjems, J; Mygind, T; Snabe, T; Meyer, R L

    2018-01-01

    Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces. Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol. The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface. Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces. © 2017 The Society for Applied Microbiology.

  20. Novel surface coating strategies for better battery materials

    CSIR Research Space (South Africa)

    Wen, L

    2018-03-01

    Full Text Available . Surface-coated cathodes have been demonstrated to be effective in blocking these surface processes and enhancing the electrochemical performance of the materials. For example, the electron-insulating but ion-conducting lithium carbonate (Li2CO3) has been... noticed that most LIB electrode materials have very poor electrical conductivity (e.g. lithium iron phosphate and lithium titanate are almost insulators).22,23 In this regard, surface coating of the electrode active materials with a conductive layer...

  1. Microstructures of friction surfaced coatings. A TEM study

    International Nuclear Information System (INIS)

    Akram, Javed; Kalvala, Prasad Rao; Misra, Mano

    2016-01-01

    The microstructures of dissimilar metal welds between 9Cr-1Mo (Modified) (P91) and austenitic stainless steel (AISI 304) with Ni-based alloy interlayers (Inconel 625, Inconel 600 and Inconel 800H) are reported. These interlayers were deposited by the friction surfacing method one over the other on P91 alloy, which was finally friction welded to AISI 304. In this paper, the results of microstructural evolution in the friction surfaced coated interlayers (Inconel 625, 600, 800H) are reported. For comparative purposes, the microstructures of consumable rods (Inconel 625, 600, 800H) and dissimilar metal base metals (P91 and AISI 304) were also reported. Friction surfaced coatings exhibited dynamic recrystallization. In friction surfaced coatings, the carbide particles were found to be finer and distributed uniformly throughout the matrix, compared to their rod counterparts.

  2. Study the polymer coating for detecting and surface decontamination of uranium

    International Nuclear Information System (INIS)

    Pham Thi Quynh Luong; Nguyen Van Chinh

    2011-01-01

    Strippable polymer coating is one of the methods for effective surface decontamination. It has been developed in both detecting and removing the radioactive isotope and heavy metal elements from contaminated surfaces. A polymer coating is produced to be sprayed or brushed on contaminated material of uranium. The places of U contamination is shown by color change of polymer coating. As the polymer coating is dried up to form a strong film, the contaminations are absorbed in to the coating and contaminated surfaces are cleaned by removing the film. (author)

  3. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    Yeo, In-Sung; Min, Seung-Ki; An, Young-Bai

    2010-01-01

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  4. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  5. The Interface Structure of High-Temperature Oxidation-Resistant Aluminum-Based Coatings on Titanium Billet Surface

    Science.gov (United States)

    Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan

    2017-10-01

    A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.

  6. Removable coating for contamination protection of concrete surface

    International Nuclear Information System (INIS)

    Brambilla, G.; Beaulardi, L.

    1985-01-01

    In order to research protective coatings for concrete surfaces, assuring an effective protection against contamination and that it be easily removed before dismantling the structures, commercial stripping paints have been characterized for their conventional and nuclear properties: water and chemicals, abrasion, impact, tensile stress resistance, stripping capacity, decontaminability. The protective power of the coatings against contamination has been checked by recording the surface activity before and after stripping the paint film: the activity filtered through the coating was, in any case, very low (< 1% of the deposited activity). Indications from large scale application of a stripping paint in NUCLEO (Rome) establishments and technical evaluation of the possible utilization of removable coatings in the CAORSO Nuclear Power Station, are also reported

  7. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    Science.gov (United States)

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  8. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  9. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  10. Hydroxyapatite coating on damaged tooth surfaces by immersion

    International Nuclear Information System (INIS)

    Lim, Byoung-Ki; Ryu, Su-Chak; Sun, Fangfang; Koh, Kwangnak; Han, Dong-Wook; Lee, Jaebeom

    2009-01-01

    Hydroxyapatite (HAp) was coated on scratched areas of a human tooth and HAp disks by the immersion method in a HAp colloidal solution (≤20 μm of average diameter dispersed in DI water). The surface morphologies of the scratched area after immersion for 1-3 months were investigated showing that the damaged surfaces were remarkably recovered. Then, the mechanical property and chemical stability of the HAp coating layers on both specimens were determined via the Vickers hardness test and concentration measurement of extracted Ca 2+ ions, respectively, after strong acidic treatment. The cellular behavior of mouse calvaria-derived pre-osteoblastic cells (MC3T3-E1) was also examined on the HAp layers regenerated on micro-scratched HAp disks for the purpose of their potential applications on maxillofacial bone conservation and reconstruction for prosthetic dentistry, and artificial disk preparation of a vertebral column. The notable loss of Ca 2+ ions under a highly acidic condition was not observed in the layers coated by HAp adsorption, indicating that the coating surface was well adhered with the original surfaces of the respective specimen. Moreover, the HAp adsorption did not adversely affect the adhesion, growth and proliferation of MC3T3-E1 cells on the coated HAp layers for up to 21 days. These results suggest that the HAp coating on the scratched areas of the tooth would be effectively applicable for the development of long-term prevention of micro-cleavage and tooth health supporters to reduce discoloration and further maxillofacial and orthopedic applications.

  11. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  12. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  13. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  14. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  15. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Chakradhar, R.P.S., E-mail: chakra@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Kumar, V. Dinesh [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Rao, J.L. [Department of Physics, S.V. University, Tirupathi 517502 (India); Basu, Bharathibai J., E-mail: bharathi@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India)

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of {approx}108{sup o}, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155{sup o} and less than 5{sup o} respectively. The surface properties such as surface free energy ({gamma}{sub p}), interfacial free energy ({gamma}{sub pw}), and the adhesive work (W{sub pw}) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  16. Functional possibilities of organosilicon coatings on the surface of CsI-based scintillators

    CERN Document Server

    Andryustchenko, L A; Goriletsky, V I; Zaslavsky, B G; Zosim, D I; Charkina, T A; Trefilova, L N; Renker, D; Ritt, S; Mzhavia, D A

    2002-01-01

    It has been shown that a thin film (15+-5 mu m) based on organosilicon coating applied to all surface of CsI and CsI(Tl) scintillators excluding the output window, can combine the following functions: (1) covering from atmospheric effects; (2) scintillation light convertor of luminescence towards the region of higher spectral sensitivity of the photoreceiver and (3) ancillary surface for performance of operations on changing the light collection coefficient without the risk to exceed limited size tolerations. Wavelength-shifting coating effect on radiation hardness of pure CsI is discussed. After irradiation a new absorption bands appear in the range 250-300 nm mainly. So, contrary to the 310 nm emission, the energy losses for converted light remain the same.

  17. Haemocompatibility evaluation of DLC- and SiC-coated surfaces

    Directory of Open Access Journals (Sweden)

    Nurdin N.

    2003-06-01

    Full Text Available Diamond-like carbon (DLC and silicon carbide (SiC coatings are attractive because of low friction coefficient, high hardness, chemical inertness and smooth finish, which they provide to biomedical devices. Silicon wafers (Siwaf and silicone rubber (Sirub plates were coated using plasma-enhanced chemical vapour deposition (PE-CVD techniques. This article describes: 1- the characterization of modified surfaces using attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FTIR and contact angle measurements, 2- the results of three in-vitro haemocompatibility assays. Coated surfaces were compared to uncoated materials and various substrates such as polymethylmethacrylate (PMMA, polyethylene (LDPE, polydimethylsiloxane (PDMS and medical steel (MS. Thrombin generation, blood platelet adhesion and complement convertase activity tests revealed the following classification, from the most to the least heamocompatible surface: Sirub/ DLC-Sirub/ DLC-Siwaf/ LDPE/ PDMS/ SiC-Siwaf/ Siwaf/ PMMA/ MS. The DLC coating surfaces delayed the clotting time, tended to inhibit the platelet and complement convertase activation, whereas SiC-coated silicon wafer can be considered as thrombogenic. This study has taken into account three events of the blood activation: coagulation, platelet activation and inflammation. The response to those events is an indicator of the in vitro haemocompatibility of the different surfaces and it allows us to select biomaterials for further in vivo blood contacting investigations.

  18. Application of Genetic Algorithm to the Design Optimization of Complex Energy Saving Glass Coating Structure

    Science.gov (United States)

    Johar, F. M.; Azmin, F. A.; Shibghatullah, A. S.; Suaidi, M. K.; Ahmad, B. H.; Abd Aziz, M. Z. A.; Salleh, S. N.; Shukor, M. Md

    2014-04-01

    Attenuation of GSM, GPS and personal communication signal leads to poor communication inside the building using regular shapes of energy saving glass coating. Thus, the transmission is very low. A brand new type of band pass frequency selective surface (FSS) for energy saving glass application is presented in this paper for one unit cell. Numerical Periodic Method of Moment approach according to a previous study has been applied to determine the new optimum design of one unit cell energy saving glass coating structure. Optimization technique based on the Genetic Algorithm (GA) is used to obtain an improved in return loss and transmission signal. The unit cell of FSS is designed and simulated using the CST Microwave Studio software at based on industrial, scientific and medical bands (ISM). A unique and irregular shape of an energy saving glass coating structure is obtained with lower return loss and improved transmission coefficient.

  19. Application of genetic algorithm to the design optimization of complex energy saving glass coating structure

    International Nuclear Information System (INIS)

    Johar, F M; Azmin, F A; Suaidi, M K; Ahmad, B H; Aziz, M Z A Abd; Salleh, S N; Shukor, M Md; Shibghatullah, A S

    2014-01-01

    Attenuation of GSM, GPS and personal communication signal leads to poor communication inside the building using regular shapes of energy saving glass coating. Thus, the transmission is very low. A brand new type of band pass frequency selective surface (FSS) for energy saving glass application is presented in this paper for one unit cell. Numerical Periodic Method of Moment approach according to a previous study has been applied to determine the new optimum design of one unit cell energy saving glass coating structure. Optimization technique based on the Genetic Algorithm (GA) is used to obtain an improved in return loss and transmission signal. The unit cell of FSS is designed and simulated using the CST Microwave Studio software at based on industrial, scientific and medical bands (ISM). A unique and irregular shape of an energy saving glass coating structure is obtained with lower return loss and improved transmission coefficient.

  20. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  1. LANTHANUM STAINING OF THE SURFACE COAT OF CELLS

    Science.gov (United States)

    Shea, Stephen M.

    1971-01-01

    Among the techniques which have been reported to stain the surface coat of cells, for electron microscopy, is lanthanum staining en bloc. Similarly, the presence of the cationic dye, Alcian blue 8GX, in a primary glutaraldehyde fixative has been reported to improve the preservation of the surface coat of cells of many types; however, the preserved coat is not very electron opaque unless thin sections are counterstained. The present paper shows that for several rat tissues lanthanum staining en bloc is an effective electron stain for the cell surface, giving excellent contrast, if combined sequentially with prefixation in an aldehyde fixative containing Alcian blue. The cationic substance cetylpyridinium chloride was found to have a similar effect to that of Alcian blue in enhancing the lanthanum staining of the surface coat material of the brush border of intestinal epithelial cells. The patterns of lanthanum staining obtained for the tissues studied strikingly resemble those reported in the literature where tissues are stained by several standard methods for demonstrating mucosubstances at the ultrastructural level. This fact and the reproduction of the effect of Alcian blue by cetylpyridinium chloride constitute a persuasive empirical argument that the material visualized is a mucopolysaccharide or mucopolysaccharide-protein complex. PMID:4108476

  2. Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.

    Science.gov (United States)

    Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin

    2018-06-06

    Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

  3. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles

    International Nuclear Information System (INIS)

    Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.

    2017-01-01

    We studied the surface spins disorder in uncoated and silica (SiO 2 ) coated maghemite (γ-Fe 2 O 3 ) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO 2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (T B ) for SiO 2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (M s ) of SiO 2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO 2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1− BT b )) was fitted well for both uncoated and SiO 2 coated nanoparticles and yields: B =3×10 −7 K -b , b=2.22 and B=0.0127 K -b , b=0.57 for uncoated and SiO 2 coated nanoparticles, respectively. Higher value of B for SiO 2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO 2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO 2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO 2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO 2 coated nanoparticles than in uncoated γ-Fe 2 O 3 nanoparticles

  4. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  5. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  6. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  7. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  8. Charged-particle coating

    International Nuclear Information System (INIS)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-01-01

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  9. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  10. Effect of surface coating composition on quantum dot mobility in porous media

    International Nuclear Information System (INIS)

    Wang, Yonggang; Zhu, Huiguang; Becker, Matthew D.; Englehart, Jessica; Abriola, Linda M.; Colvin, Vicki L.; Pennell, Kurt D.

    2013-01-01

    Quantum dots (QDs) have received considerable attention due to their unique optical and electrical properties. Although substantial research has focused on the potential applications and toxicological impacts of QDs, far less effort has been directed toward understanding their fate and transport in the environment. In this work, the effect of four coatings, polyethylene glycol functionalized polymer (PEGP), carboxyl derivatized polymer (COOHP), linoleic acid (LA), and polyacrylic acid-octylamine (PAA-OA), on the transport and retention of QDs in porous media were evaluated under environmentally relevant conditions. Aqueous QD suspensions (ca. 10 nM) were introduced into water-saturated columns packed with 40–50 mesh Ottawa sand at a pore-water velocity of 7.6 m/day. At an ionic strength (IS) of 3 mM and pH of 7, PEGP-coated QDs were completely retained within the column, while more than 60 % of COOHP-coated QDs were transported through a column run under identical conditions. When PAA-OA and LA were used as coatings, effluent QD recoveries increased to more than 65 and 89 % of the injected mass, respectively. Additionally, a decrease in pH from 9.5 to 5.0, or an increase of IS from 0 to 30 mM reduced the eluted mass of PAA-OA-coated QDs by more than 2 and 15 times, respectively. The relative mobility of coated QDs (LA > PAA-OA > COOHP > PEGP) was consistent with total interaction energy profiles between QDs and sand surfaces calculated based on Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. At an IS of 3 mM (NaCl) and pH 7, a linear correlation was obtained between the fraction of eluted QDs and the magnitude of the primary interaction energy barrier. These findings demonstrate the strong dependence of QD transport on coating type and indicate that interaction energies based on DLVO theory can be used to predict the relative mobility of QDs in porous media

  11. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    Science.gov (United States)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended

  12. Surface self-organization in multilayer film coatings

    Science.gov (United States)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  13. Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces

    International Nuclear Information System (INIS)

    Senthilkumar, Rajendran; Prabhu, Sethuramalingam; Cheralathan, Marimuthu

    2013-01-01

    Finned surface has been extensively used for free convection cooling of internal combustion engines and several electronic kits etc. Here rectangular brass fin was preferred for analysis. Thermocouples were attached all over the surface of the fin in equal distances. The measurement of surface temperature and calculated convective heat transfer rate were reported for several heat input values. The overall system performance can be improved by enhancing heat transfer rate of extended surfaces. Based on the above requirement, brass surface was coated by carbon nano tubes. The temperature and heat transfer characteristics were investigated using Taguchi method for experimental design. Finally the performances of coated and non-coated rectangular brass fins were compared. The average percentage of increase in heat transfer rate was proved around 12% for carbon nanocoated rectangular brass fins. - Graphical abstract: The designed Natural and Forced convection Heat Transfer Test Rig measures the enhanced rate of heat transfer for nano coated rectangular fins than in non-coated fins. Highlights: ► Rectangular brass fins were preferred for convective heat transfer process. ► The rectangular brass fins are coated with multi wall carbon nano tubes in EBPVD process with nanometer thickness. ► Temperature and heat transfer rate were investigated for nanocoated and non-coated fins by using Taguchi method. ► Multi wall carbon nanotubes act as a pin fin to enhance surface area for effective convective heat transfer rate.

  14. Surface Coating of Plastic Parts for Business Machines (Industrial Surface Coating): New Source Performance Standards (NSPS)

    Science.gov (United States)

    Learn more about the new source performance standards (NSPS) for surface coating of plastic parts for business machines by reading the rule summary and history and finding the code of federal regulations as well as related rules.

  15. Microphase separation behavior on the surfaces of PEG-MDI-PDMS multiblock copolymer coatings

    International Nuclear Information System (INIS)

    Fang Hongxia; Zhou Shuxue; Wu Limin

    2006-01-01

    A series of poly(ethylene glycol)(PEG)-4,4'-diphenylmethanediisocyanate(MDI)-poly(dimethylsiloxane) (PDMS) multiblock copolymers were synthesized by employing two-step growth polymerization technique. Atomic force microscopy (AFM) observed nanoscopically well-organized phase-separated surfaces consisting of hydrophilic domain from PEG and MDI segments and hydrophobic domain from PDMS segments even with 50 wt.% PDMS in the copolymer, and the multiblock copolymer coatings presented a surface free energy of as low as 6-8 mN m -1

  16. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    . Microscopic characterization of the fiber surface using SEM and AFM reveals the deposition of GO sheets on the fiber surface as a conformal coating. Analysis of the fabric surface using UV–vis absorption allowed identification of the ratio of hydrophobic to hydrophilic domains present on the GO coated cotton fabric surface. Hydrophobic properties on cotton fabric are ascribed to two dimensional amphiphilic properties of deposited GO nano sheets, which successfully lower the interfacial energy of the fabric surface

  17. Hierarchical Micro-Nano Coatings by Painting

    Science.gov (United States)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  18. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle

    International Nuclear Information System (INIS)

    Zhang, Jianyi; Fan, Xi’an; Lu, Lei; Hu, Xiaoming; Li, Guangqiang

    2015-01-01

    Highlights: • The ferrites based infrared radiation coating was prepared by HVOF for the first time. • The infrared radiation coatings were applied firstly on the household kettle. • The bonding strength between the coating and substrate could reach 30.7 MPa. • The coating kept intact when cycle reached 27 by quenching from 1000 °C using water. • The energy-saving efficiency of the kettle with coating could reach 30.5%. - Abstract: Starting from Fe 2 O 3 , MnO 2 , Co 2 O 3 and NiO powders, the ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance were successfully prepared on the surface of carbon steel by high velocity oxy-fuel spraying (HVOF). The coating thickness was about 120–150 μm and presented a typical flat lamellar structure. The coating surface was rough and some submicron grade grains distributed on it. The infrared emissivity of the ferrites based coating by HVOF was over 0.74 in 3–20 μm waveband at 800 °C, which was obviously higher than that of the coating by brushing process in the short waveband. The bonding strength was 30.7 MPa between the coating and substrate, which was five times more than that of conventional coatings by brushing process. The combined effect of the superior bonding strength, typical lamellar structure, pre-existing microcracks and newly generated pores made the cycle times reach 27 when the coating samples were quenched from 1000 °C using water. Lastly, the infrared radiation coatings were applied on the underside of household kettle, and the energy-saving efficiency could reach 30.5%. The ferrites based infrared radiation coatings obtained in this work are good candidates for saving energy in the field of cookware and industrial high temperature furnace

  19. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  20. Surface analysis of DLC coating on cam-tappet system

    OpenAIRE

    FOUVRY, Siegfried; PAGNOUX, Geoffrey; PEIGNEY, Michael; DELATTRE, Benoit; MERMAT-ROLLET, Guillaume

    2013-01-01

    Tribomechanical properties of diamond-like carbon (DLC) coatings make them particularly interesting for numerous applications, like automotive ones. But although DLC coatings show a generally high wear resistance, they sometimes can exhibit severe multiple wear. In this study, a surface analysis of worn coated tappets is performed, leading to a complete coupled wear scenario.

  1. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  2. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  3. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  4. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  5. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces.

    Science.gov (United States)

    Liu, Tianshuang; Xu, Changqi; Hong, Liang; Garcia-Godoy, Franklin; Hottel, Timothy; Babu, Jegdish; Yu, Qingsong

    2017-12-01

    Candida-associated denture stomatitis is the most common oral mucosal lesion among denture wearers. Trimethylsilane (TMS) plasma coating may inhibit the growth of Candida albicans on denture surfaces. The purpose of this in vitro study was to investigate whether TMS plasma coatings can effectively reduce C albicans adhesion on denture base acrylic resin surfaces. Sixty denture base acrylic resin disks with smooth and rough surfaces were prepared and were either left untreated (control group) or coated with TMS monomer (experimental group) by using plasma. Contact angles were measured immediately after TMS plasma coating. The morphology of C albicans adhesion was observed with scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) was used to characterize the elemental composition of the specimen surface. An adhesion test was performed by incubating the resin disk specimens in C albicans suspensions (1×10 7 cells/mL) at 37°C for 24 hours and further measuring the optical density of the C albicans by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay test. One-way ANOVA and 2-way ANOVA were followed by a post hoc test analysis (α=.05). The group with TMS coating exhibited a more hydrophobic surface than the control group. EDS analysis revealed successful TMS plasma coating. The difference in the mean contact angles between the uncoated group and the TMS-coated group was statistically significant (Pcoating than on the surfaces of the experimental group. In the adhesion test, the amount of C albicans adhering to the surface of denture base resin with the TMS coating was significantly less than that on the surfaces without TMS coating (Pcoating significantly reduced the adhesion of C albicans to the denture base resin and may reduce denture stomatitis. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  7. Surface dynamics and mechanics in liquid crystal polymer coatings

    Science.gov (United States)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  8. Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating

    Directory of Open Access Journals (Sweden)

    Hui Gon Chun

    2015-01-01

    Full Text Available High-velocity oxygen-fuel (HVOF thermal spray coating with WC-metal powder was carried out by using optimal coating process on an Inconel718 surface for improvement of the surface properties, friction, wear, and corrosion resistance. Binder metals such as Cr and Ni were completely melted and WC was decomposed partially to W2C and graphite during the high temperature (up to 3500°C thermal spraying. The melted metals were bonded with WC and other carbides and were formed as WC-metal coating. The graphite and excessively sprayed oxygen formed carbon oxide gases, and these gases formed porous coating by evolution of the gases. The surface properties were improved by HVOF coating and were improved further by CO2 laser heat treatment (LH. Wear resistance of In718 surface was improved by coating and LH at 25°C and an elevated temperature of 450°C, resulting in reduction of wear trace traces, and was further improved by LH of the coating in reducing wear depth. Corrosion resistance due to coating in sea water was improved by LH. HVOF coating of WC-metal powder on a metal surface and a LH of the coating were highly recommended for the improvement of In718 surface properties, the friction behavior, and wear resistance.

  9. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  10. Surface Morphology and Hardness Analysis of TiCN Coated AA7075 Aluminium Alloy

    Science.gov (United States)

    Srinath, M. K.; Ganesha Prasad, M. S.

    2017-12-01

    Successful titanium carbonitride (TiCN) coating on AA7075 plates using the PVD technique depends upon many variables, including temperature, pressure, incident angle and energy of the reactive ions. Coated specimens have shown an increase in their surface hardness of 2.566 GPa. In this work, an attempt to further augment the surface hardness and understand its effects on the surface morphology was performed through heat treatments at 500°C for different duration of times. Specimen's heat treated at 500°C for 1 h exhibited a maximum surface hardness of 6.433 GPa, corresponding to an increase of 92.07%. The XRD results showed the presence of Al2Ti and AlTi3N and indicate the bond created between them. Unit cell lattice parameters in the XRD data are calculated using Bragg's law. The SEM images exhibit increasing crack sizes as the heat treatment time is increased. From the studies, the heat treatment duration can be optimized to 1 h, which exhibited an augmented surface hardness, as further increases in durations caused a drop in the surface hardness. The heat treatment effectively modified the surface hardness. Equations providing the relationships that temperature and time have with the reaction parameters are presented.

  11. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.

    Science.gov (United States)

    Cui, Zhe; Yin, Long; Wang, Qingjun; Ding, Jianfu; Chen, Qingmin

    2009-09-15

    Superhydrophobic surfaces with multi-scale nano/microstructures have been prepared on epoxy paint surfaces using a feasible dip-coating process. The microstructures with 5-10 microm protuberances were first prepared on epoxy paint surface by sandblast. Then the nanostructures were introduced on the microstructure surface by anchoring 50-100 nm SiO(2) particles (nano-SiO(2)) onto the sandblasted paint surface, which was completed by dip-coating with a nano-SiO(2)/epoxy adhesive solution (M1). At last the surface was further modified for enhancing hydrophobicity by another dip-coating with a solution of a low surface energy polymer, aminopropyl terminated polydimethylsiloxane (ATPS) modified epoxy adhesive (M2). The water contact angle of the as-prepared samples reached as high as 167.8 degrees and the sliding angle was 7 degrees. The prepared superhydrophobic surface exhibited excellent durability to the high speed scouring test and high stability in neutral and basic aqueous solutions and some common organic solvents. In addition, this method can be adopted to fabricate large scale samples with a good homogeneity of the whole surface at very low cost.

  12. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  13. New non-stick expoxy-silicone water-based coatings part 1: Physical and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Garti, N. [Hebrew Univ. of Jerusalem (Israel); Smith, J. [Decora Manufacturing, Fort Edward, NY (United States)

    1995-06-01

    In search for tomorrow`s technology for water-based coating, Decora Manufacturing and The Hebrew University of Jerusalem, have initiated an intensive research program for designing, developing and manufacturing new coatings based on cross-linked, room temperature-cured silicone-expoxy resins. The new water-borne coatings have most exciting characteristics such as: non-stick properties, effective release, high lubricity, corrosion protection and abrasion resistance. The coatings are environmentally-friendly and easy to use. These coatings are ideal for marine, agricultural, industrial and maintenance applications. This paper brings quantitative measurements related to the dispersion technology (particle size, stability, shelf-life), to the non-stick properties (deicing, low surface energy, easy-release and non-stick), lubricity, adhesion to substrates, viscosity, dynamic and static friction coefficients and environmental impact (low VOC, non-toxicity, low-leaching). The coating was tested in various industrial coating systems and was found to exhibit excellent non-stick and release properties. Special attention was given to Zebra Mussels, Quagga Mussels and other bacterial and algeal bioforms. The coating proved to be efficient as foul-release coating with very low biofouling adhesion. The low adhesion applied to many other substances in which foul-release means easy-clean and low-wear.

  14. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  15. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  16. Surface spins disorder in uncoated and SiO{sub 2} coated maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Shah, S. Kamran Ali; Kamran, M. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Gul, I. Hussain [School of Chemical & Materials Engineering, National University of Sciences and Technology (NUST), H-12, 44000 Islamabad, Pakistan (Pakistan); Ali, L. [Materials Research Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan)

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO{sub 2}) coated maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO{sub 2} coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (T{sub B}) for SiO{sub 2} coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (M{sub s}) of SiO{sub 2} coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO{sub 2} coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1− BT{sup b})) was fitted well for both uncoated and SiO{sub 2} coated nanoparticles and yields: B =3×10{sup −7} K{sup -b}, b=2.22 and B=0.0127 K{sup -b}, b=0.57 for uncoated and SiO{sub 2} coated nanoparticles, respectively. Higher value of B for SiO{sub 2} coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO{sub 2} coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO{sub 2} coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO{sub 2} coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface

  17. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response

    Science.gov (United States)

    Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping

    2018-05-01

    To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.

  18. Determination of the specific surface energy of oxides and glasses in the solid-state

    International Nuclear Information System (INIS)

    Andryushechkin, S.; Karpman, M.

    2000-01-01

    The production and application of coatings on glasses are used widely in technology. The coatings on glass are used for the regulation of optical, decorative, conducting and other technological and physical properties of glass. In particular, it is important to mention the application of glass fibres for the development of composite materials. However, the specific surface energy of glass and, consequently, its adhesion characteristics are relatively low. The values of these characteristics can be changed by the application of different metallic and nonmetallic coatings is characterised by high surface energy. To produce metallic coatings with the required adhesion strength of glass, it is necessary to have information on the specific surface energy of inorganic glass of different chemical composition. The determination of the relationships between the properties and composition of glass is one of the fundamental problems. At present, a large amount of investigations have been carried out into the investigations of the properties of glass in relation to its composition. However, the problem of establishment of relationships between the properties and composition of glass are especially difficult when examining multicomponent systems (technical glass). It is therefore, in to analyse in each case the properties of not the entire system has a whole but the variation of the properties with temperature of the individual components included in the system, the subsequent application of the additivity principle. The large majority of the glasses represent combinations of oxides of the elements of groups I-III and oxides of the transition metals, forming the mixtures, solid solutions of chemical compounds in the glass production process. Thus, analysis of the characteristics of oxides of the alkali, alkali-earth and transition metals makes it possible to obtain initial data for the evaluation of the surface energy, density, molecular mass of glass containing these oxides

  19. Forensic collection of trace chemicals from diverse surfaces with strippable coatings.

    Science.gov (United States)

    Jakubowski, Michael J; Beltis, Kevin J; Drennan, Paul M; Pindzola, Bradford A

    2013-11-07

    Surface sampling for chemical analysis plays a vital role in environmental monitoring, industrial hygiene, homeland security and forensics. The standard surface sampling tool, a simple cotton gauze pad, is failing to meet the needs of the community as analytical techniques become more sensitive and the variety of analytes increases. In previous work, we demonstrated the efficacy of non-destructive, conformal, spray-on strippable coatings for chemical collection from simple glass surfaces. Here we expand that work by presenting chemical collection at a low spiking level (0.1 g m(-2)) from a diverse array of common surfaces - painted metal, engineering plastics, painted wallboard and concrete - using strippable coatings. The collection efficiency of the strippable coatings is compared to and far exceeds gauze pads. Collection from concrete, a particular challenge for wipes like gauze, averaged 73% over eight chemically diverse compounds for the strippable coatings whereas gauze averaged 10%.

  20. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  1. Electroless Ni–B Coating of Pure Titanium Surface for Enhanced Tribocorrosion Performance in Artificial Saliva and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    F. Mindivan

    2017-05-01

    Full Text Available In the present study, the surface of commercial pure (Grade 2 titanium was coated with electroless Ni–B. The surface morphology, microstructure and phase identification were analysed by X-Ray Diffraction (XRD and Field Emission Gun Scanning Electron Microscope (FEG-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS. The tribocorrosion performance in a laboratory simulated artificial saliva was investigated using a reciprocating ball-on-plate tribometer coupled to an electrochemical cell. The antibacterial property of the electroless Ni–B film coated on pure titanium was basically investigated. From this study, it may be concluded that this electroless Ni–B coating process cannot only improve the hardness and tribocorrosion performance of the pure titanium, but can also provide antimicrobial activity.

  2. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  3. Radiation curable coatings having nonadherent surfaces

    International Nuclear Information System (INIS)

    Gaske, J.E.; Georgas, N.T.

    1977-01-01

    Radiation polymerizable coatings having nonadherent surfaces are provided utilizing nonaqueous emulsions of a liquid alkyl hydrogen polysiloxane in a radiation polymerizable polyethylenic liquid. Polyacrylates in combination with amines, and ultraviolet photosensitizers are particularly contemplated for rapid nonair inhibited ultraviolet cure. 13 claims

  4. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    International Nuclear Information System (INIS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-01-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon). Scanning electron microscopy images showed a 'bird's nest'-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ∼165 deg. with a very low contact angle hysteresis of ∼3 deg. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  5. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    Science.gov (United States)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  6. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  7. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  8. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating

    International Nuclear Information System (INIS)

    Zheng Yansheng; He Yi; Qing Yongquan; Zhuo Zhihao; Mo Qian

    2012-01-01

    Highlights: ► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface. - Abstract: Superhydrophobic coating has been fabricated on the glass substrates with modified SiO 2 sol and polytetrafluoroethylene emulsion through a sol–gel process. SiO 2 sol was modified with γ-glycidoxypropyl trimethoxysilane. The coatings were characterized by water contact angle measurement, Scanning electron microscope, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and thermal synthetic analysis. The experimental results show that coatings exhibited superhydrophobic and heat-resistant property with a water average contact angle of 156° and sliding angle of 6°, coating has a rough surface with both micro- and nanoscale structures, γ-glycidoxypropyl trimethoxysilane enhanced the hydrophobicity of the coatings. Low surface energy of polymer and special structure of the coatings were responsible for the hydrophobic of the surfaces.

  9. Porous Organic Nanolayers for Coating of Solid-state Devices

    Science.gov (United States)

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  10. Porous Organic Nanolayers for Coating of Solid-state Devices

    Directory of Open Access Journals (Sweden)

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  11. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  12. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  13. On the formation of protective sulphide coatings on carbon steel surfaces

    International Nuclear Information System (INIS)

    Das, C.; Venkateswaran, G.

    1987-01-01

    A chemical method for protecting carbon steel surfaces by forming pyrrhotite/pyrite coatings has been developed. The protective nature of the coatings has been studied by weight loss kinetics, scanning electron microscopy and electrochemical measurements. A comparison is drawn between the protective nature of pyrite coating with that of magnetite coating. (author)

  14. pH and redox responsive polymer for antifouling surface coating

    International Nuclear Information System (INIS)

    Lee, Kang Seok; In, Insik; Park, Sung Young

    2014-01-01

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH 2 ), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment

  15. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  16. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  17. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating

    Directory of Open Access Journals (Sweden)

    Bin Hua

    2016-08-01

    Full Text Available Soil lead (Pb is well known as a threat to human health and ecosystem. Although relatively insoluble, lead bullets in shooting range soil can be readily released into soluble forms through natural weathering processes and thus pose significant human and environmental risks. In this study, laboratory experiments were conducted to investigate if the Pb bullets in shooting range soil can be stabilized through surface coating of phosphate-based materials. Results indicated that FePO4 or AlPO4 coatings, insoluble metal phosphates, have been successfully formed on the surface of the Pb bullets. The EPA Toxicity Characteristic Leaching Procedure (TCLP test showed that FePO4 or AlPO4 surface coating would effectively reduce the Pb solubility or leachability of the bullets. The surface coating under pH of <5.5 for 7 days could achieve 92–100% reduction, with 85–98% by FePO4 coating and 77–98% by AlPO4 coating as compared with the non-coating. Leachable Pb concentration in the contaminated shooting range soil was reduced by 85–98% or 77–98% as a result of the FePO4 or AlPO4 solution treatment. This study demonstrated that the FePO4 or AlPO4–based surface coating on lead bullets can effectively inhibit the Pb weathering and significantly reduce the Pb release from soil through in situ chemical stabilization, which could be potentially applicable as a cost-effective and environmental-sound technology for the remediation of Pb-contaminated shooting range soil.

  18. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  19. Smart Nanocomposite Coatings with Chameleon Surface Adaptation in Tribological Applications

    Science.gov (United States)

    Voevodin, A. A.; Zabinski, J. S.

    Smart nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These coatings have been dubbed "chameleon" because of their ability to change their surface chemistry and structure to avoid wear. The first "chameleon" coatings were made of WC, WS2, and DLC; these coatings provided superior mechanical toughness and performance in dry/humid environmental cycling. In order to address temperature variation, the second generation of "chameleon" coatings were made of yttria stabilized zirconia (YSZ) in a gold matrix with encapsulated nano-sized reservoirs of MoS2 and DLC. High temperature lubrication with low melting point glassy ceramic phases was also explored. All coatings were produced using a combination of laser ablation and magnetron sputtering. They were thoroughly characterized by various analytical, mechanical, and tribological methods. Coating toughness was remarkably enhanced by activation of a grain boundary sliding mechanism. Friction and wear endurance measurements were performed in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500-600 °C in air. Unique friction and wear performance in environmental cycling was demonstrated.

  20. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R., E-mail: rjafari@uqac.ca [NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada); Menini, R.; Farzaneh, M. [NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2010-12-15

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon). Scanning electron microscopy images showed a 'bird's nest'-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of {approx}165 deg. with a very low contact angle hysteresis of {approx}3 deg. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF{sub 3} and CF{sub 2} groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  1. Surface modification and characterization of aramid fibers with hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin, E-mail: fyq01@zstu.edu.cn; Fu, Xiang

    2014-12-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO{sub 2}/shape memory polyurethane (SiO{sub 2}/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO{sub 2}/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface.

  2. Surface modification and characterization of aramid fibers with hybrid coating

    International Nuclear Information System (INIS)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-01-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO 2 /shape memory polyurethane (SiO 2 /SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO 2 /SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface

  3. Precursor-Less Coating of Nanoparticles in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Tobias V. Pfeiffer

    2015-03-01

    Full Text Available This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nanoparticles using a type of physical vapor deposition (PVD at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.

  4. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  5. Ultra-Fast Glyco-Coating of Non-Biological Surfaces

    Directory of Open Access Journals (Sweden)

    Eleanor Williams

    2016-01-01

    Full Text Available The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL has been used to glycosylate cells. Because it is known that lipid-based material can adsorb onto surfaces, we explored the potential and performance of cell-labelling FSL constructs to “glycosylate” non-biological surfaces. Using blood group A antigen as an indicator, the performance of a several variations of FSL constructs to modify a large variety of non-biological surfaces was evaluated. It was found the FSL constructs when optimised could in a few seconds glycosylate almost any non-biological surface including metals, glass, plastics, rubbers and other polymers. Although the FSL glycan coating was non-covalent, and therefore temporary, it was sufficiently robust with appropriate selection of spacer and surface that it could capture anti-glycan antibodies, immobilize cells (via antibody, and withstand incubation in serum and extensive buffer washing, making it suitable for diagnostic and research applications.

  6. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  7. Energy characteristics of finest coal particles surfaces versus their upgrading using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Sablik

    2007-07-01

    The paper presents selected results of investigations on energy properties of the fine coal particles, and methodological grounds for conducting such investigations. Using the discussed relationships, values of contact angle of coal particles with various degree of coalification in the range defined by the energy nonhomogeneity of the surfaces were computed. There have been determined the values of the contact angles of coal particles with hydrophobic and hydrophilic surfaces after coating with nonpolar and polar reagents. The energy state of the surfaces of coal particles in the feeds and products of industrial flotation were determined, which enabled to evaluate this process. 22 refs., 6 figs., 4 tabs.

  8. Nano-TiO_2 coatings on aluminum surfaces by aerosol flame synthesis

    International Nuclear Information System (INIS)

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello; Commodo, Mario; Minutolo, Patrizia; D'Anna, Andrea; Squillace, Antonino

    2016-01-01

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO_2 has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO_2 nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO_2 particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO_2 nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy • Improvement of

  9. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  10. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  11. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface.

    Science.gov (United States)

    Zeng, Jingbin; Liu, Haihong; Chen, Jinmei; Huang, Jianli; Yu, Jianfeng; Wang, Yiru; Chen, Xi

    2012-09-21

    In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.

  12. A conductive surface coating for Si-CNT radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Antonio, E-mail: antonio.valentini@ba.infn.it [Dipartimento di Fisica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari (Italy); Valentini, Marco [INFN, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Ditaranto, Nicoletta [Dipartimento di Chimica, Università degli Studi di Bari, Via Amendola 173, 70126 Bari (Italy); Melisi, Domenico [INFN, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Aramo, Carla, E-mail: aramo@na.infn.it [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Ambrosio, Antonio [CNR-SPIN U.O.S. di Napoli and Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Casamassima, Giuseppe [Dipartimento di Fisica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari (Italy); INFN, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Cilmo, Marco [INFN, Sezione di Napoli, and Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Fiandrini, Emanuele [INFN, Sezione di Perugia, and Dipartimento di Fisica, Università degli Studi di Perugia, Piazza Università 1, 06100 Perugia (Italy); Grossi, Valentina [INFN, Sezione di L’Aquila, and Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 10 Coppito, 67100 L’Aquila (Italy); and others

    2015-08-01

    Silicon–Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon. - Highlights: • ITO was deposited by Ion Beam Sputtering on MWCNT. • ITO on CNT makes an inter-diffusion layer of the order of one hundred nanometers. • Improvements of quantum efficiency of photon detectors based on CNT with ITO.

  13. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Mantilaka, M.M.M.G.P.G. [Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Hara, Masanori; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athula@ifs.ac.lk [National Institute of Fundamental Studies, Kandy (Sri Lanka); Yoshimura, Masamichi [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka)

    2017-07-15

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O{sub 2} penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g{sup −1}, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel

  14. Surface dynamics and mechanics in liquid crystal polymer coatings

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.; Chien, L.-C.; Coles, H.J.; Kikuchi, H.; Smalyukh, I.I.

    2015-01-01

    Based on liquid crystal networks we developed 'smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that

  15. Surface and bulk MHD instabilities due to insulator coating imperfections

    International Nuclear Information System (INIS)

    Xu Zengyu; Reed, C.B.; Pan Chuanjie

    2002-01-01

    Experiments were performed using copper electrodes inserted into the wall of a perfectly insulated duct to simulate insulator coating flaking or cracking. The results show that surface electric potential U and MHD pressure drop ΔP exhibit a non-monotonic behavior with increasing V 0 , while the magnetic field B 0 is held constant. Additional experiments were also performed keeping all external experimental conditions fixed while measuring the change of U, V 0 , B 0 , and ΔP with increasing time. It was found that while all external experimental conditions were kept constant, the system changed by itself and U, V 0 and ΔP exhibited a non-monotonic behavior with increasing time. The results seem contrary to the law of ΔP∝V 0 B 0 n , but are consistent with conservation of energy, which implies that the change is due to some inherent feature of the system, or possibly instabilities, which may occur due to insulator coating imperfections

  16. Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application

    Directory of Open Access Journals (Sweden)

    W. F. Ji

    2017-08-01

    Full Text Available In this work, an electroactive polyimide (EPI coating with biomimetic surface structure of rose petal used in anticorrosion application was first presented. First of all, amino-capped aniline trimer (ACAT was synthesized by oxidative coupling reaction, followed by characterized through Fourier transform infrared spectroscooy (FTIR, liquid chromatography – mass spcerometry (LC-MS and proton nuclear magnetic resonance (1H-NMR spectroscopy. Subsequently, as-prepared ACAT was reacted with isopropylidenediphenoxy-bis(phthalic anhydride (BPADA to give electroactive poly(amic acid (EPAA. Moreover, poly(dimethylsiloxane (PDMS was used to be the soft negative template for pattern transfer from the surface of rose petal to the surface of polymer coating. The EPI coating with biomimetic structure was obtained by programmed heating the EPAA slurry casting onto the negative PDMS template. The anticorrosive performance of as-prepared biomimetic EPI coating was demonstrated by performing a series of electrochemical measurements (Tafel, Nyquist, and Bode plots upon cold-rolled steel (CRS electrode in a NaCl aqueous solution. It should be noted that the biomimetic EPI coating with rose petal-like structure was found to exhibit better anticorrosion than that of EPI without biomimetic structure. Moreover, the surface contact angle of water droplets for biomimetic EPI coating was found to be ~150°, which is significantly higher than that of EPI coating with smooth structure (~87°, indicating that the EPI coating with biomimetic structure reveals better hydrophobicity. The apparent mechanism for improved anticorrosive properties is twofold: (1 the biomimetic structure of EPI coating can repel water droplets. (2 electroactivity of EPI coating promotes the formation of densely passive layer of metal oxide on metallic surface.

  17. The HIE-ISOLDE Superconducting Cavities: Surface Treatment and Niobium Thin Film Coating

    CERN Document Server

    Lanza, G; Ferreira, L M A; Gustafsson, A E; Pasini, M; Trilhe, P; Palmieri, V

    2010-01-01

    CERN has designed and prepared new facilities for the surface treatment and niobium sputter coating of the HIE-ISOLDE superconducting cavities. We describe here the design choices, as well as the results of the first surface treatments and test coatings.

  18. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  19. Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating

    International Nuclear Information System (INIS)

    Tasnim, Nishat; Kumar, Alok; Joddar, Binata

    2017-01-01

    A persistent theme in biomaterials research comprises of surface engineering and modification of bare metallic substrates for improved cellular response and biocompatibility. Graphene Oxide (GO), a derivative of graphene, has outstanding chemical and mechanical properties; its large surface to volume ratio, ease of surface modification and processing make GO an attractive coating material. GO-coatings have been extensively studied as biosensors. Further owing to its surface nano-architecture, GO-coated surfaces promote cell adhesion and growth, making it suitable for tissue engineering applications. The need to improve the long-term durability and therapeutic effectiveness of commercially available bare 316L stainless steel (SS) surfaces led us to adopt a polymer-free approach which is cost-effective and scalable. GO was immobilized on to 316L SS utilizing amide linkage, to generate a strongly adherent uniform coating with surface roughness. GO-coated 316L SS surfaces showed increased hydrophilicity and biocompatibility with SHSY-5Y neuronal cells, which proliferated well and showed decreased reactive oxygen species (ROS) expression. In contrast, cells did not adhere to bare uncoated 316L SS meshes nor maintain viability when cultured in the vicinity of bare meshes. Therefore the combination of the improved surface properties and biocompatibility implies that GO-coating can be utilized to overcome pertinent limitations of bare metallic 316L SS implant surfaces, especially SS neural electrodes. Also, the procedure for making GO-based protective coatings can be applied to numerous other implants where the development of such protective films is necessary. - Highlights: • GO was immobilized on to 316L SS utilizing carbodiimide chemistry to generate a strong adherent uniform nano coating. • GO-modified surfaces showed increased hydrophilicity and biocompatibility with SH5YSY cells cultured atop these surfaces. • Proliferation and alignment of the cells with the

  20. Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Tasnim, Nishat; Kumar, Alok; Joddar, Binata, E-mail: bjoddar@utep.edu

    2017-04-01

    A persistent theme in biomaterials research comprises of surface engineering and modification of bare metallic substrates for improved cellular response and biocompatibility. Graphene Oxide (GO), a derivative of graphene, has outstanding chemical and mechanical properties; its large surface to volume ratio, ease of surface modification and processing make GO an attractive coating material. GO-coatings have been extensively studied as biosensors. Further owing to its surface nano-architecture, GO-coated surfaces promote cell adhesion and growth, making it suitable for tissue engineering applications. The need to improve the long-term durability and therapeutic effectiveness of commercially available bare 316L stainless steel (SS) surfaces led us to adopt a polymer-free approach which is cost-effective and scalable. GO was immobilized on to 316L SS utilizing amide linkage, to generate a strongly adherent uniform coating with surface roughness. GO-coated 316L SS surfaces showed increased hydrophilicity and biocompatibility with SHSY-5Y neuronal cells, which proliferated well and showed decreased reactive oxygen species (ROS) expression. In contrast, cells did not adhere to bare uncoated 316L SS meshes nor maintain viability when cultured in the vicinity of bare meshes. Therefore the combination of the improved surface properties and biocompatibility implies that GO-coating can be utilized to overcome pertinent limitations of bare metallic 316L SS implant surfaces, especially SS neural electrodes. Also, the procedure for making GO-based protective coatings can be applied to numerous other implants where the development of such protective films is necessary. - Highlights: • GO was immobilized on to 316L SS utilizing carbodiimide chemistry to generate a strong adherent uniform nano coating. • GO-modified surfaces showed increased hydrophilicity and biocompatibility with SH5YSY cells cultured atop these surfaces. • Proliferation and alignment of the cells with the

  1. Surface coating for prevention of metallic seed migration in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  2. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  3. Generating Chondromimetic Mesenchymal Stem Cell Spheroids by Regulating Media Composition and Surface Coating.

    Science.gov (United States)

    Sridharan, BanuPriya; Laflin, Amy D; Detamore, Michael S

    2018-04-01

    Spheroids of mesenchymal stem cells (MSCs) in cartilage tissue engineering have been shown to enhance regenerative potential owing to their 3D structure. In this study, we explored the possibility of priming spheroids under different media to replace the use of inductive surface coatings for chondrogenic differentiation. Rat bone marrow-derived MSCs were organized into cell spheroids by the hanging drop technique and subsequently cultured on hyaluronic acid (HA) coated or non-coated well plates under different cell media conditions. Endpoint analysis included cell viability, DNA and Glycosaminoglycan (GAG) and collagen content, gene expression and immunohistochemistry. For chondrogenic applications, MSC spheroids derived on non-coated surfaces outperformed the spheroids derived from HA-coated surfaces in matrix synthesis and collagen II gene expression. Spheroids on non-coated surfaces gave rise to the highest collagen and GAG when primed with medium containing insulin-like growth factor (IGF) for 1 week during spheroid formation. Spheroids that were grown in chondroinductive raw material-inclusive media such as aggrecan or chondroitin sulfate exhibited the highest Collagen II gene expression in the non-coated surface at 1 week. Media priming by growth factors and raw materials might be a more predictive influencer of chondrogenesis compared to inductive-surfaces. Such tailored bioactivity of the stem cell spheroids in the stage of the spheroid formation may give rise to a platform technology that may eventually produce spheroids capable of chondrogenesis achieved by mere media manipulation, skipping the need for additional culture on a modified surface, that paves the way for cost-effective technologies.

  4. Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi

    2013-01-01

    Surface roughness or texture is the most visible property of any object, including injection molded plastic parts. Roughness of the injection molding (IM) tool cavity directly affects not only appearance and perception of quality, but often also the function of all manufactured plastic parts. So...... called “optically smooth” plastic surfaces is one example, where low roughness of a tool cavity is desirable. Such tool surfaces can be very expensive to fabricate using conventional means, such as abrasive diamond polishing or diamond turning. We present a novel process to coat machined metal parts...... are reduced 10 and 3 times respectively. We completed more than 10,000 injection molding cycles without detectable degradation of the HSQ coating. This result opens new possibilities for molding of affordable plastic parts with perfect surface finish....

  5. Evaluation of Surface Characteristics of Denture Base Using Organic-Inorganic Hybrid Coating: An SEM Study.

    Science.gov (United States)

    Aa, Jafari; Mh, Lotfi-Kamran; M, Ghafoorzadeh; Sm, Shaddel

    2017-06-01

    Despite the numerous positive features of acrylic denture base, there are a number of undeniable associated disadvantages. The properties of denture base have been improved through various interventions including application of different types of filler and coatings. This study aimed to evaluate the surface roughness, thickness and coating quality of organic-inorganic coating on the denture base through scanning electron microscopy. Moreover, the colour change was evaluated visually. The organic-inorganic hybrid coatings were prepared. Acrylic discs of 10×10 mm were fabricated. The test discs were dipped in the hybrid coating and cured. In order to evaluate the surface roughness and coating thickness, the surface and cross-section of the samples in both coated and control groups were subjected to scanning electron microscopy. The colour change and transparency were visually evaluated with naked eyes. The data were statistically analyzed by student's t test. The hybrid materials perfectly covered all the surfaces of acrylic resin and established proper thickness. The coated group seemed smoother and flatter than the control group; however, the difference was not statistically significant ( for all parameters p > 0.05). It was quite a thin coating and no perceptible colour change was observed. The hybrid coating maintained good binding, caused no noticeable discoloration, and thoroughly covered the acrylic resin surface with uniform delicate thickness. It also slightly improved the acrylic resin surface roughness.

  6. Influence of bounce mode on surface roughness of CH coating on microshells

    International Nuclear Information System (INIS)

    Zhang Baoling; China Academy of Engineering Physics, Mianyang; He Zhibing; Wu Weidong; Liu Xinghua; Ma Xiaojun; Yang Mengsheng; Lin Huaping; Yang Xiangdong

    2008-01-01

    The CH coating on microshells was fabricated by low-pressure plasma chemical vapor deposition (LPPCVD) with a bounce pan system. The influence of bounce modes on the surface topography of the CH coating was discussed. The surface topography was probed by optical microscopy and scanning electron microscopy(SEM). Roughness and sphericity were measured with an atomic force microscopy(AFM). X-radiography was used to obtain the concentricity. The results show that the surface topography of the coating is improved significantly by the intermittent bounce mode, and the roughness of medium high mode is reduced. The surface finish is improved ulteriorly by the intermittent bounce mode as the duty ratio is reduced. The RMS roughness of 30 μm CH coating is less than 30 nm. The spericity and concentricity of hydrocarbon-polystyrene (CH-PS) microshell are all better than 99% when the duty ratio is 1/4. (authors)

  7. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis.

    Science.gov (United States)

    Mansfield, Elisabeth; Tyner, Katherine M; Poling, Christopher M; Blacklock, Jenifer L

    2014-02-04

    The use of nanoparticles in some applications (i.e., nanomedical, nanofiltration, or nanoelectronic) requires small samples with well-known purities and composition. In addition, when nanoparticles are introduced into complex environments (e.g., biological fluids), the particles may become coated with matter, such as proteins or lipid layers. Many of today's analytical techniques are not able to address small-scale samples of nanoparticles to determine purity and the presence of surface coatings. Through the use of an elevated-temperature quartz crystal microbalance (QCM) method we call microscale thermogravimetric analysis, or μ-TGA, the nanoparticle purity, as well as the presence of any surface coatings of nanomaterials, can be measured. Microscale thermogravimetric analysis is used to determine the presence and amount of surface-bound ligand coverage on gold nanoparticles and confirm the presence of a poly(ethylene glycol) coating on SiO2 nanoparticles. Results are compared to traditional analytical techniques to demonstrate reproducibility and validity of μ-TGA for determining the presence of nanoparticle surface coatings. Carbon nanotube samples are also analyzed and compared to conventional TGA. The results demonstrate μ-TGA is a valid method for quantitative determination of the coatings on nanoparticles, and in some cases, can provide purity and compositional data of the nanoparticles themselves.

  8. The role of current characteristics of the arc evaporator in formation of the surface metal-coating composite

    International Nuclear Information System (INIS)

    Plikhunov, V V; Petrov, L M; Grigorovich, K V

    2016-01-01

    The influence of current characteristics of the vacuum arc evaporator on the interaction process of plasma streams with the surface under treatment during generation of the physicochemical properties of the formed metal-coating composite is considered. It is shown that the interaction of plasma streams with the processed surface provides surface heating, defects elimination, change in energy properties, and mass transfer of plasma stream elements activating surface diffusion processes whose intensity is evaluated by the arc current magnitude and location of the processed surface relative to the cathode axis. (paper)

  9. The influence of surface topography of UV coated and printed cardboard on the print gloss

    Directory of Open Access Journals (Sweden)

    Igor Karlović

    2010-09-01

    Full Text Available The incident light on the printed surface undergoes through several processes of scattering, absorbtion and reflectiondepending on the surface topography and structure of the material. The specular part of the surface reflection is commonlyattributed as the geometric component of the reflection, and when measured is associated with specular gloss.The diffuse part of the surface reflection contains the chromatic part of the reflection and is commonly calculatedthrough colorimetric values. Using UV coatings as surface enhacement materials which affect the optical propertiesof coated surfaces and final appearance of the printed product forms new surface topography over the existingone. We have investigated the influence of three different amounts of UV glossy and matte oveprint coating on themeasured specular gloss of printed cardboard samples. The different amount of coatings on the printed samples wereachived using three different screen stencils of 180 threads/cm, 150 threads/cm and 120 threads/cm thread count.The cardboard samples were analysed with AFM and SEM microscopes to obtain surface topography and roughnessvalues which were evaluated with the measured geometric values speficied as instrumental gloss. The surfaceswith a specific amount of UV coatings showed a new formed topography which influences the reflection of light.The changes in topography were evaluated through surface roughness parameters which showed a decline of surfaceroughness with tht additional ammount of glossy and matte coatings. The obtained and calculated correlations showthere is a high correlation between coating ammount and surface roughness change and gloss for the glossy UVcoating. The results for the matte UV coatings showed lower correlation for the gloss and surface roughness.

  10. Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

    International Nuclear Information System (INIS)

    Jeon, Jae Hong; Shon, Min Young

    2014-01-01

    Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ⅠZⅠ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior

  11. Surface Microstructure of Nanoaluminized CoCrAlY Coating Irradiated by HCPEB

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2016-01-01

    Full Text Available A thermal sprayed CoCrAlY coating was prepared by air plasma spray on the surface of Ni-based superalloy GH4169; then, a nanoscale aluminum film was deposited with electron beam vacuum deposition on it. The coatings irradiated by high-current pulsed electron beam were investigated. After HCPEB treatment, the Al film was remelted into the bond coat. XRD result shows that Al and Al2O3 phase were recorded in the irradiated and aluminized coatings, while Co-based oxides which originally existed in the initial samples disappeared. Microstructure observations reveal that the original coating with porosity, cavities, and inclusions was significantly changed after HCPEB treatment as compact appearance of interconnected bulged nodules. Moreover, the grains on the irradiated coating were very refined and homogeneously dispersed on the surface, which could effectively inhibit the corrosive gases and improve the coating oxidation resistance.

  12. a Study of Nanocomposite Coatings on the Surface of Ship Exhaust Pipe

    Science.gov (United States)

    Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng

    In order to improve the high temperature oxidation resistance of exhaust pipes, the nanocomposite coatings are carried out on the surface of exhaust pipe by pulsed current electrodeposition technology, and the microstructure and oxidation behavior of the nanocomposite coatings are investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and oxidation resistance of nanocomposite coatings in presence of attapulgite and cerium oxide CeO2. The results show that the amount of the attapulgite-CeO2 has significant influence on the structural properties of nanocomposite coatings. The surface of coating becomes more compact and smooth with the increase of the amount of the attapulgite and CeO2. Furthermore, the anti-oxidation performances of the nanocomposite coatings formed with attapulgite and CeO2 were both better than those of the composite coatings formed without attapulgite and CeO2.

  13. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    OpenAIRE

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline p...

  14. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  15. Saving energy. [Metal Coating With Infrared Dryers

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, K

    1981-01-01

    One way of saving energy in metal coating is by using electrically heated infrared dryers with medium-wave radiation (2 to 3 ..mu..m). The absorbing capacity of varnishes and plastic coatings is >90% in this range so that the radiation energy is almost completely transformed into heat. Medium-wave radiation sources have a much higher service life than short-wave sources (30.000 hours of operation) and do not require cooling; compared with long-wave sources, they have a higher heat transfer and thus much shorter drying times. The main fields of application, a cost example, and practical examples among the customers of Messrs. Eisenmann are presented.

  16. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  17. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  18. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  19. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples

    International Nuclear Information System (INIS)

    Khun, N.W.; Frankel, G.S.

    2013-01-01

    Highlights: ► Cathodic delamination of epoxy coated steel samples was studied using SKP. ► Delamination of the coating decreased with increased substrate surface roughness. ► Delamination of the coating was faster on the substrate with parallel surface scratches. ► Delamination of the coating exposed to weathering conditions increased with prolonged exposure. - Abstract: The Scanning Kelvin Probe (SKP) technique was used to investigate the effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel. The cathodic delamination rate of the epoxy coatings dramatically decreased with increased surface roughness of the underlying steel substrate. The surface texture of the steel substrates also had a significant effect in that samples with parallel abrasion lines exhibiting faster cathodic delamination in the direction of the lines compared to the direction perpendicular to the lines. The cathodic delamination kinetics of epoxy coatings previously exposed to weathering conditions increased with prolonged exposure due to pronounced polymer degradation. SEM observation confirmed that the cyclic exposure to UV radiation and water condensation caused severe deterioration in the polymer structures with surface cracking and erosion. The SKP results clearly showed that the cathodic delamination of the epoxy coatings was significantly influenced by the surface features of the underlying steel substrates and the degradation of the coatings.

  20. Method for Qualification of Coatings Applied to Wet Surfaces

    Science.gov (United States)

    2009-12-16

    The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...

  1. Nano-TiO{sub 2} coatings on aluminum surfaces by aerosol flame synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Commodo, Mario; Minutolo, Patrizia [Istituto di Ricerche sulla Combustione, CNR, Napoli 80125 (Italy); D' Anna, Andrea, E-mail: anddanna@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Squillace, Antonino [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy)

    2016-06-30

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO{sub 2} has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO{sub 2} nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO{sub 2} particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO{sub 2} nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy

  2. Titanium oxynitrate (TiNxOy) coating for use in thermal solar energy converters

    International Nuclear Information System (INIS)

    Lasorsa, C; Dilalla, N; Perillo, P; Morando, P.J; Versaci, R; Lucio, R

    2008-01-01

    This work deals with the production of titanium oxynitrate (TiN x O y ) coatings on metallic substrates. Because of its high resistance to high temperatures, titanium oxynitrate (TiN xO y) is a good material for the production of thermal solar energy converters. The surfaces should possess such qualities as high absorbance (α) of solar radiation (range 0.3 μm ≤λ≤2 μm) and low thermal emittance (ε) in the range of λ≥ 2 μm. The coatings should retain optical qualities temperatures greater than 300 o C. These coatings were made using the PECVD (Plasma Enhanced Chemical Vapor Deposition) technique in a single layer coating, with a gaseous mixture using titanium isopropoxide with an air contribution of reactive gas. The process is developed in one stage, with the substrate thermalized at 750 o C and without y BIAS potential. The coatings were carried out on AISI 410 stainless steel and AISI M2 steel substrates. This work presents the preliminary results of the coating's chemical composition, structure and optical and mechanical properties. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS/ESCA) and scanning electron microscopy were used in these studies

  3. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  4. Surface Coating Technique of Northern Black Polished Ware by the Microscopic Analysis

    Directory of Open Access Journals (Sweden)

    Dilruba Sharmin

    2012-12-01

    Full Text Available An organic substance has been identified in the top layer of Northern Black Polished Ware (NBPW excavated from the Wari-Boteshwar and Mahasthangarh sites in Bangladesh. NBPW is the most distinctive ceramic of Early Historic period and the technique of its surface gloss acquired numerous theories. This particular paper is an analytical study of collected NBPW sherds from these two sites including surface observations using binocular and scanning electron microscopes and Thin Section Analysis of potsherds. Thin section analysis identified two different layers of coating on the surface of the NBPW. One layer is a ‘slip’ (ground coat and the other is a ‘top layer or top coat ’. The slip was made from refined clay and the top layer was derived from organic substance. Microscopic analysis confirmed the solid and non-clayey characteristics of the top coat.

  5. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  6. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  7. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  8. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří

    2016-01-01

    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  9. Highly efficient separation of surfactant stabilized water-in-oil emulsion based on surface energy gradient and flame retardancy.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Miao, Xinrui; Wen, Ni; Zhou, Qiannan; Deng, Wenli

    2018-06-15

    Surface energy gradient would generate an imbalance force to drive tiny water droplets in dry air from the hydrophilic bumps to superhydrophobic domains, which has found on the Stenocara beetle's back. Inspired by this phenomenon, we introduced a pristine superhydrophilic filter paper on the lower surface energy superhydrophobic filter paper. ZnSn(OH) 6 particles and polydimethylsiloxane were mixed to prepare the superhydrophobic coating, and the coating was spray-coated on the poly(dialkyldimethylammonium chloride) covered filter paper to separate the span 80 stabilized water-in-isooctane emulsion. A pristine filter paper was added on the superhydrophobic filter paper to fabricate another membrane for separation. The results revealed that with a pristine filter paper, the membrane performed higher efficiency and more recyclability, and it could separate the emulsions with higher surfactant concentrations. The stabilized water droplets passed the superamphiphilic surface, and hindered by the superhydrophobic surface, generating a surface energy gradient for better separation. In addition, the superhydrophobic membrane could be protected from fire to some degree due to the introduced ZnSn(OH) 6 particles with excellent flame retardancy. This easy and efficient approach via simply bringing in pristine superhydrophilic membrane has great potential applications for water-in-oil emulsion separation or oil purification. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  11. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  12. Low energy X-ray radiation impact on coated Si constructions

    International Nuclear Information System (INIS)

    Adliene, D.; Cibulskaite, I.; Meskinis, S.

    2010-01-01

    Low energy X-ray radiation impact on the coated Si structures is discussed in this paper. Experimental sandwich structures consisting of amorphous hydrogenated a:C-H or SiO x -containing DLC films were synthesized on Si wafers using direct ion deposition method and exposed to low energy (medical diagnostic range) X-ray photons. Irradiation of samples was performed continuously or in sequences and protective characteristics of the irradiated DLC films were investigated. Experimental data were used as the input data for Monte Carlo modelling of X-ray scattering effects in the coated silicon constructions, which affect significantly the 'signal to noise ratio' in DLC-coated Si structures proposed for their application in medical radiation detectors. Modelling results obtained in the case of DLC coatings were compared to the results of calculations performed for other commonly used combinations coating-detector material. The evaluation method of coated structures for their possible application in medical radiation detector constructions has been proposed in this paper. It is based on the best achieved compatibility between the appropriate mechanical characteristics, coating's resistance against the radiation damage and the lowest estimated scattering to total dose ratio in the coated radiation sensitive volume.

  13. Growth kinetics of boride coatings formed at the surface AISI M2 during dehydrated paste pack boriding

    Energy Technology Data Exchange (ETDEWEB)

    Doñu Ruiz, M.A., E-mail: mdonur0800@alumno.ipn.mx [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); López Perrusquia, N.; Sánchez Huerta, D. [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); Torres San Miguel, C.R.; Urriolagoitia Calderón, G.M. [Instituto Politécnico Nacional, SEPI-ESIME, Unidad Profesional Adolfo López Mateos Zacatenco, Edificio 5, 2do. Piso, Col. Lindavista, CP 07738 México, D.F. (Mexico); Cerillo Moreno, E.A. [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); Cortes Suarez, J.V. [Univerisdad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo 180 Azcapotzalco 02200, Área de Ciencia de los Materiales, México, D.F. (Mexico)

    2015-12-01

    The growth kinetics of the boride coatings (FeB and Fe{sub 2}B) at the surface of AISI M2 high speed steels were studied in this work. Boriding thermochemical treatment was carried out by dehydrated paste pack at three different temperatures 1173, 1223, and 1273 K and four exposure times 1, 3, 5, and 7 h, respectively. The presence of FeB and Fe{sub 2}B phases was identified by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction method. In order to obtain the boron diffusion coefficients at the FeB/Fe{sub 2}B boride coatings, a mathematical model based on the mass balance at the growing interfaces was proposed under certain assumptions. Likewise the parabolic growth constants and the boride incubation time were established as a function of the parameters η (T) and ε (T). The activation energy values estimated for the FeB and Fe{sub 2}B layers were 233.42 and 211.89 kJ mol{sup −1} respectively. A good agreement was obtained between the simulated values of boride layer thicknesses and the experimental results. Finally, empirical relationships of boride coating thickness as a function of boriding temperature and time are presented. - Highlights: • Formed boride coatings at the surface of AISI M2 high speed steels by new process dehydrated paste pack boriding. • The model was based on the mass balance equation at the FeB/Fe{sub 2}B and Fe{sub 2}B/Fe interfaces by considering the boride incubation time. • A good agreement was obtained between the simulated values of boride layers coatings and the experimental results.

  14. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  15. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  16. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  17. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Science.gov (United States)

    2010-07-01

    ... recreational boat surface coating operations? 63.5743 Section 63.5743 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5743 What standards must I meet for aluminum recreational boat surface coating operations? (a) For aluminum wipedown solvent...

  18. Damage resistance of AR-coated germanium surfaces for nanosecond CO2 laser pulses

    International Nuclear Information System (INIS)

    Newnam, B.E.; Gill, D.H.

    1977-01-01

    An evaluation of the state-of-the-art of AR coatings on gallium-doped germanium, used as a saturable absorber at 10.6 μm, has been conducted. Both 1-on-1 and N-on-1 laser damage thresholds were measured with 1.2 ns pulses on bare and coated surfaces. Only front surface damage was observed. With few exceptions, the thresholds for coated surfaces were centered at 0.49 +- 0.3 J/cm 2 . Bare Ge had a threshold ranging from 0.65 to 0.70 J/cm 2 . No significant differences due to substrate polish, crystallinity or doping level were evident and multiple-shot conditioning resulted in the same threshold as for single shot tests. From an analysis of standing-wave electric fields, damage for AR-coated Ge appeared to be limited by the surface properties of Ge. Measurements at both 1.2 and 70 ns indicated that the threshold (J/cm 2 ) of both coated and uncoated Ge increases as the square root of the pulse-width

  19. Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method

    Directory of Open Access Journals (Sweden)

    Gunell M

    2017-11-01

    Full Text Available Marianne Gunell,1,2 Janne Haapanen,3 Kofi J Brobbey,4 Jarkko J Saarinen,4 Martti Toivakka,4 Jyrki M Mäkelä,3 Pentti Huovinen,1 Erkki Eerola1,2 1Department of Medical Microbiology and Immunology, University of Turku, 2Department of Clinical Microbiology and Immunology, Microbiology and Genetics Service Area, Turku University Hospital, Turku, 3Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Tampere, 4Laboratory of Paper Coating and Converting, Center for Functional Materials, Åbo Akademi University, Turku, Finland Abstract: Bacterial infections, especially by antimicrobial resistant (AMR bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the “touch test” method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show

  20. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  1. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    Science.gov (United States)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  2. Facile Photoimmobilization of Proteins onto Low-Binding PEG-Coated Polymer Surfaces

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Mikkelsen, Morten Bo Lindholm; Larsen, Niels Bent

    2014-01-01

    was verified for both enzymes and antibodies, and their presence on the surface was confirmed by X-ray photoelectron spectroscopy (XPS) and confocal fluorescence microscopy. Conjugation of capture antibody onto the PEG coating was employed for a simplified ELISA protocol without the need for blocking uncoated...... surface areas, showing ng/mL sensitivity to a cytokine antigen target. Moreover, spatially patterned attachment of fluorescently labeled protein onto the low-binding PEG-coated surface was achieved with a projection lithography system that enabled the creation of micrometer-sized protein features....

  3. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    International Nuclear Information System (INIS)

    Ismail, R.; Tauviqirrahman, M.; Jamari; Schipper, D. J.

    2009-01-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  4. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  5. Wear of Shaped Surfaces of PVD Coated Dies for Clinching

    Directory of Open Access Journals (Sweden)

    Miroslav Džupon

    2017-11-01

    Full Text Available A clinching method that uses a simple toolset consisting of a punch and a die, is utilized for joining lightweight materials. This paper is aimed at investigating the wear of the die cavity of a clinching tool. A clinching tool with a specially shaped cavity was used for joining thin hot-dip galvanized steel sheets. Various types of physical vapour deposition (PVD coatings such as ZrN, CrN and TiCN were deposited on the shaped surface of the die using Lateral Rotating Arc-Cathodes technology. Hot-dip galvanized steel sheets were used for testing the clinching tool. The material properties of PVD coatings that were deposited on the shaped part of the clinching die were evaluated. Finite Element Analysis was used to localize the area of the shaped part of the die and the part of surface area of the cylindrical die cavity of ϕ 5.0 mm, in which high contact pressure values were predicted. The prediction of the start of the wear cycle was verified experimentally by the clinching of 300 samples of hot-dip galvanized steel sheets. Unlike the CrN and ZrN coatings, the TiCN coating remained intact on the entire surface of the die.

  6. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  7. Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

    International Nuclear Information System (INIS)

    Baek, Kwang Ki; Park, Chung Seo; Kim, Ki Hong; Chung, Mong Kyu; Park, Jin Hwan

    2006-01-01

    One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities

  8. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  9. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  10. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Directory of Open Access Journals (Sweden)

    Saibabu Madas

    2018-03-01

    Full Text Available In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler’s mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K, whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  11. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Science.gov (United States)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  12. Surface coatings on quartz grains in bentonites and their relevance to human health

    International Nuclear Information System (INIS)

    Wendlandt, Richard F.; Harrison, Wendy J.; Vaughan, David J.

    2007-01-01

    The cytotoxicity of quartz in the human lung is recognized to be dependent on both the inherent properties of the silica dust and external factors related to the history of the dust and including the presence of surface contamination. In this study, the physical and chemical surface properties of quartz grains in commercial bentonite deposits from the western (South Dakota) and southern (Alabama) USA were investigated. Measured quartz contents of bentonites range from 1.9 to 8.5 wt% with the <10 μm size fraction comprising 6-45% of this total. Trace element contents (Fe-Ti-Al) of quartz grains from any given bentonite are similar, indicating a single origin for the quartz with little if any contamination from other sources. Surface coatings are pervasive on all quartz grains and resist removal by repeated vigorous washings and reaction with HCl. Textural attributes and XPS and EDS analyses of these coatings are consistent with most being montmorillonite and, less frequently, mixtures of montmorillonite and opaline silica. Opaline silica (opal-A and opal-CT) occurs in two texturally distinct generations: an early massive grain-coating event and as later lepispheres. Montmorillonite coating thicknesses range from <1 μm to more than 10 μm thick. Surfaces of plagioclase, K-feldspar, and biotite grains are conspicuously devoid of montmorillonite coatings, but may show sparse distributions of opal-CT lepispheres. HRTEM has not confirmed a topotactic relationship or atomic structural concordance between montmorillonite coatings and underlying quartz grains. Alternatively, a precursor volcanic glass phase that coats the quartz surfaces during volcanic eruption and/or preferential early precipitation of opaline silica on quartz may provide substrates for development of montmorillonite coatings. Estimations of montmorillonite biodurability under pulmonary pH conditions suggest possible prolonged sequestration of respired bentonite quartz grains from contact with lung

  13. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-01-01

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  14. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  15. Proportion quantitative analysis and etching of {110} planes on tungsten single crystal coating surface

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Rende, E-mail: dallasbiam@163.com [Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Department 5, P.O. Box 81-5, Beijing 100095 (China); Tan, Chengwen; Yu, Xiaodong [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-05-05

    Tungsten single crystal and poly crystal were treated by electrolytic etching in a 3% by weight solution of NaOH in distilled water. The method for determining the proportion of {110} planes and characteristic morphology on the coating surface after electrolytic etching were investigated using EBSD and auto-focusing microscope. Then the optimization of process parameters for electrolytic etching is achieved. In order to compare the effect of process parameters, three process parameters were selected for the tungsten single crystal electrolytic etching. Through analyzing the change of {110} planes' proportion, we found that when the coatings are etched with 1.4 amp/cm{sup 2} and 3 min, {110} planes can be exposed in the greatest degree that can reach 61.4% on tubular surfaces. The proposed approach greatly improves the proportion of {110} planes relative to the original surface. - Highlights: • Tungsten single/poly crystals treated by electrolytic etching in solution of NaOH. • The {110} planes have the lower surface free energy than {112}. • Some {112} planes etched firstly, the {110} planes exposed at last during etching. • {110} planes exposed to the greatest extent with 1.4 amp/cm{sup 2} and 3 min.

  16. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...

  17. Failure modes observed on worn surfaces of W-C-Co sputtered coatings

    International Nuclear Information System (INIS)

    Ramalho, A.; Cavaleiro, A.; Miranda, A.S.; Vieira, M.T.

    1993-01-01

    During scratch testing, the indenter gives rise to a distribution of stresses similar to that observed in tribocontacts. In this work, r.f.-sputtered W-C-Co coatings deposited from sintered WC + Co (6, 10 and 15 wt.% Co) at various substrate biases were scratched and tested tribologically and the morphology of the damaged surfaces was analysed. The cobalt content of the coatings is the main factor determining their tribological characteristics. The failure modes observed on the worn pin-on-disc tested surfaces are explained and compared with those obtained by scratch testing. In spite of it not being possible to establish quantitative results for the wear resistance of W-C-Co coatings from scratch testing, an estimation can be performed based on the observation of the failure modes in the scratch track. Thus scratch testing can be used to predict the tribological behaviour of coated surfaces. This possibility can reduce the number and cost of tribological tests. (orig.)

  18. Surface coating of graphite pebbles for Korean HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  19. Surface coating of graphite pebbles for Korean HCCR TBM

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  20. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  1. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    International Nuclear Information System (INIS)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g silica . Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10 2 and 10 4 cfu/mL.

  2. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  3. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  4. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Carbucicchio, M.; Palombarini, G.; Sambogna, G.

    1992-01-01

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe 2 B, while the polyphase coatings were constituted by an inner Fe 2 B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  5. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Wei Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)], E-mail: qfwei@jiangnan.edu.cn; Zhang Liwei; Cai Yibing; Jiang Shudong [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2008-08-15

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  6. Quenching of the surface-state-related photoluminescence in Ni-coated ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Jiying; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2010-11-01

    Nickel-coated ZnO nanowires (NWs) were fabricated by electrodepositing Ni particles on ZnO NW arrays. The morphological, magnetic, and photoluminescent properties of the Ni-coated ZnO NWs were investigated. The Ni particles were deposited on the ZnO NWs' surface along its length to form a Ni/ZnO shell-core structure. The Ni-coated ZnO NWs exhibited more isotropic characteristic than the electrodeposited Ni films owing to the isotropic sphere structure of the Ni particles. A strong ultraviolet emission can be obtained from the Ni-coated ZnO NWs, while the green emission related to surface states was quenched by the passivated layer.

  7. Quenching of the surface-state-related photoluminescence in Ni-coated ZnO nanowires

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Zhang Jiying; Shen Dezhen

    2010-01-01

    Nickel-coated ZnO nanowires (NWs) were fabricated by electrodepositing Ni particles on ZnO NW arrays. The morphological, magnetic, and photoluminescent properties of the Ni-coated ZnO NWs were investigated. The Ni particles were deposited on the ZnO NWs' surface along its length to form a Ni/ZnO shell-core structure. The Ni-coated ZnO NWs exhibited more isotropic characteristic than the electrodeposited Ni films owing to the isotropic sphere structure of the Ni particles. A strong ultraviolet emission can be obtained from the Ni-coated ZnO NWs, while the green emission related to surface states was quenched by the passivated layer.

  8. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  9. Standing Wave Field Distribution in Graded-Index Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Hongxiang Deng

    2018-01-01

    Full Text Available Standing wave field distributions in three classic types of graded-index antireflection coatings are studied. These graded-index antireflection coatings are designed at wavelengths from 200 nm to 1200 nm, which is the working wavelength range of high energy laser system for inertial-fusion research. The standing wave field distributions in these coatings are obtained by the numerical calculation of electromagnetic wave equation. We find that standing wave field distributions in these three graded-index anti-reflection coatings are quite different. For the coating with linear index distribution, intensity of standing wave field decreases periodically from surface to substrate with narrow oscillation range and the period is proportional to the incident wavelength. For the coating with exponential index distribution, intensity of standing wave field decreases periodically from surface to substrate with large oscillation range and the period is also proportional to the incident wavelength. Finally, for the coating with polynomial index, intensity of standing wave field is quickly falling down from surface to substrate without an obvious oscillation. We find that the intensity of standing wave field in the interface between coating and substrate for linear index, exponential index and polynomial index are about 0.7, 0.9 and 0.7, respectively. Our results indicate that the distributions of standing wave field in linear index coating and polynomial index coating are better than that in exponential index coating for the application in high energy laser system. Moreover, we find that the transmittance of linear index coating and polynomial index coating are also better than exponential index coating at the designed wavelength range. Present simulation results are useful for the design and application of graded-index antireflection coating in high energy laser system.

  10. Cellulose acetate propionate coated titanium: characterization and biotechnological application

    Directory of Open Access Journals (Sweden)

    Guilherme da Silva Gomes

    2007-12-01

    Full Text Available Surfaces of pure titanium and Ti coated with cellulose acetate propionate (CAP have been characterized by means of scanning electron microscopy X ray coupled with elemental microanalysis (SEM-EDS, ellipsometry, atomic force microscopy (AFM and contact angle measurements. Coating Ti surfaces with CAP ultrathin films reduced original surface roughness. Surface energy and wettability of CAP covered Ti surfaces pure Ti surfaces were similar. The adsorption of lysozyme (LYZ, an antibacterial protein, onto Ti and CAP-coated Ti surfaces has been studied by means of ellipsometry and atomic force microscopy (AFM. The adsorption of LYZ was mainly driven by hydrophobic interaction between protein hydrophobic residues and CAP propyl groups. Pure Ti and CAP coated Ti surfaces presented no cytotoxicity effect and proved to be adequate substrates for cell adhesion. The biocompatibility of CAP coated Ti surfaces was attributed to the surface enrichment in glucopyranosyl residues and short alkyl side groups.

  11. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-01-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives

  12. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  13. Surface chemical analysis and ab initio investigations of CsI coated C fiber cathodes for high power microwave sources

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.

    2010-02-01

    CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.

  14. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  15. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  16. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Moon, Byung-Hak; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H 3 PO 4 + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition. • The

  17. Anti-sticking behavior of DLC-coated silicon micro-molds

    International Nuclear Information System (INIS)

    Saha, B; Tor, S B; Liu, E; Khun, N W; Hardt, D E; Chun, J H

    2009-01-01

    Pure carbon- (C), nitrogen- (N) and titanium- (Ti) doped diamond-like carbon (DLC) coatings were deposited on silicon (Si) micro-molds by dc magnetron sputtering deposition to improve the tribological performance of the micro-molds. The coated and uncoated Si molds were used in injection molding for the fabrication of secondary metal-molds, which were used for the replication of micro-fluidic devices. The bonding structure, surface roughness, surface energy, critical load and friction coefficient of the DLC coatings were characterized with micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle, microscratch and ball-on-disc sliding wear tests, respectively. It was observed that the doping conditions had significant effects on Raman peak positions, mechanical and tribological properties of the coatings. The G peak shifted toward a lower position with N and Ti doping. The DLC coating deposited with 1 sccm N 2 flow rate showed the lowest G peak position and the smoothest surface. The surface energies of the pure carbon and Ti-doped DLC coatings were lower than that of the N-doped DLC, which was more significant at a higher N 2 flow rate. In terms of adhesion and friction coefficient, it was observed that the Ti-doped DLC coating had the best performance. Ti incorporated in the DLC coating decreased the residual stress of the coating, which improved the adhesive strength of the coating with the Si substrate

  18. Hydrophobizing coatings for cultural heritage. A detailed study of resin/stone surface interaction

    Science.gov (United States)

    Fermo, P.; Cappelletti, G.; Cozzi, N.; Padeletti, G.; Kaciulis, S.; Brucale, M.; Merlini, M.

    2014-07-01

    Conservation of historical buildings is an important issue and the environmental conditions seriously affect the monument's stones. The protection of cultural heritage buildings and monuments by surface treatment with polymers is a common practice due to their ability to form a protective layer on the monument's surface as well as to control the transport of different fluids from the surface to the monument's interior. In this work, three different substrates were used: Carrara marble, Botticino limestone, and Angera stone. A commercially available Si-based resin (Alpha®SI30) was used as protective agent to improve the hydrophobicity features of the different tested materials. The surface properties of the coating and the relative interaction with the adopted stones were studied using different techniques such as contact angle measurements, electron microscope coupled with an energy dispersive spectrometer, X-ray photoelectron spectroscopy, atomic force microscopy, and attenuated total reflection infrared spectroscopy.

  19. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    Science.gov (United States)

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  20. INFLUENCE OF REPAINTING ON THE MECHANICAL PROPERTIES, SURFACE TOPOGRAPHY AND MICROSTRUCTURE OF POLYESTER POWDER COATINGS

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2017-06-01

    This study examined three different electrostatic spray epoxy coatings with matt, silk gloss and fine structure-matt finish. Test panels were prepared as single- and double-layer paint coatings on the aluminum alloy 6060 substrate. Hence, six test sets of coatings were deposited. Each set contained six samples. The microstructure of the cross section of coating was investigated by scanning electron microscopy (SEM and light optical microscopy (metallographic and stereoscopy microscope. The chemical composition of coating was analyzed by the SEM-EDS method. The 2D surface roughness of single- and double-layer coatings and 3D surface topography maps were examined using a profile measurement gauge. The mechanical properties of coatings were measured by cupping, bending, impact, adhesion to substrate tests run according to standard procedures. As a result, the influence of repainting of polyester powder coatings on their properties was determined. The results demonstrate that repainting has no effect on the microstructure and coating adhesion to substrate as well as the bending test results and roughness of matt and silk gloss coatings. It has been found that repainting affects the results of impact and cupping tests as well as the roughness of samples with fine structure surface finish.

  1. Structure and Construction Assessment of the Surface Layer of Hardfaced Coating after Friction

    Directory of Open Access Journals (Sweden)

    Krzysztof Dziedzic

    2017-09-01

    Full Text Available The paper presents an analysis of the surface layer of Fe-Mn-C-B-Si-Ni-Cr alloy coating after friction with C45 steel. The coatings were obtained by arc welding (GMA. Flux-cored wires were used as a welding material. The flux-cored wires had a diameter of 2,4 mm. The tribological assessment was performed with the Amsler tribotester under dry friction conditions at unit pressures 10 MPa. The use of XPS spectroscopy allowed deep profile analysis of the surface layer. Based on the obtained results developed model of the surface layer for friction couple, hardfaced coating obtained from Fe-Mn-C-B-Si-Ni-Cr alloy – C45 steel. It was observed that the operational surface layer (OSL of hardfaced coatings contained oxides (B2O3, SiO2, NiO, Cr2O3, FeO, Fe3O4, Fe2O3, carbides (Fe3C, Cr7C3 and borides (FeB, Fe2B.

  2. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    Science.gov (United States)

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Insertion torques influenced by bone density and surface roughness of HA–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, T.; Chen, Y.; Nie, X., E-mail: xnie@uwindsor.ca

    2013-12-31

    Bio-ceramic TiO{sub 2} coatings containing calcium (Ca) and phosphorous (P) were deposited onto Ti–6Al–4V alloy screws using plasma electrolytic oxidation (PEO) processes in an alkaline electrolyte with hydroxyapatite (HA) suspension. Coating on each screw had different surface roughness and morphology. Insertion torque (IT) of the coated screws in low (10 pcf, pounds per cubic feet), medium–high (20 pcf), and high (40 pcf) density of artificial bones was measured in comparison with that of the uncoated and sandblasted screws having similar surface roughness. Higher insertion torques and final seating torques were obtained in the coated screws which may result in less micro-movement during the primary implantation stage and thus lower the risk of implant failure. Scanning electron microscopy (SEM) analysis indicated that all coatings still adhesively remained on the screw surfaces after inserted into the bones with different densities. The relationship between coefficient of friction and surface roughness was also addressed to better understand the results of insertion torque. It was found that a lower density bone (similar to aged bone) would need a surface-rougher coated screw to achieve a high torque while a high density bone can have a wide range of selections for surface roughness of the screw. - Highlights: • The insertion torque of PEO-coated screws is higher than machined and sandblasting implants. • Lower density bone needs a rougher coated implant to increase the insertion torque. • The composite HA–TiO{sub 2} coating could benefit dental implants in both primary and secondary stability stages.

  4. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  5. The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery

    Science.gov (United States)

    Xu, XiaoLong; Qi, CongYu; Hao, ZhenDong; Wang, Hao; Jiu, JinTing; Liu, JingBing; Yan, Hui; Suganuma, Katsuaki

    2018-03-01

    The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.[Figure not available: see fulltext.

  6. Tribological Behavior of Coating Cr Layer on 40Cr after Surface Electron Beam Pretreatment

    Science.gov (United States)

    Hu, J. J.; Wang, J.; Jiang, P.; Xu, H. B.; Li, H.; Hou, T. F.

    2017-12-01

    In this study,the friction and wear behavior of PVD coatings which were treated by 5 different processes,based on gear material-40Cr. Analyzing the effects of treating the gear material with electron beam in combination with magnetron sputtering on it,for dry friction and wear properties.The result showed that the electron beam pretreated substrate was useful to improve the tribological performance of coating material.Furthermore, the surface roughness of coating, the bonding force between substrate and coating as well as the load are the main factors affecting the tribological performance of this coating. Most importantly, the contribution of plowing effect on friction coefficient should be considered when the surface roughness is high.

  7. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  8. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  9. A novel coating strategy towards improving interfacial adhesion strength of Cu–Sn alloy coated steel with vulcanized rubber

    International Nuclear Information System (INIS)

    Banerjee, Atanu; Dutta, Monojit; Bysakh, Sandip; Bhowmick, Anil K.; Laha, Tapas

    2014-01-01

    Highlights: • We propose a double layer Cu–Sn alloy coating strategy on steel to improve adhesion. • Uniform coating with adequate penetration inside micro-roughness was observed. • XPS and GDOES study revealed improved substrate surface coverage by coating. • TEM investigation confirmed compact, uniform and micro-porosity free interface. • Peel test with vulcanized rubber confirmed improved adhesion with cohesive fracture. - Abstract: A comparative assessment in terms of uniformity, coating coverage and coating deposition mechanism has been carried out for two different types of Cu–Sn coatings on steel substrate with varying Sn composition (2–6.5 wt%) deposited via immersion technique, viz. (i) single layer Cu–Sn coating and (ii) double layer coating consisting of a thin Cu strike layer followed by a Cu–Sn layer. Coating morphology, surface coverage, coating-substrate interface, and coating composition at surface and along the depth were studied using laser confocal microscope (OLS), scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (TEM). Quantitative depth profiling using GDOES and surface compositional analysis via XPS suggested improvement in surface coverage in the case of double layer coatings. SEM-EDS and TEM analysis confirmed that the coating deposition was more uniform with sufficient coating penetration inside the deep roughness troughs resulting in compact and micro-porosity free interface for this type of coatings. Better adhesion strength with less variation in peel force and cohesive mode of fracture within the rubber was observed for the double layer coated samples during the peel test carried out on coated steel samples vulcanized with rubber. On the other hand, the single layer coated samples showed large variation in peel force with adhesive

  10. A novel coating strategy towards improving interfacial adhesion strength of Cu–Sn alloy coated steel with vulcanized rubber

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Atanu [Tata Steel, Jamshedpur 831001 (India); Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Dutta, Monojit [Tata Steel, Jamshedpur 831001 (India); Bysakh, Sandip [Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bhowmick, Anil K. [Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302 (India); Laha, Tapas, E-mail: laha@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-09-15

    Highlights: • We propose a double layer Cu–Sn alloy coating strategy on steel to improve adhesion. • Uniform coating with adequate penetration inside micro-roughness was observed. • XPS and GDOES study revealed improved substrate surface coverage by coating. • TEM investigation confirmed compact, uniform and micro-porosity free interface. • Peel test with vulcanized rubber confirmed improved adhesion with cohesive fracture. - Abstract: A comparative assessment in terms of uniformity, coating coverage and coating deposition mechanism has been carried out for two different types of Cu–Sn coatings on steel substrate with varying Sn composition (2–6.5 wt%) deposited via immersion technique, viz. (i) single layer Cu–Sn coating and (ii) double layer coating consisting of a thin Cu strike layer followed by a Cu–Sn layer. Coating morphology, surface coverage, coating-substrate interface, and coating composition at surface and along the depth were studied using laser confocal microscope (OLS), scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (TEM). Quantitative depth profiling using GDOES and surface compositional analysis via XPS suggested improvement in surface coverage in the case of double layer coatings. SEM-EDS and TEM analysis confirmed that the coating deposition was more uniform with sufficient coating penetration inside the deep roughness troughs resulting in compact and micro-porosity free interface for this type of coatings. Better adhesion strength with less variation in peel force and cohesive mode of fracture within the rubber was observed for the double layer coated samples during the peel test carried out on coated steel samples vulcanized with rubber. On the other hand, the single layer coated samples showed large variation in peel force with adhesive

  11. Antimicrobial peptide coatings for hydroxyapatite:Electrostatic and covalent attachment of antimicrobial peptides to surfaces

    OpenAIRE

    Townsend, Leigh; Williams, Richard L.; Anuforom, Olachi; Berwick, Matthew R.; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann

    2017-01-01

    The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allowcell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists ofAMPs c...

  12. Application of composite protective coatings on the surface of sausages with different water content

    OpenAIRE

    Andrzej Tyburcy; Patrycja Wasiak; Aneta Cegiełka

    2010-01-01

    Background. Emulsion coatings on the surface of sausages counteract weight loss during storage. Therefore they could be applied instead of synthetic foils, which are used for vacuum packaging. The aim of this study was the assessment of the properties of two emulsion coatings (with different carrageenan content) applied on the surface of two Polish sausages with various water content (kabanosy and frankfurterki). Material and methods. Sausages were coated with emulsions containing gelati...

  13. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings

    DEFF Research Database (Denmark)

    Noguer, A. Camós; Latipov, R.; Madsen, F. B.

    2018-01-01

    the distribution and release of these block copolymers from PDMS-based coatings has been previously reported. However, the distribution and behaviour of these compounds in the bulk of the PDMS coating are not fully understood. A novel fluorescent-labelled triblock PEG-b-PDMS-b-PEG copolymer was synthesized...... results in non-specific protein adsorption and wettability issues. Poly(ethylene glycol)-based surface-active block copolymers and surfactants have been added to PDMS coatings and films to impart biofouling resistance and hydrophilicity to the PDMS surface with successful results. Information regarding...

  14. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  15. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    International Nuclear Information System (INIS)

    Yasakau, K.A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M.G.S.; Zheludkevich, M.L.

    2016-01-01

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn_2 phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N_2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N_2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  16. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...

  17. On Degradation of Cast Iron Surface-Protective Paint Coat Joint

    Directory of Open Access Journals (Sweden)

    Tupaj M.

    2016-09-01

    Full Text Available The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells

  18. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    International Nuclear Information System (INIS)

    Lamont-Friedrich, Stephanie J; Michl, Thomas D; Giles, Carla; Griesser, Hans J; Coad, Bryan R

    2016-01-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata . Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others. (paper)

  19. Effects of surface coatings on the light collection in plastic scintillators used for radioxenon detection

    International Nuclear Information System (INIS)

    Bläckberg, L; Klintenberg, M; Sjöstrand, H; Ringbom, A

    2012-01-01

    Atomic layer deposition coatings are under investigation to reduce the diffusion of radioxenon into plastic scintillators. This paper investigates the impact of such surface coating on the light collection efficiency in a cylindrical geometry. A high and uniform light collection efficiency is important to preserve detector resolution. Monte Carlo simulations and measurements have been carried out to study the influence of coating thickness, refractive index and surface quality. It was found that it is important to achieve a smooth coating and good optical match between the refractive indices of the coating and the plastic scintillator. Taking into account these considerations, the detector under study could be coated without a significant degradation of its resolution.

  20. [Formation of microbial populations on the surface of protective coatings].

    Science.gov (United States)

    Kopteva, Zh P; Zanina, V V; Piliashenko-Novokhatnyĭ, A I; Kopteva, A E; Kozlova, I A

    2001-01-01

    Formation of microbial cenosis on the surface of polyethylene-, polyurethane- and oil-bitumen-based protective coatings was studied in dynamics during 1, 3, 7, 14 and 21 days. It has been shown that the biofilm was formed on the protective materials during 14 days and consisted of ammonifying, denitrifying, hydrocarbon-oxidizing and sulphate-reducing bacteria referred to Pseudomonas, Arthrobacter, Bacillus and Kesulfovibrio genera. The bacteria which form the biofilm on coatings possess high denitrifying and sulphate-reducing activities. Corrosion inhibitors-biocydes, introduced in composition of oil-bitumen coatings suppressed growth and metabolic activity of corrosion-active bacteria.

  1. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  2. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  3. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  4. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  5. Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yin Bo [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Fang Liang, E-mail: fangliangcqu@yahoo.com.cn [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 (China); Tang Anqiong; Huang Qiuliu; Hu Jia; Mao Jianhui [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Bai, Ge; Bai, Huan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 (China)

    2011-10-15

    A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 {+-} 1.2 deg., and the sliding angle was 5 deg. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.

  6. New configuration for efficient and durable copper coating on the outer surface of a tube

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad

    2017-03-01

    Full Text Available A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube is challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC has developed a novel configuration called hollow external cathode CED (HEC-CED to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. The Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.

  7. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    Science.gov (United States)

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  9. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  10. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yasakau, K.A., E-mail: kyasakau@ua.pt [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Giner, I. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Vree, C. [Salzgitter Mannesmann Forschung, GmbH Division Surface Technology, Eisenhüttenstrasse 99, 38239 Salzgitter (Germany); Ozcan, O.; Grothe, R. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Oliveira, A. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Grundmeier, G. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Ferreira, M.G.S. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Zheludkevich, M.L. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Corrosion and Surface Technology, Institute of Materials Research Helmholtz-Zentrum Geesthacht, Max-Planck Str. 1, 21502 Geesthacht (Germany)

    2016-12-15

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn{sub 2} phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N{sub 2}) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N{sub 2} contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  11. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Science.gov (United States)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  12. Surface coatings of unsaturated polyester resin Kamper wood (Dry obalan ops spp.) by using UV radiation

    International Nuclear Information System (INIS)

    Sugiarto Danu; Yusuf Sudo Hadi; Novi Eka Putri

    1999-01-01

    Kamper wood (Dryobalanops spp.) has high contribution in wood working industry and most of them need surface coating process. Radiation curing of surface coating, especially the use of ultra-violet (UV) light have potential to give contribution in the wood finishing. The experiment on surface coating of kamper wood has been conducted by using UV-radiation. Unsaturated polyester resin with the commercial name of Yucalac type 157 was used as coating materials after being added with styrene monomer, some fillers and radical photoinitiator of 2-hydroxy-2-2-methyl-l- phenyl propanone. Four photoinitiator concentration levels of 1.5 ; 2 ; 2.5 and 3 % by weight of resin were used. The coating materials were coated onto the wood panel samples by using high pressure sprayer. The wood samples were then exposed to irradiation by using 80 Watts/cm UV-source with variable conveyor speed of 3 ; 4 ; 5 and 5.8 m/min. Formulation of coating materials, pendulum hardness, adhesion, and gloss of cured films were evaluated

  13. Ion surface collisions on surfaces relevant for fusion devices

    International Nuclear Information System (INIS)

    Rasul, B.; Endstrasser, N.; Zappa, F.; Grill, V.; Scheier, P.; Mark, T.

    2006-01-01

    Full text: One of the great challenges of fusion research is the compatibility of reactor grade plasmas with plasma facing materials coating the inner walls of a fusion reactor. The question of which surface coating should be used is of particular interest for the design of ITER. The impact of energetic plasma particles leads to sputtering of wall material into the plasma. A possible solution for the coating of plasma facing walls would be the use of special carbon surfaces. Investigations of these various surfaces have been started at BESTOF ion-surface collision apparatus. Experiment beam of singly charged molecular ions of hydrocarbon molecules, i.e. C 2 H + 4 , is generated in a Nier-type electron impact ionization source at an electron energy of about 70 eV. In the first double focusing mass spectrometer the ions are mass and energy analyzed and afterwards refocused onto a surface. The secondary reaction products are monitored using a Time Of Flight mass spectrometer. The secondary ion mass spectra are recorded as a function of the collision energy for different projectile ions and different surfaces. A comparison of these spectra show for example distinct changes in the survival probability of the same projectile ion C 2 H + 4 for different surfaces. (author)

  14. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  15. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-30

    Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  16. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  17. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    Science.gov (United States)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The

  18. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    Science.gov (United States)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-08-01

    Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  19. Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.

    Science.gov (United States)

    Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen

    2014-10-01

    The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Directory of Open Access Journals (Sweden)

    Xiaohua Yu

    2013-01-01

    Full Text Available The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8 on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT and biomimetic calcium phosphate coated ATT (CaP. The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.

  1. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.

    Science.gov (United States)

    Hwang, Gi Byoung; Patir, Adnan; Page, Kristopher; Lu, Yao; Allan, Elaine; Parkin, Ivan P

    2017-06-08

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO 2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction.

  2. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  3. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  4. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  5. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  6. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  7. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M

    2018-06-04

    A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.

  8. Pipeline coating inspection in Mexico applying surface electromagnetic technology

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, O.; Mousatov, A.; Nakamura, E.; Villarreal, J.M. [Instituto Mexicano del Petroleo (IMP), Mexico City (Mexico); Shevnin, V. [Moscow State University (Russian Federation); Cano, B. [Petroleos Mexicanos (PEMEX), Mexico City (Mexico)

    2009-07-01

    The main problems in the pipeline systems in Mexico include: extremely aggressive soil characterized by a high clay content and low resistivity, interconnection between several pipes, including electrical contacts of active pipelines with out of service pipes, and short distances between pipes in comparison with their depths which reduce the resolution of coating inspection. The results presented in this work show the efficiency of the Surface Electromagnetic Pipeline Inspection (SEMPI) technology to determine the technical condition of pipelines in situations before mentioned. The SEMPI technology includes two stages: regional and detailed measurements. The regional stage consists of magnetic field measurements along the pipeline using large distances (10 - 100 m) between observation points to delimit zones with damaged coating. For quantitative assessing the leakage and coating resistances along pipeline, additional measurements of voltage and soil resistivity measurements are performed. The second stage includes detailed measurements of the electric field on the pipe intervals with anomalous technical conditions identified in the regional stage. Based on the distribution of the coating electric resistance and the subsoil resistivity values, the delimitation of the zones with different grade of coating quality and soil aggressiveness are performed. (author)

  9. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-Solvents

    Science.gov (United States)

    Kumeeva, T. Yu.; Prorokova, N. P.

    2018-02-01

    The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  10. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces

    International Nuclear Information System (INIS)

    Wang, Haibin; Chen, Eryu; Jia, Xianbu; Liang, Lijun; Wang, Qi

    2015-01-01

    Graphical abstract: - Highlights: • The SiO 2 and PTFE NP-filled coatings exhibit excellent superhydrophobicity. • PTFE-filled coatings show denser structures and better liquid resistance than SiO 2 . • Air pocket of Wentzel model explains the difference in the superhydrophobicity. - Abstract: Superhydrophobicity is extensively investigated because of the numerous methods developed for water-repellant interface fabrication. Many suitable functional materials for the production of superhydrophobic surfaces on various substrates are still being explored. In this study, inorganic SiO 2 and organic polytetrafluoroethylene (PTFE) nanoparticles (NPs) are used for a comparative study on the performance of superhydrophobic coating on carbon steel surfaces. The NPs are added to PTFE coating emulsions by physical blending to form coating mixtures. Raw SiO 2 NPs are then hydrophobized using KH-570 and validated by Fourier transform-infrared spectroscopy (FT-IR) and Dynamic Laser Scattering (DLS) grain size analyses. The microstructures of the surfaces are characterized by contact angle (CA) measurements and field emission-scanning electron microscope (FE-SEM) images. The prepared surfaces are subjected to adhesion, hardness, water resistance, and acid/alkali erosion tests. Hydrophobized SiO 2 -filled coating surfaces are found to have better uniformity than raw SiO 2 regardless of their similar maximum static contact angles (SCAs) about 150°. A SCA of 163.1° is obtained on the PTFE NP-filled coating surfaces that have a considerably denser structure than SiO 2 . Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses reveal that all fabricated surfaces have good thermal stability and tolerate temperatures up to 550 °C. The PTFE NP-filled coating surfaces also exhibit excellent water and acid resistance. A possible mechanism concerning the amount of trapped air is proposed in relation to practical superhydrophobic surface fabrication

  11. Dynamics of Gradient Bioceramic Composite Coating on Surface of Titanium Alloy by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-bin; ZOU Long-jiang; ZHU Wei-dong; LI Hai-tao; DONG Chuang

    2004-01-01

    The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding. The dynamics of gradient bioceramic composite coating containing hydroxyapatite (HA) prepared with mixture of CaHPO4*2H2O and CaCO3 under the condition of wide-band laser was studied theoretically. The corresponding mathematical model and its numerical solution were presented. The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters. The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction. The experimental results showed that the bioceramic coating is composed of HA, β-TCP, CaO, CaTiO3 and TiO2. The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure, which helps osteoblast grow into bioceramic and improves the biocompatibility.

  12. Quantification of bacteria on abiotic surfaces by laser scanning cytometry: An automated approach to screen the antifouling properties of new surface coatings

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Poulsen, Morten; Søhoel, Helmer

    2012-01-01

    Bacterial biofilms are a persistent source of contamination, and much effort invested in developing antifouling surfaces or coatings. A bottle-neck in developing such coatings is often the time-consuming task of screening and evaluating a large number of surface materials. An automated high...

  13. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    Science.gov (United States)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  14. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    Science.gov (United States)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  16. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    International Nuclear Information System (INIS)

    Lin, Naiming; Guo, Junwen; Xie, Faqin; Zou, Jiaojuan; Tian, Wei; Yao, Xiaofei; Zhang, Hongyan; Tang, Bin

    2014-01-01

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance

  17. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  18. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Durable Superomniphobic Surface on Cotton Fabrics via Coating of Silicone Rubber and Fluoropolymers

    Directory of Open Access Journals (Sweden)

    Arsheen Moiz

    2018-03-01

    Full Text Available Performance textiles that protect human from different threats and dangers from environment are in high demand, and the advancement in functionalization technology together with employing advanced materials have made this an area of research focus. In this work, silicone rubber and environmentally friendly fluoropolymers have been employed to explore superomniphobic surface on cotton fabrics without compromising comfort much. It has been found that a cross-linked network between the rubber membrane and the fluoropolymers has been formed. The surface appearance, morphology, handle, thickness and chemical components of the surface of cotton fabrics have been changed. The coated fabrics showed resistance to water, aqueous liquid, oil, chemicals and soil. The comfort of the coated fabrics is different to uncoated cotton fabrics due to the existence of coated layers on the surface of cotton fabrics. This work would benefit the development and design of the next generation of performance textiles with balanced performance and comfort.

  20. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  1. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  2. Study of the Effect of Molten Copper Chloride Immersion Test on Alloys with High Nickel Content with and without Surface Coatings

    Science.gov (United States)

    Siantar, Edwin

    The demand for hydrogen as a clean energy carrier has increased greatly. The Cu-Cl cycle is a promising thermochemical cycle that is currently being developed to be the large-scale method of hydrogen production. The lifetime of materials for the pipes transporting molten CuCl is an important parameter for an economic design of a commercial thermochemical Cu-Cl hydrogen plant. This research is an examination of candidate materials following an immersion test in molten CuCl at 500 °C for 100 h. Two alloys, Ni based super-alloy (Inconel 625) and super austenitic stainless steel (AL6XN) were selected as the base metal. There were two types of coating applied to improve the corrosion resistance of the base metals during molten CuCl exposure. A metallic of Diamalloy 4006 and two ceramic of yttria stabilized zirconia and alumina coatings were applied to the base metal using thermal spray methods. An immersion apparatus was designed and constructed to perform an immersion test that has a condition similar to those in a hydrogen plant. After the immersion test, the materials were evaluated using an electrochemical method in combination with ex-situ surface analysis. The surface condition including elemental composition, film structure and resistivity of the materials were examined and compared. The majority of the coatings were damaged and fell off. Cracks were found in the original coated specimens indicating the sample geometry may have affected the integrity of the sprayed coating. When the coating cracked, it provided a pathway for the molten CuCl to go under the coating and react with the surface underneath the coating. Copper deposits and iron chloride that were found on the sample surfaces suggest that there were corrosion reactions that involved the metal dissolution and reduction of copper during immersion test. The results also suggest that Inconel 625 performed better than stainless steel AL6XN. Both Diamalloy 4006 and YSZ (ZrO2 18TiO2 10Y2O3) coatings seemed to

  3. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    Science.gov (United States)

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  4. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  5. Combinatorial materials research applied to the development of new surface coatings XIII: an investigation of polysiloxane antimicrobial coatings containing tethered quaternary ammonium salt groups.

    Science.gov (United States)

    Majumdar, Partha; Lee, Elizabeth; Gubbins, Nathan; Christianson, David A; Stafslien, Shane J; Daniels, Justin; Vanderwal, Lyndsi; Bahr, James; Chisholm, Bret J

    2009-01-01

    High-throughput biological assays were used to develop structure - antimicrobial relationships for polysiloxane coatings containing chemically bound (tethered) quaternary ammonium salt (QAS) moieties. The QAS-functional polysiloxanes were derived from solution blends of a silanol-terminated polydimethylsiloxane, a trimethoxysilane-functional QAS (QAS-TMS), and methylacetoxysilane. Since the QAS moieties provide antimicrobial activity through interaction with the microorganism cell wall, most of the compositional variables that were investigated were associated with the chemical structure of the QAS-TMS. Twenty different QAS-TMS were synthesized for the study and the antimicrobial activity of sixty unique polysiloxane coatings derived from these QAS-TMS determined toward Escherichia coli , Staphylococcus aureus , and Candida albicans . The results of the study showed that essentially all of the compositional variables significantly influenced antimicrobial activity. Surface characterization of these moisture-cured coatings using atomic force microscopy as well as water contact angle and water contact angle hysteresis measurements indicated that the compositional variables significantly affected coating surface morphology and surface chemistry. Overall, compositional variables that produced heterogeneous surface morphologies provided the highest antimicrobial activity suggesting that the antimicrobial activity was primarily derived from the relationship between coating chemical composition and self-assembly of QAS moieties at the coating/air interface. Using data modeling software, a narrow region of the compositional space was identified that provided broad-spectrum antimicrobial activity.

  6. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  7. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    International Nuclear Information System (INIS)

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B.

    2015-01-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants

  8. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  9. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    Science.gov (United States)

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  10. Reflective coatings for interior and exterior of buildings and improving thermal performance

    International Nuclear Information System (INIS)

    Joudi, Ali; Svedung, Harald; Cehlin, Mathias; Rönnelid, Mats

    2013-01-01

    Highlights: ► Increase building energy efficiency by optimizing surface optical properties. ► Study different scenarios with both interior and exterior reflective coatings. ► Combined thermal effect of both interior and exterior reflective coatings. -- Abstract: The importance of reducing building energy usage and thriving for more energy efficient architectures, has nurtured creative solutions and smart choices of materials in the last few decades. Among those are optimizing surface optical properties for both interior and exterior claddings of the building. Development in the coil-coating steel industries has now made it possible to allocate correct optical properties for steel clad buildings with improved thermal performance. Although the importance of the exterior coating and solar gain are thoroughly studied in many literatures, the effect of interior cladding are less tackled, especially when considering a combination of both interior and exterior reflective coatings. This paper contemplates the thermal behavior of small cabins with reflective coatings on both interior and exterior cladding, under different conditions and climates with the aim to clarify and point out to the potential energy saving by smart choices of clad coatings.

  11. Product surface hardening in non-self-sustained glow discharge plasma before synthesis of superhard coatings

    International Nuclear Information System (INIS)

    Krasnov, P S; Metel, A S; Nay, H A

    2017-01-01

    Before the synthesis of superhard coating, the product surface is hardened by means of plasma nitriding, which prevents the surface deformations and the coating brittle rupture. The product heating by ions accelerated from plasma by applied to the product bias voltage leads to overheating and blunting of the product sharp edges. To prevent the blunting, it is proposed to heat the products with a broad beam of fast nitrogen molecules. The beam injection into a working vacuum chamber results in filling of the chamber with quite homogeneous plasma suitable for nitriding. Immersion in the plasma of the electrode and heightening of its potential up to 50–100 V initiate a non-self-sustained glow discharge between the electrode and the chamber. It enhances the plasma density by an order of magnitude and reduces its spatial nonuniformity down to 5–10%. When a cutting tool is isolated from the chamber, it is bombarded by plasma ions with an energy corresponding to its floating potential, which is lower than the sputtering threshold. Hence, the sharp edges are sputtered only by fast nitrogen molecules with the same rate as other parts of the tool surface. This leads to sharpening of the cutting tools instead of blunting. (paper)

  12. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  13. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    International Nuclear Information System (INIS)

    Wang, C.X.; Lv, J.C.; Ren, Y.; Zhi, T.; Chen, J.Y.; Zhou, Q.Q.; Lu, Z.Q.; Gao, D.W.; Jin, L.M.

    2015-01-01

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O 2 plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O 2 plasma treated and SWCNT coated PET fabric was better and worse than that of N 2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated

  14. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  15. Corrosion protection of PVD and paint coatings for selective solar absorber surfaces

    OpenAIRE

    Nunes, A.; Carvalho, M. J.; Diamantino, Teresa C.; Fernandes, J. C. S.

    2015-01-01

    The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) ...

  16. Fractal approach to surface roughness of TiO{sub 2}/WO{sub 3} coatings formed by plasma electrolytic oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Rožić, L.J., E-mail: ljrozic@nanosys.ihtmbg.ac.rs [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia); Petrović, S.; Radić, N. [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, Belgrade (Serbia); Vasilić, R. [Faculty of Environmental Governance and Corporate Responsibility, Educons University, Vojvode Putnika 87, Sremska Kamenica (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Grbić, B. [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia)

    2013-07-31

    In this study, we have shown that atomic force microscopy is a powerful technique to study the fractal parameters of TiO{sub 2}/WO{sub 3} coatings prepared by plasma electrolytic oxidation (PEO) process. Since the surface roughness of obtained oxide coatings affects their physical properties, an accurate description of roughness parameters is highly desirable. The surface roughness, described by root mean squared and arithmetic average values, is analyzed considering the scans of a series of atomic force micrographs. The results show that the oxide coatings exhibit lower surface roughness in initial stage of PEO process. Also, the surfaces of TiO{sub 2}/WO{sub 3} coatings exhibit fractal behavior. Positive correlation between the fractal dimension and surface roughness of the surfaces of TiO{sub 2}/WO{sub 3} coatings in initial stage of PEO process was found. - Highlights: • TiO{sub 2}/WO{sub 3} coatings were obtained by plasma electrolytic oxidation. • Oxide coatings exhibit lower surface roughness in initial stage of process. • The surfaces of TiO{sub 2}/WO{sub 3} coatings exhibit fractal behavior.

  17. Effect of Amelogenin Coating of a Nano-Modified Titanium Surface on Bioactivity

    Directory of Open Access Journals (Sweden)

    Chisato Terada

    2018-04-01

    Full Text Available The interactions between implants and host tissues depend on several factors. In particular, a growing body of evidence has demonstrated that the surface texture of an implant influences the response of the surrounding cells. The purpose of this study is to develop new implant materials aiming at the regeneration of periodontal tissues as well as hard tissues by coating nano-modified titanium with amelogenin, which is one of the main proteins contained in Emdogain®. We confirmed by quartz crystal microbalance evaluation that amelogenin is easy to adsorb onto the nano-modified titanium surface as a coating. Scanning electron microscopy, scanning probe microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses confirmed that amelogenin coated the nano-modified titanium surface following alkali-treatment. In vitro evaluation using rat bone marrow and periodontal ligament cells revealed that the initial adhesion of both cell types and the induction of hard tissue differentiation such as cementum were improved by amelogenin coating. Additionally, the formation of new bone in implanted surrounding tissues was observed in in vivo evaluation using rat femurs. Together, these results suggest that this material may serve as a new implant material with the potential to play a major role in the advancement of clinical dentistry.

  18. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  19. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  20. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-01-01

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm"−"1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  1. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bramowicz, Miroslaw [University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn (Poland); Braic, Laurentiu [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania); Azem, Funda Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Kulesza, Slawomir [University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Sloneczna 54, 10-710 Olsztyn (Poland); Birlik, Isil [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Vladescu, Alina, E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania)

    2016-08-30

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm{sup −1}, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  2. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yi; Jiang Tao; Zhou Yi; Zhang Zhen; Wang Zhejun [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tong Hua; Shen Xinyu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Wang Yining, E-mail: wang.yn@whu.edu.cn [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2011-07-20

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: {yields} Calcium carbonate coatings were prepared on titanium substrates. {yields} The coating process is simple and cost-effective. {yields} Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. {yields} Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  3. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    International Nuclear Information System (INIS)

    Zhang Baosen; Xu Yi; Gao Fei; Shi Peijing; Xu Binshi; Wu Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  4. Investigation of Thermostressed State of Coating Formation at Electric Contact Surfacing of “Shaft” Type Parts

    Directory of Open Access Journals (Sweden)

    Olena V. Berezshnaya

    2016-01-01

    Full Text Available The forming of coating at electric contact surfacing is considered. The mathematical model of the coating formation is developed. The method of numerical recurrent solution of the finite-difference form of static equilibrium conditions of the selected elementary volume of coating is used. This model considers distribution of thermal properties and geometric parameters along the thermal deformation zone during the process of electric contact surfacing by compact material. It is found that the change of value of speed asymmetry factor leads to increasing of the friction coefficient in zone of surfacing. This provides the forming of the coating of higher quality. The limitation of the technological capabilities of equipment for electric contact surfacing is related to the size of recoverable parts and application of high electromechanical powers. The regulation of the speed asymmetry factor allows for expanding the technological capabilities of equipment for electric contact surfacing. The nomograms for determination of the stress on the roller electrode and the finite thickness of the coating as the function of the initial thickness of the compact material and the deformation degree are shown.

  5. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  6. Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating

    Directory of Open Access Journals (Sweden)

    Kyong-Min Lee

    2017-11-01

    Full Text Available Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.

  7. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  8. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    Science.gov (United States)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  9. Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts

    Science.gov (United States)

    Haidiezul, AHM; Aiman, AF; Bakar, B.

    2018-03-01

    One of three-dimensional (3-D) printing economical processes is by using Fused Deposition Modelling (FDM). The 3-D printed object was built using layer-by-layer approach which caused “stair stepping” effects. This situation leads to uneven surface finish which mostly affect the objects appearance for product designers in presenting their models or prototypes. The objective of this paper is to examine the surface finish effects from the application of XTC-3D coating developed by Smooth-On, USA on the 3D printed parts. From the experimental works, this study shows the application of XTC-3D coating to the 3-D printed parts has improve the surface finish by reducing the gap between the layer

  10. Thin Film Energy Storage Device with Spray‐Coated Sliver Paste Current Collector

    Directory of Open Access Journals (Sweden)

    Seong Man Yoon

    2017-12-01

    Full Text Available This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass‐manufacturable spray‐coating technology enables the fabrication of two different half‐cell electric double layer capacitors (EDLC with a spray‐coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half‐cell EDLC with the spray‐coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half‐cell EDLC with the spray‐coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from −0.5 V to 0.5 V, the spray‐coated thin film energy storage device exhibits a better performance.

  11. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V., E-mail: lakshmi_rv@nal.res.in; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-30

    Highlights: • Superhydrophobic coatings from Cab-O-Sil EH5 and M5 particles in MTEOS sol. • Particle size of Cab-O-Sil influenced its optimum concentration in coating. • FAS-13 modification improved the oleophobicity of the coating. • Coating surface exhibited porous structure with nanovoids and microscale bumps. • Coatings with Cab-O-Sil EH5 retained water repelling property for a long time. - Abstract: Superhydrophobic sol–gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160° and water sliding angle (WSA) of <2°. FAS addition also improved the oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126° and ethylene glycol contact angle of 153.3°. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  12. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  13. REMR Management System - Coatings for Use on Wet or Damp Steel Surfaces

    National Research Council Canada - National Science Library

    Beitelman, Alfred

    1997-01-01

    .... The surfaces of these structures normally can be blast cleaned to a white metal grade, but condensation and/or water leaking around seals immediately make the surfaces too wet for the application of many coatings...

  14. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P., E-mail: bhanuprs@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076 (India)

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  15. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  16. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    Science.gov (United States)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  17. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  18. Origins of visible-light emissions in hydrogen-coated silicon nanocrystals: Role of passivating coating

    International Nuclear Information System (INIS)

    Tit, Nacir; Yamani, Z.H.; Graham, J.; Ayesh, A.

    2010-01-01

    We present a theoretical investigation of the electronic and optical properties of hydrogen-coated silicon nanocrystals (Si:H NCs). On one hand, the density-functional theory (DFT) is used to both calculate the total energy and relax the NCs. On a second hand, the tight-binding method, which includes the minimal sp 3 -basis set within the second-nearest-neighbor interaction scheme, is applied to calculate the electronic structures, oscillator strength (OS) and recombination rate (RR) versus the NC size, coating and atomic relaxation. Three main findings are reported: (i) The quantum confinement in these NCs do follow similar rule to the case of a single-particle in a box, where the confinement energy decays in power-law with the increasing NC's size. (ii) The coating is shown to play the essential role in creation of large band-gap energy lying within the visible-light energy spectrum. (iii) The surface atomic relaxation is found to reduce the band-gap energy by about 150 meV and enhance both OS and RR. Our claims are corroborated by the available experimental data.

  19. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Science.gov (United States)

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  20. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Z., E-mail: remes@fzu.cz [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A. [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Girard, H.A.; Arnault, J.-C.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif-sur-Yvette (France)

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000–1500 cm{sup −1} spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  1. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Science.gov (United States)

    Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  2. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  3. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    Whitley, Annie R.; Levard, Clément; Oostveen, Emily; Bertsch, Paul M.; Matocha, Chris J.; Kammer, Frank von der; Unrine, Jason M.

    2013-01-01

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  4. The technology of surface coatings by electron-beam (EB) with special reference to the wood industry

    International Nuclear Information System (INIS)

    Dahlan bin Haji Mohd

    1989-01-01

    The use of electron-beam as a processing means in surface coatings is discussed. Special attention has been given to this technology in relation to the surface coatings of wood. The main features of its technology and industrial requirements are outlined. (author)

  5. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  6. Secondary electron measurement and XPS characterization of NEG coatings

    International Nuclear Information System (INIS)

    Sharma, R. K.; Sinha, Atul K.; Gupta, Nidhi; Nuwad, J.; Jagannath,; Gadkari, S. C.; Singh, M. R.; Gupta, S. K.

    2014-01-01

    Ternary alloy coatings of IVB and VB materials provide many of benefits over traditional material surfaces such as creation of extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption coefficient. XHV (pressure −10 mbar) is very useful to the study of surfaces of the material in as it is form, high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc.. Low secondary electron yield leads to very low multi-pacting utilizes to increase beam life time. In this paper preparation of the coatings and a study of secondary electron yield measurement after heating at different temperatures has been shown also results of their surface characterization based on shift in binding energy has been produced using the surface techniques XPS. Stoichiometry of the film was measured by Energy dispersive x-ray analysis (EDX)

  7. Ion irradiation and thermal cycling tests of TiC coatings

    International Nuclear Information System (INIS)

    Yamanaka, S.; Ohara, H.; Son, P.; Miyake, M.

    1984-01-01

    Ion irradiation of TiC coatings prepared by diffusion annealing was performed with 20-40 keV He + ions for different doses at room temperature. The polished TiCsub(0.99) coatings irradiated with 40 keV He + ions showed the surface damage and erosion due to blistering and exfoliation above a dose of 1.8x10 17 ions/cm 2 , whereas no change in the surface morphology could be detected for the as-prepared coatings up to a dose of 1.4x10 18 ions/cm 2 . The results suggested that surface erosion due to blistering can be effectively reduced on the rough surface of the as-prepared TiC coating. The average blister diameter in the polished TiCsub(0.99) coating increased with increasing projectile energy. For the 40 keV He + ion irradiation of the polished TiCsub(0.5) coatings, general features in blisters were similar to those observed for the TiCsub(0.99) coatings, but the critical dose for blistering shifted to a higher value in comparison with the polished TiCsub(0.99) coating. Thermal cycling between 500 and 1200 0 C caused serious surface damage for the TiCsub(0.99) coating irradiated with 40 keV He + ions below the critical dose for blistering, while the coating with surface damage due to blistering showed no significant change in the surface topography after thermal cycling. (orig.)

  8. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Thu Hong Anh Ngo

    2016-12-01

    Full Text Available In this paper, the coating of TiO2 nanoparticles onto the surface of a polyamide thin film composite nanofiltration membrane has been studied. Changes in the properties and separation performance of the modified membranes were systematically characterized. The experimental results indicated that the membrane surface hydrophilicity was significantly improved by the presence of the coated TiO2 nanoparticles with subsequent UV irradiation. The separation performance of the UV-irradiated TiO2-coated membranes was improved with a great enhancement of flux and a very high retention for removal of residual dye in an aqueous feed solution. The antifouling property of the UV-irradiated TiO2-coated membranes was enhanced with higher maintained flux ratios and lower irreversible fouling factors compared with an uncoated membrane.

  9. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  10. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E.

    2015-01-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO 2 and ZrO 2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO 2 > ZrO 2 ) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO 2 , which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO 2 and ZrO 2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO 2 and a-ZrO 2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO 2 was lower than on the c-TiO 2

  11. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  12. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  13. Bacteriomimetic poly-γ-glutamic acid surface coating for hemocompatibility and safety of nanomaterials.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Kim, Jinyoung; Suh, Min Sung; Kim, Youn Kyu; Oh, Yu-Kyoung

    2017-08-01

    Poly-γ-glutamic acid (PGA), a major component of the bacterial capsule, is known to confer hydrophilicity to bacterial surfaces and protect bacteria from interactions with blood cells. We tested whether applying a bacteriomimetic surface coating of PGA modulates interactions of nanomaterials with blood cells or affects their safety and photothermal antitumor efficacy. Amphiphilic PGA (APGA), prepared by grafting phenylalanine residues to PGA, was used to anchor PGA to reduced graphene oxide (rGO) nanosheets, a model of hydrophobic nanomaterials. Surface coating of rGO with bacterial capsule-like APGA yielded APGA-tethered rGO nanosheets (ArGO). ArGO nanosheets remained stable in serum over 4 weeks, whereas rGO in plain form precipitated in serum within 5 minutes. Moreover, ArGO did not interact with blood cells, whereas rGO in plain form or as a physical mixture with PGA formed aggregates with blood cells. Mice administered ArGO at a dose of 50 mg/kg showed 100% survival and no hepatic or renal toxicity. No mice survived exposure at the same dose of rGO or a PGA/rGO mixture. Following intravenous administration, ArGO showed a greater distribution to tumors and prolonged tumor retention compared with other nanosheet formulations. Irradiation with near-infrared light completely ablated tumors in mice treated with ArGO. Our results indicate that a bacteriomimetic surface modification of nanomaterials with bacterial capsule-like APGA improves the stability in blood, biocompatibility, tumor distribution, and photothermal antitumor efficacy of rGO. Although APGA was used here to coat the surfaces of rGO, it could be applicable to coat surfaces of other hydrophobic nanomaterials.

  14. Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2018-04-01

    Full Text Available The aim of this study is to enhance the bioactivity of pure titanium using multiple surface treatments for the application of the implant. To form the biofunctional multilayer coating on pure titanium, anodization was conducted to make titanium dioxide nanotubes, then multi-walled carbon nanotubes were coated using a dipping method after an alkali treatment. The surface characteristics at each step were analyzed using a field emission scanning electron microscope and X-ray diffractometer. The effect of the multilayer coating on the biocompatibility was identified using immersion and cytotoxicity tests. Better hydroxyapatite formation was observed on the surface of multilayer-coated pure titanium compared to non-treated pure titanium after immersion in the simulated body fluid. Improvement of biocompatibility by multiple surface treatments was identified through various cytotoxicity tests using osteoblast cells.

  15. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  16. Microbiological quality control of single-walled carbon-nanotubes-coated surfaces experimentally contaminated

    International Nuclear Information System (INIS)

    Natalizi, T.; Frioni, A.; Passeri, D.; Pantanella, F.

    2013-01-01

    The emergence of new nanotechnologies involves the spreading of nanoparticles in various fields of human life. Nanoparticles in general and, more specifically, carbon nanotubes have been adopted for many practical approaches i.e.: coatings for medical devices, food process industry and drug delivery. Humans will be increasingly exposed to nanoparticles but the susceptibility of nanostructured materials to microbial colonization in process of manufacturing and storage has not been thoroughly considered. Therefore, the microbiological quality control of nanoparticles plays a pivotal role. Different analytical methods have been attempted for detecting bacterial population contaminating a surface, but no one can be considered fully appropriate. Here, BioTimer Assay (BTA) and conventional sonication followed by colony forming units method (S-CFU) were applied for microbiological quality control of single-walled carbon nanotubes (SWCNTs)-coated surfaces experimentally contaminated with Streptococcus mutans and Pseudomonas aeruginosa. Our results demonstrated that S-CFU is unreliable to actually determine the number of bacteria, contaminating abiotic surfaces, as it does not detach all adherent bacteria and kills part of the bacterial population. Instead, BTA is a reliable method to enumerate bacteria colonizing SWCNTs-coated surfaces and can be considered a useful tool for microbiological quality control of nanomaterials for human use.

  17. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  18. Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly

    International Nuclear Information System (INIS)

    Mastrangeli, M; Ruythooren, W; Van Hoof, C; Celis, J-P

    2009-01-01

    Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design

  19. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  20. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haselberg, Rob, E-mail: r.haselberg@vu.nl [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Flesch, Frits M. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Boerke, Arjan [Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht (Netherlands); Somsen, Govert W. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2013-05-24

    Graphical abstract: -- Highlights: •Atomic force microscopy is used to characterize polyelectrolyte coatings. •Coating procedure leads to nm-thick layers on a silica surface. •Polyelectrolyte coatings effectively prevent protein adsorption. •AFM provides the high resolution to investigate these thin films. •AFM results support earlier findings obtained with capillary electrophoresis. -- Abstract: Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings

  1. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).

  2. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  3. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    Science.gov (United States)

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA

  4. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  5. One-Step Purification of Human Skeletal Muscle Myoblasts and Subsequent Expansion Using Laminin-Coated Surface.

    Science.gov (United States)

    Chowdhury, Shiplu Roy; binti Ismail, Annis; Chee, Sia Chye; bin Laupa, Mohd Suffian; binti Jaffri, Fadhlun; Saberi, Salfarina Ezrina Mohmad; Idrus, Ruszymah Bt Hj

    2015-11-01

    Skeletal myoblasts have been extensively used to study muscle growth and differentiation, and were recently tested for their application as cell therapy and as a gene delivery system to treat muscle and nonmuscle diseases. However, contamination of fibroblasts in isolated cells from skeletal muscle is one of the long-standing problems for routine expansion. This study aimed to establish a simple one-step process to purify myoblasts and maintain their purity during expansion. Mixed cells were preplated serially on laminin- and collagen type I-coated surfaces in a different array for 5, 10, and 15 min. Immunocytochemical staining with antibodies specific to myoblasts was performed to evaluate myoblast attachment efficiency, purity, and yield. It was found that laminin-coated surface favors the attachment of myoblasts. Highest myoblast purity of 78.9% ± 6.8% was achieved by 5 min of preplating only on the laminin-coated surface with a yield of 56.9% ± 3.3%. Primary cells, isolated from skeletal muscle (n = 4), confirm the enhancement of purity through preplating on laminin-coated surface for 5 min. Subsequent expansion after preplating enhanced myoblast purity due to an increase in myoblast growth than fibroblasts. Myoblast purity of ∼ 98% was achieved when another preplating was performed during passaging. In conclusion, myoblasts can be purified and efficiently expanded in one step by preplating on laminin-coated surface, which is a simple and robust technique.

  6. Potential of fish scales as a filling material in surface coating of cellulosic paper.

    Science.gov (United States)

    Ural, Elif; Kandirmaz, Emine A

    2018-01-01

    Paper is one of the important inputs for the printing industry, and the most important leading parameter in the printing process is its brightness. Brightness can be brought to paper using coatings and sizing. Desired surface properties and, most importantly, surface roughness can be achieved by changing the contents of the coating and sizing of the materials it contains. The use of biomaterials is becoming more important in the paper industry, as they represent substances with a lower carbon footprint. Fish scales are already used as a filling material, cosmetic material and fish food, as well as for determining the age of fish. Fish scales were brought to different sizes by a milling process. Paper formulations including different amounts of fish scales were prepared with fish scales, and coatings on raw paper were subjected to test printings in IGT-C1, with formulations and physical characteristics of coatings such as brightness, lightfastness, strength, adhesion etc. being determined. Regarding the value of yellowness, mixtures of 2.5%-10% can be used. The maximum value of brightness was obtained from a mixture of 10%. Aging visibly changed the colors. The coatings obtained were brighter than the initial coating compositions. The top quality formulation was the coating with 5% medium-sized fish scale particles.

  7. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang

    2014-11-25

    Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.

  8. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation

    Directory of Open Access Journals (Sweden)

    Tran PA

    2013-05-01

    Full Text Available Phong A Tran,1,2 Thomas J Webster31Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia; 2The Particulate Fluid Processing Centre, University of Melbourne, Melbourne, VIC, Australia; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USAAbstract: Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin, to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions.Keywords: hydrophilicity, hydrophobicity, Wenzel model, Cassie–Baxter model, free energy, implant material, proteins, cells, bacteria

  9. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been...... collected and used to predict coating lifetimes. Samples have been characterized immediately after coating, after 500+ IM cycles to test durability and after 7 months to test temporal stability. Sessile drop contact angle was measured for multiple fluids, namely water, di-iodomethane and benzylacohol....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...

  10. Forward impact extrusion of surface textured steel blanks using coated tooling

    Science.gov (United States)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  11. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  12. Low-energy electron diffraction experiment, theory and surface structure determination

    CERN Document Server

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  13. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  14. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  15. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, M.J.; Sullivan, C.J.; Hoyt, P.R.; Pelletier, D.A.; Wu, S.; Allison, D.P

    2003-10-15

    Immobilization of particulates, especially biomolecules and cells, onto surfaces is critical for imaging with the atomic force microscope (AFM). In this paper, gelatin coated mica surfaces are shown to be suitable for immobilizing and imaging both gram positive, Staphylococcus aureus, and gram negative, Escherichia coli, bacteria in both air and liquid environments. Gelatin coated surfaces are shown to be superior to poly-L-lysine coated surfaces that are commonly used for the immobilization of cells. This cell immobilization technique is being developed primarily for live cell imaging of Rhodopseudomonas palustris. The genome of R. palustris has been sequenced and the organism is the target of intensive studies aimed at understanding genome function. Images of R. palustris grown both aerobically and anaerobically in liquid media are presented. Images in liquid media show the bacteria is rod shaped and smooth while images in air show marked irregularity and folding of the surface. Significant differences in the vertical dimension are also apparent with the height of the bacteria in liquid being substantially greater than images taken in air. In air immobilized bacterial flagella are clearly seen while in liquid this structure is not visible. Additionally, significant morphological differences are observed that depend on the method of bacterial growth.

  16. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    Science.gov (United States)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  18. An experimental study of flow boiling chf with porous surface coatings and surfactant solutions

    International Nuclear Information System (INIS)

    Sarwar, Mohammad Sohail

    2007-02-01

    The boiling crisis or critical heat flux (CHF) phenomenon is an enormously studied topic of the boiling heat transfer. The great interest in the CHF is due to practical motives, since it is desirable to design an equipment (heat exchanger or boiler, etc) to operate at as high a heat flux as possible with optimum heat transfer rates but without the risk of physical burnout. This study consists of two parts of flow boiling CHF experiment: with porous surface coated tubes and by using surfactant solutions as working fluid. In first part, the effect of micro- and nano-porous inside surface coated vertical tubes on the CHF was determined for flow boiling of water in vertical round tubes at atmospheric pressure. CHF was measured for a smooth and three different coated tubes, at mass fluxes of 100∼300 kg/m 2 s and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Greater CHF enhancement was found with microporous coatings. Al 2 O 3 microporous coatings with particle size <10 μm and coating thickness of 50 μm showed the best CHF enhancement. The maximum increase in the CHF was about 25% for microporous Al 2 O 3 . A wettability test was performed to study the physical mechanism of increase of CHF with microporous coated surfaces and contact angle was measured for smooth and coated surfaces. Pressure drop measurements were also performed across the coated tubes using the DP-cell apparatus. In second part, surfactant effect on the CHF was determined for water flow boiling at atmospheric pressure in a closed loop filled with solution of tri-sodium phosphate (TSP, Na 3 PO 4 ·12H 2 O). The TSP is usually added to the containment sump water to adjust pH level during accident in nuclear power plants. The CHF was measured for four different surfactant solutions of water in vertical tubes, at different mass fluxes (100 ∼ 500 kg/m 2 s) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Surfactant solutions in the range of 0.05%∼0.2% at low mass

  19. Solar Absorptance of Cermet Coatings Evaluated

    Science.gov (United States)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  20. Effect of sealer coating and storage methods on the surface roughness of soft liners.

    Science.gov (United States)

    Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat

    2016-03-01

    A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry

  1. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Taposh; Pingguan-Murphy, Belinda; Choudhury, Dipankar; Bin Mamat, Azuddin; Masjuki, H H

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. (paper)

  2. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  3. Protective coating of inner surface of steel tubes via vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K.; Roos, E.; Lyutovich, A.; Boese, J.; Itskov, M. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Ashurov, Kh.; Mirkarimov, A.; Kazantsev, S.; Kadirov, Kh. [Uzbek Academy of Science, Tashkent (Uzbekistan). Arifov Inst. of Electronics

    2010-07-01

    The Vacuum Arc Deposition (VAD) technique based on sputtering a chosen electrode material and its deposition via plasma allows highly-productive technology for creating a wide class of protecting coatings on complex structures. In this work, VAD was applied as a method for the protection of the inner surface of tubes for power-plant boilers against steam oxidation. For this aim, a source cathode of an alloy with high chromium and nickel content was employed in two different VAD treatment systems: a horizontal vacuum chamber (MPA) and a vertical system where the work-piece of the tubes to be protected served as a vacuum changer (Arifov Institute of Electronics). Surface coating with variation of deposition parameters and layer thickness was performed. Characterisation of coated tubes has shown that the method realised in this work allows attainment of material transfer from the cathode to the inner surface with nearly equal chemical composition. It was demonstrated that the initial martensitic structure of the tubes was kept after the vacuum-arc treatment which can provide for both the high mechanical robustness and the corrosion-resistance of the final material. (orig.)

  4. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  5. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    International Nuclear Information System (INIS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-01-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li_4Ti_5O_1_2 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li_3PO_4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li_3PO_4 coated Li_4Ti_5O_1_2 is improved at high C-rate by the surface modification (improvement of 30 mAh g"−"1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  6. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    Briggs, J.L.; Younger, A.F.

    1980-01-01

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  7. Effect of perfluorodecyltrichlorosilane on the surface properties and anti-corrosion behavior of poly(dimethylsiloxane)-ZnO coatings

    Science.gov (United States)

    Arukalam, Innocent O.; Meng, Meijiang; Xiao, Haigang; Ma, Yuantai; Oguzie, Emeka E.; Li, Ying

    2018-03-01

    Poly(dimethylsiloxane)-ZnO coatings modified with different amounts of perfluorodecyltrichlorosilane (FDTS) were prepared using sol-gel technique. The results of field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) examinations showed that the surface structures and roughness of the coatings were respectively influenced by the increasing addition of FDTS. The water contact angle measurements showed maximum value of 130.52° with the 0.10 g FDTS-modified coating sample. The X-ray photoelectron spectroscopy (XPS) results indicated the coatings' hydrophobicity was also influenced by surface chemistry. The FTIR-ATR characterization results showed there was remarkable increase in the crystallinity of 0.10 g FDTS-modified coating after modification, and was confirmed by differential scanning calorimetry (DSC) analysis of crystallization temperature and the X-ray diffraction (XRD) results with an estimation of 71.29% percent crystallinity. The mechanical properties of the coatings were also conducted. The EIS measurements for anti-corrosion behavior showed that 0.10 g FDTS-modified coating had the highest barrier performance and lowest rate of degradation. Indeed, the obtained data have demonstrated that 0.10 g (≈ 0.18%) FDTS produced the most significantly effect on the surface and barrier properties of the coatings and thus, can effectively be used for anti-corrosion application in the marine environments.

  8. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  9. Surface coating Zr or Zr alloy nuclear fuel elements

    International Nuclear Information System (INIS)

    Donaghy, R.E.; Sherman, A.H.

    1980-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. (author)

  10. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  11. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi; Chen, Ping-Hei

    2012-01-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography

  12. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.

    Science.gov (United States)

    Tyburcy, Andrzej; Kozyra, Daniel

    2010-10-01

    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (Pemulsion adsorbed on the sausage surface but little influence on the barrier properties of the coatings. At both glycerol concentration levels, coatings had no visible cracks and were easily removed from the sausage surface after 7 and 15 days of storage. The colour values of coatings (L*, a*, and b*) changed along with the decreasing water activity during storage. Pre-drying of coated sausages reduced peeled product weight loss after storage. The financial analysis showed that among coatings tested the best proved to be the emulsion containing (w/w): 5% glycerol, 5% gelatin, 0.5% carrageenan, 20% lard, 20% beeswax, and 50% water. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  13. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    Directory of Open Access Journals (Sweden)

    Nahum T

    2017-02-01

    Full Text Available Tehila Nahum,1 Hanna Dodiuk,2 Samuel Kenig,2 Artee Panwar,1 Carol Barry,1 Joey Mead,1 1Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA; 2Department of Polymers and Plastics Engineering, Shenkar College of Engineering Design and Art, Ramat Gan, Israel Abstract: Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. Keywords

  14. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  15. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-01-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, –PO 4 H 2 , –COOH and –OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. - Highlights: • –PO 4 H 2 , –COOH and –OH groups were successfully introduced onto PEEK surface via tailored silanization layer technique. • Bone-like apatite formed uniformly on surface-functionalized PEEK after immersion in SBF, and tightly adhered to the PEEK. • SEM, EDS, FTIR, XPS and XRD results showed that apatite layer is composed of low-crystalline bone-like apatite. • Bone-like apatite coating remarkably enhanced pre

  16. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation...... to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role...

  17. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  18. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1987-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. SEM, AES and EPMA have been applied to the surface analyses

  19. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  20. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  1. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  2. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Mariana [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Young, Trevor M., E-mail: Trevor.Young@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2014-09-30

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (R{sub a}) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (R{sub a} = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  3. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: an in vitro trial".

    Science.gov (United States)

    Tiwari, S; Nandlal, B

    2013-01-01

    To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. This in vitro study comprised of total 80 samples (40 samples of each with and without surface coating). Specimens were prepared, G coat plus was applied and light cured. Fluoride release of the sample was measured every 24 h for 7 days and weekly from 7th to 21 st day using Sension4 pH/ISE/MV Meter. Descriptive Statistics, Repeated Measure ANOVA, Paired Sample t-test, Independent Sample t-test, Scheffe post hoc test. Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both groups. Non-coated group released significantly more fluoride than surface coated group (Pagent will reduce the amount of fluoride released into oral environment as compared to non-coated group and at the same time releasing fluoride into surrounding cavity walls to create zones of inhibition into the cavity floor to help internal remineralization.

  4. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose us......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D......-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month....... Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach....

  5. Biomimetic surface coatings from modular amphiphilic proteins

    Science.gov (United States)

    Harden, James; Wan, Fan; Fischer, Stephen; Dick, Scott

    2010-03-01

    Recombinant DNA methods have been used to develop a library of diblock protein polymers for creating designer biofunctional interfaces. These proteins are composed of a surface-active, amphiphilic block joined to a disordered, water soluble block with an end terminal bioactive domain. The amphiphilic block has a strong affinity for many synthetic polymer surfaces, providing a facile means of imparting biological functionality to otherwise bio-neutral materials through physical self-assembly. We have incorporated a series of bioactive end domains into this diblock motif, including sequences that encode specific cell binding and signaling functions of extracellular matrix constituents (e.g. RGD and YIGSR). In this talk, we show that these diblock constructs self-assemble into biofunctional surface coatings on several model synthetic polymer materials. We demonstrate that surface adsorption of the proteins has minimal impacts on the presentation of the bioactive domains in the soluble block, and through the use of microscopic and cell proliferation assays, we show that the resulting biofunctional interfaces are capable of inducing appropriate cellular responses in a variety of human cell types.

  6. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    Science.gov (United States)

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  7. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding

    Science.gov (United States)

    Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing

    2018-04-01

    A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.

  8. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    Science.gov (United States)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  9. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  10. Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu–Cr–Zr alloy electrodes

    Directory of Open Access Journals (Sweden)

    Ping Luo

    2015-03-01

    Full Text Available To improve electrode life during the resistance spot welding of galvanized steel plates, an Al2O3–TiB2 composite coating was synthesized on the surfaces of spot-welding electrodes through an electrospark deposition process. The microstructure, elemental composition, phase structure, and mechanical properties of the coating were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and microhardness testing. It was found that extensive cracking occurred in the monolithic Al2O3–TiB2 coating and at the coating–electrode interface. When the Al2O3–TiB2 coating was deposited on electrodes precoated with Ni, the number of defects decreased significantly. Further, delamination did not occur, and fewer cracks were formed. The average hardness of the multilayered Al2O3–TiB2/Ni coating was approximately 2200 HV and higher than that of the monolithic Al2O3–TiB2 coating (1100 HV.

  11. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  12. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  13. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  14. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption......Fouling control coatings (FCCs) and irregularities (e.g. welding seams) on ship hull surfaces have significant effects on the overall drag performance of ships. In this work, skin frictions of four newly applied FCCs were compared using a pilot-scale rotary setup. Particular attention was given...

  15. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    Science.gov (United States)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  16. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  17. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  18. Investigation of antimicrobial activity and morphological properties of metal coated textile surfaces

    International Nuclear Information System (INIS)

    Aslan, Necdet; Sen, Tuba; Senturk, Kenan; Corukhlu, Turgay; Varturk, Ipek; Seker, S.; Shahidi, S.; Korachi, May; Dobrovolskiy, A.M.; Tsiolko, V.V.; Matsevich, S.V.; Keskin, S.S.

    2014-01-01

    The results of investigation antimicrobial and surface properties of the textiles metal coated by means of magnetron or the cleaning-deposition system, which is based on sequentially arranged DC anode layer accelerator and hollow cathode, are presented. The antimicrobial properties against bacteria E. coli and S. aureus of cotton and polyester/cotton textiles coated by Cu, Ti and Ag with the use of two different systems were examined and compared.

  19. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  20. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  1. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  2. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  3. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  4. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    sequestration easier. One complication of oxyfuel coal combustion is that corrosion problems can be exacerbated due to flue gas recycling, which is employed to dilute the pure O2 feed and reduce the flame temperature. Refractory metal diffusion coatings of Ti and Zr atop P91 steel were created and tested for their ability to prevent corrosion in an oxidizing atmosphere at elevated temperature. Using pack cementation, diffusion coatings of thickness approximately 12 and 20 microm are obtained for Ti and Zr, respectively. The effects of heating to 950°C for 24 hr in 5% O2 in He are studied in situ by thermogravimetric analyses (TGA), and ex situ by SEM analyses and depth profiling by EDX. For Ti-coated, Zr-coated and uncoated P91 samples, extended heating in an oxidizing environment causes relatively thick oxide growth, but extensive oxygen penetration greater than 2.7 mm below the sample surface, and eventual oxide exfoliation, are observed only for the uncoated P91 sample. For the Ti- and Zr-coated samples, oxygen penetrates approximately 16 and 56 microm, respectively, below the surface. in situ TGA verifies that Ti-and Zr-coated P91 samples undergo far smaller mass changes during corrosion than uncoated samples, reaching close to steady state mass after approximately four hours.

  5. Highly efficient blazed grating with multilayer coating for tender X-ray energies

    NARCIS (Netherlands)

    Senf, F.; Bijkerk, Frederik; Eggenstein, F.; Gwalt, G.; Huang, Qiushi; van de Kruijs, Robbert Wilhelmus Elisabeth; Kutz, O.; Lemke, S.; Louis, Eric; Mertin, M.; Packe, I.; Rudolph, I.; Schafers, F.; Siewert, F.; Sokolov, A.; Sturm, Jacobus Marinus; Waberski, C.; Wang, Z.; Wolf, J.; Zeschke, T.; Erko, A.

    2016-01-01

    For photon energies of 1 – 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer

  6. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Science.gov (United States)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  7. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  8. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    Science.gov (United States)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  9. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    Science.gov (United States)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  10. Microstructures of friction surfaced coatings. A TEM study; Gefuege durch Reibauftragschweissen aufgetragener Beschichtungen. Eine TEM-Untersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Javed; Kalvala, Prasad Rao; Misra, Mano [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering; Dilip, J. John Samuel [Louisville Univ., KY (United States). Dept. of Industrial Engineering; Pal, Deepankar; Stucker, Brent [Louisville Univ., KY (United States). Dept. of Industrial Engineering; 3D Sim, Park City, UT (United States)

    2016-05-15

    The microstructures of dissimilar metal welds between 9Cr-1Mo (Modified) (P91) and austenitic stainless steel (AISI 304) with Ni-based alloy interlayers (Inconel 625, Inconel 600 and Inconel 800H) are reported. These interlayers were deposited by the friction surfacing method one over the other on P91 alloy, which was finally friction welded to AISI 304. In this paper, the results of microstructural evolution in the friction surfaced coated interlayers (Inconel 625, 600, 800H) are reported. For comparative purposes, the microstructures of consumable rods (Inconel 625, 600, 800H) and dissimilar metal base metals (P91 and AISI 304) were also reported. Friction surfaced coatings exhibited dynamic recrystallization. In friction surfaced coatings, the carbide particles were found to be finer and distributed uniformly throughout the matrix, compared to their rod counterparts.

  11. Prospects of DLC coating as environment friendly surface treatment process.

    Science.gov (United States)

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  13. Influence of Oxidation Treatments and Surface Finishing on the Electrochemical Behavior of Ni-20Cr HVOF Coatings

    Science.gov (United States)

    Ruiz-Luna, H.; Porcayo-Calderon, J.; Alvarado-Orozco, J. M.; Mora-García, A. G.; Martinez-Gomez, L.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-12-01

    The low-temperature electrochemical behavior of HVOF Ni-20Cr coatings was assessed. The coatings were evaluated in different conditions including as-sprayed, as-ground, and heat-treated in air and argon atmospheres. A detailed analysis of the coatings was carried out by means of XRD, SEM, and EPMA, prior and after the corrosion test. The corrosion rate was analyzed in a NaCl solution saturated with CO2. Results demonstrate that the use of a low-oxygen partial pressure favors the formation of a Cr2O3 layer on the surface of the coatings. According to the electrochemical results, the lower corrosion rates were obtained for the heat-treated coatings irrespective of the surface finishing, being the ground and argon heat-treated condition that shows the best corrosion performance. This behavior is due to the synergistic effect of the low-pressure heat treatment and the grinding processes. The grinding promotes a more homogeneous reaction area without surface heterogeneities such as voids, and the pre-oxidation treatment decreases the porosity content of the coating and also allows the growing of a Cr-rich oxide scale which acts as a barrier against the ions of the aqueous solution.

  14. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  15. Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances

    Energy Technology Data Exchange (ETDEWEB)

    Montaño-Machado, Vanessa, E-mail: vanessa.montano-machado.1@ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); Noël, Céline, E-mail: celine.noel@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Chevallier, Pascale, E-mail: pascale.chevallier@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Turgeon, Stéphane, E-mail: stephane.turgeon@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Houssiau, Laurent, E-mail: laurent.houssiau@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Pauthe, Emmanuel, E-mail: emmanuel.pauthe@u-cergy.fr [ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); and others

    2017-02-28

    Highlights: • Fibronectin/phosphorylcholine coatings on plasma deposited fluorocarbon films were created. • The effect of several coating techniques on the surface biological performances was evaluated. • XPS, DWCA, immunostaining and ToF-SIMS (imaging and depth profiling) techniques were applied. • Potential for cardiovascular applications was showed by endothelial cell and blood interactions. - Abstract: Coating medical devices with several bioactive molecules is an interesting approach to achieve specific biological targets upon the interaction of the biomaterial with the living environment. In this work, a fluorocarbon polymer (CF{sub x}) was first deposited by plasma treatment on stainless steel (SS) substrate and thereafter, coatings containing fibronectin (FN) and phosphorylcholine (PRC) were created for cardiovascular applications. These two biomolecules were chosen to promote endothelialization and to avoid thrombus formation, respectively. Adsorption and grafting techniques were applied – and combined – to accomplish 4 different coatings containing both molecules. However, big challenge was found to characterize a small molecule (PRC: 184 g/mol) interacting with a protein (FN: 450 kD). For the first time XPS, dynamic water contact angle, immunostaining and ToF-SIMS (imaging and depth profiling) analyses were combined to accomplish the characterization of such a coating. The most encouraging biological performances were obtained for samples where FN was grafted to the CF{sub x} film followed by the adsorption of PRC: proliferation of endothelial cells and hemocompatibility properties were observed. Promising coatings for cardiovascular applications were developed. The relevance of characterizing the coatings with high sensitive techniques and the further correlation with their biological performances were evidenced.

  16. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    Directory of Open Access Journals (Sweden)

    Kannikar Kwanming

    2009-01-01

    Full Text Available Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR prior obtained from LNR with formic acid and hydrogen peroxide in the ratio of 2:1 by weight in toluene at 80oC for 6, 9, 12, 18, and 24 hrs. It was found that the percentage of acrylate grafted onto liquid natural rubber depended on the reaction time. Surface coating was performed by using acrylated liquid natural rubber and 1,6-hexanediol diacrylate (HDDA or tripropylene glycol diacrylate (TPGDA as a crosslinker and Irgarcure 184 or Irgarcure 651 as a photoinitiator under UV exposure for 30, 60, and 90 seconds. The hardness test of cured products was investigated using the Pencil hardness test at pencil level of 2B to 6H. It was found that the highest hardness of surface coating was at pencil level of 4H for the product using TPGDA and Irgacure 651 in the ratio of 80:10 parts per hundred of rubber (phr. The cured products were able to resist to 2% H2SO4 and distilled water for more than 24 hrs.

  17. Surface analysis of thin film coatings on container glass

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A. [GCC Pty Ltd., Jindalee, QLD (Australia); Wood, B. [The University of Queensland, Brisbane, QLD (Australia). Department of Chemistry

    1999-12-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  18. Surface analysis of thin film coatings on container glass

    International Nuclear Information System (INIS)

    Bhargava, A.; Wood, B.

    1999-01-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  19. lnvestigation of Patch Coatings lnfluence on the Stress lntensity Factor for Surface Cracks

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Jepsen, Michael S.; Damkilde, Lars

    2013-01-01

    In this paper, it is investigated how a surface layer of epoxy glue will affect the crack propagation of a surface crack. The intension is to reduce or even stop the crack propagation by means of patch layer coating. When adding a patch layer to the surface with small cracks, the layer will attem...

  20. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  1. Measurements of internal stresses in bond coating using high energy x-rays from synchrotron radiation source

    CERN Document Server

    Suzuki, K; Akiniwa, Y; Nishio, K; Kawamura, M; Okado, H

    2002-01-01

    Thermal barrier coating (TBC) techniques enable high temperature combustion of turbines made of Ni-base alloy. TBC is made of zirconia top coating on NiCoCrAlY bond coating. The internal stresses in the bond coating play essential role in the delamination or fracture of TBC in service. With the X-rays from laboratory equipments, it is impossible to measure nondestructively the internal stress in the bond coating under the top coating. synchrotron radiations with a high energy and high brightness have a large penetration depth as compared with laboratory X-rays. Using the high energy X-rays from the synchrotron radiation, it is possible to measure the internal stress in the bond coating through the top coating. In this study, the furnace, which can heat a specimen to 1473 K, was developed for the stress measurement of the thermal barrier coatings. The internal stresses in the bond coating were measured at the room temperature, 773 K, 1073 K and 1373 K by using the 311 diffraction from Ni sub 3 Al with about 73...

  2. Chitosan coating as an antibacterial surface for biomedical applications.

    Directory of Open Access Journals (Sweden)

    Mélanie D'Almeida

    Full Text Available A current public health issue is preventing post-surgical complications by designing antibacterial implants. To achieve this goal, in this study we evaluated the antibacterial activity of an animal-free chitosan grafted onto a titanium alloy.Animal-free chitosan binding on the substrate was performed by covalent link via a two-step process using TriEthoxySilylPropyl Succinic Anhydride (TESPSA as the coupling agent. All grafting steps were studied and validated by means of X-ray Photoelectron Spectroscopy (XPS, Time-of-Flight secondary ion mass spectrometry (ToF-SIMS analyses and Dynamic-mode Secondary Ion Mass Spectrometry (DSIMS. The antibacterial activity against Escherichia coli and Staphylococcus aureus strains of the developed coating was assessed using the number of colony forming units (CFU.XPS showed a significant increase in the C and N atomic percentages assigned to the presence of chitosan. A thick layer of polymer deposit was detected by ToF-SIMS and the results obtained by DSIMS measurements are in agreement with ToF-SIMS and XPS analyses and confirms that the coating synthesis was a success. The developed coating was active against both gram negative and gram positive tested bacteria.The success of the chitosan immobilization was proven using the surface characterization techniques applied in this study. The coating was found to be effective against Escherichia coli and Staphylococcus aureus strains.

  3. ALARA trademark 1146 strippable coating

    International Nuclear Information System (INIS)

    Fricke, V.

    1999-01-01

    Strippable or temporary coatings are innovative technologies for decontamination that effectively reduce loose contamination at low cost. These coatings have become a viable option during the deactivation and decommissioning of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. The ALARA trademark 1146 strippable coating was demonstrated as part of the Savannah River Site LSDDP and successfully removed transferable (surface) contamination from multiple surfaces (metal and concrete) with an average decontamination factor for alpha contamination of 6.68 and an average percentage of alpha contamination removed of 85.0%. Beta contamination removed was an average DF of 5.55 and an average percentage removed of 82.0%. This paper is an Innovative Technology Summary Report designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They also are designed for readers who may recommend that a technology be considered by prospective users. This Innovative Technology offers a 35% cost savings over the Baseline Technology

  4. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution

    Science.gov (United States)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi

    2016-10-01

    An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.

  5. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: An in vitro trial"

    OpenAIRE

    S Tiwari; B Nandlal

    2013-01-01

    Context: To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. Aim: The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. Settings and Design: This in vitro ...

  6. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong; Zhang, Shenglan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, –PO{sub 4}H{sub 2}, –COOH and –OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. - Highlights: • –PO{sub 4}H{sub 2}, –COOH and –OH groups were successfully introduced onto PEEK surface via tailored silanization layer technique. • Bone-like apatite formed uniformly on surface-functionalized PEEK after immersion in SBF, and tightly adhered to the PEEK. • SEM, EDS, FTIR, XPS and XRD results showed that apatite layer is composed of low-crystalline bone-like apatite. • Bone-like apatite coating

  7. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    of antifouling coating behaviour because the active binder surface area and porosity of the leached layer are substantially increased. A similar effect was not observed for a coating with a mixture of ZnO and TiO2 pigments. The two experimental methods are expected to be useful for practical analysis of leaching...

  8. Influence of non-thermal TiCl{sub 4}/Ar + O{sub 2} plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K.N., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Kumar, A. Arun; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Sachdev, A.; Gopinath, P. [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Cools, Pieter; De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Jozef Plateaustraat 22, 9000 Gent (Belgium); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Hegde, P. [William Mason High School, Mason 45040 (United States); Han, C. [Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Nadagouda, M.N. [Center for Nanoscale Multifunctional Materials, Wright State University, Dayton, OH 45435 (United States)

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl{sub 4}/Ar + O{sub 2} gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiO{sub x}/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiO{sub x}/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiO{sub x}/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiO{sub x}/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiO{sub x} and oxygen containing polar functional groups on the surface

  9. Surface treatment in a cathodic arc plasma. Key step for interface engineering

    International Nuclear Information System (INIS)

    Schoenjahn, C.

    2001-02-01

    The effect of substrate surface treatment (substrate sputter cleaning) in a cathodic arc plasma prior to unbalanced magnetron deposition of transition metal nitride coatings on the performance of the coated components has been investigated. In particular the influence of parameters such as ion species, ion energy and exposure time on the changes in substrate surface topography, microstructure and microchemistry were studied employing transmission electron microscopy, energy dispersive X-ray analysis, electron energy loss spectroscopy, X-ray diffraction, atomic force microscopy and optical microscopy. The consequences for both the microstructure of subsequently grown transition metal nitride coatings and their adhesion were elucidated. The relevance for practical applications was demonstrated using the example of dry high-speed milling tests, which showed that an appropriate choice of substrate surface pre-treatment parameters can double the life time of the coated tools. This was found to be due to an improved adhesion as a result of a combination of reduced oxygen incorporation at the interface between coating and substrate and local epitaxial growth of the coating. The latter is promoted by certain substrate surface pre-treatment procedures, which provide clean surfaces with preserved crystallographic order. (author)

  10. Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVD

    International Nuclear Information System (INIS)

    Akesso, Laurent; Navabpour, Parnia; Teer, Dennis; Pettitt, Michala E.; Callow, Maureen E.; Liu Chen; Su Xueju; Wang Su; Zhao Qi; Donik, Crtomir; Kocijan, Aleksandra; Jenko, Monika; Callow, James A.

    2009-01-01

    A range of SiO x -like coatings was deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD. The effect of varying deposition parameters, specifically ion cleaning time and HMDSO/O 2 ratios, on the coating properties and antifouling performance was investigated. At low HMDSO/O 2 ratios, the resulting coatings were close to SiO 2 . Carbon content in the bulk of the coatings increased with increasing HMDSO/O 2 ratio. Coatings deposited at high HMDSO/O 2 ratios and with the longest cleaning time (30 min), elevated the relative carbon content to 25 atomic %. Surface energies (22-43 mJ/m) were correlated with the degree of surface oxidation and hydrocarbon content. With the exception of the most polar coatings the apolar component of the surface energy (γ LW ) was the dominant component. In the most hydrophilic coatings, the Lewis base component of the surface energy (γ - ) was dominant. Significantly improved antifouling performance was detected with the most reduced coatings deposited using the extended ion cleaning times. For both, the removal of sporelings of the marine green alga, Ulvalinza and the initial adhesion of the freshwater bacterium, Pseudomonas fluorescens, there was a strong, positive correlation between strength of attachment and ion cleaning time. Increased ion cleaning time will elevate the deposition temperature, increasing decomposition rates and thus the crosslinking of the polymer. Increased cross-linking may render these coatings less permeable to penetration and mechanical interlocking by the adhesive polymers used by these organisms, thus reducing their adhesion. Films with improved biological performance have potential for use as coatings in the control of biofouling in applications such as heat exchangers, where thin films are important for effective thermal transfer, or optical windows where transparency is important.

  11. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation

    International Nuclear Information System (INIS)

    Chen Ying; Song Yang; Zhang Shaoxiang; Li Jianan; Zhao Changli; Zhang Xiaonong

    2011-01-01

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 μm were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E corr ) and smaller corrosion currents (I corr ) in the modified simulated body fluid (m-SBF) at 37 0 C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents.

  12. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Song Yang; Zhang Shaoxiang; Li Jianan; Zhao Changli; Zhang Xiaonong, E-mail: xnzhang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-04-15

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 {mu}m were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E{sub corr}) and smaller corrosion currents (I{sub corr}) in the modified simulated body fluid (m-SBF) at 37 {sup 0}C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents.

  13. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  14. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    Science.gov (United States)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  15. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    International Nuclear Information System (INIS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-01-01

    Highlights: • The tribocorrosion behaviour of TiNiZrO 2 composite is investigated. • The effect of ZrO 2 on the microstructure is discussed. • The effect of the combined action of wear and chemical process is reported. • ZrO 2 addition improved the tribocorrosion property of Ti6Al4V. - Abstract: Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H 2 SO 4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO 2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO 2 particles. The results obtained show that addition of ZrO 2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO 2 addition, combination of high hardness of Ti 2 Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions

  16. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  17. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    Science.gov (United States)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  18. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  20. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    International Nuclear Information System (INIS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Wang, Li; Li, Hongxia; Xiao, Kai; Zhong, Zhihui

    2014-01-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating. (paper)

  1. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  2. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Tae; Black, Robert; Yim, Taeeun; Ji, Xiulei; Nazar, Linda F. [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada)

    2012-12-15

    The concept of surface-initiated growth of oxides on functionalized carbons is introduced as a method to inhibit the dissolution of polysulfide ions in Li-S battery cathode materials. MO{sub x} (M: Si, V) thin layers are homogeneously coated on nanostructured carbon-sulfur composites. The coating significantly inhibits the dissolution of polysulfides on cycling, resulting in enhanced cycle performance and coulombic efficiency of the Li-S battery. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Thermodynamic aspects of the coating formation through mechanochemical synthesis in vibration technology systems

    Science.gov (United States)

    Shtyn, S. U.; Lebedev, V. A.; Gorlenko, A. O.

    2017-02-01

    On the basis of thermodynamic concepts of the process, we proposed an energy model that reflects the mechanochemical essence of coating forming in terms of vibration technology systems, which takes into account the contribution to the formation of the coating, the increase of unavailable energy due to the growth of entropy, the increase in the energy of elastic-plastic crystal lattice distortion as a result of the mechanical influence of working environment indenters, surface layer internal energy change which occurs as a result of chemical interaction of the contacting media. We proposed adhesion strength of the local volume modified through processing as a criterion of the energy condition of the formed coating. We established analytical dependence which helps to obtain the coating strength of the material required by operating conditions.

  4. PROCESSES PROCEEDING ON CONCRETE COATING SURFACES IN CASE OF THEIR CHEMICAL PROTECTION AGAINST WINTER SLIPPERINESS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Concrete coatings of road traffic highways along with operational loadings caused by flow of traffic are subjected to weather and climate impacts. These are the following impacts: changes in temperature and air humidity, solar radiation,surface wind speed which is participating in formation of active heat-and-mass transfer in a surface layer of the concrete coating. One of the most complicated and important periods in the road traffic highway operation is so called transitional nature period (from Summer to Autumn and from Winter to Spring. These periods are accompanied by intensive rain and snow fall and possible formation of ice loading on the surface of cement and concrete coatings. These impacts significantly deteriorate friction properties of road pavement (friction factor φ is decreased up to 0.4 and less that can be a prerequisite to creation of various accident situations due to sharp increase in braking distance. For example, while having dry pavement the friction factor φ is equal to 0.80–0.85, and during icy condition of the road the factor φ constitutes 0.08–0.15 that consequently entails an increase in braking distance from 7.5 up to 20.0 m and more. It is quite possible that ice layer appears on the surface of concrete coatings when road traffic highways are used in winter season. Various methods are applicable to remove ice from the surface they can include also ice-melting chemicals and sodium chloride NaCl in particular. The chemical decreases freezing temperature of the formed brine and causes ice melting at negative temperature. Processes of NaCl dissolution and ice melting have an endothermic character, in other words these processes are accompanied by heat ingress and due to it temperature is sharply decreasing in the surface layer of the concrete coating which is under the melting ice and in this case phenomenon of thermal shock is observed.

  5. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  6. Efficacy of Hydrophobic Coatings in Protecting Oak Wood Surfaces during Accelerated Weathering

    Directory of Open Access Journals (Sweden)

    Miloš Pánek

    2017-10-01

    Full Text Available The durability of transparent coatings applied to an oak wood exterior is relatively low due to its anatomic structure and chemical composition. Enhancement of the protection of oak wood against weathering using transparent hydrophobic coatings is presented in this study. Oak wood surfaces were modified using UV-stabilizers, hindered amine light stabilizer (HALS, and ZnO and TiO2 nanoparticles before the application of a commercial hydrophobic topcoat. A transparent oil-based coating was used as a control coating system. The artificial weathering test lasted 6 weeks and colour, gloss, and contact angle changes were regularly evaluated during this period. The changes in the microscopic structure were studied with confocal laser scanning microscopy. The results proved limited durability against weathering of both tested hydrophobic coatings. The formation of micro-cracks causing the leaching of degraded wood compounds and discolouration of oak wood were observed after 1 or 3 weeks of the weathering test. Until then, an oil-based coating film had protected the wood sufficiently, but after 6 weeks the wood was fully defoliated to its non-homogenous thickness, which was caused by the presence of large oak vessels, and by the effects of specific oak tannins. Using transparent hydrophobic coatings can prolong the service life of the exteriors of wood products by decreasing their moisture content. Without proper construction protection against rainwater, the hydrophobic coating itself cannot guarantee the preservation of the natural appearance of wood exteriors.

  7. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    Science.gov (United States)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  8. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modification by aluminate coupling agent which reduced the surface energy greatly, was found to be responsible for the superhydrophobicity. The method adopted is relatively simple, facile, and cost-effective and can potentially be applied to large water-repellent surface coatings.

  9. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3 Coatings

    Science.gov (United States)

    Góral, Anna; Lityńska-Dobrzyńska, Lidia; Kot, Marcin

    2017-05-01

    Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt's-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings' microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.

  10. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Jimenez AS

    2017-09-01

    Full Text Available Ambar S Jimenez,1 Francesca Jaramillo,1 Usha D Hemraz,2 Yaman Boluk,3 Karina Ckless,1 Rajesh Sunasee1 1Department of Chemistry, State University of New York at Plattsburgh, Plattsburgh, NY, USA; 2National Research Council, Montreal, QC, Canada, 3Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada Abstract: Cellulose nanocrystals (CNCs have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide (β-cyclodextrin, a thermoresponsive polymer (poly[N-isopropylacrylamide], and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7, using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study. Keywords: cellulose nanocrystals, surface coating, cell viability, MTT, LDH

  11. Wear rate and surface coating optimization of coconut coir-based ...

    Indian Academy of Sciences (India)

    The use of fuzzy logic for modeling surface parameters of coconut coir-based composite is the focus of this research paper. Natural fiber–polymer composite has been developed by combining coconut coir as a stimulator and polyester as a fixative. This sturdy material is resistant to scratches in the coating process on the ...

  12. Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

    Science.gov (United States)

    Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.

    2001-05-01

    The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.

  13. Advances in surface engineering. V. 1. Fundamentals of coatings. Proceedings

    International Nuclear Information System (INIS)

    Datta, P.K.; Burnell-Gray, J.S.

    1997-01-01

    The scientific and technical research papers in these three volumes, on advances in surface engineering, cover the fundamentals of coatings, process technology and engineering applications, and are based on the proceedings of the May 1996 conference of the same name, held at the University of Northumbria. High temperature corrosion, aqueous corrosion, wear and fatigue are covered in Volume 1. Volume 2 includes papers on various surface engineering technologies including physical and chemical vapour deposition, thermal methods, plasmas and welds, lasers, peening and electrochemistry. Applications of surface engineering to the biomedical, aerospace, automotive, cutting tools and manufacturing, power generation and marine industries are discussed in Volume 3. (UK)

  14. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Photocatalytic TiO2 and Doped TiO2 Coatings to Improve the Hygiene of Surfaces Used in Food and Beverage Processing—A Study of the Physical and Chemical Resistance of the Coatings

    Directory of Open Access Journals (Sweden)

    Parnia Navabpour

    2014-07-01

    Full Text Available TiO2 coatings deposited using reactive magnetron sputtering and spray coating methods, as well as Ag- and Mo-doped TiO2 coatings were investigated as self-cleaning surfaces for beverage processing. The mechanical resistance and retention of the photocatalytic properties of the coatings were investigated over a three-month period in three separate breweries. TiO2 coatings deposited using reactive magnetron sputtering showed better mechanical durability than the spray coated surfaces, whilst the spray-deposited coating showed enhanced retention of photocatalytic properties. The presence of Ag and Mo dopants improved the photocatalytic properties of TiO2 as well as the retention of these properties. The spray-coated TiO2 was the only coating which showed light-induced hydrophilicity, which was retained in the coatings surviving the process conditions.

  16. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  17. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies.

    Science.gov (United States)

    Su, Yajuan; Zhi, Zelun; Gao, Qiang; Xie, Meihua; Yu, Meng; Lei, Bo; Li, Peng; Ma, Peter X

    2017-03-01

    Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG 1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG 1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG 2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG 2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  19. Buoyancy increase and drag-reduction through a simple superhydrophobic coating

    OpenAIRE

    Hwang, G. B.; Patir, A.; Page, K.; Lu, Y.; Allan, E.; Parkin, I. P.

    2017-01-01

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown...

  20. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm