WorldWideScience

Sample records for surface electromyography recordings

  1. Recent Observations in Surface Electromyography Recording of Triceps Brachii Muscle in Patients and Athletes

    Directory of Open Access Journals (Sweden)

    Md. Asraf Ali

    2014-01-01

    Full Text Available Objective: To observe and analyse the literature on the use of surface electromyography electrodes, including the shape, size, and metal composition of the electrodes used, the interelectrode distance, and the anatomical locations on the muscle at which the electrodes are placed, for the observation of the triceps brachii muscle activity in patients and athletes.

  2. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.

    Science.gov (United States)

    Soylu, Abdullah Ruhi; Arpinar-Avsar, Pinar

    2010-08-01

    The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal's 0s time index corresponds to maximum force point). Then, the first 8s of sEMG and force signals were divided into 0.5s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0s time intervals (i.e. -0.25 to 0.25s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn's post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r=0.9462, pfatigue starts after the 0s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2s gradual increase time) for 12 subjects were 2353, 1258ms and 536-4186ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations

  3. Measurement of tendon reflexes by surface electromyography in normal subjects

    NARCIS (Netherlands)

    Stam, J.; van Crevel, H.

    1989-01-01

    A simple method for measuring the tendon reflexes was developed. A manually operated, electronic reflex hammer was applied that enabled measurement of the strength of tendon taps. Reflex responses were recorded by surface electromyography. Stimulus-response relations and latencies of tendon reflexes

  4. Surface Electromyography Signal Processing and Classification Techniques

    Science.gov (United States)

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  5. Surface electromyography physiology, engineering and applications

    CERN Document Server

    Farina, Dario

    2016-01-01

    The book presents a quantitative approach to the study and use of noninvasively detected electromyographic (EMG) signals, as well as their numerous applications in various aspects of the life sciences. Surface Electromyography: Physiology, Engineering, and Applications is an update of Electromyography: Physiology, Engineering, and Noninvasive Applications (Wiley-IEEE Press, 2004) and focuses on the developments that have taken place over the last decade. The first nine chapters deal with the generation, detection, understanding, interpretation, and modeling of EMG signals. Detection technology, with particular focus on EMG imaging techniques that are based on two-dimensional electrode arrays are also included in the first half of the book. The latter 11 chapters deal with applications, which range fro monitoring muscle fatigue, electrically elicited contractions, posture analysis, prevention of work-related and child-delivery-related neuromuscular disorders, ergonomics, movement analysis, physical therapy, ex...

  6. Inter-day reliability of surface electromyography recordings of the lumbar part of erector spinae longissimus and trapezius descendens during box lifting

    OpenAIRE

    Brandt, Mikkel; Andersen, Lars Louis; Samani, Afshin; Jakobsen, Markus Due; Madeleine, Pascal

    2017-01-01

    Background Low back pain and neck-shoulder pain are the most reported types of work-related musculoskeletal disorders, and performing heavy lifting at work and working with trunk rotation increase the risk of developing work-related musculoskeletal disorders. Surface electromyography (sEMG) provides information about the electrical activity of muscles. Thus it has the potential to retrieve indirect information about the physical exposure of specific muscles of workers during their actual work...

  7. A more precise, repeatable and diagnostic alternative to surface electromyography

    DEFF Research Database (Denmark)

    Harrison, Adrian P

    2018-01-01

    Acoustic myography (AMG) enables a detailed and accurate measurement of those muscles involved in a particular movement and is independent of electrical signals between the nerve and muscle, measuring solely muscle contractions, unlike surface electromyography (sEMG). With modern amplifiers...... and digital sound recording systems, measurements during physical activity both inside and outside a laboratory setting are now possible and accurate. Muscle sound gives a representation of the work of each muscle group during a complex movement, and under certain forms of movement even reveals both...

  8. Robust Features Of Surface Electromyography Signal

    International Nuclear Information System (INIS)

    Sabri, M I; Miskon, M F; Yaacob, M R

    2013-01-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20–27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and

  9. Robust Features Of Surface Electromyography Signal

    Science.gov (United States)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show

  10. Surface electromyography activity of trunk muscles during wheelchair propulsion.

    Science.gov (United States)

    Yang, Yu-Sheng; Koontz, Alicia M; Triolo, Ronald J; Mercer, Jennifer L; Boninger, Michael L

    2006-12-01

    Trunk instability due to paralysis can have adverse effects on posture and function in a wheelchair. The purpose of this study was to record trunk muscle recruitment patterns using surface electromyography from unimpaired individuals during wheelchair propulsion under various propulsion speed conditions to be able to design trunk muscle stimulation patterns for actual wheelchair users with spinal cord injury. Fourteen unimpaired subjects propelled a test wheelchair on a dynamometer system at two steady state speeds of 0.9 m/s and 1.8 m/s and acceleration from rest to their maximum speed. Lower back/abdominal surface electromyography and upper body movements were recorded for each trial. Based on the hand movement during propulsion, the propulsive cycle was further divided into five stages to describe the activation patterns. Both abdominal and back muscle groups revealed significantly higher activation at early push and pre-push stages when compared to the other three stages of the propulsion phase. With increasing propulsive speed, trunk muscles showed increased activation (Pactivity was significantly higher than abdominal muscle activity across the three speed conditions (PAbdominal and back muscle groups cocontracted at late recovery phase and early push phase to provide sufficient trunk stability to meet the demands of propulsion. This study provides an indication of the amount and duration of stimulation needed for a future application of electrical stimulation of the trunk musculature for persons with spinal cord injury.

  11. Use of surface electromyography in phonation studies: an integrative review

    Science.gov (United States)

    Balata, Patricia Maria Mendes; Silva, Hilton Justino da; Moraes, Kyvia Juliana Rocha de; Pernambuco, Leandro de Araújo; Moraes, Sílvia Regina Arruda de

    2013-01-01

    Summary Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others). Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies. PMID:25992030

  12. SURFACE ELECTROMYOGRAPHY IN BIOMECHANICS: APPLICATIONS AND SIGNAL ANALYSIS ASPECTS

    Directory of Open Access Journals (Sweden)

    DEAK GRAłIELA-FLAVIA

    2009-12-01

    Full Text Available Surface electromyography (SEMG is a technique for detecting and recording the electrical activity of the muscles using surface electrodes. The EMG signal is used in biomechanics mainly as an indicator of the initiation of muscle activation, as an indicator of the force produced by a contracting muscle, and as an index ofthe fatigue occurring within a muscle. EMG, used as a method of investigation, can tell us if the muscle is active or not, if the muscle is more or less active, when it is on or off, how much active is it, and finally, if it fatigues.The purpose of this article is to discuss some specific EMG signal analysis aspects with emphasis on comparison type analysis and frequency fatigue analysis.

  13. Inter-day reliability of surface electromyography recordings of the lumbar part of erector spinae longissimus and trapezius descendens during box lifting.

    Science.gov (United States)

    Brandt, Mikkel; Andersen, Lars Louis; Samani, Afshin; Jakobsen, Markus Due; Madeleine, Pascal

    2017-12-11

    Low back pain and neck-shoulder pain are the most reported types of work-related musculoskeletal disorders, and performing heavy lifting at work and working with trunk rotation increase the risk of developing work-related musculoskeletal disorders. Surface electromyography (sEMG) provides information about the electrical activity of muscles. Thus it has the potential to retrieve indirect information about the physical exposure of specific muscles of workers during their actual work. This study aimed to investigate the inter-day reliability of absolute and normalized amplitude of sEMG measurements obtained during repeated standardized reference lifts. The inter-day reliability of sEMG of the erector spinae longissimus and trapezius descendens muscles was tested during standardized box lifts. The lifts were performed with loads of 3, 15 and 30 kg from floor to table and from table to table in three conditions, i.e., forearm length (short reaching distance), ¾ arm length (long reaching distance) and forearm length with trunk rotation. Absolute and normalized root mean square (absRMS and normRMS) values were extracted. In line with the guidelines for reporting reliability and agreement studies, we reported relative and absolute reliability estimated by intra class correlation (ICC 3,K ), standard error of measurement (SEM) and minimal detectable change in percent (MDC). The ICC 3,K was higher for absRMS compared with normRMS while SEM and maximal voluntary contraction (MVC) were similar. A total of 50 out of 56, i.e., 89%, and 41 out of 56, i.e., 73%, of the lifting situations were in the range from moderate to almost perfect for absRMS and normRMS, respectively. The SEM and MDC shoved more variation in the lifting situations performed from floor to table and in the trapezius descendens muscle than in the erector spinae longissimus muscle. This reliability study showed that maximum absRMS and normRMS were found to have a fair to substantial relative inter

  14. Surface Electromyography for Speech and Swallowing Systems: Measurement, Analysis, and Interpretation

    Science.gov (United States)

    Stepp, Cara E.

    2012-01-01

    Purpose: Applying surface electromyography (sEMG) to the study of voice, speech, and swallowing is becoming increasingly popular. An improved understanding of sEMG and building a consensus as to appropriate methodology will improve future research and clinical applications. Method: An updated review of the theory behind recording sEMG for the…

  15. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  16. Standardization of surface electromyography utilized to evaluate patients with dysphagia

    Directory of Open Access Journals (Sweden)

    Vaiman Michael

    2007-06-01

    Full Text Available Abstract Backgorund Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. We introduce surface electromyography (sEMG to carry out rapid assessment of such patients and propose suggestions for standardizing sEMGs in order to identify abnormal deglutition. Methods Specifics steps for establishing standards for applying the technique for screening purposes (e.g., evaluation of specific muscles, the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water are presented in detail. A previously described normative database for single swallowing and drinking and standard approach to analysis was compared to data on the duration and electric activity of muscles involved in deglutition and with sEMG recordings in order to estimate stages of a swallow. Conclusion SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, timesaving and inexpensive to perform. With standardization of the technique and an established normative database, sEMG can serve as a reliable screening method for optimal patient management.

  17. Basic Hand Gestures Classification Based on Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Aleksander Palkowski

    2016-01-01

    Full Text Available This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed method.

  18. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  19. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    Directory of Open Access Journals (Sweden)

    João Freitas

    Full Text Available Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI, collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics.

  20. Analysis of concentric and eccentric contractions in biceps brachii muscles using surface electromyography signals and multifractal analysis.

    Science.gov (United States)

    Marri, Kiran; Swaminathan, Ramakrishnan

    2016-06-23

    Muscle contractions can be categorized into isometric, isotonic (concentric and eccentric) and isokinetic contractions. The eccentric contractions are very effective for promoting muscle hypertrophy and produce larger forces when compared to the concentric or isometric contractions. Surface electromyography signals are widely used for analyzing muscle activities. These signals are nonstationary, nonlinear and exhibit self-similar multifractal behavior. The research on surface electromyography signals using multifractal analysis is not well established for concentric and eccentric contractions. In this study, an attempt has been made to analyze the concentric and eccentric contractions associated with biceps brachii muscles using surface electromyography signals and multifractal detrended moving average algorithm. Surface electromyography signals were recorded from 20 healthy individuals while performing a single curl exercise. The preprocessed signals were divided into concentric and eccentric cycles and in turn divided into phases based on range of motion: lower (0°-90°) and upper (>90°). The segments of surface electromyography signal were subjected to multifractal detrended moving average algorithm, and multifractal features such as strength of multifractality, peak exponent value, maximum exponent and exponent index were extracted in addition to conventional linear features such as root mean square and median frequency. The results show that surface electromyography signals exhibit multifractal behavior in both concentric and eccentric cycles. The mean strength of multifractality increased by 15% in eccentric contraction compared to concentric contraction. The lowest and highest exponent index values are observed in the upper concentric and lower eccentric contractions, respectively. The multifractal features are observed to be helpful in differentiating surface electromyography signals along the range of motion as compared to root mean square and median

  1. Swallowing in patients with Parkinson's disease: a surface electromyography study.

    Science.gov (United States)

    Ws Coriolano, Maria das Graças; R Belo, Luciana; Carneiro, Danielle; G Asano, Amdore; Al Oliveira, Paulo José; da Silva, Douglas Monteiro; G Lins, Otávio

    2012-12-01

    Our goal was to study deglutition of Parkinson's disease (PD) patients and normal controls (NC) using surface electromyography (sEMG). The study included 15 patients with idiopathic PD and 15 age-matched normal controls. Surface electromyography was collected over the suprahyoid muscle group. Conditions were the following: swallow at once 10 and 20 ml of water and 5 and 10 ml of yogurt of firm consistency, and freely drink 100 ml of water. During swallowing, durations of sEMG were significantly longer in PD patients than in normal controls but no significant differences of amplitudes were found. Eighty percent of the PD patients and 20 % of the NC needed more than one swallow to consume 20 ml of water, while 70 % of the PD patients and none of the NC needed more than one swallow to consume 5 ml of yogurt. PD patients took significantly more time and needed significantly more swallows to drink 100 ml of water than normal controls. We conclude that sEMG might be a simple and useful tool to study and monitor deglutition in PD patients.

  2. High Quality Acquisition of Surface Electromyography - Conditioning Circuit Design

    Science.gov (United States)

    Shobaki, Mohammed M.; Malik, Noreha Abdul; Khan, Sheroz; Nurashikin, Anis; Haider, Samnan; Larbani, Sofiane; Arshad, Atika; Tasnim, Rumana

    2013-12-01

    The acquisition of Surface Electromyography (SEMG) signals is used for many applications including the diagnosis of neuromuscular diseases, and prosthesis control. The diagnostic quality of the SEMG signal is highly dependent on the conditioning circuit of the SEMG acquisition system. This paper presents the design of an SEMG conditioning circuit that can guarantee to collect high quality signal with high SNR such that it is immune to environmental noise. The conditioning circuit consists of four stages; consisting of an instrumentation amplifier that is used with a gain of around 250; 4th order band pass filter in the 20-500Hz frequency range as the two initial stages. The third stage is an amplifier with adjustable gain using a variable resistance; the gain could be changed from 1000 to 50000. In the final stage the signal is translated to meet the input requirements of data acquisition device or the ADC. Acquisition of accurate signals allows it to be analyzed for extracting the required characteristic features for medical and clinical applications. According to the experimental results, the value of SNR for collected signal is 52.4 dB which is higher than the commercial system, the power spectrum density (PSD) graph is also presented and it shows that the filter has eliminated the noise below 20 Hz.

  3. Central motor control failure in fibromyalgia: a surface electromyography study.

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-07-01

    Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Eight female patients aged 55.6 +/- 13.6 years (FM group) and eight healthy female volunteers aged 50.3 +/- 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean +/- SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 +/- 0.052%/s in FM vs -0.196 +/- 0.133%/s in MCG; normalised MNF rate of changes: -0.29 +/- 0.16%/s in FM vs -0.66 +/- 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control.

  4. Central motor control failure in fibromyalgia: a surface electromyography study

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-01-01

    Background Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group) and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean ± SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control. PMID:19570214

  5. Central motor control failure in fibromyalgia: a surface electromyography study

    Directory of Open Access Journals (Sweden)

    Buskila Dan

    2009-07-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG were studied by means of non-invasive surface electromyography (s-EMG involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited contractions. Maximal voluntary contractions (MVCs, motor unit action potential conduction velocity distributions (mean ± SD and skewness, and the mean power frequency of the spectrum (MNF were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG. Mean conduction velocity distribution and skewnesses values were higher (p Conclusion The apparent paradox of fewer myoelectrical manifestations of fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered

  6. Quantitative analysis of surface electromyography during epileptic and nonepileptic convulsive seizures

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Conradsen, Isa; Moldovan, Mihai

    2014-01-01

    Objective: To investigate the characteristics of sustained muscle activation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), as compared to voluntary muscle activation. The main goal was to find surface electromyography (EMG) features that can distinguish between convuls...

  7. Impact of functional appliances on muscle activity: a surface electromyography study in children.

    Science.gov (United States)

    Woźniak, Krzysztof; Piątkowska, Dagmara; Szyszka-Sommerfeld, Liliana; Buczkowska-Radlińska, Jadwiga

    2015-01-20

    Electromyography (EMG) is the most objective tool for assessing changes in the electrical activity of the masticatory muscles. The purpose of the study was to evaluate the tone of the masseter and anterior temporalis muscles in growing children before and after 6 months of treatment with functional removable orthodontic appliances. The sample conisted of 51 patients with a mean age 10.7 years with Class II malocclusion. EMG recordings were performed by using a DAB-Bluetooth instrument (Zebris Medical GmbH, Germany). Recordings were performed in mandibular rest position, during maximum voluntary contraction (MVC), and during maximum effort. The results of the study indicated that the electrical activity of the muscles in each of the clinical situations was the same in the group of girls and boys. The factor that determined the activity of the muscles was their type. In mandibular rest position and in MVC, the activity of the temporalis muscles was significantly higher that that of the masseter muscels. The maximum effort test indicated a higher fatigue in masseter than in temporalis muscles. Surface electromyography is a useful tool for monitoring muscle activity. A 6-month period of functional therapy resulted in changes in the activity of the masticatory muscles.

  8. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Taelman, Joachim; Vanderhaegen, Joke; Robijns, Mieke; Naulaers, Gunnar; Spaepen, Arthur; Van Huffel, Sabine

    2011-01-01

    This study looks at various parameters, derived from surface electromyography (sEMG) and Near Infrared Spectroscopy (NIRS) and their relationship in muscle fatigue during a static elbow flexion until exhaustion as well as during a semidynamic exercise.We found a linear increasing trend for a corrected amplitude parameter and a linear decreasing slope for the frequency content of the sEMG signal. The tissue oxygenation index (TOI) extracted from NIRS recordings showed a four-phase response for all the subjects. A strong correlation between frequency content of the sEMG signal and TOI was established. We can conclude that both sEMG and NIRS give complementary information concerning muscle fatigue.

  9. Advanced biofeedback from surface electromyography signals using fuzzy system

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2010-01-01

    The aims of this study were to develop a fuzzy inference-based biofeedback system and investigate its effects when inducing active (shoulder elevation) and passive (relax) pauses on the trapezius muscle electromyographic (EMG) activity during computer work. Surface EMG signals were recorded from...... clavicular, descending (bilateral) and ascending parts of the trapezius muscles during computer work. The fuzzy system readjusted itself based on the history of previous inputs. The effect of feedback was assessed in terms of muscle activation regularity and amplitude. Active pause resulted in non...

  10. Surface electromyography assessment of back muscle intrinsic properties.

    Science.gov (United States)

    Larivière, Christian; Arsenault, A Bertrand; Gravel, Denis; Gagnon, Denis; Loisel, Patrick

    2003-08-01

    The purpose of this study was to assess (1) the reliability and (2) the sensitivity to low back pain status and gender of different EMG indices developed for the assessment of back muscle weakness, muscle fiber composition and fatigability. Healthy subjects (men and women) and chronic low back pain patients (men only) performed, in a static dynamometer, maximal and submaximal static trunk extension tasks (short and long duration) to assess weakness, fiber composition and fatigue. Surface EMG signals were recorded from four (bilateral) pairs of back muscles and three pairs of abdominal muscles. To assess reliability of the different EMG parameters, 40 male volunteers (20 controls and 20 chronic low back pain patients) were assessed on three occasions. Reliable EMG indices were achieved for both healthy and chronic low back pain subjects when specific measurement strategies were applied. The EMG parameters used to quantify weakness and fiber composition were insensitive to low back status and gender. The EMG fatigue parameters did not detect differences between genders but unexpectedly, healthy men showed higher fatigability than back pain patients. This result was attributed to the smaller absolute load that was attributed to the patients, a load that was defined relative to their maximal strength, a problematic measure with this population. An attempt was made to predict maximal back strength from anthropometric measurements but this prediction was prone to errors. The main difficulties and some potential solutions related to the assessment of back muscle intrinsic properties were discussed.

  11. Reproducibility of 3D kinematics and surface electromyography measurements of mastication

    NARCIS (Netherlands)

    Remijn, L.; Groen, B.E.; Speyer, R.; Limbeek, J. van; Sanden, M.W. van der

    2016-01-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the

  12. Muscle fatigue and contraction intensity modulates the complexity of surface electromyography.

    Science.gov (United States)

    Cashaback, Joshua G A; Cluff, Tyler; Potvin, Jim R

    2013-02-01

    Nonlinear dynamical techniques offer a powerful approach for the investigation of physiological time series. Multiscale entropy analyses have shown that pathological and aging systems are less complex than healthy systems and this finding has been attributed to degraded physiological control processes. A similar phenomenon may arise during fatiguing muscle contractions where surface electromyography signals undergo temporal and spectral changes that arise from the impaired regulation of muscle force production. Here we examine the affect of fatigue and contraction intensity on the short and long-term complexity of biceps brachii surface electromyography. To investigate, we used an isometric muscle fatigue protocol (parsed into three windows) and three contraction intensities (% of maximal elbow joint moment: 40%, 70% and 100%). We found that fatigue reduced the short-term complexity of biceps brachii activity during the last third of the fatiguing contraction. We also found that the complexity of surface electromyography is dependent on contraction intensity. Our results show that multiscale entropy is sensitive to muscle fatigue and contraction intensity and we argue it is imperative that both factors be considered when evaluating the complexity of surface electromyography signals. Our data contribute to a converging body of evidence showing that multiscale entropy can quantify subtle information content in physiological time series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of electrocardiographic contamination on surface electromyography assessment of back muscles.

    Science.gov (United States)

    Hu, Yong; Mak, Joseph N F; Luk, Keith D K

    2009-02-01

    The purpose of this study was to demonstrate the relative effect of electrocardiography (ECG) on back muscle surface electromyography (SEMG) parameters and their corresponding sensitivity in low back pain (LBP) assessment. Back muscle SEMG activities were recorded from 17 healthy subjects and 18 chronic LBP patients under static postures (straight sitting and upright standing), and dynamic action (flexion-extension). ECG cancellation based on independent component analysis (ICA) method was performed. Root mean square (RMS) and median frequency (MF) of raw and denoised SEMG data were computed respectively. Multiple comparisons were then performed. A consistent trend of change (increased MF and decreased RMS) followed ECG removal was noticed. In particular, in SEMG measurements under static postures, a significant decrease in RMS (pcorruption by ECG artifacts on SEMG measurements was found to be more serious and prominent in static postures than that in dynamic action. After ECG removal, significant improvements in the ability of SEMG to discriminate LBP patients from healthy subjects were seen in RMS amplitude recorded while standing (peffect of ECG contamination on back muscles SEMG parameters and LBP assessment.

  14. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  15. Vitamin D, surface electromyography and physical function in uraemic patients

    DEFF Research Database (Denmark)

    Heaf, J.G.; Mølsted, Stig; Harrison, Adrian Paul

    2010-01-01

    ) under voluntary contractions. Physical function was determined using a 30-second Chair Stand Test and the Short Form 36 quality of life questionnaire. Clinical characteristics were collected from the patient records. Results: Moderate vitamin 25-OHD deficiency (

  16. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    Science.gov (United States)

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Adrian Bingham

    2017-12-01

    Full Text Available This study has developed a technique for identifying the presence of muscle fatigue based on the spatial changes of the normalised mutual information (NMI between multiple high density surface electromyography (HD-sEMG channels. Muscle fatigue in the tibialis anterior (TA during isometric contractions at 40% and 80% maximum voluntary contraction levels was investigated in ten healthy participants (Age range: 21 to 35 years; Mean age = 26 years; Male = 4, Female = 6. HD-sEMG was used to record 64 channels of sEMG using a 16 by 4 electrode array placed over the TA. The NMI of each electrode with every other electrode was calculated to form an NMI distribution for each electrode. The total NMI for each electrode (the summation of the electrode’s NMI distribution highlighted regions of high dependence in the electrode array and was observed to increase as the muscle fatigued. To summarise this increase, a function, M(k, was defined and was found to be significantly affected by fatigue and not by contraction force. The technique discussed in this study has overcome issues regarding electrode placement and was used to investigate how the dependences between sEMG signals within the same muscle change spatially during fatigue.

  18. Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-02-01

    The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test-retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager-Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test-retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.

  19. Surface Facial Electromyography Reactions to Light-Relevant and Season-Relevant Stimuli in Seasonal Affective Disorder

    National Research Council Canada - National Science Library

    Lindsey, Kathryn T

    2005-01-01

    Facial electromyography (EMG) activity was recorded from the zygomaticus major and corrugator supercilii muscle regions to examine emotion-specific reactivity in 24 currently depressed individuals meeting DSM-IV criteria...

  20. Performance of electromyography recorded using textile electrodes in classifying arm movements.

    Science.gov (United States)

    Li, Guanglin; Geng, Yanjuan; Tao, Dandan; Zhou, Ping

    2011-01-01

    Electromyography (EMG) signals are commonly recorded using the Ag/AgCl gel electrodes in myoelectric prosthetic control. While a gelled electrode may provide high-quality EMG recordings, it is inconvenient in clinical application of a myoelectric prosthesis. A novel type of signal sensors-textile electrodes should be ideal in control of myoelectric prostheses. However, it is unknown whether the performance of textile electrodes is comparable to commonly used electrodes in classifying arm movements. In this study, the custom-made bipolar textile electrodes were fabricated using copper-based nickel-plated conductive fabric and were used to record EMG signals. The performance of EMG signals recorded with textile electrodes in identifying nine arm and hand movements were investigated. Our pilot results showed that the average classification accuracy across six able-bodied subjects was 94.05% when using textile electrodes and 94.26% when using conventional electrodes, with no significant difference between the two types of electrodes (p=0.81). The pilot results suggest that the textile electrodes could achieve similar performance in classifying arm movements in control of myoelectric prostheses as the gelled metal electrodes.

  1. Oynophagia in patients after dental extraction: surface electromyography study

    Directory of Open Access Journals (Sweden)

    Nahlieli Oded

    2006-10-01

    Full Text Available Abstract Objectives Surface electromyographic (sEMG studies were performed on 40 adult patients following extraction of lower third and second molars to research the approach and limitations of sEMG evaluation of their odynophagia complaints. Methods Parameters evaluated during swallowing and drinking include the timing, number of swallows per 100 cc of water, and range (amplitude of EMG activity of m. masseter, infrahyoid and submental-submandibular group. The above mentioned variables (mean + standard deviation were measured for the group of dental patients (n = 40 and control group of healthy adults (n = 40. Results The duration of swallows and drinking in all tests showed increase in dental patients' group, in which this tendency is statistically significant. There was no statistically significant difference between male and female adults' duration and amplitude of muscle activity during continuous drinking in both groups (p = 0.05. The mean of electric activity (in μV of m. masseter was significantly lower in the dental patients' group in comparison with control group. The electric activity of submental-submandimular and infrahyoid muscle groups was the same in both groups. Conclusion Surface EMG of swallowing is a simple and reliable noninvasive method for evaluation of odynophagia/dysphagia complaints following dental extraction with low level of discomfort of the examination. The surface EMG studies prove that dysphagia following dental extraction and molar surgery has oral origin, does not affect pharingeal segment and submental-submandibular muscle group. This type of dysphagia has clear EMG signs: increased duration of single swallow, longer drinking time, low range of electric activity of m. masseter, normal range of activity of submental-submandibular muscle group, and the "dry swalow" aftereffect. The data can be used for evaluation of complaints and symptoms, as well as for comparison purposes in pre- and postoperative stages and

  2. Fatiguing Effects on the Multi-Scale Entropy of Surface Electromyography in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Tong Hong

    2016-05-01

    Full Text Available The objective of this study was to investigate the effects of muscle fatigue on the multi-scale entropy of surface electromyography (EMG in children with cerebral palsy (CP and typical development (TD. Sixteen CP children and eighteen TD children participated in experiments where they performed upper limb cyclic lifting tasks following a muscle fatiguing process, while the surface EMG signals were recorded from their upper trapezius muscles. Multi-scale entropy (MSE analyses of the surface EMG were applied by calculating sample entropy (SampEn on individual intrinsic mode functions (IMFs adaptively generated by empirical mode decomposition (EMD of the original signal. The declining degree of the resultant MSE curve was found to reflect muscle fatigue level for all subjects, with its slope (purposely calculated over the first four scales increasing significantly as the fatigue level increased. Further, such a slope increase was less significant for CP children as compared with TD children. Our findings confirmed that the decrease of muscle fiber conduction velocity (MFCV and the increase of motor unit synchronization may be two possible factors induced by muscle fatigue, and further indicated that there appear to be some neuromuscular changes (such as MFCV decrease, motor unit synchronization increase, motor unit firing rates reduction, selective loss of larger motor units that occur as a result of cerebral palsy. These changes may account for experimentally observed difference in fatiguing effects between subject groups. Our study provides an investigative tool to assess muscle fatigue as well as to help reveal complex neuropathological changes underlying the motor impairments of CP children.

  3. The integration of surface electromyography in the clinical decision making process: a case report

    Science.gov (United States)

    Nicholson, W Reg

    1998-01-01

    Objective: To demonstrate how the findings of surface electromyography (S.E.M.G.) were integrated into the clinical decision-making process. Clinical Features: This is a retrospective review of the file of a 27-year-old male suffering from mechanical low back pain. He was evaluated on 3 separate occasions over a 3 year period. History, radiography, functional outcome studies, visual-numerical pain score, pain drawing, physical examination and surface electromyography were utilized in evaluating this patient. Intervention and Outcome: The two clinical interventions of spinal manipulative therapy (S.M.T.) had positive results in that the patient achieved an asymptomatic state and returned to his position of employment. The S.E.M.G. data collected during the industrial assessment, did not provide the outcome that the patient had anticipated. Conclusion: Surface electromyography is a useful clinical tool in the author’s decision-making process for the treatment of mechanical lower back pain. Therapeutic intervention by S.M.T., therapeutic exercises and rating risk factors were influenced by the S.E.M.G. findings.

  4. The application of surface electromyography in the assessment of ergonomic risk factors associated with manual lifting tasks.

    Science.gov (United States)

    Chen, Jing; Lei, Yang; Ding, Jiasun; Wang, Zhenglun

    2004-01-01

    The purpose of this study was to evaluate the ergonomic risk factors associated with manual lifting tasks using surface electromyography (EMG). 13 volunteers lifted loads of 6 and 13 kg at two speeds and at two horizontal distances in 3 different postures and three boxes of different sizes, from floor to knuckle height, performing 72 lifting tasks. For each lift, the surface electromyography signals from the erector spinae muscles, bilaterally at T10 and L3, was recorded. The ergonomic risk factors associated with manual lifting tasks were evaluated by comparing the average amplitude of EMG signals from the erector spinae muscles. The EMG average amplitude for lifting the load of 13 kg was 14.3% greater than that for lifting the load of 6 kg (t=-10.93, Pbox, horizontal distance, posture of lifting, the site of the spine subjected to force, lifting speed were the factors affecting the EMG average amplitude. The most significant factor was the loads of lifting, followed by the site of the spine subjected to force and the lifting speed in terms of risk. The ergonomic risk factors associated with manual lifting tasks includes the loads, posture, lifting speed, horizontal distance, the site of the spine subjected to force etc. The results of signal amplitude of EMG from the erector spinae muscles showed that semi-squat posture is the best posture for lifting tasks.

  5. The study of surface electromyography used for the assessment of abductor hallucis muscle activity in patients with hallux valgus.

    Science.gov (United States)

    Mortka, Kamila; Lisiński, Przemysław; Wiertel-Krawczuk, Agnieszka

    2018-01-26

    Hallux valgus is a common foot disorder. In patients with hallux valgus, the anatomy and biomechanics of foot is subject to alterations. The aim of this clinical and neurophysiological study is to compare the activity of abductor hallucis (AbdH) muscle between the group of patients with hallux valgus and control group of healthy people, with the use of surface electromyography. The study involved 44 feet with diagnosed hallux valgus (research group) and 42 feet without deformation (control group). The X-ray images, measurements of range of motion in the first metatarsophalangeal joint and in hallux interphalangeal joint, and the surface electromyography study recorded from AbdH muscle were performed. Considering the amplitude of motor unit action potential, study participants with hallux valgus demonstrate significantly less activity of AbdH muscle than people without hallux valgus deformity. This activity is not dependent on the severity of valgus, age, or range of motion. It is speculated that the changes of the AbdH function may occur in the period before clinical appearance of hallux valgus deformity, or at the onset of distortion development. Further studies are needed for a comprehensive assessment of AbdH muscle in patients with hallux valgus.

  6. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.

    Science.gov (United States)

    Karthick, P A; Venugopal, G; Ramakrishnan, S

    2016-01-01

    Analysis of neuromuscular fatigue finds various applications ranging from clinical studies to biomechanics. Surface electromyography (sEMG) signals are widely used for these studies due to its non-invasiveness. During cyclic dynamic contractions, these signals are nonstationary and cyclostationary. In recent years, several nonstationary methods have been employed for the muscle fatigue analysis. However, cyclostationary based approach is not well established for the assessment of muscle fatigue. In this work, cyclostationarity associated with the biceps brachii muscle fatigue progression is analyzed using sEMG signals and Spectral Correlation Density (SCD) functions. Signals are recorded from fifty healthy adult volunteers during dynamic contractions under a prescribed protocol. These signals are preprocessed and are divided into three segments, namely, non-fatigue, first muscle discomfort and fatigue zones. Then SCD is estimated using fast Fourier transform accumulation method. Further, Cyclic Frequency Spectral Density (CFSD) is calculated from the SCD spectrum. Two features, namely, cyclic frequency spectral area (CFSA) and cyclic frequency spectral entropy (CFSE) are proposed to study the progression of muscle fatigue. Additionally, degree of cyclostationarity (DCS) is computed to quantify the amount of cyclostationarity present in the signals. Results show that there is a progressive increase in cyclostationary during the progression of muscle fatigue. CFSA shows an increasing trend in muscle fatiguing contraction. However, CFSE shows a decreasing trend. It is observed that when the muscle progresses from non-fatigue to fatigue condition, the mean DCS of fifty subjects increases from 0.016 to 0.99. All the extracted features found to be distinct and statistically significant in the three zones of muscle contraction (p < 0.05). It appears that these SCD features could be useful in the automated analysis of sEMG signals for different neuromuscular conditions.

  7. Muscle fatigue in women with primary biliary cirrhosis: Spectral analysis of surface electromyography

    Science.gov (United States)

    Biagini, Maria Rosa; Tozzi, Alessandro; Grippo, Antonello; Galli, Andrea; Milani, Stefano; Amantini, Aldo

    2006-01-01

    AIM: To evaluate the myoelectric manifestations of peripheral fatigability in patients with primary biliary cirrhosis in comparison to healthy subjects. METHODS: Sixteen women with primary biliary cirrhosis without comorbidity and 13 healthy women matched for age and body mass index (BMI) completed the self-reported questionnaire fatigue impact scale. All subjects underwent surface electromyography assessment of peripheral fatigability. Anterior tibial muscle isometric voluntary contraction was executed for 20 s at 80% of maximal voluntary isometric contraction. During the exercise electromyographic signal series were recorded and root mean square (expression of central drive) as well as mean and median of electromyographic signal frequency spectrum (estimates of muscle fatigability) were computed. Each subject executed the trial two times. EMG parameters were normalized, then linear regression was applied and slopes were calculated. RESULTS: Seven patients were fatigued (median fatigue impact scale score: 38, range: 26-66) and 9 were not fatigued (median fatigue impact scale score: 7, range: 0-17). The maximal voluntary isometric contraction was similar in patients (82, 54-115 N) and controls (87, 74-101 N), and in patients with high (81, 54-115 N) and low fatigue impact scale scores (86, 65-106 N). Root mean square as well as mean and median of frequency spectrum slopes were compared with the Mann-Whitney U test, and no significant difference was found between fatigued and non-fatigued patients and controls. CONCLUSION: No instrumental evidence of peripheral fatigability can be found in women with primary biliary cirrhosis but no comorbidity, suggesting that fatigue in such patients may be of central origin. PMID:16937530

  8. Evaluation of surgeon's muscle fatigue during thoracoscopic pulmonary lobectomy using interoperative surface electromyography.

    Science.gov (United States)

    Yoon, Seung-Hyun; Jung, Myung-Chul; Park, Seong Yong

    2016-06-01

    The aim of this study was to document the physical stress experienced by a surgeon during thoracoscopic pulmonary lobectomy and mediastinal lymph node dissection for lung cancer by measuring the intraoperative electromyography (EMG). Surface EMG was recorded during 12 cases of thoracoscopic lobectomy. During the operation, 16 channels of a wireless EMG were used to measure muscle activity and fatigue from the bilateral muscles of the splenius capitis (SC), upper trapezius (UT), middle deltoid (MD), flexor carpi radialis (FCR), extensor carpi radialis (ECR), lumbar erector spinae (LES), rectus femoralis (RF), and tibialis anterior (TA). The EMG signals were processed to collect the values of the root mean square for muscle activity and median frequency (MF) for muscle fatigue. All operations were completed without adverse events. The mean operating time was 99.16±35.15 minutes. During the operation, the mean muscle activity of all muscles was 21.91±12.85 mV. High muscle activity was observed in the bilateral FCR and ECR, whereas low muscle activity was observed in the bilateral SC and LES. The final MFs in the bilateral SC and LES were found to be decreased from the initial status, which implied increased muscle fatigue. The muscles of the right and left LES were significantly fatigued by up to 29% and 37% compared to their initial status (P=0.021 and P=0.007, respectively). The MFs of the bilateral LES decreased with time (an average decreases of 0.008/5 minutes, P=0.002 in right LES and 0.004/5 minutes, P=0.018 in left LES). During thoracoscopic lobectomy, muscle fatigue was observed in muscles related to a static posture, such as the bilateral SC, UT, and ES. Further studies are required to investigate the ergonomic adjustments needed to reduce muscle fatigue in these static muscles.

  9. Validity and Reliability of Surface Electromyography in the Assessment of Primary Muscle Tension Dysphonia.

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Talebian, Saeed; Izadi, Farzad; Ansari, Noureddin Nakhostin

    2017-05-01

    The study aims to evaluate the reliability and the discriminative validity of surface electromyography (sEMG) in the assessment of patients with primary muscle tension dysphonia (MTD). The study design is cross-sectional. Fifteen patients with primary MTD (mean age: 34.07 ± 10.99 years) and 15 healthy volunteers (mean age: 34.53 ± 10.63 years) were included. All participants underwent evaluation of sEMG to record the electrical activity of the thyrohyoid and cricothyroid muscles. The outcome measures were the root mean square (RMS), activity peak, duration, and time to the peak activity, which were obtained during /a/ and /i/ prolongation for test-retest reliability. The test-retest reliability was good to excellent for the RMS and peak activity measures (intraclass correlation coefficient [agreement] [ICC agreement ] = 0.49-0.98). The reliability for the activity duration was poor to excellent (ICC agreement  = 0.19-0.9). Poor test-retest reliability was found for the time to peak measure (ICC agreement  = 0.15-0.37). The standard error of measurement for all sEMG measures was between 0.41 and 2.05. The smallest detectable change (SDC) was calculated between 1.13 and 5.66. The highest SDC values were obtained for the peak and the lowest SDCs were documented for the duration (5.66 and 1.13, respectively). All sEMG measures were not able to discriminate between the MTD patients and healthy subjects (P > 0.05). The sEMG is a reliable tool to measure the RMS, the peak activity, and the activity duration in primary MTD. However, it is not able to discriminate the patients with primary MTD from healthy subjects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Effects of electrocardiography contamination and comparison of ECG removal methods on upper trapezius electromyography recordings.

    Science.gov (United States)

    Marker, Ryan J; Maluf, Katrina S

    2014-12-01

    Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    Science.gov (United States)

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  12. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  13. Effect of the Enveloppe Linguale Nocturne on atypical swallowing: surface electromyography and computerised postural test evaluation.

    Science.gov (United States)

    Ciavarella, D; Mastrovincenzo, M; Sabatucci, A; Parziale, V; Chimenti, C

    2010-09-01

    Swallowing is a neuromuscular mechanism regulated by many nervous reflex arcs. Persistence of child swallowing at the end of dental eruption is called atypical swallowing (AS). This condition is related to a dysfunction of vertical maxillary growth called open bite. The authors treated this malocclusion with the Enveloppe Linguale Nocturne (ELN), or tongue positioner, created by Dr. Bonnet. The aim of this work is to evaluate the effect of ELN on swallowing and the postural variation obtained by its use. Seven patients affected by AS were evaluated. Surface Electromyography (sEMG) testing was performed on each patient with different tongue positions, and swallowing was evaluated with and without the ELN. A surface Electromyograph (Biopack) with 8 channels was used (4 channels for the right muscles and 4 for the left) on 4 groups of muscles: temporals, masseters (MM), submental (SUB) and sternocleidmastoids. On each patient a postural test using a computerised Postural test (Lizard) was also performed. Statistical analysis was done using the Graph pad Instat 3 both for sEMG activity and for computerised postural analysis. All seven subjects had different results in the sEMG and footrest tests. The sEMG test results indicated that muscle activation and swallowing duration varied greatly with the use of ELN, with a reduction of time of swallow act (p = 0.002) and variation in contraction of muscles. Mean MM activation was higher without ELN than in tests performed with the appliance (p = 0.002). Mean SUB activation was higher with than without ELN (p = 0.0033). ELN has a therapeutic effect on posture too. Computerised postural test without device showed in all patients an alteration of barycentre as well as an elevated oscillatory record (A mmq; V mms). With ELN footrest kilogram difference (p = 0.0110), Oscillatory Area (P = 0.0102) and velocity of oscillation (P = 0.0102) presented a great reduction in respect to patients record without ELN. With ELN the tongue

  14. Design of new multi-channel electrodes for surface electromyography signals for signal-processing.

    Science.gov (United States)

    Kilby, J; Prasad, K; Mawston, G

    2016-08-01

    This paper covers the design aspects of a new multi-channel electrode for the acquisition of surface electromyography signals from a selected muscle. The new multi-channel electrode has 11 pins where the monopolar signals produced will be configured in a software either as Linear array or Laplacian configuration. The design specification of the pre-amplifier ideally was to have a voltage gain of 500 with bandpass filtering of 5 Hz-1 kHz. The final design of the pre-amplifier circuit using an INA 118 instrumentation amplifier was built and tested to give values for voltage gain of 484 with bandpass filtering of 6.8 Hz-1.02 kHz. The software configuration that gives clearer and more defined signals in terms of motor unit action potentials for future signal processing is the Laplacian rather than Linear array.

  15. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography.

    Science.gov (United States)

    Fernando, Jeffry Bonar; Yoshioka, Mototaka; Ozawa, Jun

    2016-08-01

    A new method to estimate muscle fatigue quantitatively from surface electromyography (EMG) is proposed. The ratio of mean frequency (MNF) to average rectified value (ARV) is used as the index of muscle fatigue, and muscle fatigue is detected when MNF/ARV falls below a pre-determined or pre-calculated baseline. MNF/ARV gives larger distinction between fatigued muscle and non-fatigued muscle. Experiment results show the effectiveness of our method in estimating muscle fatigue more correctly compared to conventional methods. An early evaluation based on the initial value of MNF/ARV and the subjective time when the subjects start feeling the fatigue also indicates the possibility of calculating baseline from the initial value of MNF/ARV.

  16. [Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography].

    Science.gov (United States)

    Liu, Jian; Zou, Renling; Zhang, Dongheng; Xu, Xiulin; Hu, Xiufang

    2016-06-01

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement.If the fatigue is not treated properly,it will bring about a severe injury to the human body.With multi-channel collection of lower limb surface electromyography signals,this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics.The experimental result indicated that with the increase of muscle fatigue,muscle signal spectrum began to move to low frequency,the energy concentrated,the system complexity came down,and the band spectrum entropy which reflected the complexity was also reduced.By monitoring the entropy,we can measure the degree of muscle fatigue,and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

  17. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue.

    Science.gov (United States)

    Gonzalez-Izal, Miriam; Lusa Cadore, Eduardo; Izquierdo, Mikel

    2014-03-01

    Concentric (CON) and eccentric (ECC) contractions may involve different mechanisms related to changes in sarcolemma status and the consequent alteration of action potential transmission along muscle fibers. Muscle conduction velocity (CV), surface electromyography signal (sEMG), muscle quality, and blood lactate concentrations were analyzed during CON and ECC actions. Compared with ECC, the CON protocol resulted in greater muscle force losses, blood lactate concentrations, and changes in sEMG parameters. Similar reductions in CV were detected in both protocols. Higher echo intensity values were observed 2 days after ECC due to greater muscle damage. The effects of the muscle damage produced by ECC exercise on the transmission of action potentials along muscle fibers (measured as the CV) may be comparable with the effects of hydrogen accumulation produced by CON exercise (related to greater lactate concentrations), which causes greater force loss and change in other sEMG variables during CON than during ECC actions.

  18. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements.

    Science.gov (United States)

    Colyer, Steffi L; McGuigan, Polly M

    2018-03-01

    Textile electromyography (EMG) electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat) were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity) and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking) and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day) repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2%) and excitation length (CV: 12.9 and 9.8%) when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV) was recorded for average rectified EMG (13.8 and 14.1%) and excitation length (13.0 and 12.7%) for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  19. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Directory of Open Access Journals (Sweden)

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  20. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  1. Relationship between lower limb position and pelvic floor muscle surface electromyography activity in menopausal women: a prospective observational study

    Directory of Open Access Journals (Sweden)

    Halski T

    2017-01-01

    Full Text Available Tomasz Halski,1 Kuba Ptaszkowski,2 Lucyna Słupska,1 Robert Dymarek,3 Małgorzata Paprocka-Borowicz2 1Department of Physiotherapy, Opole Medical School, Opole, 2Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, 3Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland Objectives: In physiotherapeutic practice, special attention is being given to the reciprocal anatomical, physiological, and biomechanical relationship of the pelvis and the structures connected to it. However, the scientific literature shows mainly the theoretical information about their mutual connections. The lack of information about these relations from a practical aspect coupled with the paucity of scientific papers on the impact of posture changes on the pelvic floor led the authors to conduct this study. The primary aim of this study was to compare the resting and functional bioelectrical activities of pelvic floor muscles (PFMs depending on three different positions of the lower limbs (positions A, B, and C in the supine position.Materials and methods: This was a prospective observational study evaluating resting and functional activities of the PFM depending on the position of the lower limbs. The study was carried out at the Department and Clinic of Urology, University Hospital in Wroclaw, Poland and the target group were women in the menopausal period. Bioelectrical activity of PFM was recorded using a surface electromyographic instrument in the supine position. Results of the values obtained in A, B, and C positions were compared using a one-way analysis of variance.Results: In position A, the average resting surface electromyography (sEMG activity of PFM was 6.9±2.6 µV; in position B, the result was 6.9±2.5 µV and in position C, the resting sEMG activity was 5.7±1.8 µV (P=0.0102. The results of the functional bioelectrical activity of PFM were as follows: position A – 20.3

  2. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Directory of Open Access Journals (Sweden)

    Ho Chit Siu

    2018-02-01

    Full Text Available Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG, but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  3. Surface electromyography based muscle fatigue analysis for stroke patients at different Brunnstrom stages.

    Science.gov (United States)

    Yinjun Tu; Zhe Zhang; Xudong Gu; Qiang Fang

    2016-08-01

    Muscle fatigue analysis has been an important topic in sport and rehabilitation medicine due to its role in muscle performance evaluation and pathology investigation. This paper proposes a surface electromyography (sEMG) based muscle fatigue analysis approach which was specifically designed for stroke rehabilitation applications. 14 stroke patients from 5 different Brunnstrom recovery stage groups were involved in the experiment and features including median frequency and mean power frequency were extracted from the collected sEMG samples for investigation. After signal decomposition, the decline of motor unit firing rate of patients from different groups had also been studied. Statistically significant presence of fatigue had been observed in deltoideus medius and extensor digitorum communis of patients at early recovery stages (P0.01). It had also been discovered that the motor unit firing frequency declines with a range positively correlated to the recovery stage during repetitive movements. Based on the experiment result, it can be verified that as the recovery stage increases, the central nervous system's control ability strengthens and the patient motion becomes more stable and resistive to fatigue.

  4. Heart rate variability and surface electromyography of trained cyclists at different cadences

    Directory of Open Access Journals (Sweden)

    Bruno Saraiva

    2016-06-01

    Full Text Available The heart rate variability (HRV and surface electromyography (sEMG are important tools in the evaluation of cardiac autonomic system and neuromuscular parameters, respectively. The aim of the study was to evaluate the behavior of HRV and sEMG of the vastus lateralis in two exercise protocols on a cycle ergometer at 60 and 80 rpm. Eight healthy men cyclists who have trained for at least two years were evaluated. Reduction was observed followed by stabilization of RMSSD and SDNN indices of HRV (p<0.05 along with increases in the amplitude of the sEMG signal (p<0.05 in both protocols. Significant correlations were observed between the responses of HRV and sEMG in the cadence of 60 rpm (RMSSD and sEMG: r = -0.42, p=0.03; SDNN and sEMG: r = -0.45, p=0.01 and 80 rpm (RMSSD and sEMG: r = -0.47, p=0.02; SDNN and sEMG: r = -0.49, p=0.01, yet no difference was observed for these variables between the two protocols. We concluded that the parasympathetic cardiac responses and sEMG are independent of cadences applied at the same power output.

  5. [Measurement of muscular activity by surface electromyography during use of an emergency evacuation chair].

    Science.gov (United States)

    Caballero Martín, Elena; Gallego Fernández, Yolanda; Molina, Josep María

    2012-01-01

    To compare the different techniques used by paramedics in handling an emergency evacuation chair and to identify themore ergonomically favourable technique, based on an analysis ofmuscular activity using surface electromyography. The trial was based on descending stairs, through four possible arrangements for the same transport operation, where the study variables were: worker anthropometrics (5th and 95th percentiles, corresponding to the extremes of the normal height-weight distribution curve), worker location during chair transport (upper or lower end of the chair), and the position of the individual at the lower end (facing front or backwards during descent). For both workers participating in the study, the more favourable working position during chair descent was at the lower end of the chairwhile facing forward, as this was associated with less muscular activity. In general, physical demands on the various muscles studied was greater for the worker corresponding to the 5th percentile (i.e., lower height-weight), except for the paravertebral musculature which, for certain maneuvers involving manipulation was significantly greater than the 95th percentile. When descending stairs while transporting an emergency evacuation chair, the position involving least muscular activity is located at the lower end of the chair, and descending while facing forwards. Copyright belongs to the Societat Catalana de Seguretat i Medicina del Treball.

  6. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Science.gov (United States)

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  7. Support vectors machine classification of surface electromyography for non-invasive naturally controlled hand prostheses.

    Science.gov (United States)

    Moura, Karina O A; Favieiro, Gabriela W; Balbinot, Alexandre

    2016-08-01

    The scientific researches in human rehabilitation techniques have continually evolved to offer again the mobility and freedom lost to disability. Many systems managed by myoelectric signals intended to mimic the movement of the human arm still have results considered partial, which makes it subject of many researches. The use of Natural Interfaces Signal Processing methods makes possible to design systems capable of offering prosthesis in a more natural and intuitive way. This paper presents a study investigating the use of forearm surface electromyography (sEMG) signals for classification of specific movements of hand using 12 sEMG channels and support vector machine (SVM). The system acquired the sEMG signal using a virtual model as a visual stimulus in order to demonstrate to the volunteer the hand movements which must be replicated by them. The Root Mean Square (RMS) value feature is extracted of the signal and it serves as input data for the classification with SVM. The classification stage used three types of kernel functions (linear, polynomial, radial basis) for comparison of the results. The average accuracy reached for the classification of seventeen distinct movements of 83.7% was achieved using the SVM linear classifier, 80.8% was achieved using the SVM polynomial classifier and 85.1% was achieved using the SVM radial basis classifier.

  8. Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available Studying muscle fatigue plays an important role in preventing the risks associated with musculoskeletal disorders. The effect of elbow-joint angle on time-frequency parameters during a repetitive motion provides valuable information in finding the most accurate position of the angle causing muscle fatigue. Therefore, the purpose of this study is to analyze the effect of muscle fatigue on the spectral and time-frequency domain parameters derived from electromyography (EMG signals using the Continuous Wavelet Transform (CWT. Four male participants were recruited to perform a repetitive motion (flexion and extension movements from a non-fatigue to fatigue condition. EMG signals were recorded from the biceps muscle. The recorded EMG signals were then analyzed offline using the complex Morlet wavelet. The time-frequency domain data were analyzed using the time-averaged wavelet spectrum (TAWS and the Scale-Average Wavelet Power (SAWP parameters. The spectral domain data were analyzed using the Instantaneous Mean Frequency (IMNF and the Instantaneous Mean Power Spectrum (IMNP parameters. The index of muscle fatigue was observed by calculating the increase of the IMNP and the decrease of the IMNF parameters. After performing a repetitive motion from non-fatigue to fatigue condition, the average of the IMNF value decreased by 15.69% and the average of the IMNP values increased by 84%, respectively. This study suggests that the reliable frequency band to detect muscle fatigue is 31.10-36.19Hz with linear regression parameters of 0.979mV^2Hz^(-1 and 0.0095mV^2Hz^(-1 for R^2 and slope, respectively.

  9. A systematic review of surface electromyography analyses of the bench press movement task

    Science.gov (United States)

    Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    Background The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? Strategy PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. Results The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. Conclusions PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models. PMID

  10. A systematic review of surface electromyography analyses of the bench press movement task.

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    Full Text Available The bench press exercise (BP plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed?PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered.The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB and pectoralis major (PM muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change.PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits or guidelines for the use of exact muscle models.

  11. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  12. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  13. Surface electromyography as a screening method for evaluation of dysphagia and odynophagia

    Directory of Open Access Journals (Sweden)

    Eviatar Ephraim

    2009-02-01

    Full Text Available Abstract Objective Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. The article analyzes various instrumental methods of dysphagia assessment, introduces surface electromyography (sEMG to carry out rapid assessment of such patients, and debates proposed suggestions for sEMG screening protocol in order to identify abnormal deglutition. Data sources Subject related books and articles from 1813 to 2007 were obtained through library search, MEDLINE (1949–2007 and EMBASE (1975–2007. Methods Specifics steps for establishing the protocol for applying the technique for screening purposes (e.g., evaluation of specific muscles, the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water are presented in detail. SEMG is compared with other techniques in terms of cost, timing, involvement of radiation, etc. Results According to the published data, SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, time-saving and inexpensive to perform. The major weakness of the method seems to be inability for precise diagnostic of neurologically induced dysphagia. Conclusion With standardization of the technique and an established normative database, sEMG might serve as a reliable screening method for optimal patient management but cannot serve for proper investigation of neurogenic dysphagia.

  14. Surface electromyography as a screening method for evaluation of dysphagia and odynophagia

    Science.gov (United States)

    Vaiman, Michael; Eviatar, Ephraim

    2009-01-01

    Objective Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. The article analyzes various instrumental methods of dysphagia assessment, introduces surface electromyography (sEMG) to carry out rapid assessment of such patients, and debates proposed suggestions for sEMG screening protocol in order to identify abnormal deglutition. Data sources Subject related books and articles from 1813 to 2007 were obtained through library search, MEDLINE (1949–2007) and EMBASE (1975–2007). Methods Specifics steps for establishing the protocol for applying the technique for screening purposes (e.g., evaluation of specific muscles), the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water) are presented in detail. SEMG is compared with other techniques in terms of cost, timing, involvement of radiation, etc. Results According to the published data, SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, time-saving and inexpensive to perform. The major weakness of the method seems to be inability for precise diagnostic of neurologically induced dysphagia. Conclusion With standardization of the technique and an established normative database, sEMG might serve as a reliable screening method for optimal patient management but cannot serve for proper investigation of neurogenic dysphagia. PMID:19232090

  15. Can methylphenidate objectively provide relief in patients with uncontrolled blepharospasm? A pilot study using surface electromyography.

    Science.gov (United States)

    Price, Kristina M; Ramey, Nicholas A; Richard, Michael J; Woodward, Donald J; Woodward, Julie A

    2010-01-01

    To determine whether there is an objective benefit to prescribing Ritalin for patients with uncontrolled blepharospasm exists. Seven subjects with benign essential blepharospasm, who were being treated with botulinum toxin injections and Ritalin LA, were recruited for this pilot study. Patients were asked to participate during the period of time when symptoms were beginning to return. Subjects underwent video and surface electromyography (sEMG) monitoring before and 2 hours after the administration of Ritalin. Mean sEMG potential for each eye was compared before and after the administration of Ritalin. Subjects also rated their disability based on a previously developed and reproducible blepharospasm functional disability scale. Functional Disability Scores were compared, and post-Ritalin treatment benefit was determined. The mean voltage of the sEMG was lower in 13 of 14 eyes after the administration of Ritalin. For the right eye, the voltage decreased by 50% (106.4 ± 13.6 mV to 52.7 ± 7.1 mV, p = 0.015), and for the left eye, by 31% (81.9 ± 9.7 mV to 56.6 ± 6.1 mV, p = 0.031). The Functional Disability Scores were also lower after the administration of Ritalin than before (p = 0.016). A significant decrease in mean voltage after the administration of Ritalin was found in this preselected group of patients. Subjective improvement with decreased disability and increased functional benefit was also found in all subjects. Based on the results of this study, a randomized, controlled study comparing Ritalin versus placebo is needed to determine whether Ritalin should be routinely prescribed for benign essential blepharospasm during the symptomatic window period.

  16. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    Science.gov (United States)

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to

  17. The Eligibility of Surface Electromyography in the Assessment of Paraspinal Muscles Fatigue Following Interventions in Patients with Chronic Low Back Pain: A Systematic Review

    OpenAIRE

    Nahid Rahmani; Mohammad Ali Mohseni-Bandpei; Iraj Abdollahi

    2013-01-01

    Objective: Evaluation of paraspinal muscles endurance in patients with chronic low back pain (LBP) seems to be of great importance. Many studies demonstrated that surface electromyography has merit to assess muscle fatigue using frequency spectrum. The purpose of this study was to systematically review the eligibility of the surface electromyography in the assessment of paraspinal muscles fatigue changes following different interventions in patients with chronic LBP. Materials & Methods: ...

  18. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  19. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System

    Directory of Open Access Journals (Sweden)

    Scott K. Lynn, Casey M. Watkins, Megan A. Wong, Katherine Balfany, Daniel F. Feeney

    2018-06-01

    Full Text Available The Athos ® wearable system integrates surface electromyography (sEMG electrodes into the construction of compression athletic apparel. The Athos system reduces the complexity and increases the portability of collecting EMG data and provides processed data to the end user. The objective of the study was to determine the reliability and validity of Athos as compared with a research grade sEMG system. Twelve healthy subjects performed 7 trials on separate days (1 baseline trial and 6 repeated trials. In each trial subjects wore the wearable sEMG system and had a research grade sEMG system’s electrodes placed just distal on the same muscle, as close as possible to the wearable system’s electrodes. The muscles tested were the vastus lateralis (VL, vastus medialis (VM, and biceps femoris (BF. All testing was done on an isokinetic dynamometer. Baseline testing involved performing isometric 1 repetition maximum tests for the knee extensors and flexors and three repetitions of concentric-concentric knee flexion and extension at MVC for each testing speed: 60, 180, and 300 deg/sec. Repeated trials 2-7 each comprised 9 sets where each set included three repetitions of concentric-concentric knee flexion-extension. Each repeated trial (2-7 comprised one set at each speed and percent MVC (50%, 75%, 100% combination. The wearable system and research grade sEMG data were processed using the same methods and aligned in time. The amplitude metrics calculated from the sEMG for each repetition were the peak amplitude, sum of the linear envelope, and 95th percentile. Validity results comprise two main findings. First, there is not a significant effect of system (Athos or research grade system on the repetition amplitude metrics (95%, peak, or sum. Second, the relationship between torque and sEMG is not significantly different between Athos and the research grade system. For reliability testing, the variation across trials and averaged across speeds was 0.8%, 7

  20. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.

    Science.gov (United States)

    Soo, Yewguan; Sugi, Masao; Nishino, Masataka; Yokoi, Hiroshi; Arai, Tamio; Kato, Ryu; Nakamura, Tatsuhiro; Ota, Jun

    2009-01-01

    Muscle fatigue is commonly associated with the musculoskeletal disorder problem. Previously, various techniques were proposed to index the muscle fatigue from electromyography signal. However, quantitative measurement is still difficult to achieve. This study aimed at proposing a method to estimate the degree of muscle fatigue quantitatively. A fatigue model was first constructed using handgrip dynamometer by conducting a series of static contraction tasks. Then the degree muscle fatigue can be estimated from electromyography signal with reasonable accuracy. The error of the estimated muscle fatigue was less than 10% MVC and no significant difference was found between the estimated value and the one measured using force sensor. Although the results were promising, there were still some limitations that need to be overcome in future study.

  1. SURFACE ELECTROMYOGRAPHY OF MASSETER AND TEMPORAL MUSCLES WITH USE PERCENTAGE WHILE CHEWING ON CANDIDATES FOR GASTROPLASTY.

    Science.gov (United States)

    Santos, Andréa Cavalcante Dos; Silva, Carlos Antonio Bruno da

    Surface electromyography identifies changes in the electrical potential of the muscles during each contraction. The percentage of use is a way to treat values enabling comparison between groups. To analyze the electrical activity and the percentage of use of masseter and temporal muscles during chewing in candidates for gastric bypass. It was used Surface Electromyography Miotool 200,400 (Miotec (r), Porto Alegre/RS, Brazil) integrated with Miograph 2.0 software, involving patients between 20-40 years old. Were included data on electrical activity simultaneously and in pairs of temporal muscle groups and masseter at rest, maximum intercuspation and during the chewing of food previously classified. Were enrolled 39 patients (59 women), mean age 27.1+/-5.7. The percentage of use focused on temporal muscle, in a range of 11-20, female literacy (n=11; 47.82) on the left side and 15 (65.21) on the right-hand side. In the male, nine (56.25) at left and 12 (75.00) on the right-hand side. In masseter, also in the range of 11 to 20, female literacy (n=10; 43.48) on the left side and 11 (47.83) on the right-hand side. In the male, nine (56.25) at left and eight (50.00) on the right-hand side. 40-50% of the sample showed electrical activity in muscles (masseter and temporal) with variable values, and after processing into percentage value, facilitating the comparison of load of used electrical activity between the group, as well as usage percentage was obtained of muscle fibers 11-20% values involving, representing a range that is considered as a reference to the group studied. The gender was not a variable. A eletromiografia de superfície identifica variações dos potenciais elétricos dos músculos durante cada contração realizada. O percentual de uso é uma forma de tratar valores possibilitando comparação entre grupos. Analisar a atividade elétrica e o percentual de uso dos músculos masséteres e temporais durante a mastigação em candidatos à gastroplastia

  2. Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding

    Science.gov (United States)

    Bulea, Thomas C.; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H.; Contreras-Vidal, Jose L.

    2013-01-01

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG. PMID:23912203

  3. Relationship between lower limb position and pelvic floor muscle surface electromyography activity in menopausal women: a prospective observational study

    Science.gov (United States)

    Halski, Tomasz; Ptaszkowski, Kuba; Słupska, Lucyna; Dymarek, Robert; Paprocka-Borowicz, Małgorzata

    2017-01-01

    Objectives In physiotherapeutic practice, special attention is being given to the reciprocal anatomical, physiological, and biomechanical relationship of the pelvis and the structures connected to it. However, the scientific literature shows mainly the theoretical information about their mutual connections. The lack of information about these relations from a practical aspect coupled with the paucity of scientific papers on the impact of posture changes on the pelvic floor led the authors to conduct this study. The primary aim of this study was to compare the resting and functional bioelectrical activities of pelvic floor muscles (PFMs) depending on three different positions of the lower limbs (positions A, B, and C) in the supine position. Materials and methods This was a prospective observational study evaluating resting and functional activities of the PFM depending on the position of the lower limbs. The study was carried out at the Department and Clinic of Urology, University Hospital in Wroclaw, Poland and the target group were women in the menopausal period. Bioelectrical activity of PFM was recorded using a surface electromyographic instrument in the supine position. Results of the values obtained in A, B, and C positions were compared using a one-way analysis of variance. Results In position A, the average resting surface electromyography (sEMG) activity of PFM was 6.9±2.6 µV; in position B, the result was 6.9±2.5 µV and in position C, the resting sEMG activity was 5.7±1.8 µV (P=0.0102). The results of the functional bioelectrical activity of PFM were as follows: position A – 20.3±11.8 µV, position B – 19.9±10.6 µV, and position C – 25.3±10.9 µV (P=0.0104). Conclusion The results showed that in the supine position, the PFM achieved the lowest resting activity and the highest functional activity. Therefore, the supine position can be recommended for the diagnosis and therapy of weakened PFM. PMID:28115836

  4. Surface electromyography can quantify temporal and spatial patterns of activation of intrinsic human foot muscles.

    Science.gov (United States)

    Ferrari, E; Cooper, G; Reeves, N D; Hodson-Tole, E F

    2018-04-01

    Intrinsic foot muscles (IFM) are a crucial component within the human foot. Investigating their functioning can help understand healthy and pathological behaviour of foot and ankle, fundamental for everyday activities. Recording muscle activation from IFM has been attempted with invasive techniques, mainly investigating single muscles. Here we present a novel methodology, to investigate the feasibility of recording physiological surface EMG (sEMG) non-invasively and quantify patterns of activation across the whole plantar region of the foot. sEMG were recorded with a 13 × 5 array from the sole of the foot (n = 25) during two-foot stance, two-foot tiptoe and anterior/posterior sways. Physiological features of sEMG were analysed. During anterior/posterior epochs within the sway task, sEMG patterns were analysed in terms of signal amplitude (intensity) and structure (Sample Entropy) distribution, by evaluating the centre of gravity (CoG) of each topographical map. Results suggest signals are physiological and not affected by loading. Both amplitude and sample entropy CoG coordinates were grouped in one region and overlapped, suggesting that the region with highest amplitude corresponds with the most predictable signal. Therefore, both spatial and temporal features of IFM activation may be recorded non-invasively, providing opportunity for more detailed investigation of IFM function in healthy and patient populations. Copyright © 2018. Published by Elsevier Ltd.

  5. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography

    DEFF Research Database (Denmark)

    Blangsted, Anne Katrine; Sjøgaard, Gisela; Madeleine, Pascal

    2005-01-01

    Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG......) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified...... LFF. EMG and MMG were recorded from ECR during static test contractions at 5% and 80% MVC. Electrical stimulation, MVC, and test contractions were performed before 10%MVC10 min and at 10, 30, 90 and 150 min recovery. In spite of no changes in MVC, LFF persisted up to 150 min recovery but did...

  6. Analysis of endodontist posture utilizing cinemetry, surface electromyography and ergonomic checklists.

    Science.gov (United States)

    Onety, Geraldo Celso da Silva; Leonel, Daniel Vilela; Saquy, Paulo César; Silva, Gabriel Pádua da; Ferreira, Bruno; Varise, Tiago Gilioli; Sousa, Luiz Gustavo de; Verri, Edson Donizetti; Siéssere, Selma; Semprini, Marisa; Nepomuceno, Victor Rodrigues; Regalo, Simone Cecilio Hallak

    2014-01-01

    The postural risk factors for dentists include the ease of vision in the workplace, cold, vibration and mechanical pressure in tissues, incorrect posture, functional fixity, cognitive requirements and work-related organizational and psychosocial factors. The objective was to analyze the posture of endodontists at the workplace. Eighteen right-handed endodontists aged 25 to 60 years (34±3) participated in the study. Electromyography, kinemetry, ergonomic scales (RULA and Couto's checklist) and biophotogrammetry were used to analyze the posture of endodontists during root canal treatment of the maxillary right first and second molars using rotary and manual instrumentation. The variations observed in the electromyographic activities during the performance of rotary and manual techniques suggest that the fibers of the longissimus region, anterior and medium deltoid, medium trapezium, biceps, triceps brachii, brachioradialis and short thumb abductor muscles underwent adaptations to provide more accurate functional movements. Computerized kinemetry and biophotogrammetry showed that, as far as posture is concerned, rotary technique was more demanding than the manual technique. In conclusion, the group of endodontists evaluated in this study exhibited posture disorders regardless of whether the rotary or manual technique was used.

  7. Extracting Extensor Digitorum Communis Activation Patterns using High-Density Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu

    2015-10-01

    Full Text Available The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions.The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7×9 surface electromyogram (EMG recordings. The muscle activation map (based on the root mean square of the EMG was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic. Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal-distal direction than in the radial-ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders.

  8. Muscle Fatigue in the Three Heads of the Triceps Brachii During a Controlled Forceful Hand Grip Task with Full Elbow Extension Using Surface Electromyography.

    Science.gov (United States)

    Ali, Asraf; Sundaraj, Kenneth; Badlishah Ahmad, R; Ahamed, Nizam Uddin; Islam, Anamul; Sundaraj, Sebastian

    2015-06-27

    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.

  9. Muscle Fatigue in the Three Heads of the Triceps Brachii During a Controlled Forceful Hand Grip Task with Full Elbow Extension Using Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Ali Md. Asraf

    2015-06-01

    Full Text Available The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = −2.863, followed by the medial head (slope = −2.412 and the lateral head (slope = −1.877 of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.

  10. Muscular Activities Measurements of Forward Lean and Upright Sitting Motorcycling Postures via Surface Electromyography (sEMG

    Directory of Open Access Journals (Sweden)

    Ma’arof Muhammad Izzat Nor

    2017-01-01

    Full Text Available Motorcycling postures are generically speculated to be physical and physiologically demanding – which in-turn may lead to motorcycling fatigue, and then becoming a possible factor to road accident. The objective of this study was to measure the muscular activities of various motorcycling postures. High muscular activity reading will signifies that motorcycling is indeed physically and physiologically demanding to the motorcyclist. For this particular study, the following postures were tested: i forward lean, ii upright sitting, and iii neutral sitting (as control. Surface electromyography (sEMG measurement was conducted on the following muscles: i extensor carpi radialis, ii upper trapezius iii latissimus dorsi, and iv erector spinae. The results showed that for all test subjects, the muscular activities readings for the forward lean posture was actually close to neutral sitting’s. Whilst, the upright sitting had showed much higher muscular activities measurement instead. Conclusively, this study had proven that any types of discomforts associated with the forward lean posture is not originated from muscular activities. Whereas, confirming that any discomforts in regards to the upright sitting is indeed related to muscular activities. Further studies are warranted to discover the actual risk factors that causes physical and physiological discomforts for the forward lean motorcycling posture.

  11. Correlative Evaluation of Mental and Physical Workload of Laparoscopic Surgeons Based on Surface Electromyography and Eye-tracking Signals.

    Science.gov (United States)

    Zhang, Jian-Yang; Liu, Sheng-Lin; Feng, Qing-Min; Gao, Jia-Qi; Zhang, Qiang

    2017-09-11

    Surgeons' mental and physical workloads are major focuses of operating room (OR) ergonomics, and studies on this topic have generally focused on either mental workload or physical workload, ignoring the interaction between them. Previous studies have shown that physically demanding work may affect mental performance and may be accompanied by impaired mental processing and decreased performance. In this study, 14 participants were recruited to perform laparoscopic cholecystectomy (LC) procedures in a virtual simulator. Surface electromyography (sEMG) signals of the bilateral trapezius, bicipital, brachioradialis and flexor carpi ulnaris (FCU) muscles and eye-tracking signals were acquired during the experiment. The results showed that the least square means of muscle activity during the LC phases of surgery in an all-participants mixed effects model were 0.79, 0.81, and 0.98, respectively. The observed muscle activities in the different phases exhibited some similarity, while marked differences were found between the forearm bilateral muscles. Regarding mental workload, significant differences were observed in pupil dilation between the three phases of laparoscopic surgery. The mental and physical workloads of laparoscopic surgeons do not appear to be generally correlated, although a few significant negative correlations were found. This result further indicates that mental fatigue does markedly interfere with surgeons' operating movements.

  12. Implementation of a real-time automatic onset time detection for surface electromyography measurement systems using NI myRIO

    Directory of Open Access Journals (Sweden)

    Lersviriyanantakul Chaiwat

    2016-01-01

    Full Text Available For using surface electromyography (sEMG in various applications, the process consists of three parts: an onset time detection for detecting the first point of movement signals, a feature extraction for extracting the signal attribution, and a feature classification for classifying the sEMG signals. The first and the most significant part that influences the accuracy of other parts is the onset time detection, particularly for automatic systems. In this paper, an automatic and simple algorithm for the real-time onset time detection is presented. There are two main processes in the proposed algorithm; a smoothing process for reducing the noise of the measured sEMG signals and an automatic threshold calculation process for determining the onset time. The results from the algorithm analysis demonstrate the performance of the proposed algorithm to detect the sEMG onset time in various smoothing-threshold equations. Our findings reveal that using a simple square integral (SSI as the smoothing-threshold equation with the given sEMG signals gives the best performance for the onset time detection. Additionally, our proposed algorithm is also implemented on a real hardware platform, namely NI myRIO. Using the real-time simulated sEMG data, the experimental results guarantee that the proposed algorithm can properly detect the onset time in the real-time manner.

  13. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise.

    Science.gov (United States)

    Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J

    2016-04-01

    In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.

  14. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    Science.gov (United States)

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292

  15. Proceedings of the first workshop on Peripheral Machine Interfaces: Going beyond traditional surface electromyography

    Directory of Open Access Journals (Sweden)

    Claudio eCastellini

    2014-08-01

    Full Text Available One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive PNS-Machine Interfaces was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PNS-Machine Interface (PMI has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the peripheral nervous system (PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

  16. An Investigation Into Time Domain Features of Surface Electromyography to Estimate the Elbow Joint Angle

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available In literature, it is well established that feature extraction and pattern classification algorithms play essential roles in accurate estimation of the elbow joint angle. The problem with these algorithms, however, is that they require a learning stage to recognize the pattern as well as capture the variability associated with every subject when estimating the elbow joint angle. As EMG signals can be used to represent motion, we developed a non-pattern recognition method to estimate the elbow joint angle based on twelve time-domain features extracted from EMG signals recorded from bicep muscles alone. The extracted features were smoothed using a second order Butterworth low pass filter to produce the estimation. The accuracy of the estimated angles was evaluated by using the Pearson’s Correlation Coefficient (PCC and Root Mean Square Error (RMSE.The regression parameters (Euclidean distance, R^2 and slope were calculated to observe the response of the features to the elbow-joint angle. From the investigation, we found, in the period of motion 10s, MYOP features have the best accuracy: 0.97±0.02 (Mean±SD and 11.37±3.04˚ (Mean±SD for correlation coefficient and RMSE respectively. MYOP features also showed the highest R^2 and slope value 0.986±0.0083 (Mean±SD and 0.746±0.17 (Mean±SD respectively for flexion and extension motion and all periods of motion.

  17. The practical use of surface electromyography during running: does the evidence support the hype? A narrative review.

    Science.gov (United States)

    Subbu, R; Weiler, R; Whyte, G

    2015-01-01

    Surface electromyography (sEMG) is a commonly used technique to investigate muscle activation and fatigue, which is non-invasive and can allow for continuous measurement. Systematic research on the use of sEMG in the sporting environment has been on-going for many years and predominantly based on cycling and rowing activities. To date there have been no reviews assessing the validity and reliability in sEMG exclusively in running activities specifically during on-field testing. The purpose of this review is to evaluate the use of sEMG in the practical context and whether this be translated to on-field testing. Electronic literature searches were performed using the Cochrane Library, PUBMED, CINAHL and PeDro without restrictions on the study date to identify the relevant current English language literature. 10 studies were relevant after title and content review. All the studies identified were all level three evidence based. The general trends of the sEMG activity appear to correlate with running velocity and muscle fatigue seems almost always the consequence of prolonged, dynamic activity. However, these changes are not consistently measured or statistically significant throughout the studies raising the question of the accuracy and reliability when analysing sEMG measurements and making assumptions about the cause of fatigue. An agreed consensus when measuring and analysing sEMG data during running activities particularly in field testing with the most appropriate study design and reliable methodology is yet to be determined and further studies are required.

  18. Surface Electromyography Assessments of the Vastus medialis and Rectus femoris Muscles and Creatine Kinase after Eccentric Contraction Following Glutamine Supplementation.

    Science.gov (United States)

    Rahmani-Nia, Farhad; Farzaneh, Esmail; Damirchi, Arsalan; Majlan, Ali Shamsi; Tadibi, Vahid

    2014-03-01

    L-glutamine is the most abundant amino acid found in human muscle and plays an important role in protein synthesis and can reduce the levels of inflammation biomarkers and creatine kinase (CK) after training sessions. Delayed onset muscle soreness (DOMS) develops after intense exercise and is associated with an inflammatory response. The purpose of this study was to investigate the effect of glutamine supplementation on surface electromyography activity of the vastus medialis muscle (VMM) and rectus femoris muscle (RFM) and levels of creatine kinase after an eccentric contraction. SEVENTEEN HEALTHY MEN (AGE: 22.35±2.27yr; body mass: 69.91± 9.78kg; height: 177.08±4.32cm) were randomly assigned to experimental (n=9) and control groups (n=8) in a double-blind manner. In both groups, subjects were given L-glutamine supplementation (0.1g.kg(-1)) or placebo three times a week for 4 weeks. Median frequency (MDF) and mean power frequency (MPF) for VMM and RFM muscles and also CK measurements were performed before, 24h and 48 h after a resistance training session. The resistance training included 6 sets of eccentric leg extensions to exhaustion with 75% of 1RM. There was no significant difference between groups for MDF or MPF in VMM and RFM. The difference of CK level between the groups was also not significant. The results of this study indicate that glutamine supplementation has no positive effect on muscle injury markers after a resistance training session.

  19. Non-invasive 3D facial analysis and surface electromyography during functional pre-orthodontic therapy: a preliminary report

    Directory of Open Access Journals (Sweden)

    Gianluca M. Tartaglia

    2009-10-01

    Full Text Available OBJECTIVES: Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. MATERIAL AND METHODS: The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. RESULTS: The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. CONCLUSIONS: Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches and extraoral (face morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles.

  20. [A field study on the work load and muscle fatigue at neck-shoulder in female sewing machine operators by using surface electromyography].

    Science.gov (United States)

    Zhang, Fei-ruo; Wang, Sheng; He, Li-hua; Zhang, Ying; Wu, Shan-shan; Li, Jing-yun; Hu, Guang-yi; Ye, Kang-ping

    2011-03-01

    To study neck and shoulder work-related muscle fatigue of female sewing machine operators. 18 health female sewing machine operators without musculoskeletal disorders work in Beijing garment industry factory as volunteers in participate of this study. The maximal voluntary contraction (MVC) and 20% MVC of bilateral upper trapezium and cervical erectors spinae was tested before sewing operations, then the whole 20 time windows (1 time window = 10 min) sewing machine operations was monitored and the surface electromyography (sEMG) signals simultaneously was recorded after monitoring the 20%MVC was tested. Use amplitude analysis method to reduction recorded EMG signals. During work, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezium (LUT) and right upper trapezium (RUT) respectively was 6.78 ± 1.05, 6.94 ± 1.12, 5.68 ± 2.56 and 6.47 ± 3.22, work load of right is higher than the left; static load analysis indicated the value of RMS(20%MVC) before work was higher than that value after work, the increase of right CES and UT RMS(20%MVC) was more; the largest 20%MVE of bilateral CES occurred at 20th time window, and that of bilateral UT happened at 16th. The work load of female sewing machine operators is sustained "static" load, and work load of right neck-shoulder is higher than left, right neck-shoulder muscle is more fatigable and much serious once fatigued.

  1. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Liu Cao

    2017-01-01

    Full Text Available The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF magnetic stimulation on surface electromyography (SEMG signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject’s deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS, median frequency (MDF, and sample entropy (SampEn, were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant (p0.05. In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p<0.001 and MDF and SampEn were significantly smaller (all p<0.001.

  2. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects.

    Science.gov (United States)

    Cao, Liu; Wang, Ying; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Zheng, Dingchang

    2017-01-01

    The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF) magnetic stimulation on surface electromyography (SEMG) signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body) with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects). The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject's deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS), median frequency (MDF), and sample entropy (SampEn), were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant ( p 0.05). In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p < 0.001) and MDF and SampEn were significantly smaller (all p < 0.001).

  3. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography

    DEFF Research Database (Denmark)

    Blangsted, Anne Katrine; Sjøgaard, Gisela; Madeleine, Pascal

    2005-01-01

    Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG...

  4. Analysis of one repetition during biceps curl exercise among age-matched adult volunteers using endurance, curl speed and surface electromyography signals.

    Science.gov (United States)

    Marri, Kiran; Maitra Ghosh, Diptasree; Swaminathan, Ramakrishnan

    2017-07-01

    Exercises under isometric and dynamic contractions are influenced by the rate coding and recruitment strategies. The study of muscle strength under dynamic contraction is normally performed using one-repetition maximum (1-RM) method. There are several variants of deriving one repetition method using number of repetitions and load that are useful in physical fitness and clinical rehabilitation program. However, the factors of dynamic contractions such as endurance time, speed of muscle contractions and muscle activity are not considered in 1-RM methods. The muscular activities are analyzed using surface electromyography (sEMG) signals. Limited work has been reported on the relationship between the 1-RM method and factors such as endurance time, speed of contraction and sEMG activity. In this work, a modified 1-RM method is proposed, namely, N-RM, using load, number of repetitions, endurance time, speed of contraction and normalized sEMG activity. For this purpose, sEMG signals are recorded from 58 healthy subjects under standard dynamic contraction protocol involving curl exercise. Conventional 1-RM is computed by using Epley's method and compared with proposed method using correlation analysis. The results show that 1-RM increases linearly with number of curls (r=1) but has a poor correlation coefficient with sEMG (r=0.01) and endurance time (r =0.4). The curl speed for lower 1-RM and higher 1-RM did not show any statistical difference (p =0.2). The proposed N-RM is observed to have good correlation with endurance time (r=0.734), curl speed (r=0.893) and sEMG activity (r=0.8851). These results demonstrate that the proposed N-RM is highly correlated to factors influencing the dynamic contractions. This method can be further extended to assess muscles under various clinical disorders and sports training.

  5. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    Science.gov (United States)

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no

  6. Eletromiografia de superfície no diagnóstico da dominância lateral em crianças: aspectos psicomotores Surface electromyography in diagnosis of lateral dominance in children: psychomotor aspects

    Directory of Open Access Journals (Sweden)

    Ceme Ferreira Jordy

    1995-09-01

    Full Text Available A dominância lateral foi verificada pelo eletromiograma de superfície em 100 crianças neurologicamente normais. Foram usados estímulos verbais durante os registros eletromiográficos. Em comparação com o diagnóstico clínico, a eletromiografia se revelou mais precisa, excluindo influências subjetivas nos resultados. Destrismo foi diagnosticado em 90 pacientes, canhotismo em 3 e dominância indefinida em 7. Mecanismos de ordem psicomotora são sugeridos para justificar as respostas motoras provocadas por estímulos verbais com conteúdo afetivo.Surface electromyography was used to verify the lateral dominance in 100 six to fourteen years old normal children. Electromyographic records were obtained during verbal stimulation. Dexterity was found in 90, sinistrality in 3 and indefinite dominance in 7 patients. Comparing with results from clinical examination, the electromyography seems more accurate and easy to perform. The responses obtained after verbal stimulations were attributed to a psychomotor phenomenon. Mechanisms involved in the production of muscle contractions after verbal stimulation, were not proved. Pharmacologic action of cathecolamines on the central motor neural subsystems is advanced.

  7. Insight into the function of the obturator internus muscle in humans: observations with development and validation of an electromyography recording technique.

    Science.gov (United States)

    Hodges, Paul W; McLean, Linda; Hodder, Joanne

    2014-08-01

    There are no direct recordings of obturator internus muscle activity in humans because of difficult access for electromyography (EMG) electrodes. Functions attributed to this muscle are based on speculation and include hip external rotation/abduction, and a role in stabilization as an "adjustable ligament" of the hip. Here we present (1) a technique to insert intramuscular EMG electrodes into obturator internus plus (2) the results of an investigation of obturator internus activity relative to that of nearby hip muscles during voluntary hip efforts in two hip positions and a weight-bearing task. Fine-wire electrodes were inserted with ultrasound guidance into obturator internus, gluteus maximus, piriformis and quadratus femoris in ten participants. Participants performed ramped and maximal isometric hip efforts (open kinetic chain) into flexion/extension, abduction/adduction, and internal/external rotation, and hip rotation to end range in standing. Analysis of the relationship between activity of the obturator internus and the other hip muscles provided evidence of limited contamination of the recordings with crosstalk. Obturator internus EMG amplitude was greatest during hip extension, then external rotation then abduction, with minimal to no activation in other directions. Obturator internus EMG was more commonly the first muscle active during abduction and external rotation than other muscles. This study describes a viable and valid technique to record obturator internus EMG and provides the first evidence of its activation during simple functions. The observation of specificity of activation to certain force directions questions the hypothesis of a general role in hip stabilisation regardless of force direction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recording and conditioning of surface EMG signal for decomposition

    Czech Academy of Sciences Publication Activity Database

    Pošusta, A.; Otáhal, Jakub

    2012-01-01

    Roč. 8, č. 30 (2012), s. 28-31 ISSN 1801-1217 R&D Projects: GA AV ČR(CZ) 1QS501210509; GA ČR(CZ) GBP304/12/G069 Grant - others:GA MŠk(CZ) LH12070 Institutional support: RVO:67985823 Keywords : surface electromyography * decomposition * EMG Lab * prosthetics Subject RIV: FH - Neurology

  9. Changes in surface electromyography signals and kinetics associated with progression of fatigue at two speeds during wheelchair propulsion.

    Science.gov (United States)

    Qi, Liping; Wakeling, James; Grange, Simon; Ferguson-Pell, Martin

    2012-01-01

    The purpose of this study was to determine whether muscle balance is influenced by fatigue in a recordable way, toward creating novel defensive activity strategies for manual wheelchair users (MWUs). Wheelchair propulsion to a point of mild fatigue, level 15 on the Rating of Perceived Exertion scale, was investigated at two different speeds. Surface electromyographic (EMG) activity of 7 muscles was recorded on 14 nondisabled participants. Kinetic variables were measured using a SmartWheel. No significant effect was found of percentage endurance time on kinetic variables for the two propulsion speeds. Fatigue-related changes in the EMG spectra were identified as an increase of EMG intensity and a decrease of mean power frequency as a function of percent endurance time for the tested muscles under both fast and slow speed conditions. The greater increases in activity for propulsive muscles compared with recovery muscles during fast speed wheelchair propulsion indicated muscle imbalance associated with fatiguing wheelchair propulsion. This study shows how kinetic and EMG information might be used as feedback to MWUs to ensure that they conduct activity in ways that do not precipitate injury.

  10. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    Science.gov (United States)

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  11. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  12. Reliability of surface electromyography activity of gluteal and hamstring muscles during sub-maximal and maximal voluntary isometric contractions.

    Science.gov (United States)

    Bussey, Melanie D; Aldabe, Daniela; Adhia, Divya; Mani, Ramakrishnan

    2018-04-01

    Normalizing to a reference signal is essential when analysing and comparing electromyography signals across or within individuals. However, studies have shown that MVC testing may not be as reliable in persons with acute and chronic pain. The purpose of this study was to compare the test-retest reliability of the muscle activity in the biceps femoris and gluteus maximus between a novel sub-MVC and standard MVC protocols. This study utilized a single individual repeated measures design with 12 participants performing multiple trials of both the sub-MVC and MVC tasks on two separate days. The participant position in the prone leg raise task was standardised with an ultrasonic sensor to improve task precession between trials/days. Day-to-day and trial-to-trial reliability of the maximal muscle activity was examined using ICC and SEM. Day-to-day and trial-to-trial reliability of the EMG activity in the BF and GM were high (0.70-0.89) to very high (≥0.90) for both test procedures. %SEM was <5-10% for both tests on a given day but higher in the day-to-day comparisons. The lower amplitude of the sub-MVC is a likely contributor to increased %SEM (8-13%) in the day-to-day comparison. The findings show that the sub-MVC modified prone double leg raise results in GM and BF EMG measures similar in reliability and precision to the standard MVC tasks. Therefore, the modified prone double leg raise may be a useful substitute for traditional MVC testing for normalizing EMG signals of the BF and GM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. MAGELLAN SURFACE CHARACTERISTICS VECTOR DATA RECORD

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the Magellan Surface Characteristics Vector Data Record (SCVDR) which is an orbit-by-orbit reduction of Magellan scattering and emission...

  14. Tensor veli palatini electromyography for monitoring Eustachian tube rehabilitation in otitis media.

    Science.gov (United States)

    Picciotti, P M; Della Marca, G; D'Alatri, L; Lucidi, D; Rigante, M; Scarano, E

    2017-05-01

    The pathogenesis of otitis media is related to Eustachian tube dysfunction. The tensor veli palatini muscle actively opens the Eustachian tube and promotes middle-ear ventilation. This study describes a technique for paratubal electromyography that uses a surface, non-invasive electrode able to record tensor veli palatini muscle activity during swallowing. Twenty otitis media patients and 10 healthy patients underwent tensor veli palatini electromyography. Activity of this muscle before and after Eustachian tube rehabilitation was also assessed. In 78.5 per cent of patients, the electromyography duration phase and/or amplitude were reduced in the affected side. The muscle action potential was impaired in all patients who underwent Eustachian tube rehabilitation. This study confirmed that Eustachian tube muscle dysfunction has a role in otitis media pathogenesis and showed that muscle activity increases after Eustachian tube rehabilitation therapy.

  15. Application of advanced biomechanical methods in studying low back pain – recent development in estimation of lower back loads and large-array surface electromyography and findings

    Directory of Open Access Journals (Sweden)

    Bazrgari B

    2017-07-01

    Full Text Available Babak Bazrgari,1 Ting Xia2 1F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 2Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA Abstract: Low back pain (LBP is a major public health problem and the leading disabling musculoskeletal disorder globally. A number of biomechanical methods using kinematic, kinetic and/or neuromuscular approaches have been used to study LBP. In this narrative review, we report recent developments in two biomechanical methods: estimation of lower back loads and large-array surface electromyography (LA-SEMG and the findings associated with LBP. The ability to estimate lower back loads is very important for the prevention and the management of work-related low back injuries based on the mechanical loading model as one category of LBP classification. The methods used for estimation of lower back loads vary from simple rigid link-segment models to sophisticated, optimization-based finite element models. In general, reviewed reports of differences in mechanical loads experienced in lower back tissues between patients with LBP and asymptomatic individuals are not consistent. Such lack of consistency is primarily due to differences in activities under which lower back mechanical loads were investigated as well as heterogeneity of patient populations. The ability to examine trunk neuromuscular behavior is particularly relevant to the motor control model, another category of LBP classification. LA-SEMG not only is noninvasive but also provides spatial resolution within and across muscle groups. Studies using LA-SEMG showed that healthy individuals exhibit highly organized, symmetric back muscle activity patterns, suggesting an orderly recruitment of muscle fibers. In contrast, back muscle activity patterns in LBP patients are asymmetric or multifocal, suggesting lack of orderly muscle recruitment. LA-SEMG was also shown capable of

  16. A surface electromyography based objective method to identify patients with nonspecific chronic low back pain, presenting a flexion related movement control impairment.

    Science.gov (United States)

    Van Damme, Benedicte; Stevens, Veerle; Perneel, Christiaan; Van Tiggelen, Damien; Neyens, Ellen; Duvigneaud, Nathalie; Moerman, Luc; Danneels, Lieven

    2014-12-01

    Movement control impairments (MCI) are often present in patients with non-specific chronic low back pain (NS-CLBP). Therefore, movement control exercises are widely used to rehabilitate patients. However, the objective assessment remains difficult. The purpose of this study was to develop a statistical model, based on logistic regression analysis, to differentiate patients with NS-CLBP presenting a flexion-related MCI from healthy subjects. This model is based on trunk muscle activation patterns measured by surface electromyography (sEMG), during movement control exercises. Sixty-three healthy male subjects and 36 male patients with a flexion-related MCI participated in this study. Muscle activity of the internal obliques, the external obliques, the lumbar multifidus and the thoracic part of the iliocostalis was registered. Ratios of deep stabilizing to superficial torque producing muscle activity were calculated to examine trunk muscle recruitment patterns during 6 different exercises. Logistic regression analyses were performed (1) to define the ratios and exercises that were most discriminating between patients and non-patients, (2) to make a predictive model. K-Fold cross-validation was used to assess the performance of the predictive model. This study demonstrated that sEMG trunk muscle recruitment patterns during movement control tests, allows differentiating NSCLBP patients with a flexion-related MCI from healthy subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study

    Directory of Open Access Journals (Sweden)

    John M. Vasudevan

    2016-01-01

    Full Text Available Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete’s typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants’ natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes’ averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.

  18. Electromyography characterization of stretch responses in hemiparetic stroke patients and their relationship with the Modified Ashworth scale.

    Science.gov (United States)

    Cooper, A; Musa, I M; van Deursen, R; Wiles, C M

    2005-10-01

    To determine the validity of the Modified Ashworth Scale as a measure of spasticity by determining its relationship to surface electromyography activity and contracture. A controlled study of hemiparetic stroke patients with spasticity. A physiotherapy department in a secondary care hospital. Thirty-one stroke patients and 20 healthy volunteers. The resistance to passive movement around the knee and ankle of the affected and unaffected legs was rated using the Modified Ashworth Scale. Passive range of movement was measured with a goniometer. Surface electromyography recordings of four lower limb muscles were taken during passive stretches of the knee and ankle. Hemiparetic patients produced surface electromyography responses to stretch that were of greater amplitude (unaffected limbs: mean = 25.82 mV (43.85), affected limbs: mean = 24.77 mV (35.46)) than those of healthy volunteers (mean = 15.85 (29.96)). The affected muscles of hemiparetic patients were more likely to produce surface electromyography responses to stretch of a sustained duration (45% of cases) compared with unaffected limbs (24% of cases) and those of healthy volunteers (16% of cases). The Modified Ashworth Scale showed a positive correlation with the magnitude (p Ashworth Scale were associated with contracture (p Ashworth Scale reflects spasticity in terms of surface electromyography stretch responses produced by passive movement, but the relationship of spasticity to contracture remains unclear.

  19. Surface treatment of magnetic recording heads

    Science.gov (United States)

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, Singh C.

    1995-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  20. Combined surface electromyography, near-infrared spectroscopy and acceleration recordings of muscle contraction: The effect of motion

    Directory of Open Access Journals (Sweden)

    Krista Kauppi

    2017-03-01

    This paper reviews the current state of noninvasive EMG and NIRS-based methods used to study muscle function. In addition, we built a combined sEMG/NIRS/ACM sensor to perform simultaneous measurements for static and dynamic exercises of a biceps brachii muscle. Further, we discuss the effect of muscle motion in response of NIRS and EMG when measured noninvasively. Based on our preliminary studies, both NIRS and EMG supply specific information on muscle activation, but their signal responses also showed similarities with acceleration signals which, in this case, were supposed to be solely sensitive to motions.

  1. Entropic Analysis of Electromyography Time Series

    Science.gov (United States)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  2. Pathfinder Sea Surface Temperature Climate Data Record

    Science.gov (United States)

    Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.

    2016-02-01

    Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.

  3. Spontaneous mechanical and electrical activities of human calf musculature at rest assessed by repetitive single-shot diffusion-weighted MRI and simultaneous surface electromyography.

    Science.gov (United States)

    Schwartz, Martin; Steidle, Günter; Martirosian, Petros; Ramos-Murguialday, Ander; Preißl, Hubert; Stemmer, Alto; Yang, Bin; Schick, Fritz

    2018-05-01

    Assessment of temporal and spatial relations between spontaneous mechanical activities in musculature (SMAM) at rest as revealed by diffusion-weighted imaging (DWI) and electrical muscular activities in surface EMG (sEMG). Potential influences of static and radiofrequency magnetic fields on muscular activity on sEMG measurements at rest were examined systematically. Series of diffusion-weighted stimulated echo planar imaging were recorded with concurrent sEMG measurements. Electrical activities in sEMG were analyzed by non-parametric Friedman and two-sample Kolmogorov-Smirnov test. Direct correlation of both modalities was investigated by temporal mapping of electrical activity in sEMG to DWI repetition interval. Electrical activities in sEMG and number of visible SMAMs in DWI showed a strong correlation (ρ = 0.9718). High accordance between sEMG activities and visible SMAMs in DWI in a near-surface region around sEMG electrodes was achieved. Characteristics of sEMG activities were almost similar under varying magnetic field conditions. Visible SMAMs in DWI have shown a close and direct relation to concurrent signals recorded by sEMG. MR-related magnetic fields had no significant effects on findings in sEMG. Hence, appearance of SMAMs in DWI should not be considered as imaging artifact or as effects originating from the special conditions of MR examinations. Spatial and temporal distributions of SMAMs indicate characteristics of spontaneous (microscopic) mechanical muscular action at rest. Therefore, DWI techniques should be considered as non-invasive tools for studying physiology and pathophysiology of spontaneous activities in resting muscle. Magn Reson Med 79:2784-2794, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Hip strategy alterations in patients with history of low disc herniation and non-specific low back pain measured by surface electromyography and balance platform.

    Science.gov (United States)

    Ciesielska, Jagoda; Lisiński, Przemysław; Bandosz, Agata; Huber, Juliusz; Kulczyk, Aleksandra; Lipiec, Joanna

    2015-01-01

    The appearance of pathology in the lumbar spine, such as a previous episode of low disc herniation or non-specific low back pain contributes to improper activation of the hip muscles. The aim of the study was to detect alterations in hip strategy manifested by differences in balance parameters and rectus femoris and gluteus maximus activity in people with previous episode of pain radiation to one lower limb caused by low disc herniation or non-specific low back pain. We studied 11 patients with history of low-disc herniation, 9 patients with history of non-specific low back pain and 10 healthy subjects. Hip strategy alterations were detected by measuring rectus femoris and gluteus maximus activity in bilateral surface polyelectromyographic recordings and by stability measurements on a balance platform. In the surface polyelectromyography study, in both patients' group the value of the average amplitude was higher and the amount of the fluctuations was lower than in healthy subjects. There were no significant differences in stability parameters. A changed pattern of hip muscles activity was detected in the patients without changes in stability parameters. Greater disorder occurs in people in with previous episode of pain radiation to one lower limb caused by low disc herniation than in people with non-specific low back pain.

  5. Comparison of EMG signals recorded by surface electrodes on endotracheal tube and thyroid cartilage during monitored thyroidectomy

    Directory of Open Access Journals (Sweden)

    Feng-Yu Chiang

    2017-10-01

    Full Text Available A variety of electromyography (EMG recording methods were reported during intraoperative neural monitoring (IONM of recurrent laryngeal nerve (RLN in thyroid surgery. This study compared two surface recording methods that were obtained by electrodes on endotracheal tube (ET and thyroid cartilage (TC. This study analyzed 205 RLNs at risk in 110 patients undergoing monitored thyroidectomy. Each patient was intubated with an EMG ET during general anesthesia. A pair of single needle electrode was inserted obliquely into the TC lamina on each side. Standard IONM procedure was routinely followed, and EMG signals recorded by the ET and TC electrodes at each step were compared. In all nerves, evoked laryngeal EMG signals were reliably recorded by the ET and TC electrodes, and showed the same typical waveform and latency. The EMG signals recorded by the TC electrodes showed significantly higher amplitudes and stability compared to those by the ET electrodes. Both recording methods accurately detected 7 partial loss of signal (LOS and 2 complete LOS events caused by traction stress, but only the ET electrodes falsely detected 3 LOS events caused by ET displacement during surgical manipulation. Two patients with true complete LOS experienced temporary RLN palsy postoperatively. Neither permanent RLN palsy, nor complications from ET or TC electrodes were encountered in this study. Both electrodes are effective and reliable for recording laryngeal EMG signals during monitored thyroidectomy. Compared to ET electrodes, TC electrodes obtain higher and more stable EMG signals as well as fewer false EMG results during IONM.

  6. Investigation of Physiological Properties of Nerves and Muscles Using Electromyography

    Science.gov (United States)

    Roe, Seán M.; Johnson, Christopher D.; Tansey, Etain A.

    2014-01-01

    The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in…

  7. Eletromiografia de superfície para avaliação dos músculos do assoalho pélvico feminino: revisão de literatura Evaluation of female pelvic floor muscles using surface electromyography: literature review

    Directory of Open Access Journals (Sweden)

    Ana Paula Magalhães Resende

    2011-09-01

    Full Text Available A eletromiografia de superfície tem grande importância clínica e de pesquisa para o fisioterapeuta. Apesar de captar a atividade elétrica promovida pelo recrutamento das unidades motoras, há boa correlação entre o número de unidades ativadas e a força muscular. É um dos métodos de maior especificidade na avaliação do assoalho pélvico, embora não haja consenso em relação à sua aplicação. Essa revisão de literatura foi desenvolvida com o objetivo de agrupar as informações sobre o uso da eletromiografia de superfície na avaliação do assoalho pélvico. Foram pesquisados artigos nas bases de dados Medline, PubMed, Lilacs, SciELO e Biblioteca Cochrane, e selecionados os que avaliassem o assoalho pélvico feminino por meio de eletromiografia de superfície. Apesar de sua metodologia ainda carecer de padronização, é um instrumento que deve ser considerado nas pesquisas científicas em nosso meio, pois parece apresentar boa reprodutibilidade e confiabilidade. Pacientes com disfunções do assoalho pélvico possuem alterações no tempo de ativação dos músculos do assoalho pélvico (MAP e músculos abdominais. Quanto à gestação e puerpério, ainda faltam evidências sobre possíveis alterações da ativação elétrica dos MAP nesses períodos.Surface electromyography has clinical and research importance for the physiotherapist. Although capturing electrical activity promoted by recruitment of motor units, there is a good correlation between the number of activated units and muscle strength. This is one of the methods of higher specificity in pelvic floor evaluation, although the lack of consensus regarding its application. The aim of this literature review was to cluster information regarding to the use of surface electromyography in the evaluation of pelvic floor. Papers were searched in Medline, Pubmed Lilacs, SciELO and Cochrane Library. Were selected papers which methods used surface electromyography to evaluate the

  8. Electromyography

    Science.gov (United States)

    ... muscle movement, and other functions) Guillain-Barré syndrome (autoimmune disorder of the nerves that leads to muscle weakness or paralysis) Lambert-Eaton syndrome (autoimmune disorder of the nerves that causes muscle weakness) Multiple ...

  9. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle.

    NARCIS (Netherlands)

    Staudenmann, D.; Kingma, I.; Daffertshofer, A.; Stegeman, D.F.; Dieën, J.H. van

    2009-01-01

    Several skeletal muscles can be divided into sub-modules, called neuromuscular compartments (NMCs), which are thought to be controlled independently and to have distinct biomechanical functions. We looked for distinct muscle activation patterns in the triceps surae muscle (TS) using surface

  10. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle

    NARCIS (Netherlands)

    Staudenmann, D.; Kingma, I.; Daffertshofer, A.; Stegeman, D.F.; van Dieen, J.H.

    2009-01-01

    Several skeletal muscles can be divided into sub-modules, called neuromuscular compartments (NMCs), which are thought to be controlled independently and to have distinct biomechanical functions. We looked for distinct muscle activation patterns in the triceps surae muscle (TS) using surface

  11. Electromyography physiology engineering and noninvasive applications

    CERN Document Server

    Parker, Philip; John Wiley & Sons

    2004-01-01

    "Featuring contributions from key innovators working in the field today, Electromyography reveals the broad applications of EMG data in areas as diverse as neurology, ergonomics, exercise physiology, rehabilitation, movement analysis, biofeedback, and myoelectric control of prostheses." "Electromyography offers physiologists, medical professionals, and students in biomedical engineering a new window into the possibilities of this technology."--Jacket.

  12. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    Science.gov (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  13. Embroidered Electromyography: A Systematic Design Guide.

    Science.gov (United States)

    Shafti, Ali; Ribas Manero, Roger B; Borg, Amanda M; Althoefer, Kaspar; Howard, Matthew J

    2017-09-01

    Muscle activity monitoring or electromyography (EMG) is a useful tool. However, EMG is typically invasive, expensive and difficult to use for untrained users. A possible solution is textile-based surface EMG (sEMG) integrated into clothing as a wearable device. This is, however, challenging due to 1) uncertainties in the electrical properties of conductive threads used for electrodes, 2) imprecise fabrication technologies (e.g., embroidery, sewing), and 3) lack of standardization in design variable selection. This paper, for the first time, provides a design guide for such sensors by performing a thorough examination of the effect of design variables on sEMG signal quality. Results show that imprecisions in digital embroidery lead to a trade-off between low electrode impedance and high manufacturing consistency. An optimum set of variables for this trade-off is identified and tested with sEMG during a variable force isometric grip exercise with n = 12 participants, compared with conventional gel-based electrodes. Results show that thread-based electrodes provide a similar level of sensitivity to force variation as gel-based electrodes with about 90% correlation to expected linear behavior. As proof of concept, jogging leggings with integrated embroidered sEMG are made and successfully tested for detection of muscle fatigue while running on different surfaces.

  14. Combining Electromyography and Tactile Myography to Improve Hand and Wrist Activity Detection in Prostheses

    Directory of Open Access Journals (Sweden)

    Noémie Jaquier

    2017-10-01

    Full Text Available Despite recent advances in prosthetics and assistive robotics in general, robust simultaneous and proportional control of dexterous prosthetic devices remains an unsolved problem, mainly because of inadequate sensorization. In this paper, we study the application of regression to muscle activity, detected using a flexible tactile sensor recording muscle bulging in the forearm (tactile myography—TMG. The sensor is made of 320 highly sensitive cells organized in an array forming a bracelet. We propose the use of Gaussian process regression to improve the prediction of wrist, hand and single-finger activation, using TMG, surface electromyography (sEMG; the traditional approach in the field, and a combination of the two. We prove the effectiveness of the approach for different levels of activations in a real-time goal-reaching experiment using tactile data. Furthermore, we performed a batch comparison between the different forms of sensorization, using a Gaussian process with different kernel distances.

  15. Experiences in the creation of an electromyography database to help hand amputated persons.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Heynen, Simone; Hager, Anne-Gabrielle Mittaz; Castellimi, Claudio; Caputo, Barbara; Müller, Henning

    2012-01-01

    Currently, trans-radial amputees can only perform a few simple movements with prosthetic hands. This is mainly due to low control capabilities and the long training time that is required to learn controlling them with surface electromyography (sEMG). This is in contrast with recent advances in mechatronics, thanks to which mechanical hands have multiple degrees of freedom and in some cases force control. To help improve the situation, we are building the NinaPro (Non-Invasive Adaptive Prosthetics) database, a database of about 50 hand and wrist movements recorded from several healthy and currently very few amputated persons that will help the community to test and improve sEMG-based natural control systems for prosthetic hands. In this paper we describe the experimental experiences and practical aspects related to the data acquisition.

  16. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    Science.gov (United States)

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the

  17. Laryngeal electromyography in movement disorders: preliminary data

    Directory of Open Access Journals (Sweden)

    Kimaid Paulo A.T.

    2004-01-01

    Full Text Available This study describes preliminary laryngeal electromyography (LEMG data and botulinum toxin treatment in patients with dysphonia due to movement disorders. Twenty-five patients who had been clinically selected for botulinum toxin administration were examined, 19 with suspected laryngeal dystonia or spasmodic dysphonia (SD, 5 with vocal tremor, and 1 with Gilles de la Tourette syndrome (GTS. LEMG evaluations were performed before botulinum toxin administration using monopolar electrodes. Electromyography was consistent with dystonia in 14 patients and normal in 5, and differences in frequency suggesting essential tremor in 3 and Parkinson tremors in 2. The different LEMG patterns and significant improvement in our patients from botulinum toxin therapy has led us to perform laryngeal electromyography as a routine in UNICAMP movement disorders ambulatory.

  18. Assessing human brain impedance using simultaneous surface and intracerebral recordings.

    Science.gov (United States)

    Ranta, Radu; Le Cam, Steven; Tyvaert, Louise; Louis-Dorr, Valérie

    2017-02-20

    Most of the literature on the brain impedance proposes a frequency-independent resistive model. Recently, this conclusion was tackled by a series of papers (Bédard et al., 2006; Bédard and Destexhe, 2009; Gomes et al., 2016), based on microscopic sale modeling and measurements. Our paper aims to investigate the impedance issue using simultaneous in vivo depth and surface signals recorded during intracerebral electrical stimulation of epileptic patients, involving a priori different tissues with different impedances. Our results confirm the conclusions from Logothethis et al. (2007): there is no evidence of frequency dependence of the brain tissue impedance (more precisely, there is no difference, in terms of frequency filtering, between the brain and the skull bone), at least at a macroscopic scale. In order to conciliate findings from both microscopic and macroscopic scales, we recall different neural/synaptic current generators' models from the literature and we propose an original computational model, based on fractional dynamics. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  20. NOAA Climate Data Record (CDR) of Sea Surface Temperature - WHOI, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  1. Predicting 3D lip shapes using facial surface EMG

    NARCIS (Netherlands)

    Eskes, Merijn; van Alphen, Maarten J. A.; Balm, Alfons J. M.; Smeele, Ludi E.; Brandsma, Dieta; van der Heijden, Ferdinand

    2017-01-01

    Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and

  2. Unobtrusive electromyography-based eating detection in daily life: A new tool to address underreporting?

    Science.gov (United States)

    Blechert, J; Liedlgruber, M; Lender, A; Reichenberger, J; Wilhelm, F H

    2017-11-01

    Research on eating behavior is limited by an overreliance on self-report. It is well known that actual food intake is frequently underreported, and it is likely that this problem is overrepresented in vulnerable populations. The present research tested a chewing detection method that could assist self-report methods. A trained sample of 15 participants (usable data of 14 participants) kept detailed eating records during one day and one night while carrying a recording device. Signals recorded from electromyography sensors unobtrusively placed behind the right ear were used to develop a chewing detection algorithm. Results showed that eating could be detected with high accuracy (sensitivity, specificity >90%) compared to trained self-report. Thus, electromyography-based eating detection might usefully complement future food intake studies in healthy and vulnerable populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Record of Decision for Amchitka Surface Closure, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-08-01

    This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

  4. Sleep/wake estimation using only anterior tibialis electromyography data

    Directory of Open Access Journals (Sweden)

    Hwang SuHwan

    2012-05-01

    Full Text Available Abstract Background In sleep efficiency monitoring system, actigraphy is the simplest and most commonly used device. However, low specificity to wakefulness of actigraphy was revealed in previous studies. In this study, we assumed that sleep/wake estimation using actigraphy and electromyography (EMG signals would show different patterns. Furthermore, each EMG pattern in two states (sleep, wake during sleep was analysed. Finally, we proposed two types of method for the estimation of sleep/wake patterns using only EMG signals from anterior tibialis muscles and the results were compared with PSG data. Methods Seven healthy subjects and five patients (2 obstructive sleep apnea, 3 periodic limb movement disorder participated in this study. Night time polysomnography (PSG recordings were conducted, and electrooculogram, EMG, electroencephalogram, electrocardiogram, and respiration data were collected. Time domain analysis and frequency domain analysis were applied to estimate the sleep/wake patterns. Each method was based on changes in amplitude or spectrum (total power of anterior tibialis electromyography signals during the transition from the sleep state to the wake state. To obtain the results, leave-one-out-cross-validation technique was adopted. Results Total sleep time of the each group was about 8 hours. For healthy subjects, the mean epoch-by-epoch results between time domain analysis and PSG data were 99%, 71%, 80% and 0.64 (sensitivity, specificity, accuracy and kappa value, respectively. For frequency domain analysis, the corresponding values were 99%, 73%, 81% and 0.67, respectively. Absolute and relative differences between sleep efficiency index from PSG and our methods were 0.8 and 0.8% (for frequency domain analysis. In patients with sleep-related disorder, our proposed methods revealed the substantial agreement (kappa > 0.61 for OSA patients and moderate or fair agreement for PLMD patients. Conclusions The results of our proposed

  5. Electrocardiogram: his bundle potentials can be recorded noninvasively beat by beat on surface electrocardiogram.

    Science.gov (United States)

    Wang, Gaopin; Liu, Renguang; Chang, Qinghua; Xu, Zhaolong; Zhang, Yingjie; Pan, Dianzhu

    2017-03-15

    The micro waveform of His bundle potential can't be recorded beat-to-beat on surface electrocardiogram yet. We have found that the micro-wavelets before QRS complex may be related to atrioventricular conduction system potentials. This study is to explore the possibility of His bundle potential can be noninvasively recorded on surface electrocardiogram. We randomized 65 patients undergoing radiofrequency catheter ablation of paroxysmal superventricular tachycardia (exclude overt Wolff-Parkinson-White syndrome) to receive "conventional electrocardiogram" and "new electrocardiogram" before the procedure. His bundle electrogram was collected during the procedure. Comparative analysis of PA s (PA interval recorded on surface electrocardiogram), AH s (AH interval recorded on surface electrocardiogram) and HV s (HV interval recorded on surface electrocardiogram) interval recorded on surface "new electrocardiogram" and PA, AH, HV interval recorded on His bundle electrogram was investigated. There was no difference (P > 0.05) between groups in HV s interval (49.63 ± 6.19 ms) and HV interval (49.35 ± 6.49 ms). Results of correlational analysis found that HV S interval was significantly positively associated with HV interval (r = 0.929; P electrocardiogram. Noninvasive His bundle potential tracing might represent a new method for locating the site of atrioventricular block and identifying the origin of a wide QRS complex.

  6. Electromyography Activation Levels of the 3 Gluteus Medius Subdivisions During Manual Strength Testing.

    Science.gov (United States)

    Otten, Roald; Tol, Johannes L; Holmich, Per; Whiteley, Rodney

    2015-08-01

    Cross-sectional. Gluteus medius (GM) muscle dysfunction is associated with overuse injury. The GM is functionally composed of 3 separate subdivisions: anterior, middle, and posterior. Clinical assessment of the GM subdivisions is relevant to detect strength and activation deficits and guide specific rehabilitation programs. However, the optimal positions for assessing the strength and activation of these subdivisions are unknown. The first aim was to establish which strength-testing positions produce the highest surface electromyography (sEMG) activation levels of the individual GM subdivisions. The second aim was to evaluate differences in sEMG activation levels between the tested and contralateral (stabilizing) leg. Twenty healthy physically active male subjects participated in this study. Muscle activity using sEMG was recorded for the GM subdivisions in 8 different strength-testing positions and analyzed using repeated-measures analysis of variance. Significant differences between testing positions for all 3 GM subdivisions were found. There were significant differences between the tested and the contralateral anterior and middle GM subdivisions (P guide specific GM rehabilitation.

  7. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    Science.gov (United States)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  8. Classifying Apnea of Prematurity by Transcutaneous Electromyography of the Diaphragm

    NARCIS (Netherlands)

    Kraaijenga, Juliette V.; Hutten, Gerard J.; de Waal, Cornelia G.; de Jongh, Frans H.; Onland, Wes; van Kaam, Anton H.

    2018-01-01

    Background: Treatment of apnea is highly dependent on the type of apnea. Chest impedance (CI) has inaccuracies in monitoring respiration, which compromises accurate apnea classification. Electrical activity of the diaphragm measured by transcutaneous electromyography (EMG) is feasible in preterm

  9. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Directory of Open Access Journals (Sweden)

    Marco Gazzoni

    Full Text Available The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1 the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2 the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1 it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2 hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  10. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Science.gov (United States)

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  11. Seismic signal in Olkiluoto. Preliminary comparison of underground and surface recordings

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-02-01

    Seismic hazard studies in Finland relate to nuclear power plant sites on the Earth's surface. The impact of seismic waves is different on structures on the surface than underground. The purpose of this study is to approximate how ground motions recorded in the ONKALO compare with those on the surface above the ONKALO. Broadband seismometers were installed on the surface and at the depth of 400 m inside the ONKALO in November 2013. The operation time of the seismometers was about nine months. The analysed signals included background noise, teleseismic earthquakes, regional earthquake, local explosions and explosions from the ONKALO site. The studies in Olkiluoto demonstrated that, in general, there is a de-amplification of ground motions in the ONKALO relative to those on the surface, or there is no significant difference between the recordings. The result is likely associated with the type of the seismic source and the relatively shallow depth (400 m) of the underground station. Observed relative amplification related only to nearfield events: the recorded velocity amplitudes on the surface were 2 - 10 times larger than underground. One opposite relation was found in the study: the vertical component of the velocity amplitude of a regional earthquake seems to be about three times larger in ONKALO than on the surface between frequencies 50 Hz and 80 Hz. Definite conclusions concerning amplification or de-amplification cannot be based on the result of this study. In practice, any set of recordings cannot give a comprehensive description of the possible variations, like how the wavefield reflected from the surface interacts with the wavefield coming towards the surface. Numerical modeling is suggested for further studies of this subject. (orig.)

  12. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The impact of accelerometer mounting methods on the level of vibrations recorded at ground surface

    Directory of Open Access Journals (Sweden)

    Krzysztof Czech

    2014-08-01

    Full Text Available The paper presents the results of field research based on the measurements of accelerations recorded at ground surface. The source of the vibration characterized by high repetition rate of pulse parameters was light falling weight deflectometer ZFG-01. Measurements of vibrations have been carried out using top quality high-precision measuring system produced by Brüel&Kiær. Accelerometers were mounted on a sandy soil surface at the measuring points located radially at 5-m and 10-m distances from the source of vibration. The paper analyses the impact that the method of mounting accelerometers on the ground has on the level of the recorded values of accelerations of vibrations. It has been shown that the method of attaching the sensor to the surface of the ground is crucial for the credibility of the performed measurements.[b]Keywords[/b]: geotechnics, surface vibrations, ground, vibration measurement

  14. Impairment assessment of lateral epicondylitis through electromyography and dynamometry.

    Science.gov (United States)

    Blanchette, Marc-André; Normand, Martin C

    2011-06-01

    To investigate changes in muscular activity and strength of subjects diagnosed with lateral epicondylitis (LE). To assess the appropriateness of these measures in the patient's follow-up. Twenty-four subjects (11 men and 13 women) with LE, were evaluated at baseline and after 5 weeks of an experimental treatment. Measurements included: the (1) pain-free grip (PFG), (2) maximal isometric strength, (3) surface electromyography (EMG) of forearm muscle (healthy and affected), (4) a visual analogue scale (VAS), and (5) the Patient Rated Tennis Elbow Evaluation (PRTEE) (Canadian-French version). All subjects showed improvement in VAS and PRTEE. The maximal isometric strength during flexion and extension of the wrist and the EMG analysis failed to discriminate the affected from the healthy elbow during the initial assessment. Only the PFG measured with the elbow in extension could discriminate elbows with LE from the healthy ones. The use of the PFG with the elbow in extension seems to be the most indicated strength measurement to monitor the recovery of patients with LE. The EMG acquisition protocol used in this research was not adequate to monitor effectively the recovery of LE.

  15. Holographic recording of surface relief gratings in stilbene azobenzene derivatives at 633 nm

    Energy Technology Data Exchange (ETDEWEB)

    Ozols, A; Saharov, D; Kokars, V; Kampars, V; Maleckis, A; Mezinskis, G; Pludons, A, E-mail: aozols@latnet.l [Faculty of Material Science and Applied Chemistry, Riga Technical University, Azenes iela 14/24, LV-1048, Riga (Latvia)

    2010-11-01

    Holographic recording in stilbene azobenzene derivatives by He-Ne 633 nm laser light has been experimentally studied. It was found that surface relief gratings (SRG) can be recorded by red light. Usually shorter wavelengths are used to induce the trans-cis photo-isomerization in organic materials. SRG with 2 {mu}m period and an amplitude of 130 nm have been recorded with 0.88 W/cm{sup 2} light in about 20 minutes in amorphous films of 3-(4-(bis(2-(trityloxy)ethyl)amino)phenyl)-2-(4-(2-bromo-4-nitrophenyl) diazenyl)phenyl)acrylonitrile spin-coated on glass substrates. Self-diffraction efficiency up to 17.4% and specific recording energy down to 114 J/(cm{sup 2}%) were measured. The recorded SRG were stable as proved by subsequent AFM measurements. The photo-induced changes in absorption spectra did not reveal noticeable signs of trans-cis transformations. Rather, spectrally uniform bleaching of the films took place. We conclude that a photothermally stimulated photo-destruction of chromophores is responsible for the SRG recording. The recording of stable SRG in the stilbene azobenzene derivatives we studied is accompanied by the recording of relaxing volume-phase gratings due to the photo-orientation of chromophores by the linearly polarized recording light. It should also be noted that holographic recording efficiency in stilbene azobenzene derivatives exhibit an unusual non-monotonic sample storage-time dependence presumably caused by the peculiarities of structural relaxation of the films.

  16. Rapid Surface Sampling and Archival Record (RSSAR) System. Topical report, October 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report describes the results of Phase 1 efforts to develop a Rapid Surface Sampling and Archival Record (RSSAR) System for the detection of semivolatile organic contaminants on concrete, transite, and metal surfaces. The characterization of equipment and building surfaces for the presence of contaminants as part of building decontamination and decommissioning activities is an immensely large tacks of concern to both government and industry. Contaminated and clean materials must be clearly identified and segregated so that the clean materials can be recycled or reused, if possible, or disposed of more cheaply as nonhazardous waste. Characterization of building and equipment surfaces will be needed during initial investigations, during cleanup operations, and during the final confirmatory process, increasing the total number of samples well beyond that needed for initial characterization. This multiplicity of information places a premium on the ability to handle and track data as efficiently as possible. Aware of the shortcomings of traditional surface characterization technology, GE, with DOE support has undertaken a 12-month effort to complete Phase 1 of a proposed four-phase program to develop the RSSAR system. The objectives of this work are to provide instrumentation to cost-effectively sample concrete and steel surfaces, provide a quick-look indication for the presence or absence of contaminants, and collect samples for later, more detailed analysis in a readily accessible and addressable form. The Rapid Surface Sampling and Archival Record (RSSAR) System will be a modular instrument made up of several components: (1) sampling heads for concrete surfaces, steel surfaces, and bulk samples; (2) quick-look detectors for photoionization and ultraviolet; (3) multisample trapping module to trap and store vaporized contaminants in a manner suitable for subsequent detailed lab-based analyses.

  17. Rapid Surface Sampling and Archival Record (RSSAR) System. Topical report, October 1, 1993--December 31, 1994

    International Nuclear Information System (INIS)

    1997-01-01

    This report describes the results of Phase 1 efforts to develop a Rapid Surface Sampling and Archival Record (RSSAR) System for the detection of semivolatile organic contaminants on concrete, transite, and metal surfaces. The characterization of equipment and building surfaces for the presence of contaminants as part of building decontamination and decommissioning activities is an immensely large tacks of concern to both government and industry. Contaminated and clean materials must be clearly identified and segregated so that the clean materials can be recycled or reused, if possible, or disposed of more cheaply as nonhazardous waste. Characterization of building and equipment surfaces will be needed during initial investigations, during cleanup operations, and during the final confirmatory process, increasing the total number of samples well beyond that needed for initial characterization. This multiplicity of information places a premium on the ability to handle and track data as efficiently as possible. Aware of the shortcomings of traditional surface characterization technology, GE, with DOE support has undertaken a 12-month effort to complete Phase 1 of a proposed four-phase program to develop the RSSAR system. The objectives of this work are to provide instrumentation to cost-effectively sample concrete and steel surfaces, provide a quick-look indication for the presence or absence of contaminants, and collect samples for later, more detailed analysis in a readily accessible and addressable form. The Rapid Surface Sampling and Archival Record (RSSAR) System will be a modular instrument made up of several components: (1) sampling heads for concrete surfaces, steel surfaces, and bulk samples; (2) quick-look detectors for photoionization and ultraviolet; (3) multisample trapping module to trap and store vaporized contaminants in a manner suitable for subsequent detailed lab-based analyses

  18. A stable isotope record of late Cenozoic surface uplift of southern Alaska

    Science.gov (United States)

    Bill, Nicholas S.; Mix, Hari T.; Clark, Peter U.; Reilly, Sean P.; Jensen, Britta J. L.; Benowitz, Jeffrey A.

    2018-01-01

    Although the timing of an acceleration in late-Cenozoic exhumation of southern Alaska is reasonably well constrained as beginning ∼5-∼6 Ma, the surface uplift history of this region remains poorly understood. To assess the extent of surface uplift relative to rapid exhumation, we developed a stable isotope record using the hydrogen isotope composition (δD) of paleo-meteoric water over the last ∼7 Ma from interior basins of Alaska and Yukon Territory. Our record, which is derived from authigenic clays (δDclay) in silicic tephras, documents a ∼50-60‰ increase in δD values from the late Miocene (∼6-∼7 Ma) through the Plio-Pleistocene transition (∼2-∼3 Ma), followed by near-constant values over at least the last ∼2 Ma. Although this enrichment trend is opposite that of a Rayleigh distillation model typically associated with surface uplift, we suggest that it is consistent with indirect effects of surface uplift on interior Alaska, including changes in aridity, moisture source, and seasonality of moisture. We conclude that the δDclay record documents the creation of a topographic barrier and the associated changes to the climate of interior Alaska and Yukon Territory.

  19. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  20. Classifying Apnea of Prematurity by Transcutaneous Electromyography of the Diaphragm.

    Science.gov (United States)

    Kraaijenga, Juliette V; Hutten, Gerard J; de Waal, Cornelia G; de Jongh, Frans H; Onland, Wes; van Kaam, Anton H

    2018-01-01

    Treatment of apnea is highly dependent on the type of apnea. Chest impedance (CI) has inaccuracies in monitoring respiration, which compromises accurate apnea classification. Electrical activity of the diaphragm measured by transcutaneous electromyography (EMG) is feasible in preterm infants and might improve the accuracy of apnea classification. To compare the accuracy of apnea classification based on diaphragmatic EMG (dEMG) and CI tracings in preterm infants. Fifteen cases of central apnea, 5 of obstructive apnea, and 10 of mixed apnea were selected from recordings containing synchronized continuous tracings of respiratory inductive plethysmography (RIP), airway flow, heart rate (HR), oxygen saturation (SpO2), and breathing activity measured by dEMG and CI. Twenty-two assessors (neonatologists, pediatricians-in-training, and nurses) classified each apnea twice; once based on dEMG, HR, and SpO2 tracings, and once based on CI, HR, and SpO2. The assessors were blinded to the type of respiratory tracing (dEMG or CI) and to the RIP and flow tracings. In total 1,320 assessments were performed, and in 71.1% the apnea was classified correctly. Subgroup analysis based on respiratory tracing showed that 74.8% of the dEMG tracings were classified correctly compared to 67.3% of the CI tracings (p apnea classification based on dEMG was present for central (86.7 vs. 80.3%, p apnea. The improved apnea classification based on dEMG tracing was independent of the type of assessor. Transcutaneous dEMG improves the accuracy of apnea classification when compared to CI in preterm infants, making this technique a promising candidate for future monitoring systems. © 2017 S. Karger AG, Basel.

  1. Detection of tonic epileptic seizures based on surface electromyography

    DEFF Research Database (Denmark)

    Larsen, Sigge N.; Conradsen, Isa; Beniczky, Sandor

    2014-01-01

    , median frequency, zero crossing rate and approximate entropy. These features were used as input in the random forest classifier to decide if a data segment was from a seizure or not. The goal was to develop a generic algorithm for all tonic seizures, but better results were achieved when certain...... parameters were adapted specifically for each patient. With patient specific parameters the algorithm obtained a sensitivity of 100% for four of six patients with false detection rates between 0.08 and 7.90 per hour....

  2. Controlling pneumatic artificial muscles in exoskeletons with surface electromyography

    NARCIS (Netherlands)

    Groenhuis, Vincent; Chandrapal, Mervin; Stramigioli, Stefano; Chen, XiaoQi

    2014-01-01

    Powered exoskeletons are gaining more interest in the last few years, as useful devices to provide assistance to elderly and disabled people. Many different types of powered exoskeletons have been studied in the past. In this research paper, a soft lower limb exoskeleton driven by pneumatic

  3. Electromyography Exposes Heterogeneity in Muscle Co-Contraction following Stroke

    Directory of Open Access Journals (Sweden)

    Caitlin L. Banks

    2017-12-01

    Full Text Available Walking after stroke is often described as requiring excessive muscle co-contraction, yet, evidence that co-contraction is a ubiquitous motor control strategy for this population remains inconclusive. Co-contraction, the simultaneous activation of agonist and antagonist muscles, can be assessed with electromyography (EMG but is often described qualitatively. Here, our goal is to determine if co-contraction is associated with gait impairments following stroke. Fifteen individuals with chronic stroke and nine healthy controls walked on an instrumented treadmill at self-selected speed. Surface EMGs were collected from the medial gastrocnemius (MG, soleus (SOL, and tibialis anterior (TA of each leg. EMG envelope amplitudes were assessed in three ways: (1 no normalization, (2 normalization to the maximum value across the gait cycle, or (3 normalization to maximal M-wave. Three co-contraction indices were calculated across each agonist/antagonist muscle pair (MG/TA and SOL/TA to assess the effect of using various metrics to quantify co-contraction. Two factor ANOVAs were used to compare effects of group and normalization for each metric. Co-contraction during the terminal stance (TSt phase of gait is not different between healthy controls and the paretic leg of individuals post-stroke, regardless of the metric used to quantify co-contraction. Interestingly, co-contraction was similar between M-max and non-normalized EMG; however, normalization does not impact the ability to resolve group differences. While a modest correlation is revealed between the amount of TSt co-contraction and walking speed, the relationship is not sufficiently strong to motivate further exploration of a causal link between co-contraction and walking function after stroke. Co-contraction does not appear to be a common strategy employed by individuals after stroke. We recommend exploration of alternative EMG analysis approaches in an effort to learn more about the causal

  4. A cross-sectional electromyography assessment in linear scleroderma patients

    Science.gov (United States)

    2014-01-01

    Background Muscle atrophy and asymmetric extremity growth is a common feature of linear scleroderma (LS). Extra-cutaneous features are also common and primary neurologic involvement, with sympathetic dysfunction, may have a pathogenic role in subcutaneous and muscle atrophy. The aim was investigate nerve conduction and muscle involvement by electromyography in pediatric patients with LS. Methods We conducted a retrospective review of LS pediatric patients who had regular follow up at a single pediatric center from 1997–2013. We selected participants if they had consistently good follow up and enrolled consecutive patients in the study. We examined LS photos as well as clinical, serological and imaging findings. Electromyograms (EMG) were performed with bilateral symmetric technique, using surface and needle electrodes, comparing the affected side with the contralateral side. Abnormal muscle activity was categorized as a myopathic or neurogenic pattern. Results Nine LS subjects were selected for EMG, 2 with Parry-Romberg/Hemifacial Atrophy Syndrome, 7 linear scleroderma of an extremity and 2 with mixed forms (linear and morphea). Electromyogram analysis indicated that all but one had asymmetric myopathic pattern in muscles underlying the linear streaks. Motor and sensory nerve conduction was also evaluated in upper and lower limbs and one presented a neurogenic pattern. Masticatory muscle testing showed a myopathic pattern in the atrophic face of 2 cases with head and face involvement. Conclusion In our small series of LS patients, we found a surprising amount of muscle dysfunction by EMG. The muscle involvement may be possibly related to a secondary peripheral nerve involvement due to LS inflammation and fibrosis. Further collaborative studies to confirm these findings are needed. PMID:25053924

  5. Reconstructing surface ocean circulation with129I time series records from corals.

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S; Jull, A J Timothy; Russell, Joellen L; Biddulph, Dana; White, Lara; Prouty, Nancy G; Chen, Yue-Gau; Shen, Chuan-Chou; Zhou, Weijian; Lam, Doan Dinh

    2016-12-01

    The long-lived radionuclide 129 I (half-life: 15.7 × 10 6  yr) is well-known as a useful environmental tracer. At present, the global 129 I in surface water is about 1-2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129 I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129 I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129 I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129 I record features a sudden increase in 129 I in 1959. The Xisha coral shows similar peak values for 129 I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129 I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129 I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129 I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129 I time series data provide a broad picture of the surface distribution and depth penetration of 129 I in the Pacific Ocean over the past 60 years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Reconstructing surface ocean circulation with 129I time series records from corals

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S.; Jull, A. J. Timothy; Russell, Joellen L.; Biddulph, Dana; White, Lara; Prouty, Nancy G.; Chen, Yue-Gau; Chuan-Chou Shen,; Zhou, Weijian; Lam, Doan Dinh

    2016-01-01

    The long-lived radionuclide 129I (half-life: 15.7 × 106 yr) is well-known as a useful environmental tracer. At present, the global 129I in surface water is about 1–2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129I record features a sudden increase in 129I in 1959. The Xisha coral shows similar peak values for 129I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129I time series data provide a broad picture of the surface distribution and depth penetration of 129I in the Pacific Ocean over the past 60 years.

  7. Sit to stand in elderly fallers vs non-fallers: new insights from force platform and electromyography data.

    Science.gov (United States)

    Chorin, Frédéric; Cornu, Christophe; Beaune, Bruno; Frère, Julien; Rahmani, Abderrahmane

    2016-10-01

    The sit-to-stand movement requires balance control and coordination between the trunk and lower limbs. For these reasons, it is commonly used in clinics for evaluating lower limb muscle function in the elderly. The aim of the present study was to point out re levant biomechanical and neurophysiological sit-to-stand parameters allowing comparison between elderly fallers and non-fallers. Ten elderly fallers and thirty non-fallers performed sit-to-stand movements. Sit-to-stand mechanical (maximal and mean force, impulse) and temporal parameters were measured in the vertical and anteroposterior axes using force platforms. Activity of rectus femoris, vastus lateralis, and gastrocnemius lateralis muscles was bilaterally recorded by surface electromyography. Time to realize sit-to-stand movements was significantly longer in elderly fallers compared to non-fallers (p movement are the most relevant parameters to differentiate fallers and non-fallers. Moreover, these factors highlight different strategies to rise from a chair between faller and non-faller group, suggesting that fallers would constantly adjust their control balance during the sit-to-stand movement.

  8. Laryngeal Electromyography for Prognosis of Vocal Fold Paralysis.

    Science.gov (United States)

    Pardo-Maza, Adriana; García-Lopez, Isabel; Santiago-Pérez, Susana; Gavilán, Javier

    2017-01-01

    This study aimed to determine the value of laryngeal electromyography in the prognosis of vocal fold paralysis. This is a retrospective descriptive study. This study included 80 patients diagnosed with unilateral or bilateral vocal fold paralysis on flexible laryngoscopy between 2002 and 2014 in a tertiary medical center. Laryngeal electromyography using a standardized protocol was performed; the outcome measures were classified and analyzed into two groups according to the degree of injury. Group 1 included patients with mild to moderate injury, and group 2 included patients with severe to complete injury. Prognosis was correlated with vocal fold motion recovery status with a minimum of 6 months of follow-up since the symptoms onset using positive and negative predictive values. Sixty patients showed acute or chronic recurrent laryngeal neuropathy in laryngeal electromyography. Twelve of 41 patients included in group 1 recovered motion, and 30 of 35 patients included in group 2 did not recover, resulting in 88.2% of positive predictive value and 35.7% of negative predictive value. Our data confirm that laryngeal electromyography is a useful clinical tool in predicting poor recovery in patients with vocal fold paralysis. It allows identification of candidates for early intervention. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. Anal sphincter electromyography in patients with Anorectal Dysfunctions

    International Nuclear Information System (INIS)

    Trinchet Soler, Rafael; Hidalgo Marrero, Yanet; Espichicoque Megret, Arianne; Manzano Suarez, Jianeya; Perez Gonzales, Ruth Maite

    2009-01-01

    The purpose of this work is to evaluate the electromyography value of anal sphincter in patients with anorectal dysfunctions. Anorectal dysfunctions are frequent reason of pediatric consultation in children, especially with anal incontinence. A study of series of cases in patient with anorectal dysfunctions was carried out from January 2002 to January of 2006. 65 patients were studied. Anorectal malformations (ARM) represented the predominant affection with 38 patients (58.5%), prevailing the male sex in 25 patients (65.8%). Encopresis and intestinal agagliosis dicrease was observed. Sphincter was found before surgical treatment through electromyography in patients with anorectal malformations and colostomy; in those with definitive operation and open colostomy, it avoided the operation in a patient that did not have muscular activity of the external sphincter. In children already operated and with closed colostomy several electromyography changes were observed in correspondence with different incontinence grades. In encopresis cases the study was useful to rule out sphincter functional alterations. Electromyography was pathological in all the operated patients of intestinal aganglionosis. This procedure was very useful for anal incontinence study that helped to determine and establish the prognosis. (author)

  10. Maxillomandibular relationship record for implant complete mouth rehabilitation with elastomeric material and facial surface index of existing denture

    Directory of Open Access Journals (Sweden)

    Pravinkumar G Patil

    2015-01-01

    Full Text Available Introduction: The maxillomandibular relationship (MMR record is a critical step to establish the new occlusion in implant supported complete mouth rehabilitation. Using patients existing denture for recording the MMR requires implant definitive cast to be modified extensively to completely seat the denture (with unaltered flanges on it. This may influence the correct seating of the denture on the implant definitive cast causing faulty recording of the MMR. Materials and Method: Elastomeric record bases, reinforced with the resin framework, are fabricated and relined with the light body elastomeric material when all the healing abutments are in place. The MMR is recorded with these elastomeric record bases using vacuum formed facial surface index of the occluded existing dentures as a guideline. Results: The elastomeric record bases with facial surface index of the existing dentures can allow clinicians to record MMR records without removing the healing abutments from the mouth with acceptable accuracy. This can save chair-side time of the procedure. The record of facial surfaces of existing complete denture in the form of vacuum formed sheet helps to set the occlusal vertical dimension. Conclusion: Use of facial surface index together with the elastomeric record bases can be the useful alternative technique to record the MMR in patients with implant supported full mouth rehabilitation. Further study is required to prove its routine clinical utility.

  11. Recording medium based on the films of azobenzene copolymer with free surface and in sandwich-structures for polarization holography

    Science.gov (United States)

    Davidenko, N. A.; Davidenko, I. I.; Pavlov, V. A.; Chuprina, N. G.; Mokrinskaya, E. V.; Tarasenko, V. V.; Tonkopieva, L. S.; Kravchenko, V. V.

    2018-02-01

    Peculiarities of the polarization holographic recording in the samples with the films of copolymer poly[4-((2-nitrophenyl)diazenyl)phenylmethacrylate-co-octylmethacrylate] with free surface and in the sandwich-structures with solid covering layer are investigated. Time of the holographic recording and its storage is less in the sandwich-structures. It was concluded, that in the sandwich-structures, geometric relief of the film surface does not appear during the recording.

  12. Rapid Surface Sampling and Archival Record (RSSAR) system. Final report, October 1995 - May 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This report describes the results of Phase 2 efforts to develop a Rapid Surface Sampling and Archival Record (RSSAR) System for the detection of semivolatile organic contaminants on concrete, transite, and metal surfaces. The characterization of equipment and building surfaces for the presence of contaminants as part of building decontamination and decommissioning activities is an immensely large task of concern to both government and industry. Because of the high cost of hazardous waste disposal, old, contaminated buildings cannot simply be demolished and scrapped. Contaminated and clean materials must be clearly identified and segregated so that the clean material can be recycled or reused, if possible, or disposed of more cheaply as nonhazardous waste. DOE has a number of sites requiring surface characterization. These sites are large, contain very heterogeneous patterns of contamination (requiring high sampling density), and will thus necessitate an enormous number of samples to be taken and analyzed. Characterization of building and equipment surfaces will be needed during initial investigations, during cleanup operations, and during the final confirmation process, increasing the total number of samples well beyond that needed for initial characterization. This multiplicity of information places a premium on the ability to handle and track data as efficiently as possible

  13. Early Evaluation of the VIIRS Calibration, Cloud Mask and Surface Reflectance Earth Data Records

    Science.gov (United States)

    Vermote, Eric; Justice, Chris; Csiszar, Ivan

    2014-01-01

    Surface reflectance is one of the key products fromVIIRS and as withMODIS, is used in developing several higherorder land products. The VIIRS Surface Reflectance (SR) Intermediate Product (IP) is based on the heritageMODIS Collection 5 product (Vermote, El Saleous, & Justice, 2002). The quality and character of surface reflectance depend on the accuracy of the VIIRS Cloud Mask (VCM), the aerosol algorithms and the adequate calibration of the sensor. The focus of this paper is the early evaluation of the VIIRS SR product in the context of the maturity of the operational processing system, the Interface Data Processing System (IDPS). After a brief introduction, the paper presents the calibration performance and the role of the surface reflectance in calibration monitoring. The analysis of the performance of the cloud mask with a focus on vegetation monitoring (no snow conditions) shows typical problems over bright surfaces and high elevation sites. Also discussed is the performance of the aerosol input used in the atmospheric correction and in particular the artifacts generated by the use of the Navy Aerosol Analysis and Prediction System. Early quantitative results of the performance of the SR product over the AERONET sites showthatwith the fewadjustments recommended, the accuracy iswithin the threshold specifications. The analysis of the adequacy of the SR product (Land PEATE adjusted version) in applications of societal benefits is then presented. We conclude with a set of recommendations to ensure consistency and continuity of the JPSS mission with the MODIS Land Climate Data Record.

  14. Rapid Surface Sampling and Archival Record (RSSAR) system. Final report, October 1995--May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report describes the results of Phase 2 efforts to develop a Rapid Surface Sampling and Archival Record (RSSAR) System for the detection of semivolatile organic contaminants on concrete, transite, and metal surfaces. The characterization of equipment and building surfaces for the presence of contaminants as part of building decontamination and decommissioning activities is an immensely large task of concern to both government and industry. Because of the high cost of hazardous waste disposal, old, contaminated buildings cannot simply be demolished and scrapped. Contaminated and clean materials must be clearly identified and segregated so that the clean material can be recycled or reused, if possible, or disposed of more cheaply as nonhazardous waste. DOE has a number of sites requiring surface characterization. These sites are large, contain very heterogeneous patterns of contamination (requiring high sampling density), and will thus necessitate an enormous number of samples to be taken and analyzed. Characterization of building and equipment surfaces will be needed during initial investigations, during cleanup operations, and during the final confirmation process, increasing the total number of samples well beyond that needed for initial characterization. This multiplicity of information places a premium on the ability to handle and track data as efficiently as possible.

  15. Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia

    Science.gov (United States)

    Calvo, Eva; Pelejero, Carles; De Deckker, Patrick; Logan, Graham A.

    2007-07-01

    Comparison of ice cores from Greenland and Antarctica shows an asynchronous two-step warming at these high latitudes during the Last Termination. However, the question whether this asynchrony extends to lower latitudes is unclear mainly due to the scarcity of paleorecords from the Southern Hemisphere. New data from a marine core collected off South Australia (~36°S) allows a detailed reconstruction of sea-surface temperatures over the Last Termination. This confirms the existence of an Antarctic-type deglacial pattern and shows no indication of cooling associated with the Northern Hemisphere YD event. The SST record also provides a new comparison with the more extensive paleoclimatic data available from continental Australia. This shows a strong climatic link between onshore and offshore records for Australia and to Southern Hemisphere paleorecords. We also show a progressive SST drop over the last ~6.5 kyr not seen before for the Australian region.

  16. Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men.

    Science.gov (United States)

    Ramsook, Andrew H; Molgat-Seon, Yannick; Schaeffer, Michele R; Wilkie, Sabrina S; Camp, Pat G; Reid, W Darlene; Romer, Lee M; Guenette, Jordan A

    2017-05-01

    Inspiratory muscle training (IMT) has consistently been shown to reduce exertional dyspnea in health and disease; however, the physiological mechanisms remain poorly understood. A growing body of literature suggests that dyspnea intensity can be explained largely by an awareness of increased neural respiratory drive, as measured indirectly using diaphragmatic electromyography (EMGdi). Accordingly, we sought to determine whether improvements in dyspnea following IMT can be explained by decreases in inspiratory muscle electromyography (EMG) activity. Twenty-five young, healthy, recreationally active men completed a detailed familiarization visit followed by two maximal incremental cycle exercise tests separated by 5 wk of randomly assigned pressure threshold IMT or sham control (SC) training. The IMT group ( n = 12) performed 30 inspiratory efforts twice daily against a 30-repetition maximum intensity. The SC group ( n = 13) performed a daily bout of 60 inspiratory efforts against 10% maximal inspiratory pressure (MIP), with no weekly adjustments. Dyspnea intensity was measured throughout exercise using the modified 0-10 Borg scale. Sternocleidomastoid and scalene EMG was measured using surface electrodes, whereas EMGdi was measured using a multipair esophageal electrode catheter. IMT significantly improved MIP (pre: -138 ± 45 vs. post: -160 ± 43 cmH 2 O, P muscle EMG during exercise in either group. Improvements in dyspnea intensity ratings following IMT in healthy humans cannot be explained by changes in the electrical activity of the inspiratory muscles. NEW & NOTEWORTHY Exertional dyspnea intensity is thought to reflect an increased awareness of neural respiratory drive, which is measured indirectly using diaphragmatic electromyography (EMGdi). We examined the effects of inspiratory muscle training (IMT) on dyspnea, EMGdi, and EMG of accessory inspiratory muscles. IMT significantly reduced submaximal dyspnea intensity ratings but did not change EMG of any

  17. Analysis of the Impact of Wildfire on Surface Ozone Record in the Colorado Front Range

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Pierce, R. B.; Sullivan, J. T.; Reddy, P. J.

    2015-12-01

    Ozone plays an important role on the oxidation capacity of the atmosphere, and at ground-level has negative impacts on human health and ecosystem processes. In order to understand the dynamics and variability of surface ozone, it is imperative to analyze individual sources, interactions between sources, transport, and chemical processes of ozone production and accumulation. Biomass burning and wildfires have been known to emit a suite of particulate matter and gaseous compounds into the atmosphere. These compounds, such as, volatile organic compounds, carbon monoxide, and nitrogen oxides are precursor species which aid in the photochemical production and destruction of ozone. The Colorado Front Range (CFR) is a region of complex interactions between pollutant sources and meteorological conditions which result in the accumulation of ozone. High ozone events in the CFR associated with fires are analyzed for 2003-2014 to develop understanding of the large scale influence and variability of ozone and wildfire relationships. This study provides analysis of the frequency of enhanced ozone episodes that can be confirmed to be transported within and affected by the fires and smoke plumes. Long-term records of surface ozone data from the CFR provide information on the impact of wildfire pollutants on seasonal and diurnal ozone behavior. Years with increased local fire activity, as well as years with increased long-range transport of smoke plumes, are evaluated for the effect on the long-term record and high ozone frequency of each location. Meteorological data, MODIS Fire detection images, NOAA HYSPLIT Back Trajectory analysis, NOAA Smoke verification model, Fire Tracer Data (K+), RAQMS Model, Carbon Monoxide data, and Aerosol optical depth retrievals are used with NOAA Global Monitoring Division surface ozone data from three sites in Colorado. This allows for investigation of the interactions between pollutants and meteorology which result in high surface ozone levels.

  18. Avaliação da ativação neuromuscular em indivíduos com escoliose através da eletromiografia de superfície Assessment of neuromuscular activation in individuals with scoliosis using surface electromyography

    Directory of Open Access Journals (Sweden)

    E Bassani

    2008-02-01

    Full Text Available OBJETIVO: O objetivo desse estudo foi verificar o potencial da eletromiografia (EMG de superfície para a avaliação da eficiência neuromuscular e da fadiga muscular localizada dos extensores lombares em indivíduos com escoliose. MÉTODOS: Participaram deste estudo 20 indivíduos divididos igualmente em dois grupos, (1 Grupo com Escoliose e (2 Grupo Controle, que foram submetidos a um teste de indução dos músculos extensores lombares a fadiga, o qual constituiu da realização de uma contração voluntária máxima isométrica (CVM, e realização de um teste com esforço a 80% da CVM. Foram coletados simultaneamente sinais de força e eletromiográficos (sinal EMG. O sinal EMG foi processado no domínio da freqüência, utilizando-se a transformada rápida de Fourier (FFT, por meio da mediana da freqüência (MF, e no domínio do tempo, pelo cálculo do valor root mean square (RMS. Os dados foram submetidos a uma análise de variância one-way para verificar as diferenças entre os dois grupos. Para verificar a simetria entre os lados direito e esquerdo, foi realizado o teste t pareado. O nível de significância adotado foi 0,05. RESULTADOS: os resultados demonstraram que indivíduos com escoliose apresentaram: (1 simetria de ativação neuromuscular entre os lados; (2 menor eficiência neuromuscular; (3 maior capacidade de resistir a fadiga; e (4 valores de força 42,6% menores que os indivíduos do GC. CONCLUSÕES: Os resultados sugerem que a EMG de superfície corresponde a um efetivo instrumento de avaliação funcional da escoliose, embora o protocolo estabelecido tenha limitado a participação dos indivíduos com escoliose, do ponto de vista da eficiência neuromuscular.OBJECTIVE: The aim of this study was to investigate the potential of surface electromyography (EMG for assessing neuromuscular efficiency and localized muscle fatigue in the lumbar extensors, in individuals with scoliosis. METHODS: Twenty individuals participated

  19. Improved Overpressure Recording and Modeling for Near-Surface Explosion Forensics

    Science.gov (United States)

    Kim, K.; Schnurr, J.; Garces, M. A.; Rodgers, A. J.

    2017-12-01

    The accurate recording and analysis of air-blast acoustic waveforms is a key component of the forensic analysis of explosive events. Smartphone apps can enhance traditional technologies by providing scalable, cost-effective ubiquitous sensor solutions for monitoring blasts, undeclared activities, and inaccessible facilities. During a series of near-surface chemical high explosive tests, iPhone 6's running the RedVox infrasound recorder app were co-located with high-fidelity Hyperion overpressure sensors, allowing for direct comparison of the resolution and frequency content of the devices. Data from the traditional sensors is used to characterize blast signatures and to determine relative iPhone microphone amplitude and phase responses. A Wiener filter based source deconvolution method is applied, using a parameterized source function estimated from traditional overpressure sensor data, to estimate system responses. In addition, progress on a new parameterized air-blast model is presented. The model is based on the analysis of a large set of overpressure waveforms from several surface explosion test series. An appropriate functional form with parameters determined empirically from modern air-blast and acoustic data will allow for better parameterization of signals and the improved characterization of explosive sources.

  20. The Effects of Acupuncture on Peripheral Facial Palsy Sequelae after 20 Years via Electromyography.

    Science.gov (United States)

    Fabrin, Saulo; Soares, Nayara; Regalo, Simone Cecilio Hallak; Verri, Edson Donizetti

    2015-10-01

    This research used electromyography to evaluate the effects of acupuncture on facial palsy peripheral sequelae. The 44-year-old woman who participated in this study presented sequelae resulting from 20 years of peripheral facial nerve palsy (FNP) on the right side and synkinesis in the left eye. In electromyography, the electrodes were positioned on the motor points over the orbicularis oris and the orbicularis oculi muscles to establish myofunctional feedback prior to and after rehabilitation, which consisted of 20-minute sessions of acupuncture once per week for 20 weeks: using manual stimulation at acupoints Yintang, LR3, GB21, CV17, ST2, ST3, ST6, ST7, GB2, and SI19; and Tou-Kuang-Min and ST4 using electrical stimulation with a 4-Hz pulsed current. The subjective pain intensities were recorded. The root-mean-square (RMS) electromyographic comparative analysis showed greater activation and recruitment of muscle fibers on the right side and a reduced overload on the left side, which promoted a functional evolution of movements and a positive response in the stomatognathic system. Acupuncture associated with electrical stimulation reversed the peripheral facial paralysis in a short time. Severe sequelae were minimized due to the balance of muscle activation in response to the electrical stimulation provided by the acupuncture needles. Copyright © 2015. Published by Elsevier B.V.

  1. Simultaneous Recording and Analysis of Uterine and Abdominal Muscle Electromyographic Activity in Nulliparous Women During Labor.

    Science.gov (United States)

    Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2017-03-01

    To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.

  2. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    Science.gov (United States)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  3. Validation of the Suomi NPP VIIRS Ice Surface Temperature Environmental Data Record

    Directory of Open Access Journals (Sweden)

    Yinghui Liu

    2015-12-01

    Full Text Available Continuous monitoring of the surface temperature is critical to understanding and forecasting Arctic climate change; as surface temperature integrates changes in the surface energy budget. The sea-ice surface temperature (IST has been measured with optical and thermal infrared sensors for many years. With the IST Environmental Data Record (EDR available from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-orbiting Partnership (NPP and future Joint Polar Satellite System (JPSS satellites; we can continue to monitor and investigate Arctic climate change. This work examines the quality of the VIIRS IST EDR. Validation is performed through comparisons with multiple datasets; including NASA IceBridge measurements; air temperature from Arctic drifting ice buoys; Moderate Resolution Imaging Spectroradiometer (MODIS IST; MODIS IST simultaneous nadir overpass (SNO; and surface air temperature from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis. Results show biases of −0.34; −0.12; 0.16; −3.20; and −3.41 K compared to an aircraft-mounted downward-looking pyrometer; MODIS; MODIS SNO; drifting buoy; and NCEP/NCAR reanalysis; respectively; root-mean-square errors of 0.98; 1.02; 0.95; 4.89; and 6.94 K; and root-mean-square errors with the bias removed of 0.92; 1.01; 0.94; 3.70; and 6.04 K. Based on the IceBridge and MODIS results; the VIIRS IST uncertainty (RMSE meets or exceeds the JPSS system requirement of 1.0 K. The product can therefore be considered useful for meteorological and climatological applications.

  4. Relationship between ultrasonography and electromyography measurement of abdominal muscles when activated with and without pelvis floor muscles contraction.

    Science.gov (United States)

    Tahan, N; Arab, A M; Arzani, P; Rahimi, F

    2013-12-01

    The importance of the abdominal musculature in spine stability, has promoted the development of a variety of studies. Ultrasound imaging (UI) is a valuable tool which, when applied appropriately, has the potential to provide significant insight into abdominal muscle contraction. Limited studies have been taken place regarding the relationship between ultrasound measures of muscle thickening and electromyography (EMG) measures of activation. Inconsistent results, however, have been reported. Based on previous studies association between abdominal muscle activation and thickening may be affected by contraction level. The aims of this study were to measure the relationship between abdominal muscle thickness and abdominal muscles amplitude in different levels of abdominal muscles contraction. The research was carried on with a convenience sampling at the Physical Therapy Department of University of Social Welfare and Rehabilitation Sciences. Thirty healthy participants volunteered for this study. Muscle thickness right transversus abdominis (TrA) and obliqus internus (OI) muscles in abdominal hallowing maneuvers with and without pelvic floor muscle (PFM) contraction has been measured. Additionally, surface EMG of the right TrA/IO muscles was recorded. A hardware electrical part that acts as trigger system was used to record the activities of abdominal muscles in UI and EMG synchronously. Thickness change, normalized thickness and maximum amplitude abdominal muscles were used for statistical analysis. Correlations between the thickness change and amplitude measures were -0.03 -- 0.38 for TrA/IO. The Correlations between the normalized thickness and amplitude measures were -0.04--0.26 for TrA/IO. There is not clear relationship between increases in abdominal muscle activation and corresponding measures of thickening during abdominal muscle contraction. Changes in thickness of deep abdominal muscle cannot be used to indicate changes in the electrical activity in this

  5. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Land Surface Temperature (LST) from the Visible Infrared Imaging Radiometer Suite...

  6. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Concentration and Ice Surface Temperature Environmental Data Records (EDRs) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Sea Ice Concentration (SIC) and Ice Surface Temperature (IST) from the Visible...

  7. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (psea surface temperatures in the Bering Sea and North Central Pacific. These findings, coupled with

  8. Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record

    Directory of Open Access Journals (Sweden)

    A. Lattanzio

    2015-10-01

    Full Text Available Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA Climate Data Record (CDR currently comprising up to 24 years (1982–2006 of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.

  9. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: a pilot clinical study

    Science.gov (United States)

    Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.

    2013-06-01

    This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.

  10. MEaSUReS Land Surface Temperature and Emissivity data records

    Science.gov (United States)

    Cawse-Nicholson, K.; Hook, S. J.; Gulley, G.; Borbas, E. E.; Knuteson, R. O.

    2017-12-01

    The NASA MEaSUReS program was put into place to produce long-term, well calibrated and validated data records for Earth Science research. As part of this program, we have developed three Earth System Data Records (ESDR) to measure Land Surface Temperature (LST) and emissivity: a high spatial resolution (1km) LST product using Low Earth Orbiting (LEO) satellites; a high temporal resolution (hourly over North America) LST product using Geostationary (GEO) satellites; and a Combined ASTER MODIS Emissivity for Land (CAMEL) ESDR. CAMEL was produced by merging two state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4). The CAMEL ESDR is currently available for download, and is being tested in sounder retrieval schemes (e.g. CrIS, IASI, AIRS) to reduce uncertainties in water vapor retrievals, and has already been implemented in the radiative transfer software RTTOV v12 for immediate use in numerical weather modeling and data assimilation systems. The LEO-LST product combines two existing MODIS products, using an uncertainty analysis approach to optimize accuracy over different landcover classes. Validation of these approaches for retrieving LST have shown that they are complementary, with the split-window approach (MxD11) being more stable over heavily vegetated regions and the physics-based approach (MxD21) demonstrating higher accuracy in semi-arid and arid regions where the largest variations in emissivity exist, both spatially and spectrally. The GEO LST-ESDR product uses CAMEL ESDR for improved temperature-emissivity separation, and the same atmospheric correction as the LEO LST product to ensure consistency across all three data records.

  11. Normal motor nerve conduction studies using surface electrode recording from the supraspinatus, infraspinatus, deltoid, and biceps.

    Science.gov (United States)

    Buschbacher, Ralph Michael; Weir, Susan Karolyi; Bentley, John Greg; Cottrell, Erika

    2009-02-01

    Proximal peripheral nerve conduction studies can provide useful information to the clinician. The difficulty of measuring the length of the proximal nerve as well as a frequent inability to stimulate at 2 points along the nerve adds a challenge to the use of electrodiagnosis for this purpose. The purpose of this article is to present normal values for the suprascapular, axillary, and musculocutaneous nerves using surface electrodes while accounting for side-to-side variability. Prospective, observational study. Patients were evaluated in outpatient, private practices affiliated with tertiary care systems in the United States and Malaysia. One hundred volunteers were recruited and completed bilateral testing. Exclusion criteria included age younger than 18 years; previous shoulder surgery/atrophy; symptoms of numbness, tingling, or abnormal sensations in the upper extremity; peripheral neuropathy; or presence of a cardiac pacemaker. Nerve conduction studies to bilateral supraspinatus, infraspinatus, deltoid, and biceps brachii muscles were performed with documented technique. Distal latency, amplitude, and area were recorded. Side-to-side comparisons were made. A mixed linear model was fit to the independent variables of gender, race, body mass index, height, and age with each recorded value. Distal latency, amplitude, area, and side-to-side variability of nerve conduction studies of the suprascapular, axillary, and musculocutaneous nerves with correlation to significant independent variables. Data are presented showing normal distal latency, amplitude, and area values subcategorized by clinically significant variables, as well as acceptable side-to-side variability. Increased height correlated with increased distal latency in all the nerves tested. Amplitudes were larger in the infraspinatus recordings from women, while the amplitudes from the biceps and deltoid were greater in men. A larger body mass index was associated with a smaller amplitude in the deltoid in

  12. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties

    Directory of Open Access Journals (Sweden)

    Anke Duguay-Tetzlaff

    2015-10-01

    Full Text Available The European Organization for the Exploitation of Meteorological Satellites’ (EUMETSAT Meteosat satellites provide the unique opportunity to compile a 30+ year land surface temperature (LST climate data record. Since the Meteosat instrument on-board Meteosat 2–7 is equipped with a single thermal channel, single-channel LST retrieval algorithms are used to ensure consistency across Meteosat satellites. The present study compares the performance of two single-channel LST retrieval algorithms: (1 A physical radiative transfer-based mono-window (PMW; and (2 a statistical mono-window model (SMW. The performance of the single-channel algorithms is assessed using a database of synthetic radiances for a wide range of atmospheric profiles and surface variables. The two single-channel algorithms are evaluated against the commonly-used generalized split-window (GSW model. The three algorithms are verified against more than 60,000 LST ground observations with dry to very moist atmospheres (total column water vapor (TCWV 1–56 mm. Except for very moist atmospheres (TCWV > 45 mm, results show that Meteosat single-channel retrievals match those of the GSW algorithm by 0.1–0.5 K. This study also outlines that it is possible to put realistic uncertainties on Meteosat single-channel LSTs, except for very moist atmospheres: simulated theoretical uncertainties are within 0.3–1.0 K of the in situ root mean square differences for TCWV < 45 mm.

  13. Real-time 3D shape recording by DLP-based all-digital surface encoding

    Science.gov (United States)

    Höfling, Roland; Aswendt, Petra

    2009-02-01

    The use of computer generated sinusoidal fringe patterns has found wide acceptance in optical metrology. There are corresponding software solutions that reconstruct the phase field encoded in the fringe pattern in order to get 3D-shape data via triangulation and deflection measuring setups, respectively. Short recording time is a common issue of high importance for all tasks on the factory shop floor as well as in medical applications and for security. Recent high-speed implementations take advantage of MEMS based spatial light modulators and the digital micro mirror chipset DLP DiscoveryTM* is the fastest proven component currently available for this aim. Being a bi-stable on-off-state system, the sinusoidal gray level pictures are generated by controlling the mirrors ON-time period during which an analogue detector is exposed. This digital generation of light intensity distributions provides outstanding precision and long-term stability. It is used in leading edge technology solutions that produce video type streams of 3D surface data with a sustained repetition rate of 40 Hz. A new proposal is discussed in this paper that goes beyond this state of the art by considering the optical encoding of the surface as an all-digital communication link. After a brief classification of state-of- the-art systems, the authors describe how future all-digital encoding leads to extremely high speed and precision in 3D shape acquisition.

  14. Utilization and yield of nerve conduction studies and electromyography in older adults

    LENUS (Irish Health Repository)

    Mello, S

    2016-02-01

    Older adults are at increased risk of both central and peripheral neurological disorders. Impaired nerve and muscle deficits contribute to morbidity and reduced quality of life. Our aim was to define the utilization and yield of nerve conduction studies (NCS) and electromyography (EMG) in older adults. We reviewed NCS and EMG records for all patients older than age 65 in the year 2012. Of 1,530 NCS and EMGs performed, 352 (23%) were in patients older than 65 (mean age 73.7, 52% male). Two hundred and eighty-eight (83.7%) of NCS were abnormal as were 102 (71.8%) of EMGs. The likelihood of having an abnormal test result increased with increasing age. The most common diagnosis was peripheral neuropathy 231 (65.4%). The incidence of peripheral neuropathy is particularly high in this age group, and detection is vital to prevent morbidity and improve quality of life.

  15. Using coral Ba/Ca records to investigate seasonal to decadal scale biogeochemical cycling in the surface and intermediate ocean.

    Science.gov (United States)

    LaVigne, M.; Cobb, K. M.; DeLong, K. L.; Freiberger, M. M.; Grottoli, A. G.; Hill, T. M.; Miller, H. R.; Nurhati, I. S.; Richey, J. N.; Serrato Marks, G.; Sherrell, R. M.

    2016-12-01

    Dissolved barium (BaSW), a bio-intermediate element, is linked to several biogeochemical processes such as the cycling and export of nutrients, organic carbon (Corg), and barite in surface and intermediate oceans. Dynamic BaSW cycling has been demonstrated in the water column on short timescales (days-weeks) while sedimentary records have documented geologic-scale changes in barite preservation driven by export production. Our understanding of how seasonal-decadal scale climate variability impacts these biogeochemical processes currently lacks robust records. Ba/Ca calibrations in surface and deep sea corals suggest barium is incorporated via cationic substitution in both aragonite and calcite. Here we demonstrate the utility of Ba/Ca for reconstructing biogeochemical variability using examples of surface and deep sea coral records. Century-long deep sea coral records from the California Current System (bamboo corals: 900-1500m) record interannual variations in Ba/Ca, likely reflecting changes in barite formation via bacterial Corg respiration or barite saturation state. A surface Porites coral Ba/Ca record from Christmas Island (central equatorial Pacific: 1978-1995) shows maxima during low productivity El Niño warm periods, suggesting that variations in BaSW are driven by biological removal via direct cellular uptake or indirectly via barite precipitation with the decomposition of large phytoplankton blooms at this location. Similarly, a sixteen-year long Siderastera siderea surface coral record from Dry Tortugas, FL (Gulf of Mexico: 1991-2007) shows seasonal Ba/Ca cycles that align with annual chlorophyll and δ13C. Taken together, these records demonstrate the linkages among Corg, nutrient cycling and BaSW in the surface and intermediate ocean on seasonal to decadal timescales. Multi-proxy paleoceanographic reconstructions including Ba/Ca have the potential to elucidate the mechanisms linking past climate, productivity, nutrients, and BaSW cycling in the past.

  16. Protocol for Validation of the Land Surface Reflectance Fundamental Climate Data Record using AERONET: Application to the Global MODIS and VIIRS Data Records

    Science.gov (United States)

    Roger, J. C.; Vermote, E.; Holben, B. N.

    2014-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. It is essential that a careful validation of its uncertainties is performed on a global and continuous basis. One approach is the direct comparison of this product with ground measurements but that approach presents several issues related to scale, the episodic nature of ground measurements and the global representativeness. An alternative is to compare the surface reflectance product to reference reflectance determined from Top of atmosphere reflectance corrected using accurate radiative transfer code and very detailed measurements of the atmosphere obtained over the AERONET sites (Vermote and al, 2014, RSE) which allows to test for a large range of aerosol characteristics; formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. This paper describes the protocol we have been working on based on our experience with the AERONET data and its application to the MODIS and VIIRS record.

  17. Surface electromyography assessment of muscle activation patterns while sitting down in young healthy women and patients with ankylosing spondylitis [Povrchové elektromyografické hodnocení svalové aktivity ve zkoušce posazení u zdravých mladých žen a u pacientů s ankylozující spondylitidou

    Directory of Open Access Journals (Sweden)

    Petr Uhlíř

    2011-03-01

    Full Text Available BACKGROUND: Muscle activation patterns depend on many factors. Surface electromyography (SEMG can reveal these patterns in subjects of different ages and health states. We studied patterns of muscle activation in two groups of subjects - healthy young women (as a control group and patients with ankylosing spondylitis. OBJECTIVE: The aim of this study was to register and compare muscle activation patterns while sitting down in these two groups in four situations with different positions of the lower and upper limbs. METHODS: Muscle activity was registered with the use of 8 channel surface polyelectromyography (Noraxon-Myosystem 1400A. We tested the following muscles bilaterally while the subjects were sitting down (tibialis anterior muscle, medial head of the gastrocnemius muscle, gluteus maximus muscle, erectores spinae muscles. The onset of each individual muscle's activity was determined by calculating the sum of the mean value of the SEMG baseline plus 10% of the maximum value of amplitude (peak. RESULTS: It was registered that the medial head of the gastrocnemius muscle and/or erectores spinae muscles were activated as the first ones in both groups of the subjects under study in most of the studied postural situations. We registered differences in timing (sequence of muscle activation among various studied body and limb positions (P–, P+, PD–, and PN–. A great degree of variability in the sequence of muscle activation was revealed, depending on the positions of the upper and lower limbs. CONCLUSIONS: We did not find any unique patterns of muscle activation in either of the two groups under study.[VÝCHODISKA: Časové zapojování (aktivace svalů je závislé na mnoha faktorech. Povrchová polyelektromyografie zachycuje vzorce zapojování svalů u probandů rozdílného věku a zdravotního stavu v různých podmínkách. CÍLE: Cílem studie byla registrace a hodnocení pořadí zapojování svalů v průběhu sedání u t

  18. XML-BSPM: an XML format for storing Body Surface Potential Map recordings.

    Science.gov (United States)

    Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George

    2010-05-14

    The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats

  19. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  20. Multiparameter Electromyography Analysis of the Masticatory Muscle Activities in Patients with Brainstem Stroke at Different Head Positions

    Directory of Open Access Journals (Sweden)

    Chuyao Jian

    2017-05-01

    Full Text Available The performance of the masticatory muscle is frequently affected and presents high heterogeneity poststroke. Surface electromyography (EMG is widely used to quantify muscle movement patterns. However, only a few studies applied EMG analysis on the research of masticatory muscle activities poststroke, and most of which used single parameter—root mean squares (RMS. The aim of this study was to fully investigate the performance of masticatory muscle at different head positions in healthy subjects and brainstem stroke patients with multiparameter EMG analysis. In this study, 15 healthy subjects and six brainstem stroke patients were recruited to conduct maximum voluntary clenching at five different head positions: upright position, left rotation, right rotation, dorsal flexion, and ventral flexion. The EMG signals of bilateral temporalis anterior and masseter muscles were recorded, and parameters including RMS, median frequency, and fuzzy approximate entropy of the EMG signals were calculated. Two-way analysis of variance (ANOVA with repeated measures and Bonferroni post hoc test were used to evaluate the effects of muscle and head position on EMG parameters in the healthy group, and the non-parametric Wilcoxon signed rank test was conducted in the patient group. The Welch–Satterthwaite t-test was used to compare the between-subject difference. We found a significant effect of subject and muscles but no significant effect of head positions, and the masticatory muscles of patients after brainstem stroke performed significantly different from healthy subjects. Multiparameter EMG analysis might be an informative tool to investigate the neural activity related movement patterns of the deficient masticatory muscles poststroke.

  1. The reliability of surface EMG recorded from the pelvic floor muscles.

    Science.gov (United States)

    Auchincloss, Cindy C; McLean, Linda

    2009-08-30

    The neuromuscular function of the pelvic floor muscles (PFMs) is frequently evaluated using surface electrodes embedded on vaginal probes. The purpose of this study was to determine the between-trial and between-day reliability of EMG data recorded from the PFM using two different vaginal probes while subjects performed PFM maximum voluntary contractions and a coughing task. The Femiscan and the Periform vaginal probes were used to acquire EMG data while the subjects performed the tasks. Peak RMS amplitudes were computed for each instrument, task, and side of the pelvic floor using a sliding window technique. The between-trial reliability was evaluated using intraclass correlation coefficients (ICCs) and coefficients of variation (CV). Between-trial reliability was determined using ICCs, Pearson's correlation coefficients, computing the mean absolute difference between days, and calculating the standard error the measurement (SEM) for each instrument and task. EMG amplitude differences were detected between the left and right PFM (pperformed separately for each side. Overall, between-trial reliability was fair to high for the Femiscan (ICC((3,1))=0.58-0.98, CV=8.5-20.7%) and good to high for the Periform (ICC((3,1))=0.80-0.98, CV=9.6-19.5%), however between-day reliability was generally poor for both vaginal probes (ICC((3,1))=0.08-0.84). The results suggest that although it is acceptable to use PFM surface EMG as a biofeedback tool for training purposes, it is not recommended for use to make between-subject comparisons or to use as an outcome measure between-days when evaluating PFM function.

  2. Effect of age on human-computer-interface control via neck electromyography.

    Science.gov (United States)

    Hands, Gabrielle L; Stepp, Cara E

    2016-01-01

    The purpose of this study was to determine the effect of age on visuomotor tracking using submental and anterior neck surface electromyography (sEMG) to assess feasibility of computer control via neck musculature, which allows people with little remaining motor function to interact with computers. Thirty-two healthy adults participated: sixteen younger adults aged 18 - 29 years and sixteen older adults aged 69 - 85 years. Participants modulated sEMG to achieve targets presented at different amplitudes using real-time visual feedback. Root-mean-squared (RMS) error was used to quantify tracking performance. RMS error was increased for older adults relative to younger adults. Older adults demonstrated more RMS error than younger adults as a function of increasing target amplitude. The differential effects of age found on static tracking performance in anterior neck musculature suggest more difficult translation of human-computer-interfaces controlled using anterior neck musculature for static tasks to older populations.

  3. Electromyography Activation Levels of the 3 Gluteus Medius Subdivisions During Manual Strength Testing

    DEFF Research Database (Denmark)

    Otten, Roald; Tol, Johannes L; Holmich, Per

    2015-01-01

    deficits and guide specific rehabilitation programs. However, the optimal positions for assessing the strength and activation of these subdivisions are unknown. OBJECTIVE: The first aim was to establish which strength-testing positions produce the highest surface electromyography (sEMG) activation levels...... different strength-testing positions and analyzed using repeated-measures analysis of variance. RESULTS: Significant differences between testing positions for all 3 GM subdivisions were found. There were significant differences between the tested and the contralateral anterior and middle GM subdivisions (P......STUDY DESIGN: Cross-sectional. CONTEXT: Gluteus medius (GM) muscle dysfunction is associated with overuse injury. The GM is functionally composed of 3 separate subdivisions: anterior, middle, and posterior. Clinical assessment of the GM subdivisions is relevant to detect strength and activation...

  4. Pteropods are excellent recorders of surface temperature and carbonate ion concentration.

    Science.gov (United States)

    Keul, N; Peijnenburg, K T C A; Andersen, N; Kitidis, V; Goetze, E; Schneider, R R

    2017-10-03

    Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). Comparison of shell oxygen isotopic composition to depth changes in the calculated aragonite equilibrium oxygen isotope values implies shallow calcification depths for H. inflatus (75 m). This species is therefore a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we identified pteropod shells to be excellent recorders of climate change, as carbonate ion concentration and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a broad distribution and high abundance, make the pteropod species studied here, H. inflatus, a promising new proxy carrier in paleoceanography.

  5. The African Surface (85-45 Ma): a Record of Mantle Deformations Since 35 Ma

    Science.gov (United States)

    Guillocheau, Francois; Simon, Brendan; Baby, Guillaume; Robin, Cécile

    2016-04-01

    Africa is characterized by a bimodal topography with long (x100 km) to very long (x1000 km) wavelength plateaus and domes. The 300-400 m topographic mode corresponds to the Sahara on which is superimposed swells (Hoggar, Tibesti..) and the Congo Interior Basin. The 900-1100 m mode corresponds to the Southern African (Kalahari) Plateau and the East African and Ethiopian Domes. The landforms responsible of the African topography are of three types (1) etchplains (mantled or stripped), (2) pediments and pediplains and (3) incised valleys. Those different landforms are stepped with mantled etchplains at higher elevation and pediments/stripped etchplains are lower elevation. Some of those landforms can be dated using either direct geochronological evidences on lateritic weathering profiles or geological evidences such as the relationship between landforms and dated magmatism or sediments. We used the stepping of successive pediments as a proxy of deformation, making sure that they record successive base level fall. We mapped at Africa-scale, a major widespread etchplain known as the African Surface (King, 1949; Burke & Gunnel, 2008). This surface was dated both by geochronology (e.g. Beauvais et al., 2008 in Burkina, Deller, 2012 in North Ethiopia) and on geological evidences (interfingering or reworking of laterites in sedimentary basins such as Iullemmeden Basin or the Tanzanian Margin). The paroxysm of weathering was during Early Eocene times (EOCM) but started earlier in Late Cretaceous with more or less younger ages according to its location in Africa. Geometrical restorations of pediments indicate that this surface was (1) at sea level in northern and central Africa with unknown upstream gradients and (2) superimposed on a Late Cretaceous plateau in southern Africa. The main period of very long wavelenghth deformation occurred around the Oligocene-Eocene boundary with the uplift of northern Africa or the beginning of the growth the East African dome. Some other

  6. A comparative study of various electrodes in electromyography of the striated urethral and anal sphincter in children

    DEFF Research Database (Denmark)

    Nielsen, K K; Kristensen, E S; Qvist, N

    1985-01-01

    The series comprised 41 children aged 6 to 14 years consecutively referred with recurrent urinary tract infection and/or enuresis. Carbon dioxide cystometry was carried out in the supine and the erect position and combined with simultaneous electromyography (EMG). The external urethral sphincter...... was examined with a ring electrode mounted on a urethral catheter, while recordings from the striated anal sphincter were based on an anal plug electrode and perianal electrocardiographic (ECG) skin electrodes: 211 EMG and cystometric examinations were performed and all three methods gave satisfactory results...

  7. A simple test of muscle coactivation estimation using electromyography

    Directory of Open Access Journals (Sweden)

    U.F. Ervilha

    2012-10-01

    Full Text Available In numerous motor tasks, muscles around a joint act coactively to generate opposite torques. A variety of indexes based on electromyography signals have been presented in the literature to quantify muscle coactivation. However, it is not known how to estimate it reliably using such indexes. The goal of this study was to test the reliability of the estimation of muscle coactivation using electromyography. Isometric coactivation was obtained at various muscle activation levels. For this task, any coactivation measurement/index should present the maximal score (100% of coactivation. Two coactivation indexes were applied. In the first, the antagonistic muscle activity (the lower electromyographic signal between two muscles that generate opposite joint torques is divided by the mean between the agonistic and antagonistic muscle activations. In the second, the ratio between antagonistic and agonistic muscle activation is calculated. Moreover, we computed these indexes considering different electromyographic amplitude normalization procedures. It was found that the first algorithm, with all signals normalized by their respective maximal voluntary coactivation, generates the index closest to the true value (100%, reaching 92 ± 6%. In contrast, the coactivation index value was 82 ± 12% when the second algorithm was applied and the electromyographic signal was not normalized (P < 0.04. The new finding of the present study is that muscle coactivation is more reliably estimated if the EMG signals are normalized by their respective maximal voluntary contraction obtained during maximal coactivation prior to dividing the antagonistic muscle activity by the mean between the agonistic and antagonistic muscle activations.

  8. Determination of the maximum recording frequency by the Precision Laser Inclinometer of an earth surface angular oscillation

    Science.gov (United States)

    Azaryan, N.; Budagov, J.; Lyablin, M.; Pluzhnikov, A.; Di Girolamo, B.; Gayde, J.-Ch.; Mergelkuhl, D.

    2017-11-01

    For the Precision Laser Inclinometer (FPI) using the I-20A oil, a high-frequency 4 Hz boundary was determined for reliable detection of the earth's surface angular vibrations. The proposed method makes use of the microseismic signal and its processing to expand the PLI working interval for signal reception and allows to record the narrow frequency-band signals originated by the Earth surface angular oscillations caused by industrial sources.

  9. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  10. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Kenneth M. [Brown Univ., Providence, RI (United States); Mustard, John F. [Brown Univ., Providence, RI (United States); Salvatore, Mark R. [Arizona State Univ., Mesa, AZ (United States)

    2015-03-05

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  11. Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals.

    Directory of Open Access Journals (Sweden)

    Peng Ren

    Full Text Available Preterm delivery increases the risk of infant mortality and morbidity, and therefore developing reliable methods for predicting its likelihood are of great importance. Previous work using uterine electromyography (EMG recordings has shown that they may provide a promising and objective way for predicting risk of preterm delivery. However, to date attempts at utilizing computational approaches to achieve sufficient predictive confidence, in terms of area under the curve (AUC values, have not achieved the high discrimination accuracy that a clinical application requires. In our study, we propose a new analytical approach for assessing the risk of preterm delivery using EMG recordings which firstly employs Empirical Mode Decomposition (EMD to obtain their Intrinsic Mode Functions (IMF. Next, the entropy values of both instantaneous amplitude and instantaneous frequency of the first ten IMF components are computed in order to derive ratios of these two distinct components as features. Discrimination accuracy of this approach compared to those proposed previously was then calculated using six differently representative classifiers. Finally, three different electrode positions were analyzed for their prediction accuracy of preterm delivery in order to establish which uterine EMG recording location was optimal signal data. Overall, our results show a clear improvement in prediction accuracy of preterm delivery risk compared with previous approaches, achieving an impressive maximum AUC value of 0.986 when using signals from an electrode positioned below the navel. In sum, this provides a promising new method for analyzing uterine EMG signals to permit accurate clinical assessment of preterm delivery risk.

  12. Use of electromyography measurement in human body modeling

    Directory of Open Access Journals (Sweden)

    Valdmanová L.

    2011-06-01

    Full Text Available The aim of this study is to test the use of the human body model for the muscle activity computation. This paper shows the comparison of measured and simulated muscle activities. Muscle active states of biceps brachia muscle are monitored by method called electromyography (EMG in a given position and for given subsequently increasing loads. The same conditions are used for simulation using a human body model (Hynčík, L., Rigid Body Based Human Model for Crash Test Purposes, EngineeringMechanics, 5 (8 (2001 1–6. This model consists of rigid body segments connected by kinematic joints and involves all major muscle bunches. Biceps brachia active states are evaluated by a special muscle balance solver. Obtained simulation results show the acceptable correlation with the experimental results. The analysis shows that the validation procedure of muscle activities determination is usable.

  13. The potential and limitations of quantitative electromyography in equine medicine.

    Science.gov (United States)

    Wijnberg, Inge D; Franssen, Hessel

    2016-03-01

    This review discusses the scope of using (quantitative) electromyography (EMG) in diagnosing myopathies and neuropathies in equine patients. In human medicine, many EMG methods are available for the diagnosis, pathophysiological description and evaluation, monitoring, or rehabilitation of patients, and some of these techniques have also been applied to horses. EMG results are usually combined with other neurophysiological data, ultrasound, histochemistry, biochemistry of muscle biopsies, and clinical signs in order to provide a complete picture of the condition and its clinical course. EMG technology is commonly used in human medicine and has been subject to constant development and refinement since its introduction in 1929, but the usefulness of the technique in equine medicine is not yet widely acknowledged. The possibilities and limitations of some EMG applications for equine use are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Wavelet transform analysis of electromyography kung fu strikes data.

    Science.gov (United States)

    Neto, Osmar Pinto; Marzullo, Ana Carolina de Miranda

    2009-11-01

    In martial arts and contact sports strikes are performed at near maximum speeds. For that reason, electromyography (EMG) analysis of such movements is non-trivial. This paper has three main goals: firstly, to investigate the differences in the EMG activity of muscles during strikes performed with and without impacts; secondly, to assess the advantages of using Sum of Significant Power (SSP) values instead of root mean square (rms) values when analyzing EMG data; and lastly to introduce a new method of calculating median frequency values using wavelet transforms (WMDF). EMG data of the deltoid anterior (DA), triceps brachii (TB) and brachioradialis (BR) muscles were collected from eight Kung Fu practitioners during strikes performed with and without impacts. SSP results indicated significant higher muscle activity (p = 0.023) for the strikes with impact. WMDF results, on the other hand, indicated significant lower values (p = 0. 007) for the strikes with impact. SSP results presented higher sensitivity than rms to quantify important signal differences and, at the same time, presented lower inter-subject coefficient of variations. The result of increase in SSP values and decrease in WMDF may suggest better synchronization of motor units for the strikes with impact performed by the experienced Kung Fu practitioners. Key PointsThe results show higher muscle activity and lower electromyography median frequencies for strikes with impact compared to strikes without.SSP results presented higher sensitivity and lower inter-subject coefficient of variations than rms results.Kung Fu palm strikes with impact may present better motor units' synchronization than strikes without.

  15. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography.

    Science.gov (United States)

    da Silva, Julio Cézar Lima; Tarassova, O; Ekblom, M M; Andersson, E; Rönquist, G; Arndt, A

    2016-09-01

    The aim of this study was to describe thigh muscle activation during cycling using intramuscular electromyographic recordings of eight thigh muscles, including the biceps femoris short head (BFS) and the vastus intermedius (Vint). Nine experienced cyclists performed an incremental test (start at 170 W and increased by 20 W every 2 min) on a bicycle ergometer either for a maximum of 20 min or to fatigue. Intramuscular electromyography (EMG) of eight muscles and kinematic data of the right lower limb were recorded during the last 20 s in the second workload (190 W). EMG data were normalized to the peak activity occurring during this workload. Statistical significance was assumed at p ≤ 0.05. The vastii showed a greater activation during the 1st quadrant compared to other quadrants. The rectus femoris (RF) showed a similar activation, but with two bursts in the 1st and 4th quadrants in three subjects. This behavior may be explained by the bi-articular function during the cycling movement. Both the BFS and Vint were activated longer than, but in synergy with their respective agonistic superficial muscles. Intramuscular EMG was used to verify muscle activation during cycling. The activation pattern of deep muscles (Vint and BFS) could, therefore, be described and compared to that of the more superficial muscles. The complex coordination of quadriceps and hamstring muscles during cycling was described in detail.

  16. A 30-Year Multi-Sensor Vegetation Index and Land Surface Phenology Data Record: Methods Challenges and Potentials

    Science.gov (United States)

    Didan, K.; Barreto-munoz, A.; Miura, T.; Tsend-Ayush, J.

    2013-12-01

    During the last five years the Vegetation Index and Phenology Lab. (vip.arizona.edu) embarked on an effort to process a global multi-sensor Earth Science Data Record of NDVI, EVI2, and land surface Phenology. Data from AVHRR, MODIS, and SPOT-VGT, covering the period 1981 to present, were processed into a seamless and sensor independent record using a suite of community algorithms for data filtering, across-sensor continuity, Vegetation Index (NDVI and EVI2), land surface Phenology, and spatial and temporal gap filling. Currently at Version 3.0 these ESDRs are suitable for the study of land surface vegetation dynamics, long term change and trends, anomalies, and can support various ecosystem and climate modeling efforts by providing key parameters. While adapting the various algorithms to processing this new data record many challenges emerged, ranging from excessive missing and poor quality data to complex and temporally dependent divergence across the various sensors making continuity quite difficult. The first step to addressing these challenges was the adoption of very strict and low tolerance to noise data filters, where the intrinsic input data quality is used along with the long term expected dynamic range to screen for outliers and poor quality. A sophisticated and explicit per-pixel and seasonally dependent across-sensor translation algorithm was developed to address the continuity more properly. To generate the land surface phenology we adapted various community algorithms to work with and take advantage of this new record. Both the standard MODIS Vegetation dynamic algorithm and an in-house homogeneous cluster algorithm were applied to the data. We've also completed a spatially and temporally explicit error and uncertainty characterization of this record. Results indicate a VI error in the range of 5-10% VI units and a 5-40 days error in the date dependent phenology parameters, with an average error of 15 days. This VIP record accounts now for more than

  17. Surface-Micromachined Neural Sensors with Integrated Double Side Recordings on Dry-Etch Benzocyclobutene(BCB) Substrate.

    Science.gov (United States)

    Zhu, Haixin; He, Jiping; Kim, Bruce

    2005-01-01

    a neural sensor with novel structure and capable of double side recordings has been designed and fabricated using surface micromachining technique. Dry-etch Benzocyclobutene (BCB) was selected as the substrate and packaging material for its excellent electrical, mechanical and thermal properties. Positive photoresist (AZ4620) was used as the sacrificial layer during the formation of backside recording sites, and the lift-off process combined with BCB dry etch technique was developed to open the recording sites on the backside. The finished device has intracortical recording sites on both sides, and also epidural recording sites on the front side. The total channel number doubled compared to that of single side electrode structure. Three dry-etch BCB layers were applied to insulate the front side conduction traces from the backside trace layer, and package the entire devices. The developed process shows reliable and high fabrication yield, and results suggest that this newly developed neural sensor could improve the performance and efficiency of neural recording.

  18. Big Jump of Record Warm Global Mean Surface Temperature in 2014-2016 Related to Unusually Large Oceanic Heat Releases

    Science.gov (United States)

    Yin, Jianjun; Overpeck, Jonathan; Peyser, Cheryl; Stouffer, Ronald

    2018-01-01

    A 0.24°C jump of record warm global mean surface temperature (GMST) over the past three consecutive record-breaking years (2014-2016) was highly unusual and largely a consequence of an El Niño that released unusually large amounts of ocean heat from the subsurface layer of the northwestern tropical Pacific. This heat had built up since the 1990s mainly due to greenhouse-gas (GHG) forcing and possible remote oceanic effects. Model simulations and projections suggest that the fundamental cause, and robust predictor of large record-breaking events of GMST in the 21st century, is GHG forcing rather than internal climate variability alone. Such events will increase in frequency, magnitude, and duration, as well as impact, in the future unless GHG forcing is reduced.

  19. Electromyography and the study of sports movements: a review.

    Science.gov (United States)

    Clarys, J P; Cabri, J

    1993-10-01

    Within electromyography (EMG), a particular specialty has been developed wherein the aim is to use EMG for the study of muscular function and co-ordination. This area of research is usually called kinesiological EMG. The general aims of kinesiological EMG are to analyse the function and co-ordination of muscles in different movements and postures, in healthy subjects as well as in the disabled, in skilled actions as well as during training, in humans as well as in animals, under laboratory conditions as well as during daily or vocational activities. This is often done by a combination of electromyographical and kinesiological or biomechanical measurement techniques. Because there are over 400 skeletal muscles in the human body and both irregular and complex involvement of the muscles may occur in neuromuscular diseases and in voluntary occupational or sports movements, it is impossible to sample all of the muscles of the entire body during the performance of complex motor skills. In addition, the measurement of kinesiological EMG in sport and specific field circumstances, such as the track and/or soccer field, the alpine ski slope, the swimming pool and the ice rink, demands a specific technological and methodological approach, adaptable to both the field and the sport circumstances. Sport movement techniques and skills, training approaches and methods, ergonomic verification of the human-machine interaction have, amongst others, a highly specialized muscular activity in common. The knowledge of such muscular action in all its aspects, its evaluation and its feedback should allow for the optimization of movement, of sports materials, of training possibilities and, in the end, of sports performance. Drawing conclusions from a review of the EMG research of 32 sports, covering over 100 different complex skills, including methodological approaches, is an impossible task. We have attempted to set standards concerning the EMG methodology at the beginning of this review

  20. NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily surface reflectance and brightness temperatures derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard...

  1. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    International Nuclear Information System (INIS)

    Durrani, B.A.

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes

  2. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, B.A. [Texas Univ., El Paso, TX (United States). Dept. of Geological Sciences; Walck, M.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes.

  3. Mirror neurons and intention understanding: Dissociating the contribution of object type and intention to mirror responses using electromyography.

    Science.gov (United States)

    Ruggiero, Maura; Catmur, Caroline

    2018-01-18

    Since their discovery in the monkey and human brain, mirror neurons have been claimed to play a key role in understanding others' intentions. For example, "action-constrained" mirror neurons in inferior parietal lobule fire when the monkey observes a grasping movement that is followed by an eating action, but not when it is followed by a placing action. It is claimed these responses enable the monkey to predict the intentions of the actor. These findings have been replicated in human observers by recording electromyography responses of the mouth-opening mylohyoid muscle during action observation. Mylohyoid muscle activity was greater during the observation of actions performed with the intention to eat than of actions performed with the intention to place, again suggesting an ability to predict the actor's intentions. However, in previous studies, intention was confounded with object type (food for eating actions, nonfood for placing actions). We therefore used electromyography to measure mylohyoid activity in participants observing eating and placing actions. Unlike previous studies, we used a design in which each object (food, nonfood) could be both eaten and placed, and thus participants could not predict the actor's intention at the onset of the action. Greater mylohyoid activity was found for the observation of actions performed on food objects, irrespective of intention, indicating that the object type, not the actor's intention, drives the mirror response. This result suggests that observers' motor responses during action observation reflect the presence of a particular object, rather than the actor's underlying intentions. © 2018 Society for Psychophysiological Research.

  4. Positioning of pedicle screws in adolescent idiopathic scoliosis using electromyography

    Directory of Open Access Journals (Sweden)

    Bruno Moreira Gavassi

    2015-06-01

    Full Text Available OBJECTIVE: To analyze the occurrence of poor positioning of pedicle screws inserted with the aid of intraoperative electromyographic stimulation in the treatment of Adolescent Idiopathic Scoliosis (AIS.METHODS: This is a prospective observational study including all patients undergoing surgical treatment for AIS, between March and December 2013 at a single institution. All procedures were monitored by electromyography of the inserted pedicle screws. The position of the screws was evaluated by assessment of postoperative CT and classified according to the specific AIS classification system.RESULTS: Sixteen patients were included in the study, totalizing 281 instrumented pedicles (17.5 per patient. No patient had any neurological deficit or complaint after surgery. In the axial plane, 195 screws were found in ideal position (69.4% while in the sagittal plane, 226 screws were found in ideal position (80.4%. Considering both the axial and the sagittal planes, it was observed that 59.1% (166/281 of the screws did not violate any cortical wall.CONCLUSION: The use of pedicle screws proved to be a safe technique without causing neurological damage in AIS surgeries, even with the occurrence of poor positioning of some implants.

  5. Value of Laryngeal Electromyography in Spasmodic Dysphonia Diagnosis and Therapy.

    Science.gov (United States)

    Yang, Qingwen; Xu, Wen; Li, Yun; Cheng, Liyu

    2015-07-01

    To investigate the role of laryngeal electromyography (LEMG) in the diagnosis and treatment of spasmodic dysphonia (SD). The clinical manifestations, characteristics of motor unit potentials (MUPs), recruitment potentials, and laryngeal nerve evoked potentials (EPs) in LEMG, as well as the changes after botulinum toxin (BTX) treatment, were analyzed in 39 patients with adductor SD. The main clinical manifestations were a strained voice and phonation interruptions; in addition, the patients displayed hyper-adducted vocal folds during phonation. LEMG revealed significantly increased amplitudes of the thyroarytenoid muscle MUPs. The recruitment potentials were in a dense bunch, discharging full interference patterns with significantly increased amplitudes; the mean and maximum amplitude of recruitment potentials were 3090 μV and 5000 μV, respectively. The amplitude of EPs of thyroarytenoid muscle increased significantly; the mean and maximum amplitudes were 10.3 mV and 26.3 mV, respectively. After BTX was injected, the LEMG revealed denervation changes, and the EPs weakened or disappeared in the injected muscle. SD could be diagnosed, and the therapeutic efficacy of SD treatments could be evaluated based on clinical characteristics combined with LEMG characteristics. The increased amplitudes of the recruitment potentials and EPs of the thyroarytenoid muscle were the characteristic indexes. After BTX was injected, denervated potential characteristics appeared in the muscles. © The Author(s) 2015.

  6. Electromyography in the four competitive swimming strokes: a systematic review.

    Science.gov (United States)

    Martens, Jonas; Figueiredo, Pedro; Daly, Daniel

    2015-04-01

    The aim of this paper is to give an overview on 50 years of research in electromyography in the four competitive swimming strokes (crawl, breaststroke, butterfly, and backstroke). A systematic search of the existing literature was conducted using the combined keywords "swimming" and "EMG" on studies published before August 2013, in the electronic databases PubMed, ISI Web of Knowledge, SPORT discus, Academic Search Elite, Embase, CINAHL and Cochrane Library. The quality of each publication was assessed by two independent reviewers using a custom made checklist. Frequency of topics, muscles studied, swimming activities, populations, types of equipment and data treatment were determined from all selected papers and, when possible, results were compared and contrasted. In the first 20 years of EMG studies in swimming, most papers were published as congress proceedings. The methodological quality was low. Crawl stroke was most often studied. There was no standardized manner of defining swimming phases, normalizing the data or of presenting the results. Furthermore, the variability around the mean muscle activation patterns is large which makes it difficult to define a single pattern applicable to all swimmers in any activity examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Quantitative electromyography in ambulatory boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Verma, Sumit; Lin, Jenny; Travers, Curtis; McCracken, Courtney; Shah, Durga

    2017-12-01

    This study's objective was to evaluate quantitative electromyography (QEMG) using multiple-motor-unit (multi-MUP) analysis in Duchenne muscular dystrophy (DMD). Ambulatory DMD boys, aged 5-15 years, were evaluated with QEMG at 6-month intervals over 14 months. EMG was performed in the right biceps brachii (BB) and tibialis anterior (TA) muscles. Normative QEMG data were obtained from age-matched healthy boys. Wilcoxon signed-rank tests were performed. Eighteen DMD subjects were enrolled, with a median age of 7 (interquartile range 7-10) years. Six-month evaluations were performed on 14 subjects. QEMG showed significantly abnormal mean MUP duration in BB and TA muscles, with no significant change over 6 months. QEMG is a sensitive electrophysiological marker of myopathy in DMD. Preliminary data do not reflect a significant change in MUP parameters over a 6-month interval; long-term follow-up QEMG studies are needed to understand its role as a biomarker for disease progression. Muscle Nerve 56: 1361-1364, 2017. © 2017 Wiley Periodicals, Inc.

  8. WAVELET TRANSFORM ANALYSIS OF ELECTROMYOGRAPHY KUNG FU STRIKES DATA

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Miranda Marzullo

    2009-11-01

    Full Text Available In martial arts and contact sports strikes are performed at near maximum speeds. For that reason, electromyography (EMG analysis of such movements is non-trivial. This paper has three main goals: firstly, to investigate the differences in the EMG activity of muscles during strikes performed with and without impacts; secondly, to assess the advantages of using Sum of Significant Power (SSP values instead of root mean square (rms values when analyzing EMG data; and lastly to introduce a new method of calculating median frequency values using wavelet transforms (WMDF. EMG data of the deltoid anterior (DA, triceps brachii (TB and brachioradialis (BR muscles were collected from eight Kung Fu practitioners during strikes performed with and without impacts. SSP results indicated significant higher muscle activity (p = 0.023 for the strikes with impact. WMDF results, on the other hand, indicated significant lower values (p = 0. 007 for the strikes with impact. SSP results presented higher sensitivity than rms to quantify important signal differences and, at the same time, presented lower inter-subject coefficient of variations. The result of increase in SSP values and decrease in WMDF may suggest better synchronization of motor units for the strikes with impact performed by the experienced Kung Fu practitioners

  9. Particle track record in lunar silicates: long-term behavior of solar and galactic VH nuclei and lunar surface dynamics

    International Nuclear Information System (INIS)

    Yuhas, D.E.

    1974-01-01

    Stored nuclear particle tracks are abundant in all major mineral phases found on the moon. The track production in the near surface regions (depth less than 1 mm) is dominated by VH (Z greater than 20) cosmic rays of solar origin. At deeper depths (greater than 5 mm) heavy galactic cosmic rays dominate the production. The track profile (track density vs depth) is shaped by both the energy spectrum of impinging VH nuclei and dynamical processes which change rock surfaces with time. The analyses of track records in a number of lunar rocks with different surface exposure histories yield information about both dynamical processes on the moon and the long-term time behavior of solar and galactic cosmic rays. (Diss. Abstr. Int., B)

  10. Analysis of Direct Recordings from the Surface of the Human Brain

    Science.gov (United States)

    Towle, Vernon L.

    2006-03-01

    Recording electrophysiologic signals directly from the cortex of patients with chronically implanted subdural electrodes provides an opportunity to map the functional organization of human cortex. In addition to using direct cortical stimulation, sensory evoked potentials, and electrocorticography (ECoG) can also be used. The analysis of ECoG power spectrums and inter-electrode lateral coherence patterns may be helpful in identifying important eloquent cortical areas and epileptogenic regions in cortical multifocal epilepsy. Analysis of interictal ECoG coherence can reveal pathological cortical areas that are functionally distinct from patent cortex. Subdural ECoGs have been analyzed from 50 medically refractive pediatric epileptic patients as part of their routine surgical work-up. Recording arrays were implanted over the frontal, parietal, occipital or temporal lobes for 4-10 days, depending on the patient's seizure semiology and imaging studies. Segments of interictal ECoG ranging in duration from 5 sec to 45 min were examined to identify areas of increased local coherence. Ictal records were examined to identify the stages and spread of the seizures. Immediately before a seizure began, lateral coherence values decreased, reorganized, and then increased during the late ictal and post-ictal periods. When computed over relatively long interictal periods (45 min) coherence patterns were found to be highly stable (r = 0.97, p < .001), and only changed gradually over days. On the other hand, when calculated over short periods of time (5 sec) coherence patterns were highly dynamic. Coherence patterns revealed a rich topography, with reduced coherence across sulci and major fissures. Areas that participate in receptive and expressive speech can be mapped through event-related potentials and analysis of task-specific changes in power spectrums. Information processing is associated with local increases in high frequency activity, with concomitant changes in coherence

  11. The surface electromyography analysis of the non-plegic upper limb of hemiplegic subjects Análise da eletromiografia de superfície do membro superior não plégico de hemiplégicos

    Directory of Open Access Journals (Sweden)

    Heloyse U Kuriki

    2010-08-01

    Full Text Available Many authors have studied physical and functional changes in individuals post-stroke, but there are few studies that assess changes in the non-plegic side of hemiplegic subjects. This study aimed to compare the electromyographic activity in the forearm muscles of spastic patients and clinically healthy individuals, to determine if there is difference between the non-plegic side of hemiplegics and the dominant member of normal individuals. 22 hemiplegic subjects and 15 clinically healthy subjects were submitted to electromyography of the flexor and extensor carpi ulnaris muscles during wrist flexion and extension. The flexor muscles activation of stroke group (average 464.6 u.n was significantly higher than the same muscles in control group (mean: 106.3 u.n. during the wrist flexion, what shows that the non affected side does not present activation in the standart of normality found in the control group.Muitos autores estudaram as modificações funcionais e físicas em indivíduos pós-acidente vascular cerebral; porém, poucos estudos avaliam alterações no hemicorpo não plégico de indivíduos hemiplégicos. O objetivo deste estudo foi comparar a atividade eletromiográfica nos músculos do antebraço de pacientes espásticos e indivíduos clinicamente saudáveis, para averiguar se há diferença entre o lado não plégico de indivíduos hemiplégicos e o lado dominante de indivíduos clinicamente saudáveis. 22 indivíduos hemiplégicos e 15 clinicamente saudáveis foram submetidos à eletromiografia dos músculos flexor e extensor ulnar do carpo durante a flexão e extensão do punho. A ativação dos músculos flexores dos hemiplégicos (média: 464,6 u.n, foi significantemente maior que nos indivíduos do grupo controle (média: 106,3 u.n durante o movimento de flexão do punho, o que demonstra que o hemicorpo não acometido dos pacientes estudados não apresenta o comportamento padrão de normalidade encontrado no grupo controle.

  12. Conventional versus implant-retained overlay dentures: a pilot study of masseter and anterior temporalis electromyography.

    Science.gov (United States)

    Dakhilalian, Mansour; Rismanchian, Mansour; Fazel, Akbar; Basiri, Keyvan; Azadeh, Hamid; Mahmoodi, Maryam; Fayazi, Sara; Sadr-Eshkvari, Pooyan

    2014-08-01

    Implant-supported overlay dentures (ISODs) have been widely accepted among patients using conventional removable complete dentures (CRCDs). The present study aimed to comparatively study conventional and ISODs in terms of function and coordination of masticatory muscles using electromyograms. Included were 10 patients with ISODs (each with 2 implants in the intercanine area). The mean wave range (MWR) and frequency (MWF) of masseter and temporalis were recorded with (ISOD) and without (CRCD) ball attachments while maximum clenching on cotton rolls (cotton roll clenching), maximum intercuspal clenching (clenching), and unilateral gum chewing (chewing) using electromyography. Data were analyzed in SPAW using t-paired for matched groups and independent-sample t tests for unmatched ones. The MWF differences were not statistically significant with or without attachments (P > .05). Without attachments in place, the MWF of both masseter and temporalis muscles significantly decreased when patients clenched on cotton rolls (P = .01 and .02, respectively) and when chewing unilaterally (both P = .01). With attachments present, the right and left temporalis muscles did not show identical mean wave ranges while chewing (P = .01). Without attachments, this disharmony was seen in the left and right masseter muscles (P = .03). The MWR of masseter was higher in men while chewing with attachments (P = .02). Without attachments, the MWR of temporalis was higher in women while cotton roll clenching (P = .03) and chewing (P = .02). These findings are seemingly in favor of improved masticatory function and coordination in edentulous patients with the application of ISODs.

  13. Surface EMG measurements during fMRI at 3T : Accurate EMG recordings after artifact correction

    NARCIS (Netherlands)

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, H; Maurits, N

    2005-01-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s

  14. Determination of effective treatment duration of interferential current therapy using electromyography

    OpenAIRE

    Youn, Jong-In; Lee, Ho Sub; Lee, Sangkwan

    2016-01-01

    [Purpose] This study used electromyography to measure the effective treatment duration of interferential current therapy for muscle fatigue. [Subjects and Methods] Fifteen healthy adult men volunteered to participate in the study (age: 24.2 ? 1.3?years; weight: 67.6 ? 4.92?kg; height: 176.4 ? 4.92?cm). All subjects performed 5?min of isometric back extension exercise to produce muscle fatigue, and were then treated with interferential current therapy for 15?min, with electromyography monitori...

  15. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

    Directory of Open Access Journals (Sweden)

    Hai-peng Wang

    2017-01-01

    Full Text Available Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training.

  16. Evaluation of Jeju/Tsushima Hermatypic Corals as Sea Surface Temperature (SST) Recorders

    OpenAIRE

    Hyeong, Ki-Seong; Shimamura, Michiyo; Watanabe, Tsuyoshi; Yamano, Hiroya; Sugihara, Kaoru; Kim, Jong-Uk

    2008-01-01

    In an effort to develop high-resolution sea surface temperature (SST) proxies for mid-latitude regions, two massive reef-building coral species, Alveopora and Favia, were collected from Jeju and Tsushima Islands, respectively. Their skeletons were subsequently analyzed for annual growth banding, Sr/Ca and Mg/Ca ratios. Hermatypic corals are thinly distributed in the waters of Jeju Island, where Alveopora japonica was the only dominant coral species. A higher diversity of hermatypic corals wer...

  17. Selection of optimal recording sites for limited lead body surface potential mapping: A sequential selection based approach

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2006-02-01

    Full Text Available Abstract Background In this study we propose the development of a new algorithm for selecting optimal recording sites for limited lead body surface potential mapping. The proposed algorithm differs from previously reported methods in that it is based upon a simple and intuitive data driven technique that does not make any presumptions about deterministic characteristics of the data. It uses a forward selection based search technique to find the best combination of electrocardiographic leads. Methods The study was conducted using a dataset consisting of body surface potential maps (BSPM recorded from 116 subjects which included 59 normals and 57 subjects exhibiting evidence of old Myocardial Infarction (MI. The performance of the algorithm was evaluated using spatial RMS voltage error and correlation coefficient to compare original and reconstructed map frames. Results In all, three configurations of the algorithm were evaluated and it was concluded that there was little difference in the performance of the various configurations. In addition to observing the performance of the selection algorithm, several lead subsets of 32 electrodes as chosen by the various configurations of the algorithm were evaluated. The rationale for choosing this number of recording sites was to allow comparison with a previous study that used a different algorithm, where 32 leads were deemed to provide an acceptable level of reconstruction performance. Conclusion It was observed that although the lead configurations suggested in this study were not identical to that suggested in the previous work, the systems did bear similar characteristics in that recording sites were chosen with greatest density in the precordial region.

  18. Electromyography data for non-invasive naturally-controlled robotic hand prostheses.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible.

  19. Electromyography data for non-invasive naturally-controlled robotic hand prostheses

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible. PMID:25977804

  20. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Jing-Yi; Zheng, Yong-Ping

    2010-04-01

    In the present contribution, a complexity measure is proposed to assess surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Approximate entropy (ApEn) is believed to provide quantitative information about the complexity of experimental data that is often corrupted with noise, short data length, and in many cases, has inherent dynamics that exhibit both deterministic and stochastic behaviors. We developed an improved ApEn measure, i.e., fuzzy approximate entropy (fApEn), which utilizes the fuzzy membership function to define the vectors' similarity. Tests were conducted on independent, identically distributed (i.i.d.) Gaussian and uniform noises, a chirp signal, MIX processes, Rossler equation, and Henon map. Compared with the standard ApEn, the fApEn showed better monotonicity, relative consistency, and more robustness to noise when characterizing signals with different complexities. Performance analysis on experimental EMG signals demonstrated that the fApEn significantly decreased during the development of muscle fatigue, which is a similar trend to that of the mean frequency (MNF) of the EMG signal, while the standard ApEn failed to detect this change. Moreover, fApEn of EMG demonstrated a better robustness to the length of the analysis window in comparison with the MNF of EMG. The results suggest that the fApEn of an EMG signal may potentially become a new reliable method for muscle fatigue assessment and be applicable to other short noisy physiological signal analysis.

  1. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  2. A comparison of surface and fine wire EMG recordings of gluteus medius during selected maximum isometric voluntary contractions of the hip.

    Science.gov (United States)

    Semciw, Adam I; Neate, Rachel; Pizzari, Tania

    2014-12-01

    Electromyographic (EMG) studies into gluteus medius (GMed) typically involve surface EMG electrodes. Previous comparisons of surface and fine wire electrode recordings in other muscles during high load isometric tasks suggest that recordings between electrodes are comparable when the muscle is contracting at a high intensity, however, surface electrodes record additional activity when the muscle is contracting at a low intensity. The purpose of this study was to compare surface and fine wire recordings of GMed at high and low intensities of muscle contractions, under high load conditions (maximum voluntary isometric contractions, MVICs). Mann-Whitney U tests compared median electrode recordings during three MVIC hip actions; abduction, internal rotation and external rotation, in nine healthy adults. There were no significant differences between electrode recordings in positions that evoked a high intensity contraction (internal rotation and abduction, fine wire activity >77% MVIC; effect size, ES0.277). During external rotation, the intensity of muscle activity was low (4.2% MVIC), and surface electrodes recorded additional myoelectric activity (ES=0.67, p=0.002). At low levels of muscle activity during high load isometric tasks, the use of surface electrodes may result in additional myoelectric recordings of GMed, potentially reflective of cross-talk from surrounding muscles. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Radiocarbon in Surface Waters of the Gulf of Mexico and Caribbean as Recorded in Hermatypic Corals

    Science.gov (United States)

    Bratcher, A. J.; Guilderson, T. P.; Slowey, N. C.; Cole, J. E.

    2004-12-01

    Radiocarbon measurements of hermatypic corals from near the Cariaco Basin and Veracruz, Mexico are used to reconstruct the D14C of surface waters in the Caribbean Sea and western Gulf of Mexico. These results will be used to investigate the carbon flux from the atmosphere into the ocean in these regions. Coral chronology was resolved using x-radiography to determine annual density bands deposited during the warm summer months. Sub-annual and annual samples were obtained from 1943-1996 using a microdrill and radiocarbon composition was determined using accelerator mass spectrometry. The corals were sampled at annual intervals from 1945-1955 and average values from the two sites are similar (-52 ±4 per mil at Veracruz and -53 ±3 per mil at Cariaco). Due to the production of 14C as a consequence of nuclear weapons atmospheric tests in the 1950s and 1960s, the D14C in the coral skeletal material began increasing in the late 1950s and reached a maximum in 1978 of 165 ±4 per mil at Veracruz and 127 ±3 per mil in 1973 at Cariaco Basin. These data and additional radiocarbon measurements of corals from the Flower Garden Banks (northern Gulf of Mexico) and published data from the region will be used to investigate the processes controlling radiocarbon concentrations in the surface waters of the Caribbean Sea and Gulf of Mexico.

  4. Development of a Passive Microwave Surface Melt Record for Antarctica and Antarctic Ice Shelves

    Science.gov (United States)

    Karmosky, C. C.; Reasons, J.; Morgan, N. J.

    2015-12-01

    Antarctica contains the largest mass of ice in the world and much time and energy has gone into researching the ice-ocean-atmosphere-land dynamics that, in a warming climate, have the potential to significantly affect sea levels throughout the world. While there are many datasets currently available to researchers examining sea ice extent and volume, glacier thickness, ice shelf retreat and expansion, and atmospheric variables such as temperature and wind speeds, there is not currently a dataset that offers surface melt extent of land ice in the southern hemisphere. The database outlined here uses the Cross-Polarized Gradient Ratio (XPGR) to show surface melt extent on a daily basis for all of Antarctica. XPGR utilizes passive microwave satellite imagery in the 19 GHz and 37GHz frequencies to determine the presence or absence of greater than 1% liquid water in the top layers of ice. Daily XPGR melt occurrence (1987-2014) was calculated for both the ice sheet as well as ice shelves on Antarctica, and is available as a GIS shapefile or asci text file.

  5. A Climate Data Record of Near-Surface Over-Ocean Parameters and Air-Sea Fluxes

    Science.gov (United States)

    Clayson, C. A.; Brown, J.

    2015-12-01

    In this climate data record, we have derived surface and near-surface parameters of wind speed, temperature, and humidity from a combination of satellite observations, with a focus on the use of these variables towards determination of the air-sea turbulent heat fluxes. The dataset is a follow-on to the CDR SeaFlux v 1 dataset, which currently covers the time period of 1988 through 2008, and the variables of sea surface temperature and 10-m temperature, wind speed, and specific humidity at a 3-hourly, 0.25º resolution over the global oceans. These products have been developed for the specific focus of accurate determination of the surface turbulent fluxes. The current dataset is brought forward to short latency (roughly three months) by adding in SSMIS data. This talk will discuss the additional issues associated with including the much-noisier SSMIS data, comparisons of uncertainties from the time period of the SSMIS as compared to the SSMI era, and an analysis of interannual variability over the time period from 1988 through 2015, including the recent ENSO variability.

  6. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  7. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    Science.gov (United States)

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  8. Effect of a Quaternary Meteoroid Impact in Indo-China on the Surface Sedimentary Record

    Science.gov (United States)

    Carling, Paul; Songtham, Wickanet; Tada, Riuji; Tada, Toshihiro; Duangkrayon, Jaa

    2017-04-01

    Effects of meteoroid impacts on terrestrial geology primarily have been considered with respect of proximal effects near the impact location; such as cratering, fracturing and melt. However, other than the use of rare elements (iridium) as event markers and tektite chemistry for dating control, distal effects of impacts are less-well documented. Distal effects might include: fireball, air blast, heat, water vaporization, catastrophic flooding, earthquakes, ejecta fallout (tektites & dust), large quantities of N2O from shock heating of the atmosphere, release of CO2 and sulphur aerosols causing heating or cooling of atmosphere, IR radiation causing vegetation fires, smoke and pyrotoxins, and altered native rock geochemistry. Such processes may affect the distal surface geology, degrade vegetation cover and cause extirpation of flora and fauna. Quaternary sedimentary sections have been examined in northern and central Cambodia, in southern China and in north-east Thailand. These locality lie within the Australian strewn tektite field ̶ reliably dated to 0.77-0.78Ma BP ̶ just before the 0.80Ma BP Brunhes/Matayama reversal. The location of the primary impact crater (if any) is uncertain but a local major crater probably lies within central Laos or just offshore to the east. The described sections are considered distal from the main impact. Stratigraphic evidence indicates a temporal sequence of catastrophic stripping of alluvial-gravel surfaces followed by catastrophic redistribution of gravel (incorporating tektites), followed by deposition of atmospheric dust. Grain-size and grain-density trends, XRD, spherule distributions, luminescence profiles, tektite, and microtektite and shock quartz assay, are used to with the stratigraphic evidence to examine an hypothesis that the sections represent the distal effects of a meteorite. Additional insight is gained with respect to prior claims that large accumulations of woody debris in Thai Quaternary river terraces were due

  9. Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records

    Directory of Open Access Journals (Sweden)

    C. Giry

    2013-03-01

    Full Text Available Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and δ18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Δδ18O records are used as a proxy for the oxygen isotopic composition of seawater (δ18Osw of the southern Caribbean Sea. Consistent with modern day conditions, annual δ18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual δ18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present. In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.

  10. [Evaluation of the electromyography activity of pelvic floor muscle during postural exercises using the Wii Fit Plus©. Analysis and perspectives in rehabilitation].

    Science.gov (United States)

    Steenstrup, B; Giralte, F; Bakker, E; Grise, P

    2014-12-01

    The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Determination of effective treatment duration of interferential current therapy using electromyography

    Science.gov (United States)

    Youn, Jong-In; Lee, Ho Sub; Lee, Sangkwan

    2016-01-01

    [Purpose] This study used electromyography to measure the effective treatment duration of interferential current therapy for muscle fatigue. [Subjects and Methods] Fifteen healthy adult men volunteered to participate in the study (age: 24.2 ± 1.3 years; weight: 67.6 ± 4.92 kg; height: 176.4 ± 4.92 cm). All subjects performed 5 min of isometric back extension exercise to produce muscle fatigue, and were then treated with interferential current therapy for 15 min, with electromyography monitoring (treatment group). After sufficient rest, the exercise was repeated for 5 min and an electromyography signal was acquired for 15 min with no treatment (control group). [Results] In the treatment group, the median frequency shifted to a higher level; the root mean square decreased over time, and then maintained a minimum amplitude. However, there were few changes in the electromyography signal after exercise in the control group. [Conclusion] Electromyography signals can provide information about the effective duration for muscle fatigue treatment as well as the muscle characteristics during treatment. This study should be helpful for clinicians by demonstrating the appropriate duration of therapy for relief of muscle stiffness. PMID:27630443

  12. Determination of effective treatment duration of interferential current therapy using electromyography.

    Science.gov (United States)

    Youn, Jong-In; Lee, Ho Sub; Lee, Sangkwan

    2016-08-01

    [Purpose] This study used electromyography to measure the effective treatment duration of interferential current therapy for muscle fatigue. [Subjects and Methods] Fifteen healthy adult men volunteered to participate in the study (age: 24.2 ± 1.3 years; weight: 67.6 ± 4.92 kg; height: 176.4 ± 4.92 cm). All subjects performed 5 min of isometric back extension exercise to produce muscle fatigue, and were then treated with interferential current therapy for 15 min, with electromyography monitoring (treatment group). After sufficient rest, the exercise was repeated for 5 min and an electromyography signal was acquired for 15 min with no treatment (control group). [Results] In the treatment group, the median frequency shifted to a higher level; the root mean square decreased over time, and then maintained a minimum amplitude. However, there were few changes in the electromyography signal after exercise in the control group. [Conclusion] Electromyography signals can provide information about the effective duration for muscle fatigue treatment as well as the muscle characteristics during treatment. This study should be helpful for clinicians by demonstrating the appropriate duration of therapy for relief of muscle stiffness.

  13. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  14. History of electromyography and nerve conduction studies: A tribute to the founding fathers.

    Science.gov (United States)

    Kazamel, Mohamed; Warren, Paula Province

    2017-09-01

    The early development of nerve conduction studies (NCS) and electromyography (EMG) was linked to the discovery of electricity. This relationship had been concluded by observing the effect of applying electricity to the body of an animal and discovering that nerves and muscles themselves could produce electricity. We attempt to review the historical evolution of NCS and EMG over the last three centuries by reviewing the landmark publications of Galvani, Adrian, Denny-Brown, Larrabee, and Lambert. In 1771, Galvani showed that electrical stimulation of animal muscle tissue produced contraction and, thereby, the concept of animal electricity was born. In 1929, Adrian devised a method to record a single motor unit potential by connecting concentric needle electrodes to an amplifier and a loud speaker. In 1938, Denny-Brown described the fasciculation potentials and separated them from fibrillations. Toward the end of World War II, Larrabee began measuring the compound muscle action potential in healthy and injured nerves of war victims. In 1957, Lambert and Eaton described the electrophysiologic features of a new myasthenic syndrome associated with lung carcinoma. Overall, research on this topic was previously undertaken by neurophysiologists and then later by neurologists, with Adrian most likely being the first neurologist to be involved. The field greatly benefited from the invention of equipment that was capable of amplifying small bioelectrical currents by the beginning of the 20th century. Significant scientific and technical advances were later made during and after World War II which provided a large patient population with nerve injuries to study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sea Surface Temperature Records Using Sr/Ca Ratios in a Siderastrea siderea Coral from SE Cuba

    Science.gov (United States)

    Fargher, H. A.; Hughen, K. A.; Ossolinski, J. E.; Bretos, F.; Siciliano, D.; Gonzalez, P.

    2015-12-01

    Sea surface temperature (SST) variability from Cuba remains relatively unknown compared to the rest of the Caribbean. Cuba sits near an inflection point in the spatial pattern of SST from the North Atlantic Oscillation (NAO), and long SST records from the region could reveal changes in the influence of this climate system through time. A Siderastrea siderea coral from the Jardínes de la Reina in southern Cuba was drilled to obtain a 220 year long archive of environmental change. The genus Siderastrea has not been extensively studied as an SST archive, yet Sr/Ca ratios in the Cuban core show a clear seasonal signal and strong correlation to instrumental SST data (r2 = 0.86 and 0.36 for monthly and interannual (winter season) timescales, respectively). Annual growth rates (linear extension) of the coral are observed to have a minor influence on Sr/Ca variability, but do not show a direct correlation to SST on timescales from annual to multidecadal. Sr/Ca measurements from the Cuban coral are used to reconstruct monthly and seasonal (winter, summer) SST extending back more than two centuries. Wintertime SST in southern Cuba is compared to other coral Sr/Ca records of winter-season SST from locations sensitive to the NAO in order to investigate the stationarity of the NAO SST 'fingerprint' through time.

  16. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals

    International Nuclear Information System (INIS)

    Toggweiler, J.R.; Trumbore, S.

    1985-01-01

    We report here measurements of bomb-test 90 Sr activity in the CaCO 3 skeletons of banded head forming corals collected from nine locations in the tropical Pacific and Indian Oceans. Density variations in skeletal carbonate demarcate annual growth bands and allow one to section individual years. Measurements of 90 Sr activity in the annual bands reconstruct the activity of the water in which the coral grew. Our oldest records date to the early years of the nuclear era and record not only fallout deposition from the major U.S. and Soviet tests of 1958-1962, but also the huge, and largely unappreciated, localized inputs from the U.S. tests at Eniwetok and Bikini atolls during 1952-1958. In the 1960's the 90 Sr activity in Indian Ocean surface water was twice as high as activity levels in the South Pacific at comparable latitudes. We suggest that substantial amounts of northern hemisphere fallout moved west and south into the Indian Ocean via passages through the Indonesian archipelago. Equatorial Pacific 90 Sr levels have remained relatively constant from the mid 1960's through the end of 1970's in spite of 90 Sr decay, reflecting a large-scale transfer of water between the temperate and tropical North Pacific. Activity levels at Fanning Is. (4 0 N, 160 0 W) appear to vary in conjunction with the 3-4 year El Nino cycle. (orig.)

  17. Does Heel Height Cause Imbalance during Sit-to-Stand Task: Surface EMG Perspective

    Directory of Open Access Journals (Sweden)

    Ganesh R. Naik

    2017-08-01

    Full Text Available The purpose of this study was to determine whether electromyography (EMG muscle activities around the knee differ during sit-to-stand (STS and returning task for females wearing shoes with different heel heights. Sixteen healthy young women (age = 25.2 ± 3.9 years, body mass index = 20.8 ± 2.7 kg/m2 participated in this study. Electromyography signals were recorded from the two muscles, vastus medialis (VM and vastus lateralis (VL that involve in the extension of knee. The participants wore shoes with five different heights, including 4, 6, 8, 10, and 12 cm. Surface electromyography (sEMG data were acquired during STS and stand-to-sit-returning (STSR tasks. The data was filtered using a fourth order Butterworth (band pass filter of 20–450 Hz frequency range. For each heel height, we extracted median frequency (MDF and root mean square (RMS features to measure sEMG activities between VM and VL muscles. The experimental results (based on MDF and RMS-values indicated that there is imbalance between vasti muscles for more elevated heels. The results are also quantified with statistical measures. The study findings suggest that there would be an increased likelihood of knee imbalance and fatigue with regular usage of high heel shoes (HHS in women.

  18. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    Science.gov (United States)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  19. A Longitudinal Electromyography Study of Complex Movements in Poststroke Therapy. 2: Changes in Coordinated Muscle Activation

    Directory of Open Access Journals (Sweden)

    Negin Hesam-Shariati

    2017-07-01

    Full Text Available Fine motor control is achieved through the coordinated activation of groups of muscles, or “muscle synergies.” Muscle synergies change after stroke as a consequence of the motor deficit. We investigated the pattern and longitudinal changes in upper limb muscle synergies during therapy in a largely unconstrained movement in patients with a broad spectrum of poststroke residual voluntary motor capacity. Electromyography (EMG was recorded using wireless telemetry from 6 muscles acting on the more-affected upper body in 24 stroke patients at early and late therapy during formal Wii-based Movement Therapy (WMT sessions, and in a subset of 13 patients at 6-month follow-up. Patients were classified with low, moderate, or high motor-function. The Wii-baseball swing was analyzed using a non-negative matrix factorization (NMF algorithm to extract muscle synergies from EMG recordings based on the temporal activation of each synergy and the contribution of each muscle to a synergy. Motor-function was clinically assessed immediately pre- and post-therapy and at 6-month follow-up using the Wolf Motor Function Test, upper limb motor Fugl-Meyer Assessment, and Motor Activity Log Quality of Movement scale. Clinical assessments and game performance demonstrated improved motor-function for all patients at post-therapy (p < 0.01, and these improvements were sustained at 6-month follow-up (p > 0.05. NMF analysis revealed fewer muscle synergies (mean ± SE for patients with low motor-function (3.38 ± 0.2 than those with high motor-function (4.00 ± 0.3 at early therapy (p = 0.036 with an association trend between the number of synergies and the level of motor-function. By late therapy, there was no significant change between groups, although there was a pattern of increase for those with low motor-function over time. The variability accounted for demonstrated differences with motor-function level (p < 0.05 but not time. Cluster

  20. Electromyography in cervical dystonia: changes after botulinum and trihexyphenidyl

    NARCIS (Netherlands)

    Brans, J. W.; Aramideh, M.; Koelman, J. H.; Lindeboom, R.; Speelman, J. D.; Ongerboer de Visser, B. W.

    1998-01-01

    BACKGROUND: The value of physical examination in detecting involved neck muscles in cervical dystonia (CD) is uncertain and little is known about changes in electromyographic (EMG) features after botulinum toxin type A (BTA) treatment. METHODS: In a double-blind, randomized study we recorded the EMG

  1. Lower motor neuron involvement examined by quantitative electromyography in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Krarup, Christian

    2011-01-01

    Objective The diagnosis of amyotrophic lateral sclerosis (ALS) includes demonstration of lower motor neuron (LMN) and upper motor neuron (UMN) involvement of bulbar and spinal muscles. Electromyography (EMG) is essential to confirm LMN affection in weak muscles, and to demonstrate changes...

  2. Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces

    DEFF Research Database (Denmark)

    Silva, Priscila de Brito; Mrachacz-Kersting, Natalie; Oliveira, Anderson Souza

    2018-01-01

    Standing on unstable surfaces requires more complex motor control mechanisms to sustain balance when compared to firm surfaces. Surface instability enhances the demand to maintain equilibrium and is often used to challenge balance, but little is known about how balance training affects movement...... strategies to control posture while standing on unstable surfaces. This study aimed at assessing the effects of isolated wobble board (WB) training on movement strategies to maintain balance during single-leg standing on a WB. Twenty healthy men were randomly assigned to either a control or a training group....... The training group took part in four weeks of WB training and both groups were tested pre and post the intervention. Electromyography from the supporting lower limb muscles, full-body kinematics and ground reaction forces were recorded during firm surface (FS) and WB single-leg standing. WB training did...

  3. The influence of the leaf gauge and anterior jig on jaw muscle electromyography and condylar head displacement: a pilot study.

    Science.gov (United States)

    Santosa, R E; Azizi, M; Whittle, T; Wanigaratrne, K; Klineberg, I J

    2006-03-01

    A leaf gauge and an anterior jig may be used to assist the recording of a reproducible jaw position for restorative and prosthodontic treatment. This study investigated possible condylar displacement using an opto-electronic jaw-tracking device and a leaf gauge or anterior jig. The effect of a leaf gauge and anterior jig on jaw muscle electromyography was also examined. Five healthy adults without symptoms of temporomandibular disorders were selected. Condylar displacement during clenching were recorded simultaneously with electromyographic activity of superior and inferior heads of the lateral pterygoid, anterior and posterior temporalis, masseter, and suprahyoid muscles. Subjects were trained to bite at maximum and half-maximum bite-force using an anterior jig incorporating a force transducer. No consistent condylar displacement was observed in x, y and z axes between different bite-forces although there was a trend towards superior displacement. Comparison of maximum intercuspal clench and maximum clench on a leaf gauge and an anterior jig produced significant decrease in anterior temporalis activity (p jig with maximum clench significantly decreased posterior temporalis muscle activity. Within the limits of this pilot study, no consistent change in condylar position was identified with these appliances.

  4. Fallout isotope chronology of the near-surface sediment record of Lake Bolătău.

    Science.gov (United States)

    Bihari, Árpád; Karlik, Máté; Mîndrescu, Marcel; Szalai, Zoltán; Grădinaru, Ionela; Kern, Zoltán

    2018-01-01

    Fallout isotope ( 210 Pb ex, 137 Cs and 241 Am) based dating has been carried out on the near-surface sediment core collected from Lake Bolătău-Feredeu (Bukovina, Romania). The motivation was to improve the chronology of this recent section in connection with significant fluctuations observed in sediment accumulation rates, particle size distribution and primordial radioisotope (i.e. 40 K and 232 Th) composition. Previously only an extrapolation of a broad-range OxCal age-depth model, which was based on 8 AMS radiocarbon dates from the deeper part of a parallel sediment sequence and tentatively validated for the upper part using the double peaks of the 137 Cs activity concentration distribution, was available for the studied section (1-24 cm). Parallel to the previous 137 Cs measurement, 210 Pb and 226 Ra (for a more detailed, 210 Pb ex -based chronology), 241 Am (for an additional time-marker), as well as 40 K and 232 Th concentrations have also been determined by gamma-spectrometry. In case of the 210 Pb ex -based chronology, due to a large deviation from a pure exponential distribution, the Constant Flux (CF) model has been used for the calculation of sediment ages and accumulation rates. Although the broad-range OxCal and the CF model were broadly similar down to 22 cm, the 210 Pb ex -based ages are clearly superior in terms of uncertainty in the uppermost 12 cm, while the broad-range model has smaller uncertainty below 20 cm (>150 years). The CF model gave an average mass accumulation rate of (0.08 ± 0.03) g cm -2 yr -1 for sections 0-11 cm, and (0.03 ± 0.01) g cm -2 yr -1 for sections 12-22 cm, respectively. Significant changes have been observed in the depth distribution of both the particle size distribution and the elemental/isotopic composition of the sediment record, most likely related to the variation observable in the intensity and volume of precipitation in the catchment. The obtained high-resolution records of Lake Bolătău, including

  5. Electromyography and nerve conduction velocity for the evaluation of the infraspinatus muscle and the suprascapular nerve in professional beach volleyball players.

    Science.gov (United States)

    Lajtai, Georg; Wieser, Karl; Ofner, Michael; Raimann, Gustav; Aitzetmüller, Gernot; Jost, Bernhard

    2012-10-01

    Beach volleyball is an overhead sport with a high prevalence of infraspinatus muscle atrophy of the hitting shoulder. Infraspinatus muscle atrophy seems to be caused by a repetitive traction injury of the suprascapular nerve. Early pathological findings might be assessed with surface electromyography (EMG) and nerve conduction velocity (NCV) measurements. Cross-sectional study; Level of evidence, 3. Fully competitive professional beach volleyball players were assessed with a structured interview, shoulder examination, strength measurements (external rotation and elevation), and neurophysiological examination (surface EMG and NCV of the infraspinatus and supraspinatus muscles and the suprascapular nerve, respectively) during the Beach Volleyball Grand Slam tournament 2010 in Klagenfurt, Austria. Thirty-five men with an average age of 28 years were examined. Visible infraspinatus atrophy was found in 12 players (34%), of which 8 (23%) had slight atrophy and 4 (11%) had severe atrophy. External rotation (90%; P volleyball players have a high frequency of infraspinatus atrophy (34%) and significantly reduced shoulder strength of the hitting shoulder. These findings are not associated with demographic factors. Electromyography and NCV measurements suggest a suprascapular nerve involvement caused by repetitive strain injuries of the nerve. External rotation strength measurements and NCV measurements can detect a side-to-side difference early, while EMG may show compensation mechanisms for progressive damaging of the suprascapular nerve and, as a result, loss of infraspinatus muscle strength.

  6. Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery.

    Science.gov (United States)

    Donoso Brown, Elena V; McCoy, Sarah Westcott; Fechko, Amber S; Price, Robert; Gilbertson, Torey; Moritz, Chet T

    2014-08-01

    To investigate the preliminary effectiveness of surface electromyography (sEMG) biofeedback delivered via interaction with a commercial computer game to improve motor control in chronic stroke survivors. Single-blinded, 1-group, repeated-measures design: A1, A2, B, A3 (A, assessment; B, intervention). Laboratory and participants' homes. A convenience sample of persons (N=9) between 40 and 75 years of age with moderate to severe upper extremity motor impairment and at least 6 months poststroke completed the study. The electromyography-controlled video game system targeted the wrist muscle activation with the goal of increasing selective muscle activation. Participants received several laboratory training sessions with the system and then were instructed to use the system at home for 45 minutes, 5 times per week for the following 4 weeks. Primary outcome measures included duration of system use, sEMG during home play, and pre/post sEMG measures during active wrist motion. Secondary outcomes included kinematic analysis of movement and functional outcomes, including the Wolf Motor Function Test and the Chedoke Arm and Hand Activity Inventory-9. One third of participants completed or exceeded the recommended amount of system use. Statistically significant changes were observed on both game play and pre/post sEMG outcomes. Limited carryover, however, was observed on kinematic or functional outcomes. This preliminary investigation indicates that use of the electromyography-controlled video game impacts muscle activation. Limited changes in kinematic and activity level outcomes, however, suggest that the intervention may benefit from the inclusion of a functional activity component. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. [Electromyography Analysis of Rapid Eye Movement Sleep Behavior Disorder].

    Science.gov (United States)

    Nakano, Natsuko; Kinoshita, Fumiya; Takada, Hiroki; Nakayama, Meiho

    2018-01-01

    Polysomnography (PSG), which records physiological phenomena including brain waves, breathing status, and muscle tonus, is useful for the diagnosis of sleep disorders as a gold standard. However, measurement and analysis are complex for several specific sleep disorders, such as rapid eye movement (REM) sleep behavior disorder (RBD). Usually, brain waves during REM sleep indicate an awakening pattern under relaxed conditions of skeletal and antigravity muscles. However, these muscles are activated during REM sleep when patients suffer from RBD. These activated muscle movements during REM, so-called REM without atonia (RWA) recorded by PSG, may be related to a neurodegenerative disease such as Parkinson's disease. Thus, careful analysis of RWA is significant not only physically, but also clinically. Commonly, manual viewing measurement analysis of RWA is time-consuming. Therefore, quantitative studies on RWA are rarely reported. A software program, developed from Microsoft Office Excel ® , was used to semiautomatically analyze the RWA ratio extracted from PSG to compare with manual viewing measurement analysis. In addition, a quantitative muscle tonus study was carried out to evaluate the effect of medication on RBD patients. Using this new software program, we were able to analyze RWA on the same cases in approximately 15 min as compared with 60 min in the manual viewing measurement analysis. This software program can not only quantify RWA easily but also identify RWA waves for either phasic or tonic bursts. We consider that this software program will support physicians and scientists in their future research on RBD. We are planning to offer this software program for free to physicians and scientists.

  8. Tectonics, climate and mountain building in the forearc of southern Peru recorded in the 10Be chronology of low-relief surface abandonment

    Science.gov (United States)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2009-12-01

    incision (uplift) rates of ~0.1-0.3mm/yr. These ages, erosion rates, and uplift rates suggest that the hyperarid forearc landscape has been recently modified (surface uplift, climate events), while paradoxically, very little erosion is occurring on these surfaces. The four surface abandonment age clusters we observe correlate with cold wet periods preceding deglaciation on the Altiplano. Thus, we suggest that the recorded chronology of Pleistocene surface abandonment results from the interaction and linkage of surface uplift in the forearc, to specific climatic periods in the high Andes that produce high discharge through the fluvial system.

  9. Source localization in electromyography using the inverse potential problem

    Science.gov (United States)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2011-02-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.

  10. Source localization in electromyography using the inverse potential problem

    International Nuclear Information System (INIS)

    Van den Doel, Kees; Ascher, Uri M; Pai, Dinesh K

    2011-01-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting

  11. NOAA Climate Data Record (CDR) of Sea Surface Temperature (SST) from AVHRR Pathfinder, Version 5.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  12. Electromyography function, disability degree, and pain in leprosy patients undergoing neural mobilization treatment

    Directory of Open Access Journals (Sweden)

    Larissa Sales Téles Véras

    2012-02-01

    Full Text Available INTRODUCTION: This study aimed to evaluate the effect of the neural mobilization technique on electromyography function, disability degree, and pain in patients with leprosy. METHODS: A sample of 56 individuals with leprosy was randomized into an experimental group, composed of 29 individuals undergoing treatment with neural mobilization, and a control group of 27 individuals who underwent conventional treatment. In both groups, the lesions in the lower limbs were treated. In the treatment with neural mobilization, the procedure used was mobilization of the lumbosacral roots and sciatic nerve biased to the peroneal nerve that innervates the anterior tibial muscle, which was evaluated in the electromyography. RESULTS: Analysis of the electromyography function showed a significant increase (p<0.05 in the experimental group in both the right (Δ%=22.1, p=0.013 and the left anterior tibial muscles (Δ%=27.7, p=0.009, compared with the control group pre- and post-test. Analysis of the strength both in the movement of horizontal extension (Δ%right=11.7, p=0.003/Δ%left=27.4, p=0.002 and in the movement of back flexion (Δ%right=31.1; p=0.000/Δ%left=34.7, p=0.000 showed a significant increase (p<0.05 in both the right and the left segments when comparing the experimental group pre- and post-test. The experimental group showed a significant reduction (p=0.000 in pain perception and disability degree when the pre- and post-test were compared and when compared with the control group in the post-test. CONCLUSIONS: Leprosy patients undergoing the technique of neural mobilization had an improvement in electromyography function and muscle strength, reducing disability degree and pain.

  13. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography

    Directory of Open Access Journals (Sweden)

    Torres R

    2017-02-01

    Full Text Available Róbinson Torres,1,2 Sergio López-Isaza,1,2 Elisa Mejía-Mejía,1,2 Viviana Paniagua,1,2 Víctor González3 1Biomedical Engineering Department, Universidad EIA, Envigado, 2Biomedical Engineering Department, Universidad CES, 3Neonathology Department, Hospital General de Medellín Luz Castro de Gutiérrez, Medellín, Antioquia, Colombia Introduction: An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle.Objective: The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography.Materials and methods: The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients.Results: The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography.Conclusion: This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home.Significance: The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez. Keywords: apnea, diaphragm, electromyography, neonates, respiratory signal

  14. Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study.

    NARCIS (Netherlands)

    Blijham, P.J.; Hengstman, G.J.D.; Laak, H.J. ter; Engelen, B.G.M. van; Zwarts, M.J.

    2004-01-01

    Combinations of different techniques can increase the diagnostic yield from neurophysiological examination of muscle. In 25 patients with suspected inflammatory myopathy, we prospectively performed needle electromyography (EMG) and measured muscle-fiber conduction velocity (MFCV) in a single muscle,

  15. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    International Nuclear Information System (INIS)

    Herrera, V; Romero, J F; Amestegui, M

    2011-01-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  16. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V; Romero, J F [Engineering, Modeling and Applied Social Sciences Center, ABC Federal University, Santo Andr - SP (Brazil); Amestegui, M, E-mail: victoria.herrera@ufabc.edu.br [Engineering Faculty, Electronics Engineering, Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of)

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  17. Surface electromyography in diagnosis of lateral dominance in children: psychomotor aspects

    OpenAIRE

    Jordy, Ceme Ferreira [UNIFESP

    1995-01-01

    A dominância lateral foi verificada pelo eletromiograma de superfície em 100 crianças neurologicamente normais. Foram usados estímulos verbais durante os registros eletromiográficos. Em comparação com o diagnóstico clínico, a eletromiografia se revelou mais precisa, excluindo influências subjetivas nos resultados. Destrismo foi diagnosticado em 90 pacientes, canhotismo em 3 e dominância indefinida em 7. Mecanismos de ordem psicomotora são sugeridos para justificar as respostas motoras provoca...

  18. Diagnosis of cauda equina abnormalities by using electromyography, discography, and epidurography in dogs

    International Nuclear Information System (INIS)

    Sisson, A.F.; LeCouteur, R.A.; Ingram, J.T.; Park, R.D.; Child, G.

    1992-01-01

    Electromyography (EMG), L7-S1 discography and epidurography were investigated in 15 dogs with clinical signs of cauda equina dysfunction and in 7 control dogs without such clinical signs. Electromyography of paraspinal and pelvic limb muscles was done in 13 of 15 affected dogs. An L7-S1 discogram followed by an epidurogram was performed in all 22 dogs using 20% iopamidol. Results of discograms, epidurograms, and gross necropsy examinations were normal in six of seven control dogs. The one dog in which these studies were abnormal had a mild L7-S1 disc protrusion that did not result in nerve root compression at necropsy. Electromyographic analysis was 100% accurate in predicting the presence or absence of cauda equina disease. None of the results of discograms were falsely negative. Twelve of 15 discograms in clinically affected dogs indicated dorsal disc protrusion, but 2 of these protrusions were found to be noncompressive at surgery (13% error). Abnormal epidurograms occurred in 9 of 15 clinically affected dogs. There was one false positive and two false negatives (20% error). Electromyography was a sensitive screening technique for the presence of cauda equina disease. Discography may be more sensitive for detection of L7-S1 disc protrusion than epidurography. An abnormal radiographic contrast study of the cauda equina may only be useful when combined with an abnormal EMG

  19. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography.

    Science.gov (United States)

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez.

  20. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    Science.gov (United States)

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  1. A computational model to investigate the effect of pennation angle on surface electromyogram of Tibialis Anterior.

    Directory of Open Access Journals (Sweden)

    Diptasree Maitra Ghosh

    Full Text Available This study has described and experimentally validated the differential electrodes surface electromyography (sEMG model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.

  2. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  3. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Surface Temperature (IST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  4. Diagnostic accuracy of the electromyography parameters associated with anterior knee pain in the diagnosis of patellofemoral pain syndrome.

    Science.gov (United States)

    Ferrari, Deisi; Kuriki, Heloyse Uliam; Silva, Cristiano Rocha; Alves, Neri; Mícolis de Azevedo, Fábio

    2014-08-01

    To assess the diagnostic accuracy of the surface electromyography (sEMG) parameters associated with referred anterior knee pain in diagnosing patellofemoral pain syndrome (PFPS). Sensitivity and specificity analysis. Physical rehabilitation center and laboratory of biomechanics and motor control. Pain-free subjects (n=29) and participants with PFPS (n=22) selected by convenience. Not applicable. The diagnostic accuracy was calculated for sEMG parameters' reliability, precision, and ability to differentiate participants with and without PFPS. The selected sEMG parameter associated with anterior knee pain was considered as an index test and was compared with the reference standard for the diagnosis of PFPS. Intraclass correlation coefficient, SEM, independent t tests, sensitivity, specificity, negative and positive likelihood ratios, and negative and positive predictive values were used for the statistical analysis. The medium-frequency band (B2) parameter was reliable (intraclass correlation coefficient=.80-.90), precise (SEM=2.71-3.87 normalized unit), and able to differentiate participants with and without PFPS (Ppain showed positive diagnostic accuracy values (specificity, .87; sensitivity, .70; negative likelihood ratio, .33; positive likelihood ratio, 5.63; negative predictive value, .72; and positive predictive value, .86). The results provide evidence to support the use of EMG signals (B2-frequency band of 45-96 Hz) of the vastus lateralis and vastus medialis muscles with referred anterior knee pain in the diagnosis of PFPS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Development of practical functional electrical stimulation cycling systems based on an electromyography study of the Cybathlon 2016.

    Science.gov (United States)

    Arnin, Jetsada; Yamsa-Ard, Traisak; Triponyuwasin, Preechapawan; Wongsawat, Yodchanan

    2017-12-05

    The purpose of this study was to develop a functional electrical stimulation (FES) system based on the motor driving concept for use by spinal cord injury patients participating in the FES Cycling competition at the Cybathlon 2016. The proposed FES system consists of a low-power control system, a precise processor unit, and a 4-channel stimulation unit. Self-adhesive carbon conductive electrodes were utilized for stimulation. A 26-year-old SCI patient was qualified to participate in the competition. The pilot patient underwent training for 16 months, which included experience with FES stimulation, performing FES cycling, and reducing spasticity, to practice using the FES system. In addition, using surface electromyography (EMG) during cycling, the muscle activation pattern for generating the stimulation profile was applied and resulted in good performance. The best FES cycling performance the pilot achieved was 1000 meters translation with the cycling system during twelve minutes of using the FES system. The pilot achieved an 1000 meters translation mobility within an average of 16 minutes of cycling. Nevertheless, the system must be further investigated regarding muscle fatigue and other factors that may affect the stimulation conditions.

  6. Neuromuscular functions in sportsmen and fibromyalgia patients : a surface EMG study in static and dynamic conditions

    NARCIS (Netherlands)

    Klaver-Krol, E.G.

    2012-01-01

    This thesis presents two studies, one involving sportsmen (sprinters versus endurance athletes) and one fibromyalgia patients (patients versus healthy controls). The studies have investigated muscular functions using a non-invasive method: surface electromyography (sEMG). In the sportsmen,

  7. In-situ GPS records of surface mass balance, firn compaction rates, and ice-shelf basal melt rates for Pine Island Glacier, Antarctica

    Science.gov (United States)

    Shean, D. E.; Christianson, K.; Larson, K. M.; Ligtenberg, S.; Joughin, I. R.; Smith, B.; Stevens, C.

    2016-12-01

    In recent decades, Pine Island Glacier (PIG) has experienced marked retreat, speedup and thinning due to ice-shelf basal melt, internal ice-stream instability and feedbacks between these processes. In an effort to constrain recent ice-stream dynamics and evaluate potential causes of retreat, we analyzed 2008-2010 and 2012-2014 GPS records for PIG. We computed time series of horizontal velocity, strain rate, multipath-based antenna height, surface elevation, and Lagrangian elevation change (Dh/Dt). These data provide validation for complementary high-resolution WorldView stereo digital elevation model (DEM) records, with sampled DEM vertical error of 0.7 m. The GPS antenna height time series document a relative surface elevation increase of 0.7-1.0 m/yr, which is consistent with estimated surface mass balance (SMB) of 0.7-0.9 m.w.e./yr from RACMO2.3 and firn compaction rates from the IMAU-FDM dynamic firn model. An abrupt 0.2-0.3 m surface elevation decrease due to surface melt and/or greater near-surface firn compaction is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed surface Dh/Dt for all PIG shelf sites is highly linear with trends of -1 to -4 m/yr and PIG shelf and 4 m/yr for the South shelf. These melt rates are similar to those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo DEM records. The GPS/DEM records document higher melt rates within and near transverse surface depressions and rifts associated with longitudinal extension. Basal melt rates for the 2012-2014 period show limited temporal variability, despite significant change in ocean heat content. This suggests that sub-shelf melt rates are less sensitive to ocean heat content than previously reported, at least for these locations and time periods.

  8. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1992-01-01

    changes in human muscle. The aim of this study was to develop a method by which EMG and NMR spectroscopy measurements could be performed simultaneously. All measurements were performed in a whole body 1.5 Tesla NMR scanner. A calf muscle ergometer, designed for use in a whole body NMR scanner, was used......The electromyogram (EMG) is often used to study human muscle fatigue, but the changes in the electromyographic signals during muscle contraction are not well understood in relation to muscle metabolism. The 31P NMR spectroscopy is a semi-quantitative non-invasive method for studying the metabolic....... The subject had the left foot strapped to the ergometer. The anterior tibial EMG was recorded by bipolar surface electrodes. A surface coil was strapped to the anterior tibial muscle next to the EMG electrodes. Simultaneous measurements of surface EMG and surface coil 31P NMR spectroscopy were performed...

  9. Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico

    NARCIS (Netherlands)

    Wade, B.S.; Houben, A.J.P.; Quaijtaal, W.; Schouten, S.; Rosenthal, Y.; Miller, K.G.; Katz, M.E.; Wright, J.D.; Brinkhuis, H.

    2012-01-01

    The Eocene-Oligocene transition (EOT; ca. 33–34 Ma) was a time of pronounced climatic change, marked by the establishment of continental-scale Antarctic ice sheets. The timing and extent of temperature change associated with the EOT is controversial. Here we present multiproxy EOT climate records

  10. Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959-2013)

    Science.gov (United States)

    Manara, Veronica; Brunetti, Michele; Celozzi, Angela; Maugeri, Maurizio; Sanchez-Lorenzo, Arturo; Wild, Martin

    2016-09-01

    A dataset of 54 daily Italian downward surface solar radiation (SSR) records has been set up collecting data for the 1959-2013 period. Special emphasis is given to the quality control and the homogenization of the records in order to ensure the reliability of the resulting trends. This step has been shown as necessary due to the large differences obtained between the raw and homogenized dataset, especially during the first decades of the study period. In addition, SSR series under clear-sky conditions were obtained considering only the cloudless days from corresponding ground-based cloudiness observations. Subsequently, records were interpolated onto a regular grid and clustered into two regions, northern and southern Italy, which were averaged in order to get all-sky and clear-sky regional SSR records. Their temporal evolution is presented, and possible reasons for differences between all-sky and clear-sky conditions and between the two regions are discussed in order to determine to what extent SSR variability depends on aerosols or clouds. Specifically, the all-sky SSR records show a decrease until the mid-1980s (dimming period), and a following increase until the end of the series (brightening period) even though strength and persistence of tendencies are not the same in all seasons. Clear-sky records present stronger tendencies than all-sky records during the dimming period in all seasons and during the brightening period in winter and autumn. This suggests that, under all-sky conditions, the variations caused by the increase/decrease in the aerosol content have been partially masked by cloud cover variations, especially during the dimming period. Under clear sky the observed dimming is stronger in the south than in the north. This peculiarity could be a consequence of a significant contribution of mineral dust variations to the SSR variability.

  11. Accuracy of a three-dimensional dentition model digitized from an interocclusal record using a non-contact surface scanner.

    Science.gov (United States)

    Kihara, Takuya; Yoshimi, Yuki; Taji, Tsuyoshi; Murayama, Takeshi; Tanimoto, Kotaro; Nikawa, Hiroki

    2016-08-01

    For orthodontic treatment, it is important to assess the dental morphology, as well as the position and inclination of teeth. The aim of this article was to develop an efficient and accurate method for the three-dimensional (3D) imaging of the maxillary and mandibular dental morphology by measuring interocclusal records using an optical scanner. The occlusal and incisal morphology of participants was registered in the intercuspal position using a hydrophilic vinyl polysiloxane and digitized into 3D models using an optical scanner. Impressions were made of the maxilla and mandible in alginate materials in order to fabricate plaster models and created into 3D models using the optical scanner based on the principal triangulation method. The occlusal and incisal areas of the interocclusal records were retained. The buccal and lingual areas were added to these regions entirely by the 3D model of the plaster model. The accuracy of this method was evaluated for each tooth, with the dental cast 3D models used as controls. The 3D model created from the interocclusal record and the plaster model of the dental morphology was analysed in 3D software. The difference between the controls and the 3D models digitized from the interocclusal records was 0.068±0.048mm, demonstrating the accuracy of this method. The presence of severe crowding may compromise the ability to separate each tooth and digitize the dental morphology. The digitization method in this study provides sufficient accuracy to visualize the dental morphology, as well as the position and inclination of these teeth. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Measurement of muscle length-related electromyography activity of the hip flexor muscles to determine individual muscle contributions to the hip flexion torque.

    Science.gov (United States)

    Jiroumaru, Takumi; Kurihara, Toshiyuki; Isaka, Tadao

    2014-01-01

    This study aimed to investigate muscle length-related electromyography (EMG) of the iliopsoas (IL) and other hip flexor muscles to determine individual muscle contributions to the hip flexion torque. Ten healthy sedentary young men participated in the EMG experiment. A subgroup of six subjects underwent a magnetic resonance imaging (MRI) measurement to confirm the region of the skin over the IL. Surface EMG signals were sampled from the IL, rectus femoris (RF), sartorius (SA), and tensor fasciae latae (TFL) using an active electrode. The subjects performed maximum voluntary isometric hip flexion with the right hip joint set at -10°, 0°, 30°, and 60°. The root mean square (RMS) value for the TFL at 30° (0.81 ± 0.19, p muscle length changes were significantly correlated in the IL (r =0.39, p muscles.

  13. Evolution of subpolar North Atlantic surface circulation since the early Holocene inferred from planktic foraminifera faunal and stable isotope records

    DEFF Research Database (Denmark)

    Staines-Urias, Francisca; Kuijpers, Antoon; Korte, Christoph

    2013-01-01

    of the Faroe Islands, are located in the transitional area where surface waters of subpolar and subtropical origin mix before entering the Arctic Mediterranean. In these areas, large-amplitude millennial variability in the characteristics of the upper-water column appears modulated by changes in the intensity...

  14. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...... between sessions. Single pulse (at 120% and 140% of the resting motor threshold (rMT)) and paired pulse (2 ms and 15 ms paired pulse) transcranial magnetic stimulation (TMS) were used to elicit MEPs in the SMC which were recorded using sEMG. Results: ≈50% of participants (range: 42%-58%; depending...... on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single pulse and paired pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. Conclusions: The assessment of the SMC using sEMG following TMS was poorly...

  15. Comparing two methods to record maximal voluntary contractions and different electrode positions in recordings of forearm extensor muscle activity: Refining risk assessments for work-related wrist disorders.

    Science.gov (United States)

    Dahlqvist, Camilla; Nordander, Catarina; Granqvist, Lothy; Forsman, Mikael; Hansson, Gert-Åke

    2018-01-18

    Wrist disorders are common in force demanding industrial repetitive work. Visual assessment of force demands have a low reliability, instead surface electromyography (EMG) may be used as part of a risk assessment for work-related wrist disorders. For normalization of EMG recordings, a power grip (hand grip) is often used as maximal voluntary contraction (MVC) of the forearm extensor muscles. However, the test-retest reproducibility is poor and EMG amplitudes exceeding 100% have occasionally been recorded during work. An alternative MVC is resisted wrist extension, which may be more reliable. To compare hand grip and resisted wrist extension MVCs, in terms of amplitude and reproducibility, and to examine the effect of electrode positioning. Twelve subjects participated. EMG from right forearm extensors, from four electrode pairs, was recorded during MVCs, on three separate occasions. The group mean EMG amplitudes for resisted wrist extension were 1.2-1.7 times greater than those for hand grip. Resisted wrist extension showed better reproducibility than hand grip. The results indicate that the use of resisted wrist extension is a more accurate measurement of maximal effort of wrist extensor contractions than using hand grip and should increase the precision in EMG recordings from forearm extensor muscles, which in turn will increase the quality of risk assessments that are based on these.

  16. Comparison between remotely-sensed sea-surface temperature (AVHRR and in situ records in San Matías Gulf (Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    Gabriela N Williams

    2014-03-01

    Full Text Available In situ records of sea surface temperature collected between 2005 and 2009 were used to compare, for the first time, the temperature estimated by the Multichannel algorithms (MCSST of the Advanced Very High Resolution Radiometer (AVHRR sensors in San Matías Gulf, in the north of the Argentinean Patagonian Continental Shelf (between 40°47'-42°13'S. Match-ups between in situ records and satellite sea surface temperature (SST were analyzed. In situ records came from fixed stations and oceanographic cruises, while satellite data came from different NOAA satellites. The fitting of temperature data to a Standard Major Axis (SMA type II regression model indicated that a high proportion of the total variance (0.53< r² <0.99 was explained by this model showing a high correlation between in situ data and satellite estimations. The mean differences between satellite and in situ data for the full data set were 1.64 ± 1.49°C. Looking separately into in situ data from different sources and day and night estimates from different NOAA satellites, the differences were between 0.30 ± 0.60°C and 2.60 ± 1.50°C. In this paper we discuss possible reasons for the above-mentioned performance of the MCSST algorithms in the study area.

  17. Combined Invasive Subcortical and Non-invasive Surface Neurophysiological Recordings for the Assessment of Cognitive and Emotional Functions in Humans.

    Science.gov (United States)

    Trenado, Carlos; Elben, Saskia; Petri, David; Hirschmann, Jan; Groiss, Stefan J; Vesper, Jan; Schnitzler, Alfons; Wojtecki, Lars

    2016-05-19

    In spite of the success in applying non-invasive electroencephalography (EEG), magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) for extracting crucial information about the mechanism of the human brain, such methods remain insufficient to provide information about physiological processes reflecting cognitive and emotional functions at the subcortical level. In this respect, modern invasive clinical approaches in humans, such as deep brain stimulation (DBS), offer a tremendous possibility to record subcortical brain activity, namely local field potentials (LFPs) representing coherent activity of neural assemblies from localized basal ganglia or thalamic regions. Notwithstanding the fact that invasive approaches in humans are applied only after medical indication and thus recorded data correspond to altered brain circuits, valuable insight can be gained regarding the presence of intact brain functions in relation to brain oscillatory activity and the pathophysiology of disorders in response to experimental cognitive paradigms. In this direction, a growing number of DBS studies in patients with Parkinson's disease (PD) target not only motor functions but also higher level processes such as emotions, decision-making, attention, memory and sensory perception. Recent clinical trials also emphasize the role of DBS as an alternative treatment in neuropsychiatric disorders ranging from obsessive compulsive disorder (OCD) to chronic disorders of consciousness (DOC). Consequently, we focus on the use of combined invasive (LFP) and non-invasive (EEG) human brain recordings in assessing the role of cortical-subcortical structures in cognitive and emotional processing trough experimental paradigms (e.g. speech stimuli with emotional connotation or paradigms of cognitive control such as the Flanker task), for patients undergoing DBS treatment.

  18. The feasibility of hypnotic analgesia in ameliorating pain and anxiety among adults undergoing needle electromyography.

    Science.gov (United States)

    Slack, David; Nelson, Lonnie; Patterson, David; Burns, Stephen; Hakimi, Kevin; Robinson, Lawrence

    2009-01-01

    Our hypothesis was that hypnotic analgesia reduces pain and anxiety during electromyography (EMG). We performed a prospective randomized, controlled clinical trial at outpatient electrodiagnostic clinics in teaching hospitals. Just before EMG, 26 subjects were randomized to one of three 20-min audio programs: education about EMG (EDU) (n = 8); hypnotic induction without analgesic suggestion (n = 10); or hypnotic induction with analgesic suggestion (n = 8). The blinded electromyographer provided a posthypnotic suggestion at the start of EMG. After EMG, subjects rated worst and average pain and anxiety using visual analog scales. Mean values for the EDU, hypnotic induction without analgesic suggestion, and hypnotic induction with analgesic suggestion groups were not significantly different (mean +/- SD): worst pain 67 +/- 25, 42 +/- 18, and 49 +/- 30; average pain 35 +/- 26, 27 +/- 14, and 25 +/- 22; and anxiety 44 +/- 41, 42 +/- 23, and 22 +/- 24. When hypnosis groups were merged (n = 18) and compared with the EDU condition (n = 8), average and worst pain and anxiety were less for the hypnosis group than EDU, but this was statistically significant only for worst pain (hypnosis, 46 +/- 24 vs. EDU, 67 +/- 35; P = 0.049) with a 31% average reduction. A short hypnotic induction seems to reduce worst pain during electromyography.

  19. Assessment of a wearable force- and electromyography device and comparison of the related signals for myocontrol

    Directory of Open Access Journals (Sweden)

    Mathilde Connan

    2016-11-01

    Full Text Available In the frame of assistive robotics, multi-finger prosthetic hand/wrists have recently appeared,offering an increasing level of dexterity; however, in practice their control is limited to a few handgrips and still unreliable, with the effect that pattern recognition has not yet appeared in the clinicalenvironment. According to the scientific community, one of the keys to improve the situation ismulti-modal sensing, i.e., using diverse sensor modalities to interpret the subject’s intent andimprove the reliability and safety of the control system in daily life activities. In this work, wefirst describe and test a novel wireless, wearable force- and electromyography device; throughan experiment conducted on ten intact subjects, we then compare the obtained signals bothqualitatively and quantitatively, highlighting their advantages and disadvantages. Our resultsindicate that force-myography yields signals which are more stable across time during whenevera pattern is held, than those obtained by electromyography. We speculate that fusion of the twomodalities might be advantageous to improve the reliability of myocontrol in the near future.

  20. Comparison of electromyography parameters in quadriceps muscles of athletes and non-athletes; a case-control study

    Directory of Open Access Journals (Sweden)

    Samad Sharafi

    2016-08-01

    Full Text Available Background: There are a few studies that have assessed the effect of professional heavy exercise on function and physiology of skeletal muscles. Therefore, the present study aimed to compare electromyography (EMG parameters in athletes with healthy non-athletes. Methods: In the present case-control study 20 male professional athletes (case group and 20 healthy non-athlete men (control group with similar body mass index (BMI were included. Needle EMG recording was used. EMG evaluations included 3 parameters of duration, amplitude, and polyphasic in motor unit action potential (MUAP. Results: 20 athletes and 20 healthy non-athletes were included (mean age 26.80 ± 3.56 years. Mean duration of MUAP in athletes and non-athletes were 34.04 ± 1.08 and 24.65 ± 3.24 ms, respectively (p < 0.001. Mean amplitude was 1490.15 ± 127.53 mA in athletes group and 877.90 ± 121.16 mA in non-athletes group (p < 0.001. Mean polyphasic number in athletes and non-athletes groups were 98.35 ± 7.38 and 83.50 ± 11.54 times, respectively, which shows a significant difference between the 2 groups in this regard (p < 0.001. Conclusion: Considering the findings of the present study, it can be concluded that in healthy professional athletes various parameters of EMG are higher compared to non-athletes. Therefore, in interpretation of their EMG, this should not be counted as abnormal. This may be the result of changes in secondary muscle fibers due to exercise.

  1. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    Science.gov (United States)

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Rehabilitation exercise progression for the gluteus medius muscle with consideration for iliopsoas tendinitis: an in vivo electromyography study.

    Science.gov (United States)

    Philippon, Marc J; Decker, Michael J; Giphart, J Erik; Torry, Michael R; Wahoff, Michael S; LaPrade, Robert F

    2011-08-01

    It is common for hip arthroscopy patients to demonstrate significant gluteus medius muscle weakness and concurrent iliopsoas tendinitis. Restoration of gluteus medius muscle function is essential for normal hip function. A progression of hip rehabilitation exercises to strengthen the gluteus medius muscle could be identified that minimize concurrent iliopsoas muscle activation to reduce the risk of developing or aggravating hip flexor tendinitis Descriptive laboratory study. Electromyography (EMG) signals of the gluteus medius and iliopsoas muscles were recorded from 10 healthy participants during 13 hip rehabilitation exercises. The indwelling fine-wire EMG electrodes were inserted under ultrasound guidance. The average and peak EMG amplitudes, normalized by the peak EMG amplitude elicited during maximum voluntary contractions, were determined and rank-ordered from low to high. The ratio of iliopsoas to gluteus medius muscle activity was calculated for each exercise. Exercises were placed into respective time phases based on average gluteus medius EMG amplitude, except that exercises involving hip rotation were avoided in phase I (phase I, initial 4 or 8 weeks; phase II, subsequent 4 weeks; phase III, final 4 weeks). A continuum of hip rehabilitation exercises was identified. Resisted terminal knee extension, resisted knee flexion, and double-leg bridges were identified as appropriate for phase I and resisted hip extension, stool hip rotations, and side-lying hip abduction with wall-sliding for phase II. Hip clam exercises with neutral hips may be used with caution in patients with hip flexor tendinitis. Prone heel squeezes, side-lying hip abduction with internal hip rotation, and single-leg bridges were identified for phase III. This study identified the most appropriate hip rehabilitation exercises for each phase to strengthen the gluteus medius muscle after hip arthroscopy and those to avoid when iliopsoas pain or tendinitis is a concern.

  3. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    Science.gov (United States)

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Temporary-tattoo for long-term high fidelity biopotential recordings

    Science.gov (United States)

    Bareket, Lilach; Inzelberg, Lilah; Rand, David; David-Pur, Moshe; Rabinovich, David; Brandes, Barak; Hanein, Yael

    2016-05-01

    Electromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings. Here we present novel dry electrodes, exhibiting outstanding electromyography recording along with excellent user comfort. The electrodes were realized using screen-printing of carbon ink on a soft support. The conformity of the electrodes helps establish direct contact with the skin, making the use of a gel superfluous. Plasma polymerized 3,4-ethylenedioxythiophene was used to enhance the impedance of the electrodes. Cyclic voltammetry measurements revealed an increase in electrode capacitance by a factor of up to 100 in wet conditions. Impedance measurements show a reduction factor of 10 in electrode impedance on human skin. The suitability of the electrodes for long-term electromyography recordings from the hand and from the face is demonstrated. The presented electrodes are ideally-suited for many applications, such as brain-machine interfacing, muscle diagnostics, post-injury rehabilitation, and gaming.

  5. Temporary-tattoo for long-term high fidelity biopotential recordings.

    Science.gov (United States)

    Bareket, Lilach; Inzelberg, Lilah; Rand, David; David-Pur, Moshe; Rabinovich, David; Brandes, Barak; Hanein, Yael

    2016-05-12

    Electromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings. Here we present novel dry electrodes, exhibiting outstanding electromyography recording along with excellent user comfort. The electrodes were realized using screen-printing of carbon ink on a soft support. The conformity of the electrodes helps establish direct contact with the skin, making the use of a gel superfluous. Plasma polymerized 3,4-ethylenedioxythiophene was used to enhance the impedance of the electrodes. Cyclic voltammetry measurements revealed an increase in electrode capacitance by a factor of up to 100 in wet conditions. Impedance measurements show a reduction factor of 10 in electrode impedance on human skin. The suitability of the electrodes for long-term electromyography recordings from the hand and from the face is demonstrated. The presented electrodes are ideally-suited for many applications, such as brain-machine interfacing, muscle diagnostics, post-injury rehabilitation, and gaming.

  6. Age and evolution of diachronous erosion surfaces in the Amazon: Combining (U-Th)/He and cosmogenic 3He records

    Science.gov (United States)

    Monteiro, H. S.; Vasconcelos, P. M. P.; Farley, K. A.; Lopes, C. A. M.

    2018-05-01

    (U-Th)/He geochronology of two weathered plateaus in the Carajás Mountains, Pará, Brazil, reveals a history of weathering spanning from ca. 80 Ma to the present for this high elevation (∼720 m) land surface. Cosmogenic 3He measurements of hematite pebbles and blocks cemented onto the plateaus at two sites, N1 and S11D, yield erosion rates as low as 0.09 and 0.08 m Ma-1, respectively. Thus, these results confirm that the plateau surfaces are nearly immune to physical erosion for tens of millions of years. (U-Th)/He geochronology of ferruginous duricrusts blanketing the low elevation (250-100 m) plains surrounding the Carajás Mountains yield results consistently younger than ∼10 Ma. The geochronology results also reveal that the low elevation plain is diachronous, becoming progressively younger towards the receding plateaus. The spatial distribution of (U-Th)/He ages permits reconstruction of the history of scarp retreat for the Carajás landscape, showing that scarp retreat along major river valleys may have been as fast as 20 km Ma-1 during tectonically active and humid periods in the Cenozoic. The cessation of scarp retreat at some sites suggests that metamorphosed banded iron-formations and quartzites provide effective barriers to retreating escarpments, helping to preserve some of the oldest continuously exposed land surfaces on Earth.

  7. Seismic wave attenuation from borehole and surface records in the top 2.5 km beneath the city of Basel, Switzerland

    KAUST Repository

    Bethmann, Falko

    2012-08-01

    We investigate attenuation (Q−1) of sediments of 2.5–3.5km thickness underneath the city of Basel, Switzerland. We use recordings of 195 induced events that were obtained during and after the stimulation of a reservoir for a Deep Heat Mining Project in 2006 and 2007. The data set is ideally suited to estimate Q as all events are confined to a small source volume and were recorded by a dense surface network as well as six borehole sensors at various depths. The deepest borehole sensor is positioned at a depth of 2.7km inside the crystalline basement at a mean hypocentral distance of 1.8km. This allows us to measure Q for frequencies between 10 and 130 Hz. We apply two different methods to estimate Q. First, we use a standard spectral ratio technique to obtain Q, and as a second measure we estimate Q in the time domain, by convolving signals recorded by the deepest sensor with a Q operator and then comparing the convolved signals to recordings at the shallower stations. Both methods deliver comparable values for Q. We also observe similar attenuation for P- and S- waves (QP∼QS). As expected, Q increases with depth, but with values around 30–50, it is low even for the consolidated Permian and Mesozoic sediments between 500 and 2700 m.

  8. A four-year record of UK‧37- and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania

    Science.gov (United States)

    Mollenhauer, Gesine; Basse, Andreas; Kim, Jung-Hyun; Sinninghe Damsté, Jaap S.; Fischer, Gerhard

    2015-03-01

    Lipid biomarker records from sinking particles collected by sediment traps can be used to study the seasonality of biomarker production as well as processes of particle formation and settling, ultimately leading to the preservation of the biomarkers in sediments. Here we present records of the biomarker indices U37K ‧ based on alkenones and TEX86 based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both used for the reconstruction of sea surface temperatures (SST). These records were obtained from sinking particles collected using a sediment trap moored in the filamentous upwelling zone off Cape Blanc, Mauritania, at approximately 1300 water depth during a four-year time interval between 2003 and 2007, and supplemented by U37K ‧ and TEX86 determined on suspended particulate matter collected from surface waters in the study area. Mass and lipid fluxes are highest during peak upwelling periods between October and June. The alkenone and GDGT records both display pronounced seasonal variability. Sinking velocities calculated from the time lag between measured SST maxima and minima and corresponding index maxima and minima in the trap samples are higher for particles containing alkenones (14-59 m d-1) than for GDGTs (9-17 m d-1). It is suggested that GDGTs are predominantly exported from shallow waters by incorporation in opal-rich particles. SST estimates based on the U37K ‧ index correspond to the amplitude observed fluctuations in SST during the study period. Temperature estimates based on TEX86 show smaller seasonal amplitudes, which can be explained by either predominant production of GDGTs during the warm season, or a contribution of GDGTs exported from deep waters, which are in this region known to carry GDGTs in a distribution that translates to a high TEX86 signal.

  9. New procedure to record the rupture of bonds between macromolecules and the surface of the quartz crystal microbalance (QCM).

    Science.gov (United States)

    Dultsev, Fedor N; Kolosovsky, Eugeny A; Mik, Ivan A

    2012-10-02

    It is shown that an increase in the amplitude of QCM shear oscillations during frequency scanning around the resonance frequency is accompanied (at a definite voltage) by distortions in the amplitude-frequency dependence for QCM. We demonstrated that these distortions are connected to the rupture of macromolecules from the QCM surface. It is shown that the identification of the rupture of particles and macromolecules from the QCM surface can be carried out by relying on the analysis of these distortions of the amplitude-frequency dependence. The distortions were distinguished as a signal. The number of broken bonds can be estimated from the value of this distortion signal, and the threshold voltage applied to the system can be used to estimate the rupture force to high accuracy. Using the proposed method, we estimated the strength of a physical bond, which was 3 pN. This procedure can be useful for studying biological objects and represents an advanced step in the development of the REVS (rupture event scanning) technique.

  10. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  11. Experimental pain leads to reorganisation of trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    The aim of this laboratory study was to investigate acute effects of experimental muscle pain on spatial electromyographic (EMG) activity of the trapezius muscle during computer work with active and passive pauses. Twelve healthy male subjects performed four sessions of computer work for 2 min...... in one day, with passive (relax) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40 s without and with presence of experimental pain. Surface EMG signals were recorded from four parts of the trapezius. The centroid of exposure variation analysis along the time axis...... was lower during computer work with active pauses when compared with passive one in all muscle parts (P

  12. Effects of eccentric exercise on trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    ) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40s over 2 days, before, immediately and 24h after eccentric exercise. Surface EMG signals were recorded from four parts of the trapezius during computer work. FINDINGS: EMG amplitude during computer work decreased......BACKGROUND: The aim of this laboratory study was to investigate the effects of eccentric exercises on the trapezius muscle spatial electromyographic (EMG) activity during computer work with active and passive pauses. METHODS: Twelve healthy male subjects performed computer work with passive (relax...... immediately after exercise (Pwork with active pauses compared with passive ones (P

  13. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    Science.gov (United States)

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  14. A comparison of electromyography of gluteus medius and maximus in subjects with and without chronic ankle instability during two functional exercises.

    Science.gov (United States)

    Webster, Kathryn A; Gribble, Phillip A

    2013-02-01

    To determine how gluteus medius (Gmed) and maximus (Gmax) activate during closed-chain functional rehabilitative exercises in those with and without chronic ankle instability (CAI). Cohort study. Subjects performed ten repetitions of a rotational lunge and single-leg rotational squat while surface electromyography was used to collect mean muscle activity of the Gmed and Gmax. Mean electromyography activity of the Gmed and Gmax at maximum excursion was compared between Groups and Exercises using a separate 2-way repeated measures analysis of variance design for each muscle. University biomechanics lab. Nine healthy (8F, 1M) and nine CAI subjects (8F, 1M) RESULTS: For Gmax activation, there was a statistically significant Group by Exercise interaction (F(3,48) = 4.84, p = 0.043). A Scheffe's post-hoc test revealed that during the rotational squat, the CAI group had significantly lower Gmax activation (51.1 ± 31.0%) than the healthy group (78.6 ± 44.8%). There were no statistically significant findings for the Gmed. In the healthy group, the Gmax produced significantly higher activation during rotational squat (78.6 ± 44.8%) compared to the rotational lunge (57.6 ± 31.9%). Because the CAI group had significantly less Gmax activation than the healthy group during the rotational squat at the point of maximum excursion, and because the rotational squat showed significantly higher Gmax activation compared to the rotational lunge, it may be important for clinicians to implement the rotational squat during rehabilitation for those with CAI. Future prospective and intervention research involving hip musculature in those with CAI is recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    Science.gov (United States)

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p fatigue condition changed fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue.

  16. Listening to music during electromyography does not influence the examinee's anxiety and pain levels.

    Science.gov (United States)

    Abraham, Alon; Drory, Vivian E

    2014-09-01

    Listening to music is a low-cost intervention that has demonstrated ability to reduce pain and anxiety levels in various medical procedures. Subjects undergoing electrophysiological examinations were randomized into a music-listening group and a control group. Visual analog scales were used to measure anxiety and pain levels during the procedure. Thirty subjects were randomized to each group. No statistically significant difference was found in anxiety or pain levels during the procedure between groups. However, most subjects in the music-listening group reported anxiety and pain reduction and would prefer to hear music in a future examination. Although listening to music during electrophysiological examinations did not reduce anxiety or pain significantly, most subjects felt a positive effect and would prefer to hear music; therefore, we suggest that music may be offered optionally in the electromyography laboratory setting. © 2014 Wiley Periodicals, Inc.

  17. Reconstructing four joint angles on the shoulder and elbow from noninvasive electroencephalographic signals through electromyography

    Directory of Open Access Journals (Sweden)

    Kyuwan eChoi

    2013-10-01

    Full Text Available In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient of 0.807 (±0.10 and the normalized root-mean-square error (nRMSE of 0.176 (±0.29 with the actual joint angles.

  18. [Effect of Dry Needling Stimulation of Myofascial Trigger Point on Sample Entropy of Electromyography of Gastrocnemius Injured Site in Rats].

    Science.gov (United States)

    Ding, Chen-Li; Ma, Yan-Tao; Huang, Qiang-Min; Liu, Qing-Guang; Zhao, Jia-Min

    2018-02-25

    To attempt to establish an objective quantitative indicator to characterize the trigger point activity, so as to evaluate the effect of dry needling on myofascial trigger point activity. Twenty-four male Sprague-Dawley rats were randomly divided into blank control group, dry needling (needling) group, stretching exercise (stretching) group and needling plus stretching group ( n =6 per group). The chronic myofascial pain (trigger point) model was established by freedom vertical fall of a wooden striking device onto the mid-point of gastrocnemius belly of the left hind-limb to induce contusion, followed by forcing the rat to make a continuous downgrade running exercise at a speed of 16 m/min for 90 min on the next day which was conducted once a week for 8 weeks. Electromyography (EMG) of the regional myofascial injured point was monitored and recorded using an EMG recorder via electrodes. It was considered success of the model if spontaneous electrical activities appeared in the injured site. After a 4 weeks' recovery, rats of the needling group were treated by filiform needle stimulation (lifting-thrusting-rotating) of the central part of the injured gastrocnemius belly (about 10 mm deep) for 6 min, and those of the stretching group treated by holding the rat's limb to make the hip and knee joints to an angle of about 180°, and the ankle-joint about 90° for 1 min every time, 3 times altogether (with an interval of 1 min between every 2 times). The activity of the trigger point was estimated by the sample entropy of the EMG signal sequence in reference to Richman's and Moorman's methods to estimate the curative effect of both needling and exercise. After the modeling cycle, the mean sample entropies of EMG signals was significantly decreased in the model groups (needling group [0.034±0.010], stretching group [0.045±0.023], needling plus stretching group [0.047±0.034]) relevant to the blank control group (0.985±0.196, P 0.05), suggesting a better efficacy of

  19. [Functional recovery after recurrent laryngeal nerve injury on different electromyography thresholds during thyroid surgery].

    Science.gov (United States)

    Liu, X L; Li, C L; Zhao, Y S; Sun, H

    2017-11-01

    Objective: To discuss the functional recovery after recurrent laryngeal nerve injury (RLNI) on different electromyography thresholds during thyroid surgery. Methods: The prospective experimentally were induced in 12 acute recurrent laryngeal traction animals (porcine) from December 2014 to December 2015, the amplitude and latency of electromyography, even time course during RLNI and recovery of 24 recurrent laryngeal nerves(RLN) were continuous intraoperative neuromonitoring(IONM), including 12 RLN releasing traction after 50% amplitude decrease (AD) and other 12 RLN after 70% AD. The IONM data and postoperative laryngoscopy result of 1 119 thyroid cancer patients, involved 237 male and 882 female, aged 45.2 years in average, who underwent thyroidectomy in Department of Thyroid Surgery, China-Japan Union Hospital Affiliated to Jilin University from July to December in 2016 were analyzed retrospectively. Results: The porcine model of traction lesion showed that the time of 50% AD was (59±4) s, latency increase (LI) was (8± 4)%, was recovered in 10 minutes; the time of 70% AD was (75±6)s, LI was (11±5)% , was recovered (43±23)% of baseline even during 20 minutes. Among the IONM of 1 632 recurrent laryngeal nerves in clinic, the mechanism of 64 RLNI is clear, including traction injury accounted for 62.5% (40/64), thermal injury was 12.5% (8/64), compression injury was 23.4% (15/64), clamp injury was 1.6% (1/64). When 50%≤AD injury before AD≥50% in surgery, is a more effective indicator to avoid postoperative AVCM and promote nerve function recovery.

  20. Motor, affective and cognitive empathy in adolescence : Interrelations between facial electromyography and self-reported trait and state measures

    NARCIS (Netherlands)

    Van der Graaff, Jolien; Meeus, W; de Wied, Minet; van Boxtel, Anton; van Lier, Pol A C; Koot, Hans M.; Branje, Susan

    2016-01-01

    This study examined interrelations of trait and state empathy in an adolescent sample. Self-reported affective trait empathy and cognitive trait empathy were assessed during a home visit. During a test session at the university, motor empathy (facial electromyography), and self-reported affective

  1. Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces

    NARCIS (Netherlands)

    van Dieen, J.H.; Kingma, I.

    2005-01-01

    Estimates of spinal forces are quite sensitive to model assumptions, especially regarding antagonistic co-contraction. Optimization based models predict co-contraction to be absent, while electromyography (EMG) based models take co-contraction into account, but usually assume equal activation of

  2. Surface water floods in Switzerland: what insurance claim records tell us about the damage in space and time

    Science.gov (United States)

    Bernet, Daniel B.; Prasuhn, Volker; Weingartner, Rolf

    2017-09-01

    Surface water floods (SWFs) have received increasing attention in the recent years. Nevertheless, we still know relatively little about where, when and why such floods occur and cause damage, largely due to a lack of data but to some degree also because of terminological ambiguities. Therefore, in a preparatory step, we summarize related terms and identify the need for unequivocal terminology across disciplines and international boundaries in order to bring the science together. Thereafter, we introduce a large (n = 63 117), long (10-33 years) and representative (48 % of all Swiss buildings covered) data set of spatially explicit Swiss insurance flood claims. Based on registered flood damage to buildings, the main aims of this study are twofold: First, we introduce a method to differentiate damage caused by SWFs and fluvial floods based on the geographical location of each damaged object in relation to flood hazard maps and the hydrological network. Second, we analyze the data with respect to their spatial and temporal distributions aimed at quantitatively answering the fundamental questions of how relevant SWF damage really is, as well as where and when it occurs in space and time. This study reveals that SWFs are responsible for at least 45 % of the flood damage to buildings and 23 % of the associated direct tangible losses, whereas lower losses per claim are responsible for the lower loss share. The Swiss lowlands are affected more heavily by SWFs than the alpine regions. At the same time, the results show that the damage claims and associated losses are not evenly distributed within each region either. Damage caused by SWFs occurs by far most frequently in summer in almost all regions. The normalized SWF damage of all regions shows no significant upward trend between 1993 and 2013. We conclude that SWFs are in fact a highly relevant process in Switzerland that should receive similar attention like fluvial flood hazards. Moreover, as SWF damage almost always

  3. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface

    Science.gov (United States)

    2012-01-01

    Background Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user’s nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. Methods We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head) and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius) of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. Results We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Conclusion Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee’s nervous system. PMID:22882763

  4. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface

    Directory of Open Access Journals (Sweden)

    Huang Stephanie

    2012-08-01

    Full Text Available Abstract Background Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user’s nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. Methods We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. Results We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Conclusion Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee’s nervous system.

  5. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface.

    Science.gov (United States)

    Huang, Stephanie; Ferris, Daniel P

    2012-08-10

    Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user's nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head) and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius) of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee's nervous system.

  6. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    Science.gov (United States)

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  7. Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations

    Directory of Open Access Journals (Sweden)

    D. van As

    2012-02-01

    Full Text Available This study uses data from six on-ice weather stations, calibrated MODIS-derived albedo and proglacial river gauging measurements to drive and validate an energy balance model. We aim to quantify the record-setting positive temperature anomaly in 2010 and its effect on mass balance and runoff from the Kangerlussuaq sector of the Greenland ice sheet. In 2010, the average temperature was 4.9 °C (2.7 standard deviations above the 1974–2010 average in Kangerlussuaq. High temperatures were also observed over the ice sheet, with the magnitude of the positive anomaly increasing with altitude, particularly in August. Simultaneously, surface albedo was anomalously low in 2010, predominantly in the upper ablation zone. The low albedo was caused by high ablation, which in turn profited from high temperatures and low winter snowfall. Surface energy balance calculations show that the largest melt excess (∼170% occurred in the upper ablation zone (above 1000 m, where higher temperatures and lower albedo contributed equally to the melt anomaly. At lower elevations the melt excess can be attributed to high atmospheric temperatures alone. In total, we calculate that 6.6 ± 1.0 km3 of surface meltwater ran off the ice sheet in the Kangerlussuaq catchment in 2010, exceeding the reference year 2009 (based on atmospheric temperature measurements by ∼150%. During future warm episodes we can expect a melt response of at least the same magnitude, unless a larger wintertime snow accumulation delays and moderates the melt-albedo feedback. Due to the hypsometry of the ice sheet, yielding an increasing surface area with elevation, meltwater runoff will be further amplified by increases in melt forcings such as atmospheric heat.

  8. By All Means Necessary – 2.5D and 3D Recording of Surfaces in the Study of Southern Scandinavian Rock Art

    Directory of Open Access Journals (Sweden)

    Horn Christian

    2018-03-01

    Full Text Available Southern Scandinavia is Europe’s richest region in terms of figurative rock art. It is imperative to document this cultural heritage for future generations. To achieve this, researchers need to use the most objective recording methods available in order to eliminate human error and bias in the documentation. The ability to collect more data is better, not only for documentation, but also for research purposes. Recent years have seen the wider introduction of image based 2.5D and 3D modelling of rock art surfaces. These methods are Reflectance Transformation Imaging (RTI, Structure from Motion (SfM, and Optical Laser Scanning (OLS. Importantly, these approaches record depth difference and the structure of engraved lines. Therefore, they have clear advantages over older methods such as frottage (rubbings and tracing. Based on a number of short case studies, this paper argues that 2.5D and 3D methods should be used as a standard documentation techniques, but not in an exclusionary manner. The best documentation, enabling preservation and high-quality research, should employ all methods. Approaching rock art with all the research tools available we can re-appraise older documentation as well as investigate individual action and the transformation of rock art.

  9. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska

    Science.gov (United States)

    Baughman, Carson; Jones, Benjamin M.; Bartz, Krista K; Young, Daniel B.; Zimmerman, Christian E.

    2015-01-01

    Lake Clark is an important nursery lake for sockeye salmon (Oncorhynchus nerka) in the headwaters of Bristol Bay, Alaska, the most productive wild salmon fishery in the world. Reductions in water clarity within Alaska lake systems as a result of increased glacial runoff have been shown to reduce salmon production via reduced abundance of zooplankton and macroinvertebrates. In this study, we reconstruct long-term, lake-wide water clarity for Lake Clark using the Landsat TM and ETM+ surface reflectance products (1985–2014) and in situwater clarity data collected between 2009 and 2013. Analysis of a Landsat scene acquired in 2009, coincident with in situ measurements in the lake, and uncertainty analysis with four scenes acquired within two weeks of field data collection showed that Band 3 surface reflectance was the best indicator of turbidity (r2 = 0.55,RMSE in mean turbidity for Lake Clark between 1991 and 2014. We did, however, detect interannual variation that exhibited a non-significant (r2 = 0.20) but positive correlation (r = 0.20) with regional mean summer air temperature and found the month of May exhibited a significant positive trend (r2 = 0.68, p = 0.02) in turbidity between 2000 and 2014. This study demonstrates the utility of hindcasting turbidity in a glacially influenced lake using the Landsat surface reflectance products. It may also help land and resource managers reconstruct turbidity records for lakes that lack in situ monitoring, and may be useful in predicting future water clarity conditions based on projected climate scenarios.

  10. Deglutição de respiradores orais e nasais: avaliação clínica fonoaudiológica e eletromiográfica Swallowing of oral and nose breathers: speech-language and electromyography assessment

    Directory of Open Access Journals (Sweden)

    Tais Regina Hennig

    2009-12-01

    Full Text Available OBJETIVO: avaliar e comparar a deglutição de sujeitos respiradores orais e nasais, por meio da avaliação clínica e eletromiográfica dos músculos orbiculares orais, superior e inferior. MÉTODOS: participaram deste estudo 16 sujeitos na faixa etária de 6:8 a 10:10 distribuídos em dois grupos, um de respiradores orais e outro de respiradores nasais. Foram submetidos à avaliação clínica fonoaudiológica e eletromiográfica de superfície. O exame fonoaudiológico contemplou as estruturas e funções do sistema estomatognático, e a avaliação eletromiográfica consistiu na captação da atividade elétrica dos músculos orbiculares orais, superior e inferior, durante as situações de isometria e de deglutição. Da avaliação clínica consideraram-se somente os resultados referentes à deglutição, observando-se a presença de ação labial e mentual, e de projeção lingual, as quais foram analisados de forma descritiva. Para análise estatística dos dados eletromiográficos, utilizou-se o Teste t para comparação entre os grupos. A significância adotada foi de 5% (p PURPOSE: to evaluate and compare the swallowing of mouth and nose breathers through of speech-language and electromyography evaluation concerning the orbicularis oris muscles, and lower and upper lips. METHODS: 16 subjects aged 6:8 - 10:10 and divided on two groups participated in this study, one with mouth and another one with nose breathers. Both groups were submitted to clinical and surface electromyography evaluation. The speech-language evaluation contemplated the exam of the structures and functions of the stomatognathic system. The electromyography evaluation consisted of the captivation of the electrical activity at the orbicularis oris muscles, and lower and upper lips, during isometry and swallowing situations. In the clinical results were considered only the swallowing variables. Therefore, our study could observe the presence of labial and mentalis

  11. Records Management

    Science.gov (United States)

    Ray, Charles M.

    1977-01-01

    This discussion of evaluating a records management course includes comments on management orientation, creation of records, maintenance of records, selection and use of equipment, storage and destruction of records, micrographics, and a course outline. (TA)

  12. Correlation of Electromyography and Magnetic Resonance Imaging Findings in the Diagnosis of Suspected Radiculopathy

    Directory of Open Access Journals (Sweden)

    Yıldız Arslan

    2016-06-01

    Full Text Available INTRODUCTION: Patients with pain or numbness without motor deficits are the most common group referred to electrophysiology laboratories as suspected radiculopathy. We wanted to investigate whether electromyography (EMG was useful for this group in the diagnosis or therapy of radiculopathy. Our aim was to investigate the correlation and classification of EMG and magnetic resonance imaging (MRI findings in the diagnosis of suspected radiculopathy. METHODS: We included 74 patients with a ≥2-month history of numbness and pain in the neck and back that radiated into the arm or leg. Patients with diabetes mellitus, previous disc or spine operation, polyneuropathy, spinal cord diseases (tumor, infection or syrinxs, motor deficits, and abnormal nerve conduction studies were excluded. RESULTS: The mean age of the patients was 51.58±11.53 years. In total, 41 (55.4% patients were women and 33 (44.6% were men; 48.8% (n=36 showed cervical radiculopathy and 51.2% (n=38 exhibited lumbosacral radiculopathy. The most common MRI finding was protrusion (37.8%, and the most common EMG finding was re-innervation (59.5%. The correlation of MRI and EMG findings was significant in lumbar radiculopathy (p=0.007, but not in the cervical radiculopathy results (p=0.976. DISCUSSION AND CONCLUSION: EMG and MRI findings were compatible for lumbar radiculopathy, but not for cervical radiculopathy in mild to moderate grades.

  13. Teknik Squat dan Stoop Menggunakan Electromyography pada Pekerjaan Manual Materials Handling

    Directory of Open Access Journals (Sweden)

    I Wayan Surata

    2013-01-01

    Full Text Available Manual materials handling has been identified as the most common cause of work-related musculoskeletal disorders. Among the manual material handling activities, lifting has long been regarded as an activity associated with a high risk of low-back pain. Lifting studies have mainly focused on the squat and stoop lifting techniques as an effort to improve the protection of workers from low back discomfort. However, neither is ideal and the benefits of one technique over another have proved inconclusive. The purpose of this study was to examine and compare the squat and stoop lifting techniques through analysis of muscles activation by using electromyography. Six volunteers participated in the study, and were required to lift a weight with squat and stoop techniques, with two types of loading at 1,7 kg and 6,7 kg. Observations were made on the rectus femoris, biceps femoris, and multifidus muscles. The results of study showed that the squat technique had higher levels of muscle activation compared to stoop technique on rectus femoris muscle. On the contrary, squat technique had lower muscle activation compared to stoop technique on biceps fermoris muscle. Meanwhile, both techniques squat and stoop had the same level of muscle activation on multifidus muscle. Conclusion, squat and stoop lifting techniques had the same opportunities to use.

  14. Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Ferguson, Sue A; Allread, W Gary; Le, Peter; Rose, Joseph; Marras, William S

    2013-12-01

    The objective of this study was to quantify shoulder muscle fatigue during repetitive exertions similar to motions found in automobile assembly tasks. Shoulder musculoskeletal disorders (MSDs) are a common and costly problem in automotive manufacturing. Ten subjects participated in the study. There were three independent variables: shoulder angle, frequency, and force. There were two types of dependent measures: percentage change in near-infrared spectroscopy (NIRS) measures and change in electromyography (EMG) median frequency. The anterior deltoid and trapezius muscles were measured for both NIRS and EMG. Also, EMG was collected on the middle deltoid and biceps muscles. The results showed that oxygenated hemoglobin decreased significantly due to the main effects (shoulder angle, frequency, and force). The percentage change in oxygenated hemoglobin had a significant interaction attributable to force and repetition for the anterior deltoid muscle, indicating that as repetition increased, the magnitude of the differences between the forces increased. The interaction of repetition and shoulder angle was also significant for the percentage change in oxygenated hemoglobin. The median frequency decreased significantly for the main effects; however, no interactions were statistically significant. There was significant shoulder muscle fatigue as a function of shoulder angle, task frequency, and force level. Furthermore, percentage change in oxygenated hemoglobin had two statistically significant interactions, enhancing our understanding of these risk factors. Ergonomists should examine interactions of force and repetition as well as shoulder angle and repetition when evaluating the risk of shoulder MSDs.

  15. Novel augmented ADIM training using ultrasound imaging and electromyography in adults with core instability.

    Science.gov (United States)

    Lee, Nam-Gi; Jung, Ji-Hee; You, Joshua Sung-H; Kang, Sung-Kouk; Lee, Dong-Ryul; Kwon, Oh-Yun; Jeon, Hye-Seon

    2011-01-01

    To determine the effect of novel augmented abdominal drawing-in maneuver (ADIM) training using rehabilitative ultrasound imaging (RUSI) and electromyography (EMG) in adults with core instability. A convenience sample of 20 young adults with core instability (female =4; mean age ± standard deviation=24.4 ± 2.9 years) was recruited. Core instability was determined by the formal test. All subjects underwent an intensive ADIM that was augmented by comprehensive visual feedback via a pressure biofeedback unit, RUSI, and EMG. The intervention was provided for 20 minutes a day, 7 days a week, over a two-week period. The paired t-test showed that both transverse abdominal (TrA) and internal oblique (IO) muscle thickness during ADIM were significantly greater than at rest (p= 0.000). However, external oblique (EO) muscle thickness remained relatively unchanged. The mean EMG amplitudes of the EO and erector spinae (ES) muscles were significantly decreased after the intervention (p=0.001, p=0.008). The intra-class correlation coefficient (ICC(1,2)) showed the excellent test-retest reliability for muscle thickness (ranging from 0.90 to 0.98 in the prone position). This is the first evidence to demonstrate that the novel augmented ADIM training can effectively improve the lumbo-pelvic stabilization in adults with core instability.

  16. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    Science.gov (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  17. [Mechanism of post-stroke reflex sympathetic dystrophy: study with needle electromyography].

    Science.gov (United States)

    Wang, Xiao-yan; Zhang, Tong; Li, Jing

    2006-10-10

    To explore the mechanism of post-stroke reflex sympathetic dystrophy (RSD) patients electromyographic abnormality and confirm its clinical value. Fifty patients with first-onset stroke, aged 33 - 78, including 30 with RSD and 20 without RSD, underwent needle electromyography (EMG) to test the nerve conduction velocity (NCV) and sensory nerve conduction velocity (SCV) of bilateral median nerves, and the number and position of spontaneous EMG activity of bilateral short abductor muscles of thumb and abductor muscles little finger. The median nerve compound muscle action potential (CMAP) amplitude of the affected upper extremities of the RSD group was 8.6 mV +/- 2.9 mV, significantly lower than that of the non-RSD group (13.2 mV +/- 4.6 mV, P < 0.01). The incidence of spontaneous electrical potential of the RSD group was 100%; significantly higher than hat of the non-RSD group (65%, P < 0.001). The quantity of spontaneous EMG activity on the short abductor muscles of thumb and abductor muscles little finger was increased in the RSD group (P < 0.01). The motor nerve conduction velocity and electrophysiological presentation of sensory nerve of these 2 groups were all normal and without significant differences between them. Partial axonal degeneration occurs on the distal motor never fibers of the affected upper extremity of the RSD patients, which may be related to subsequent peripheral nerve injury after central nerve system impairment.

  18. Immediate effects of respiratory muscle stretching on chest wall kinematics and electromyography in COPD patients.

    Science.gov (United States)

    de Sá, Rafaela Barros; Pessoa, Maíra Florentino; Cavalcanti, Ana Gabriela Leal; Campos, Shirley Lima; Amorim, César; Dornelas de Andrade, Armèle

    2017-08-01

    This study evaluated the immediate effects of respiratory muscle stretching on chest wall kinematics and electromyographic activity in COPD patients. 28 patients with COPD were randomized into two groups: 14 to the treatment group (TG) and 14 to the control group (CG). The TG underwent a stretching protocol of the rib cage muscles, while the CG remained at rest under similar conditions. After a single session, TG increased the tidal volume of the pulmonary rib cage (Vrcp) (p=0.020) and tidal volume of abdominal rib cage (Vrca) (p=0.043) variations and their percentages in relation to the thoracic wall, Vrcp% (p=0.044) and Vrca% (p=0.022). Also, TG decreased the end-expiratory Vrcp (p=0.013) and the end-inspiratory Vrcp (p=0.011) variations. In addition, there was a reduction in respiratory rate (RR) (p=0.011) and minute volume (MV) (p=0.035), as well as an increase in expiratory time (Te) (p=0.026). There was also an immediate reduction in sternocleidomastoid (p=0.043) and upper trapezium (p=0.034) muscle electrical activity. Then, the study supports the use of stretching to improve COPD chest wall mobility with positive effects on chest wall mechanics, on volume distribution and electromyography. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Role of Constant, Random and Blocked Practice in an Electromyography-Based Oral Motor Learning Task.

    Science.gov (United States)

    Kaipa, Ramesh; Mariam Kaipa, Roha

    2017-10-19

    The role of principles of motor learning (PMLs) in speech has received much attention in the past decade. Oral motor learning, however, has not received similar consideration. This study evaluated the role of three practice conditions in an oral motor tracking task. Forty-five healthy adult participants were randomly and equally assigned to one of three practice conditions (constant, blocked, and random) and participated in an electromyography-based task. The study consisted of four sessions, at one session a day for four consecutive days. The first three days sessions included a practice phase, with immediate visual feedback, and an immediate retention phase, without visual feedback. The fourth session did not include practice, but only delayed retention testing, lasting 10-15 minutes, without visual feedback. Random group participants performed better than participants in constant and blocked practice conditions on all the four days. Constant group participants demonstrated superior learning over blocked group participants only on day 4. Findings indicate that random practice facilitates oral motor learning, which is in line with limb/speech motor learning literature. Future research should systematically investigate the outcomes of random practice as a function of different oral and speech-based tasks.

  20. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.

    Science.gov (United States)

    Zhang, Qin; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine

    2013-08-01

    This paper proposed a closed-loop torque control strategy of functional electrical stimulation (FES) with the aim of obtaining an accurate, safe, and robust FES system. Generally, FES control systems are faced with the challenge of how to deal with time-variant muscle dynamics due to physiological and biochemical factors (such as fatigue). The degraded muscle force needs to be compensated in order to ensure the accuracy of the motion restored by FES. Another challenge concerns the fact that implantable sensors are unavailable to feedback torque information for FES in humans. As FES-evoked electromyography (EMG) represents the activity of stimulated muscles, and also enables joint torque prediction as presented in our previous studies, here we propose an EMG-feedback predictive controller of FES to control joint torque adaptively. EMG feedback contributes to taking the activated muscle state in the FES torque control system into account. The nature of the predictive controller facilitates prediction of the muscle mechanical response and the system can therefore control joint torque from EMG feedback and also respond to time-variant muscle state changes. The control performance, fatigue compensation and aggressive control suppression capabilities of the proposed controller were evaluated and discussed through experimental and simulation studies.

  1. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  2. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method

    Directory of Open Access Journals (Sweden)

    Keyun Chen

    2016-09-01

    Full Text Available Micro-needle electrodes (MEs have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII, electromyography (EMG and electrocardiography (ECG recording. A magnetization-induced self-assembling method (MSM was developed to fabricate a microneedle array (MA. A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode. The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations.

  3. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Science.gov (United States)

    Bakker, Dorothee; Landa, Camilla S.; Pfeil, Benjamin; Metzl, Nicolas; O’Brien, Kevin; Olsen, Are; Smith, Karl; Cosca, Cathy; Harasawa, Sumiko; Nakaoka, Shin-ichiro; Jones, Stephen; Nojiri, Yukihiro; Steinhoff, Tobias; Sweeney, Colm; Schuster, Ute; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R.; Balestrini, Carlos F.; Barbero, Leticia; Bates, Nicholas; Bianchi, Alejandro A.; Bonou, Frédéric; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene F.; Cai, Wei-Jun; Castle, Robert D.; Chen, Liqi; Chierici, Melissa; Currie, Kim; Evans, Wiley; Featherstone, Charles; Feely, Richard; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven C.; Hardman-Mountford, Nick J.; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P.; Hunt, Christopher W.; Huss, Betty; Ibánhez, J. Severino P.; Johannessen, Truls; Keeling, Ralph F.; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alex; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K.; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T.; Merlivat, Liliane; Millero, Frank J.; Monteiro, Pedro M. S.; Munro, David R.; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M.; Ono, Tsuneo; Paterson, Kristina; Pearce, David; Pierrot, Denis; Robbins, Lisa L.; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin F.; Sutherland, Stewart C.; Sutton, Adrienne J.; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven M. A. C.; Vandemark, Douglas; Ward, Brian; Watson, Andrew J.; Xu, Suqing

    2016-01-01

    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled f CO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million f CO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million f CO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water f CO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water f CO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). 

  4. A History of Warming Sea Surface Temperature and Ocean Acidification Recorded by Planktonic Foraminifera Geochemistry from the Santa Barbara Basin, California

    Science.gov (United States)

    Osborne, E.; Thunell, R.; Bizimis, M.; Buckley, W. P., Jr.; benitez-Nelson, C. R.; Chartier, C. J.

    2015-12-01

    The geochemistry of foraminiferal shells has been widely used to reconstruct past conditions of the ocean and climate. Since the onset of the Industrial Revolution, anthropogenically produced CO2 has resulted in an increase in global temperatures and a decline in the mean pH of the world's oceans. The California Current System is a particularly susceptible region to ocean acidification due to natural upwelling processes that also cause a reduction in seawater pH. The trace element concentration of magnesium and boron in planktonic foraminiferal shells are used here as proxies for temperature and carbonate ion concentration ([CO32-]), respectively. Newly developed calibrations relating Mg/Ca ratios to temperature (R2 0.91) and B/Ca ratios to [CO32-] (R2 0.84) for the surface-mixed layer species Globogerina bulloides were generated using material collected in the Santa Barbara Basin sediment trap time-series. Using these empirical relationships, temperature and [CO32-] are reconstructed using a 0.5 meter long multi-core collected within the basin. 210Pb activities were used to determine a sedimentation rate for the core to estimate ages for core samples (sedimentation rate: 0.341 cm/yr). A spike in 137Cs activity is used as a tie-point to the year 1965 coinciding with the peak of nuclear bomb testing. Our down-core record extends through the mid-19th century to create a history of rising sea surface temperatures and declining [CO32-] as a result of anthropogenic CO2 emissions.

  5. Study of registration threshold for minimal specific weight of particles when investigating shock-wave ejection from material surface using laser heterodyne-interferometer. Recording of multiple doppler frequency shift effect

    Science.gov (United States)

    Fedorov, Alexey; Mikhailov, Anatoly; Finyushin, Stanislav; Chudakov, Ev'geniy; Kalashnikov, Denis; Butusov, Ev'geniy; Gnutov, Ivan

    2017-06-01

    When the shock wave reaches the free metal surface, the particle ejection occurs. Particle flow parameters are recorded by different methods. This paper contains the results of experimental series on determination of minimal specific weight of the particle flow, when particle velocities can be recorded using laser heterodyne-interferometer (PDV method). The registration threshold is determined by measuring the velocity of ejected particles after coating a test surface with a layer of particles having the certain specific weight. The effect of laser emission interaction with a thin layer of particles is recorded in experiments, and it causes the multiple Doppler frequency shift. This effect plays a vital role in interpretation of data obtained in experiments with recording of parameters of shock loaded ejection of materials.

  6. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    Science.gov (United States)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  7. Lumbo-pelvic stability and electromyography of abdominal muscles in ballet dancers.

    Science.gov (United States)

    Negrão Filho, R de Faria; Silva, L Alves; Monteiro, T Lombardi; Alves, N; de Carvalho, A Cesinando; de Azevedo, F Mícolis

    2009-01-01

    Evaluating the ability to rectify and maintain lumbar adjustment can contribute toward the understanding of the behavior of abdominal muscles and their participation in the stability of pelvic muscles in dancers during the posterior pelvic tilt and double straight leg lowering tests. Nine healthy volunteers (male and female ballet dancers; age mean: 25.9 +/- 7.37 years) underwent maximal isometric voluntary contraction (MIVC), isometric voluntary contraction at 50% of MIVC, posterior pelvic tilt (PPT) and double straight leg lowering (DSLL) tests. The tests were carried out in a single day, with 3 repetitions each. During the tests, electromygraphic signals of the rectus abdominis, obliquus internus and obliquus externus were recorded. The signal acquisition system was made up of bipolar surface electrodes, electrogoniometer and an electromechanic device (pressure sensor), which were connected to a signal conditioner module. Root mean square values of each muscle during the DSLL and PPT were converted into percentage of activation of 50% MIVC. Lower back pressure was submitted to the same process. ANOVA with repeated measures was performed, with the level of significance set at p pelvic tilt and there was trend toward greater activation of the bilateral obliquus internus muscle. In an attempt to keep the pelvic region stabilized during DSLL, there was a greater contribution from the obliquus externus muscle in relation to other abdominal muscles.

  8. Electroencephalogram–Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Yunyuan Gao

    2018-01-01

    Full Text Available The coupling strength between electroencephalogram (EEG and electromyography (EMG signals during motion control reflects the interaction between the cerebral motor cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in assessing motor function. In this study, to overcome the limitation of losing the characteristics of signals in conventional time series symbolization methods, a variable scale symbolic transfer entropy (VS-STE analysis approach was proposed for corticomuscular coupling evaluation. Post-stroke patients (n = 5 and healthy volunteers (n = 7 were recruited and participated in various tasks (left and right hand gripping, elbow bending. The proposed VS-STE was employed to evaluate the corticomuscular coupling strength between the EEG signal measured from the motor cortex and EMG signal measured from the upper limb in both the time-domain and frequency-domain. Results showed a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG VS-STE in post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG coupling strength was observed in the beta frequency band (15–35 Hz during the upper limb movement. The predefined coupling strength of EMG-to-EEG in the affected side of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be used to quantitatively characterize the non-linear synchronization characteristics and information interaction between the primary motor cortex and muscles.

  9. Neck Kinematics and Electromyography While Wearing Head Supported Mass During Running.

    Science.gov (United States)

    Hanks, Matthew M; Sefton, JoEllen M; Oliver, Gretchen D

    2018-01-01

    Advanced combat helmets (ACH) coupled with night-vision goggles (NVG) are required for tactical athletes during training and service. Head and neck injuries due to head supported mass (HSM) are a common occurrence in military personnel. The current study aimed to investigate the effects of HSM on neck muscle fatigue that may lead to chronic stress and injury of the head and neck. Subjects wore an ACH and were affixed with electromagnetic sensors to obtain kinematic data, as well as EMG electrodes to obtain muscle activations of bilateral sternocleidomastoid, upper trapezius, and paraspinal muscles while running on a treadmill. Subjects performed a 2-min warmup at a walking pace, a 5-min warmup jog, running at a pace equal to 90% maximum heart rate until absolute fatigue, and lastly a 2-min cooldown at a walking pace. Kinematic and EMG data were collected over each 2-min interval. Days later, the same subjects wore the same ACH in addition to the NVG and performed the same protocol as the first session. This study showed significant differences in muscle activation of the right upper trapezius [F(1,31) = 10.100] and both sternocleidomastoid [F(1,31) = 12.280] muscles from pre-fatigue to absolute fatigue. There were no significant differences noted in the kinematic variables. This study suggests that HSM can fatigue bilateral neck flexors and rotators, as well as fatigue the neck extensors and rotators on the contralateral side of the mounted NVG.Hanks MM, Sefton JM, Oliver GD. Neck kinematics and electromyography while wearing head supported mass during running. Aerosp Med Hum Perform. 2018; 89(1):9-13.

  10. Single-fiber electromyography analysis of botulinum toxin diffusion in patients with fatigue and pseudobotulism.

    Science.gov (United States)

    Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis

    2015-06-01

    To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press.

    Science.gov (United States)

    van den Tillaar, Roland; Saeterbakken, Atle Hole

    2013-01-01

    The aim of the study was to examine the sticking region and concomitant neuromuscular activation of the prime movers during six-repetition maximum (RM) bench pressing. We hypothesised that both peak velocities would decrease and that the electromyography (EMG) of the prime movers (deltoid, major pectoralis and triceps) would increase during the pre-sticking and sticking region during the six repetitions due to fatigue. Thirteen resistance-trained males (age 22.8 ± 2.2 years, stature 1.82 ± 0.06 m, body mass 83.4 ± 7.6 kg) performed 6-RM bench presses. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, and triceps brachii during the pre-, sticking and post-sticking region of each repetition in a 6-RM bench press were analysed. For both the sticking as the post-sticking region, the time increased significantly from the first to the sixth repetition. Vertical barbell height at the start of sticking region was lower, while the height at the end of the sticking region and post-sticking region did not change during the six repetitions. It was concluded that in 6-RM bench pressing performance, the sticking region is a poor mechanical force region due to the unchanged barbell height at the end of the sticking region. Furthermore, when fatigue occurs, the pectoralis and the deltoid muscles are responsible for surpassing the sticking region as indicated by their increased activity during the pre- and sticking region during the six-repetitions bench press.

  12. Analysis of Muscle Contraction on Pottery Manufacturing Process Using Electromyography (EMG)

    Science.gov (United States)

    Soewardi, Hartomo; Azka Rahmayani, Amalia

    2016-01-01

    One of the most common problems in pottery manufacturing process is musculoskeletal disorders on workers. This disorder was caused by uncomfortable posture where the workers sit on the floor with one leg was folded and another was twisted for long duration. Back, waist, buttock, and right knee frequently experience the disorders. The objective of this research is to investigate the muscle contraction at such body part of workers in manufacturing process of pottery. Electromyography is used to investigate the muscle contraction based on the median frequency signal. Focus measurements is conducted on four muscles types. They are lower interscapular muscle on the right and left side, dorsal lumbar muscle, and lateral hamstring muscle. Statistical analysis is conducted to test differences of muscle contraction between female and male. The result of this research showed that the muscle which reached the highest contraction is dorsal lumbar muscle with the average of median frequency is 51,84 Hz. Then followed by lower interscapular muscle on the left side with the average of median frequency is 31,30 hz, lower interscapular muscle on the right side average of median frequency is 31,24 Hz, and lateral hamstring muscle average of median frequency is 21,77 Hz. Based on the statistic analysis result, there were no differences between male and female on left and right lower interscapular muscle and dorsal lumbar muscle but there were differences on lateral hamstring muscle with the significance level is 5%. Besides that, there were differences for all combination muscle types with the level of significance is 5%.

  13. A novel estimating method for steering efficiency of the driver with electromyography signals

    Science.gov (United States)

    Liu, Yahui; Ji, Xuewu; Hayama, Ryouhei; Mizuno, Takahiro

    2014-05-01

    The existing research of steering efficiency mainly focuses on the mechanism efficiency of steering system, aiming at designing and optimizing the mechanism of steering system. In the development of assist steering system especially the evaluation of its comfort, the steering efficiency of driver physiological output usually are not considered, because this physiological output is difficult to measure or to estimate, and the objective evaluation of steering comfort therefore cannot be conducted with movement efficiency perspective. In order to take a further step to the objective evaluation of steering comfort, an estimating method for the steering efficiency of the driver was developed based on the research of the relationship between the steering force and muscle activity. First, the steering forces in the steering wheel plane and the electromyography (EMG) signals of the primary muscles were measured. These primary muscles are the muscles in shoulder and upper arm which mainly produced the steering torque, and their functions in steering maneuver were identified previously. Next, based on the multiple regressions of the steering force and EMG signals, both the effective steering force and the total force capacity of driver in steering maneuver were calculated. Finally, the steering efficiency of driver was estimated by means of the estimated effective force and the total force capacity, which represented the information of driver physiological output of the primary muscles. This research develops a novel estimating method for driver steering efficiency of driver physiological output, including the estimation of both steering force and the force capacity of primary muscles with EMG signals, and will benefit to evaluate the steering comfort with an objective perspective.

  14. Records Management

    Data.gov (United States)

    U.S. Environmental Protection Agency — All Federal Agencies are required to prescribe an appropriate records maintenance program so that complete records are filed or otherwise preserved, records can be...

  15. A Longitudinal Electromyography Study of Complex Movements in Poststroke Therapy. 1: Heterogeneous Changes Despite Consistent Improvements in Clinical Assessments

    Directory of Open Access Journals (Sweden)

    Negin Hesam-Shariati

    2017-07-01

    Full Text Available Poststroke weakness on the more-affected side may arise from reduced corticospinal drive, disuse muscle atrophy, spasticity, and abnormal coordination. This study investigated changes in muscle activation patterns to understand therapy-induced improvements in motor-function in chronic stroke compared to clinical assessments and to identify the effect of motor-function level on muscle activation changes. Electromyography (EMG was recorded from five upper limb muscles on the more-affected side of 24 patients during early and late therapy sessions of an intensive 14-day program of Wii-based Movement Therapy (WMT and for a subset of 13 patients at 6-month follow-up. Patients were classified according to residual voluntary motor capacity with low, moderate, or high motor-function levels. The area under the curve was calculated from EMG amplitude and movement duration. Clinical assessments of upper limb motor-function pre- and post-therapy included the Wolf Motor Function Test, Fugl-Meyer Assessment and Motor Activity Log Quality of Movement scale. Clinical assessments improved over time (p < 0.01 with an effect of motor-function level (p < 0.001. The pattern of EMG change by late therapy was complex and variable, with differences between patients with low compared to moderate or high motor-function levels. The area under the curve (p = 0.028 and peak amplitude (p = 0.043 during Wii-tennis backhand increased for patients with low motor-function, whereas EMG decreased for patients with moderate and high motor-function levels. The reductions included movement duration during Wii-golf (p = 0.048, moderate; p = 0.026, high and Wii-tennis backhand (p = 0.046, moderate; p = 0.023, high and forehand (p = 0.009, high and the area under the curve during Wii-golf (p = 0.018, moderate and Wii-baseball (p = 0.036, moderate. For the pooled data over time, there was an effect of motor-function (p = 0.016 and an

  16. Surface Facial Electromyography Reactions to Light-Relevant and Season-Relevant Stimuli in Seasonal Affective Disorder

    National Research Council Canada - National Science Library

    Lindsey, Kathryn T

    2005-01-01

    ... light and winter season, participants were exposed to light- and season-relevant environmental stimuli and were asked to imagine what they would be feeling and thinking if they were actually in the picture...

  17. Surface Facial Electromyography Reactions to Light-Relevant and Season-Relevant Stimuli in Seasonal Affective Disorder

    Science.gov (United States)

    2005-01-01

    providing an alternative analytical perspective about statistics, to being a PowerPoint and Sigma Plot wizard , to being my #1 computer support expert...correlate with SAD onset including photoperiod, sociocultural factors, genetic influences, and various climatological conditions (i.e., heat and...Through these biologic mechanisms for SAD, manifestation of the disorder is hypothesized to result from reduced exposure to natural sunlight

  18. Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl.

    Science.gov (United States)

    Noel, J A; Broxterman, R M; McCoy, G M; Craig, J C; Phelps, K J; Burnett, D D; Vaughn, M A; Barstow, T J; O'Quinn, T G; Woodworth, J C; DeRouchey, J M; Rozell, T G; Gonzalez, J M

    2016-06-01

    The objectives of this study were to determine the effects of dietary ractopamine HCl (RAC) on muscle fiber characteristics and electromyography (EMG) measures of finishing barrow exhaustion when barrows were subjected to increased levels of activity. Barrows ( = 34; 92 ± 2 kg initial BW) were assigned to 1 of 2 treatments: a conventional swine finishing diet containing 0 mg/kg ractopamine HCl (CON) or a diet formulated to meet the requirements of finishing barrows fed 10 mg/kg RAC (RAC+). After 32 d on feed, barrows were individually moved around a track at 0.79 m/s until subjectively exhausted. Wireless EMG sensors were affixed to the deltoideus (DT), triceps brachii lateral head (TLH), tensor fasciae latae (TFL), and semitendinosus (ST) muscles to measure median power frequency (MdPF) and root mean square (RMS) as indicators of action potential conduction velocity and muscle fiber recruitment, respectively. After harvest, samples of each muscle were collected for fiber type, succinate dehydrogenase (SDH), and capillary density analysis. Speed was not different ( = 0.82) between treatments, but RAC+ barrows reached subjective exhaustion earlier and covered less distance than CON barrows ( 0.29). There was a treatment × muscle interaction ( = 0.04) for end-point RMS values. The RAC diet did not change end-point RMS values in the DT or TLH ( > 0.37); however, the diet tended to decrease and increase end-point RMS in the ST and TFL, respectively ( 0.10). Muscles of RAC+ barrows tended to have less type I fibers and more capillaries per fiber ( < 0.07). Type I and IIA fibers of RAC+ barrows were larger ( < 0.07). Compared with all other muscles, the ST had more ( < 0.01) type IIB fibers and larger type I, IIA, and IIX fibers ( < 0.01). Type I, IIA, and IIX fibers of the ST also contained less SDH compared with the other muscles ( < 0.01). Barrows fed a RAC diet had increased time to subjective exhaustion due to loss of active muscle fibers in the ST, possibly due

  19. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  20. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton

    Directory of Open Access Journals (Sweden)

    Aaron J. Young

    2017-06-01

    Full Text Available BackgroundDespite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller.MethodsWe tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects’ metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers using a force treadmill and motion capture.ResultsCompared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% (p = 0.005 and biological hip torque control reduced metabolic cost by 7% (p = 0.261. Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control.ConclusionMyoelectric control had more advantages (metabolic cost and muscle activity reduction compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific

  1. Predicting 3D lip shapes using facial surface EMG.

    Directory of Open Access Journals (Sweden)

    Merijn Eskes

    Full Text Available The aim of this study is to prove that facial surface electromyography (sEMG conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions.With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA and a modified general regression neural network (GRNN to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG.The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.

  2. Identification of first-stage labor arrest by electromyography in term nulliparous women after induction of labor.

    Science.gov (United States)

    Vasak, Blanka; Graatsma, Elisabeth M; Hekman-Drost, Elske; Eijkemans, Marinus J; Schagen van Leeuwen, Jules H; Visser, Gerard H A; Jacod, Benoit C

    2017-07-01

    Worldwide induction and cesarean delivery rates have increased rapidly, with consequences for subsequent pregnancies. The majority of intrapartum cesarean deliveries are performed for failure to progress, typically in nulliparous women at term. Current uterine registration techniques fail to identify inefficient contractions leading to first-stage labor arrest. An alternative technique, uterine electromyography has been shown to identify inefficient contractions leading to first-stage arrest of labor in nulliparous women with spontaneous onset of labor at term. The objective of this study was to determine whether this finding can be reproduced in induction of labor. Uterine activity was measured in 141 nulliparous women with singleton term pregnancies and a fetus in cephalic position during induced labor. Electrical activity of the myometrium during contractions was characterized by its power density spectrum. No significant differences were found in contraction characteristics between women with induced labor delivering vaginally with or without oxytocin and women with arrested labor with subsequent cesarean delivery. Uterine electromyography shows no correlation with progression of labor in induced labor, which is in contrast to spontaneous labor. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  3. The Gluteus Medius Vs. Thigh Muscles Strength Ratio and Their Relation to Electromyography Amplitude During a Farmer's Walk Exercise.

    Science.gov (United States)

    Stastny, Petr; Lehnert, Michal; Zaatar, Amr; Svoboda, Zdenek; Xaverova, Zuzana; Pietraszewski, Przemysław

    2015-03-29

    The strength ratio between hamstrings and quadriceps (H/Q) is associated with knee injuries as well as hip abductor muscle (HAB) weakness. Sixteen resistance trained men (age, 32.5 ± 4.2 years) performed 5 s maximal isometric contractions at 75° of knee flexion/extension and 15° of hip abduction on a dynamometer. After this isometric test they performed a Farmer's walk exercise to find out if the muscle strength ratio predicted the electromyography amplitude expressed as a percentage of maximum voluntary isometric contraction (%MVIC). The carried load represented a moderate intensity of 75% of the exercise six repetitions maximum (6RM). Electromyography data from the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gluteus medius (Gmed) on each leg were collected during the procedure. The groups selected were participants with H/Q ≥ 0.5, HQ gluteus medius, especially for individuals with a HAB/H ratio < 1 and HAB/Q < 0.5.

  4. Development of Discrimination, Detection, and Location Capabilities in Central and Southern Asia Using Middle-Period Surface Waves Recorded by a Regional Array

    National Research Council Canada - National Science Library

    Levshin, Anatoli

    1997-01-01

    .... We present group velocity maps from 10 s to 40 s period for both Rayleigh and Love waves. Broadband waveform data from about 600 events from 1988 - 1995 recorded at 83 individual stations from several global and regional networks...

  5. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study With Electromyography Time-Series Analysis During Maximal Sprinting.

    Science.gov (United States)

    Schuermans, Joke; Danneels, Lieven; Van Tiggelen, Damien; Palmans, Tanneke; Witvrouw, Erik

    2017-05-01

    With their unremittingly high incidence rate and detrimental functional repercussions, hamstring injuries remain a substantial problem in male soccer. Proximal neuromuscular control ("core stability") is considered to be of key importance in primary and secondary hamstring injury prevention, although scientific evidence and insights on the exact nature of the core-hamstring association are nonexistent at present. The muscle activation pattern throughout the running cycle would not differ between participants based on injury occurrence during follow-up. Case-control study; Level of evidence, 3. Sixty amateur soccer players participated in a multimuscle surface electromyography (sEMG) assessment during maximal acceleration to full-speed sprinting. Subsequently, hamstring injury occurrence was registered during a 1.5-season follow-up period. Hamstring, gluteal, and trunk muscle activity time series during the airborne and stance phases of acceleration were evaluated and statistically explored for a possible causal association with injury occurrence and absence from sport during follow-up. Players who did not experience a hamstring injury during follow-up had significantly higher amounts of gluteal muscle activity during the front swing phase ( P = .027) and higher amounts of trunk muscle activity during the backswing phase of sprinting ( P = .042). In particular, the risk of sustaining a hamstring injury during follow-up lowered by 20% and 6%, with a 10% increment in normalized muscle activity of the gluteus maximus during the front swing and the trunk muscles during the backswing, respectively ( P hamstring injury occurrence in male soccer players. Higher amounts of gluteal and trunk muscle activity during the airborne phases of sprinting were associated with a lower risk of hamstring injuries during follow-up. Hence, the present results provide a basis for improved, evidence-based rehabilitation and prevention, particularly focusing on increasing neuromuscular

  6. Normalisation method can affect gluteus medius electromyography results during weight bearing exercises in people with hip osteoarthritis (OA): a case control study.

    Science.gov (United States)

    French, Helen P; Huang, Xiaoli; Cummiskey, Andrew; Meldrum, Dara; Malone, Ailish

    2015-02-01

    Surface electromyography (sEMG) is used to assess muscle activation during therapeutic exercise, but data are significantly affected by inter-individual variability and requires normalisation of the sEMG signal to enable comparison between individuals. The purpose of this study was to compare two normalisation methods, a maximal method (maximum voluntary isometric contraction (MVIC)) and non-maximal peak dynamic method (PDM), on gluteus medius (GMed) activation using sEMG during three weight-bearing exercises in people with hip osteoarthritis (OA) and healthy controls. Thirteen people with hip OA and 20 controls performed three exercises (Squat, Step-Up, Step-Down). Average root-mean squared EMG amplitude based on MVIC and PDM normalisation was compared between groups for both involved and uninvolved hips using Mann-Whitney tests. Using MVIC normalisation, significantly higher normalised GMed EMG amplitudes were found in the OA group during all Step-up and down exercises on the involved side (p=0.02-0.001) and most of the Step exercises on the uninvolved side (p=0.03-0.04), but not the Squat (p>0.05), compared to controls. Using PDM normalisation, significant between-group differences occurred only for Ascending Squat (p=0.03) on the involved side. MVIC normalisation demonstrated higher inter-trial relative reliability (ICCs=0.78-0.99) than PDM (ICCs=0.37-0.84), but poorer absolute reliability using Standard Error of Measurement. Normalisation method can significantly affect interpretation of EMG amplitudes. Although MVIC-normalised amplitudes were more sensitive to differences between groups, there was greater variability using this method, which raises concerns regarding validity. Interpretation of EMG data is strongly influenced by the normalisation method used, and this should be considered when applying EMG results to clinical populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats.

    Science.gov (United States)

    Dwivedi, Neeraj; Yeo, Reuben J; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S; Bhatia, C S

    2015-01-14

    A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media.

  8. Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations

    NARCIS (Netherlands)

    van As, D.; Hubbard, A.L.; Hasholt, B.; Mikkelsen, A.B.; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Fausto, R.S.

    2012-01-01

    This study uses data from six on-ice weather stations, calibrated MODIS-derived albedo and proglacial river gauging measurements to drive and validate an energy balance model. We aim to quantify the record-setting positive temperature anomaly in 2010 and its effect on mass balance and runoff from

  9. First record of a white rough-toothed dolphin (Steno bredanensis) off West Africa including notes on rough-toothed dolphin surface behaviour

    NARCIS (Netherlands)

    Boer, de M.N.

    2010-01-01

    In June 2009, a white rough-toothed dolphin (Steno bredanensis) calf was photographed in a group of at least 50 dolphins in the southern Gulf of Guinea, 95 nauticol miles off the Gabon coast (01°45'S 007°29'E), West Africa. Reports of unusually pigmented cetaceans are infrequent and this record

  10. Motor, affective and cognitive empathy in adolescence: Interrelations between facial electromyography and self-reported trait and state measures.

    Science.gov (United States)

    Van der Graaff, Jolien; Meeus, Wim; de Wied, Minet; van Boxtel, Anton; van Lier, Pol A C; Koot, Hans M; Branje, Susan

    2016-01-01

    This study examined interrelations of trait and state empathy in an adolescent sample. Self-reported affective trait empathy and cognitive trait empathy were assessed during a home visit. During a test session at the university, motor empathy (facial electromyography), and self-reported affective and cognitive state empathy were assessed in response to empathy-inducing film clips portraying happiness and sadness. Adolescents who responded with stronger motor empathy consistently reported higher affective state empathy. Adolescents' motor empathy was also positively related to cognitive state empathy, either directly or indirectly via affective state empathy. Whereas trait empathy was consistently, but modestly, related to state empathy with sadness, for state empathy with happiness few trait-state associations were found. Together, the findings provide support for the notion that empathy is a multi-faceted phenomenon. Motor, affective and cognitive empathy seem to be related processes, each playing a different role in the ability to understand and share others' feelings.

  11. Effects of Hydrotherapy on postural control and electromyography parameters in men with chronic non-specific low back pain

    Directory of Open Access Journals (Sweden)

    Mahdi Mahjur

    2016-05-01

    Full Text Available The aim of this study was to evaluate effects of hydrotherapy on postural control and electromyography parameters in men with chronic non-specific low back pain. Thirty men with chronic non-specific LBP divided into two hydrotherapy and control groups, randomly and equally. Electromyographic activity of erector spinae muscles and balance measured for both of groups before and after intervention. Hydrotherapy program was consisted of 24 sessions. Subjects in control group didn’t have any special activity. Two-way variance was used to interpret the data and correlated and independent T-tests were used for analysis of data at the significance level of (P0.05. However, a significant difference observed between two groups in balance index (P<0.05.

  12. Spontaneous activity in electromyography may differentiate certain benign lower motor neuron disease forms from amyotrophic lateral sclerosis.

    Science.gov (United States)

    Jokela, Manu E; Jääskeläinen, Satu K; Sandell, Satu; Palmio, Johanna; Penttilä, Sini; Saukkonen, Annamaija; Soikkeli, Raija; Udd, Bjarne

    2015-08-15

    There is limited data on electromyography (EMG) findings in other motor neuron disorders than amyotrophic lateral sclerosis (ALS). We assessed whether the distribution of active denervation detected by EMG, i.e. fibrillations and fasciculations, differs between ALS and slowly progressive motor neuron disorders. We compared the initial EMG findings of 43 clinically confirmed, consecutive ALS patients with those of 41 genetically confirmed Late-onset Spinal Motor Neuronopathy and 14 Spinal and Bulbar Muscular Atrophy patients. Spontaneous activity was more frequently detected in the first dorsal interosseus and deltoid muscles of ALS patients than in patients with the slowly progressive motor neuron diseases. The most important observation was that absent fibrillations in the first dorsal interosseus muscle identified the benign forms with sensitivities of 66%-77% and a specificity of 93%. The distribution of active denervation may help to separate ALS from mimicking disorders at an early stage. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Remodeling of motor units after nerve regeneration studied by quantitative electromyography

    DEFF Research Database (Denmark)

    Krarup, Christian; Boeckstyns, Michel; Ibsen, Allan

    2016-01-01

    units was studied by quantitative EMG and recording of evoked compound muscle action potential (CMAP) during a 24-month observation period after nerve repair. Results: Force recovered partially to about 80% of normal. Denervation activity gradually decreased during reinnervation though it was still...

  14. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record.

    Science.gov (United States)

    Pante, Michael C; Muttart, Matthew V; Keevil, Trevor L; Blumenschine, Robert J; Njau, Jackson K; Merritt, Stephen R

    2017-01-01

    Bone surface modifications have become important indicators of hominin behavior and ecology at prehistoric archaeological sites. However, the method by which we identify and interpret these marks remains largely unchanged despite decades of research, relying on qualitative criteria and lacking standardization between analysts. Recently, zooarchaeologists have begun using new technologies capable of capturing 3-D data from bone surface modifications to advance our knowledge of these informative traces. However, an important step in this research has been overlooked and after years of work, we lack both a universal and replicable protocol and an understanding of the precision of these techniques. Here we propose a new standard for identifying bone surface modifications using high-resolution 3-D data and offer a systematic and replicable approach for researchers to follow. Data were collected with a white-light non-contact confocal profilometer and analyzed with Digital Surf's Mountains ® software. Our data show that when methods are standardized, results between researchers are statistically indistinguishable. Multivariate analyses using the measured parameters allow discrimination between stone tool cut marks and mammalian carnivore tooth marks with 97.5% accuracy. Application of this method to fossil specimens resulted in 100% correspondence with identifications made by an experienced analyst using macroscopic observations of qualitative features of bone surface modifications. High-resolution 3-D analyses of bone surface modifications have great potential to improve the reliability and accuracy of taphonomic research, but only if our methods are replicable and precise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Unusual downhole and surface free-field records near the Carquinez Strait bridges during the 24 August 2014 Mw6.0 South Napa, California earthquake

    Science.gov (United States)

    Çelebi, Mehmet; Ghahari, S. Farid; Taciroglu, Ertugrul

    2015-01-01

    This paper reports the results of Part A of a study of the recorded strong-motion accelerations at the well-instrumented network of the two side-by-side parallel bridges over the Carquinez Strait during the 24 August 2014 (Mw6.0 ) South Napa, Calif. earthquake that occurred at 03:20:44 PDT with epicentral coordinates 38.22N, 122.31W. (http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140824.php, last accessed on October 17, 2014). Both bridges and two boreholes were instrumented by the California Strong motion Instrumentation Program (CSMIP) of California Geological Survey (CGS) (Shakal et al., 2014). A comprehensive comparison of several ground motion prediction equations as they relate to recorded ground motions of the earthquake is provided by Baltay and Boatright (2015).

  16. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  17. Effect of substrate surface free energy on the optoelectronic and morphological properties of organolead halide perovskite solar cell materials (Presentation Recording)

    Science.gov (United States)

    Shallcross, R. Clayton; Stanfill, James G.; Armstrong, Neal R.

    2015-08-01

    Here, we show how the surface free energy of the electron-collecting oxide contact has a very pronounced effect on the nucleation free energy of solution-processed organolead halide perovskite thin films, which influences the crystal size/orientation, band-edge energies, conductivity and, ultimately, the performance of solar cell devices. While a great deal of the research community's attention has been focused on the perovskite deposition methodology (e.g., starting precursors, annealing conditions, etc.), we demonstrate how the surface free energy of the oxide contact itself can be modified to control morphology and optoelectronic properties of the resulting hybrid perovskite thin films. The surface free energy of high-quality oxide contacts deposited by chemical vapor deposition (CVD) and atomic layer deposition (ALD) is modified by functionalization with a variety of self-assembled monolayers. We explore a number of deposition methodologies (e.g., a variety of single step and sequential step approaches) and their effect on the morphological and electronic properties of the resulting perovskite thin films deposited on these modified oxide contacts. Standard atomic force microscopy (AFM) and its conductive analog (cAFM) show how the oxide surface free energy ultimately affects the nanoscale morphology and charge transport characteristics of these semiconductor films. Photoelectron spectroscopy is used to elucidate the chemical composition (e.g., X-ray photoelectron spectroscopy - XPS), band edge energies (e.g., ultraviolet photoelectron spectroscopy - UPS), and the presence of gap states above the valence band (high sensitivity UPS measurements near the Fermi energy) of the hybrid perovskite materials as a function of the oxide surface free energy.

  18. Phenological Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phenology is the scientific study of periodic biological phenomena, such as flowering, breeding, and migration, in relation to climatic conditions. The few records...

  19. Evaluación electromiográfica de los músculos masticadores durante la fuerza máxima de mordedura Electromyography evaluations of the masticator muscles during the maximum bite force

    Directory of Open Access Journals (Sweden)

    M.J.P. Coelho-Ferraz

    2008-12-01

    the masseter, anterior portion of temporal and suprahyoid muscles in the postural and isometric positions. Were utilized surface passive electrodes for kids of Ag/AgCl, of circular format and dischargeable of Meditrace® Kendall-LTP, model Chicopee MA01, attached to a pre-amplifier with gain of 20 times forming a differential circuit. The records of the electrical signs were captured by the equipment EMG-8OOC of EMG System of Brazil Ltd. of eight channels, with frequency of 2 KHz and 16 bits of resolution, digital filter with band pass of 20 to 500Hz. It was utilized also a pressurized transductor which consists of a pressurized rubber tube connected to a sensor element (MPX 5700 to obtain the maximum bite force. The statistic tests used were linear correlation, test t in pair and analysis of variance. Probability of p<0, 05 were significant considered statistically. The results showed a certain degree of muscular asymmetry for the masseter and anterior portion of temporal muscles that depended on the task performed or contraction level. The index of asymmetry was lower in the postural position than in the maximum bite force.

  20. No difference in 1RM strength and muscle activation during the barbell chest press on a stable and unstable surface.

    Science.gov (United States)

    Goodman, Craig A; Pearce, Alan J; Nicholes, Caleb J; Gatt, Brad M; Fairweather, Ian H

    2008-01-01

    Exercise or Swiss balls are increasingly being used with conventional resistance exercises. There is little evidence supporting the efficacy of this approach compared to traditional resistance training on a stable surface. Previous studies have shown that force output may be reduced with no change in muscle electromyography (EMG) activity while others have shown increased muscle EMG activity when performing resistance exercises on an unstable surface. This study compared 1RM strength, and upper body and trunk muscle EMG activity during the barbell chest press exercise on a stable (flat bench) and unstable surface (exercise ball). After familiarization, 13 subjects underwent testing for 1RM strength for the barbell chest press on both a stable bench and an exercise ball, each separated by at least 7 days. Surface EMG was recorded for 5 upper body muscles and one trunk muscle from which average root mean square of the muscle activity was calculated for the whole 1RM lift and the concentric and eccentric phases. Elbow angle during each lift was recorded to examine any range-of-motion differences between the two surfaces. The results show that there was no difference in 1RM strength or muscle EMG activity for the stable and unstable surfaces. In addition, there was no difference in elbow range-of-motion between the two surfaces. Taken together, these results indicate that there is no reduction in 1RM strength or any differences in muscle EMG activity for the barbell chest press exercise on an unstable exercise ball when compared to a stable flat surface. Moreover, these results do not support the notion that resistance exercises performed on an exercise ball are more efficacious than traditional stable exercises.

  1. Pre-bomb {Delta}{sup 14}C variability and the Suess Effect in Cariaco Basin Surface Waters as Recorded in Hermatypic Corals

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T; Cole, J; Southon, J

    2004-10-28

    The {Delta}{sup 14}C content of surface waters in and around the Cariaco Basin were reconstructed from {sup 14}C measurements on sub-annually sampled coral skeletal material. During the late 1930s - early 1940s surface waters within and outside of the Cariaco Basin are similar. Within the Cariaco Basin at Islas Tortugas coral {Delta}{sup 14}C averages -51.9 {+-}3.3 {per_thousand}. Corals collected outside of the basin at Boca de Medio and Los Testigos have {Delta}{sup 14}C values of -53.4 {+-} 3.3 {per_thousand} and -54.3 {+-} 2.6 respectively. Additional {sup 14}C analyses on the Isla Tortugas coral document an {approx} 11 {per_thousand} decrease between {approx}1905 (-40.9 {+-}4.5 {per_thousand}) and {approx}1940. The implied Suess Effect trend (-3 {per_thousand}/decade) is nearly as large as that observed in the atmosphere over the same time period. If we assume that there is little to no fossil fuel {sup 14}CO{sub 2} signature in Cariaco surface waters in {approx}1905, the waters have an equivalent reservoir age of {approx}312 years.

  2. On the radiocarbon record in banded corals: exchange parameters and net transport of /sup 14/CO/sub 2/ between atmosphere and surface ocean

    Energy Technology Data Exchange (ETDEWEB)

    Druffel, E.M.; Suess, H.E.

    1983-02-20

    We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the /sup 14/C//sup 12/C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing /sup 14/C levels with dead CO/sub 2/ from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend was observed in the distribution of bomb-produced /sup 14/C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic ..delta../sup 14/C in the surface during post-bomb times, the approximate annual rate of net input of /sup 14/CO/sub 2/ to the ocean waters is calculated to be about 8% of the prevailing /sup 14/C difference between atmosphere and ocean. From this input and from preanthropogenic ..delta../sup 14/C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream.

  3. Past 100 Ky surface salinity-gradient response in the eastern Arabian Sea to the summer monsoon variation recorded by delta super(18)O of G. sacculifer

    Digital Repository Service at National Institute of Oceanography (India)

    Chodankar, A.R.; Banakar, V.K.; Oba, T.

    stream_size 32493 stream_content_type text/plain stream_name Global_Planet_Change_47_135.pdf.txt stream_source_info Global_Planet_Change_47_135.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... variation in freshwater flux to the Bay of Bengal and hence summer monsoon intensity. The north–south contrast in the sea level corrected (residual)-y 18 O G. sacculifer can be interpreted as a measure of surface Global and Planetary Change 47 (2005) 135...

  4. Fuzzy central tendency measure for time series variability analysis with application to fatigue electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Dokos, Socrates

    2013-01-01

    A new method, namely fuzzy central tendency measure (fCTM) analysis, that could enable measurement of the variability of a time series, is presented in this study. Tests on simulated data sets show that fCTM is superior to the conventional central tendency measure (CTM) in several respects, including improved relative consistency and robustness to noise. The proposed fCTM method was applied to electromyograph (EMG) signals recorded during sustained isometric contraction for tracking local muscle fatigue. The results showed that the fCTM increased significantly during the development of muscle fatigue, and it was more sensitive to the fatigue phenomenon than mean frequency (MNF), the most commonly-used muscle fatigue indicator.

  5. Effectiveness of Hamstring Knee Rehabilitation Exercise Performed in Training Machine vs. Elastic Resistance Electromyography Evaluation Study

    DEFF Research Database (Denmark)

    Jakobsen, M. D.; Sundstrup, E.; Andersen, C. H.

    2014-01-01

    Objective The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Design Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded.......001) during hamstring curl performed with elastic resistance (7.58 +/- 0.08) compared with hamstring curl performed in a machine (5.92 +/- 0.03). Conclusions Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more...... inclinometers. Results Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine...

  6. Latitudinal patterns of export production recorded in surface sediments of the Chilean Patagonian fjords (41-55°S) as a response to water column productivity

    Science.gov (United States)

    Aracena, Claudia; Lange, Carina B.; Luis Iriarte, José; Rebolledo, Lorena; Pantoja, Silvio

    2011-03-01

    The Chilean Patagonian fjords region (41-56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13C org) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ˜44°S), Northern Patagonia (44° to ˜47°S), Central Patagonia (48-51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring-summer, reflecting the seasonal pattern of water column productivity. A clear north-south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m -2 d -1) and Northern Patagonia (1667 and 2616 mg C m -2 d -1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m -2 d -1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (Si OPAL ˜1-13%), reproduced the general north-south pattern of primary production and was directly related to water column silicic

  7. RECORDS REACHING RECORDING DATA TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    G. W. L. Gresik

    2013-07-01

    Full Text Available The goal of RECORDS (Reaching Recording Data Technologies is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  8. Anti-fatigue mats, low back pain, and electromyography: An interventional study.

    Science.gov (United States)

    Aghazadeh, Javad; Ghaderi, Mahmoud; Azghani, Mahmood-Reza; Khalkhali, Hamid-Reza; Allahyari, Teimour; Mohebbi, Iraj

    2015-01-01

    Increasing bilateral gluteus medius co-activation has been identified as one of the most important factors in developing low back pain due to prolonged standing in healthy people. This study aims to investigate the impact of an anti-fatigue mat on the bilateral gluteus medius co-activation pattern and to report the low back pain subjectively in 2 different standing positions on the normal rigid surface and on the anti-fatigue mat. While carrying out an easy simulated profession, 16 participants who had no low back pain background were requested to stand for 2 h in each position, with and without using the anti-fatigue floor mat, respectively. At the beginning of standing process and at every 15 min until the time of 120 min lapses, electric activities for the bilateral gluteus medius co-activation and subjective pain level in low back area were collected by the surface electromyogeraphy (EMG) and the visual analogue scale (VAS), respectively in each position. The obtained findings revealed that the anti-fatigue mat significantly decreased subjective pain level in low back area among 15 participants (p 0.05). The findings obtained under this study related to the impact of the anti-fatigue mat upon the low back pain based on the increase of > 10 mm on the VAS threshold, which showed that this intervention had no significant impact upon decreasing the number of patients suffering from the low back pain and also minimizing the bilateral gluteus medius co-activation in both pain developer groups (p > 0.05). However, 73% of the participants preferred to apply it. It seems that the anti-fatigue mat may be useful in reducing the low back pain although it objectively didn't significantly change the gluteus medius co-activation pattern related to the low back pain. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Anti-fatigue mats, low back pain, and electromyography: An interventional study

    Directory of Open Access Journals (Sweden)

    Javad Aghazadeh

    2015-04-01

    Full Text Available Objectives: Increasing bilateral gluteus medius co-activation has been identified as one of the most important factors in developing low back pain due to prolonged standing in healthy people. This study aims to investigate the impact of an anti-fatigue mat on the bilateral gluteus medius co-activation pattern and to report the low back pain subjectively in 2 different standing positions on the normal rigid surface and on the anti-fatigue mat. Material and Methods: While carrying out an easy simulated profession, 16 participants who had no low back pain background were requested to stand for 2 h in each position, with and without using the anti-fatigue floor mat, respectively. At the beginning of standing process and at every 15 min until the time of 120 min lapses, electric activities for the bilateral gluteus medius co-activation and subjective pain level in low back area were collected by the surface electromyogeraphy (EMG and the visual analogue scale (VAS, respectively in each position. Results: The obtained findings revealed that the anti-fatigue mat significantly decreased subjective pain level in low back area among 15 participants (p 0.05. The findings obtained under this study related to the impact of the anti-fatigue mat upon the low back pain based on the increase of > 10 mm on the VAS threshold, which showed that this intervention had no significant impact upon decreasing the number of patients suffering from the low back pain and also minimizing the bilateral gluteus medius co-activation in both pain developer groups (p > 0.05. However, 73% of the participants preferred to apply it. Conclusions: It seems that the anti-fatigue mat may be useful in reducing the low back pain although it objectively didn’t significantly change the gluteus medius co-activation pattern related to the low back pain.

  10. Effectiveness of hamstring knee rehabilitation exercise performed in training machine vs. elastic resistance: electromyography evaluation study.

    Science.gov (United States)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Persson, Roger; Zebis, Mette K; Andersen, Lars L

    2014-04-01

    The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded in the biceps femoris and the semitendinosus during the concentric and the eccentric phase of hamstring curls performed with TheraBand elastic tubing and Technogym training machines and normalized to maximal voluntary isometric contraction-EMG (normalized EMG). Knee joint angle was measured using electronic inclinometers. Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine exercise, slightly lower (P machine (5.92 ± 0.03). Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more extended knee angles and with higher perceived loading as hamstring curls using training machines.

  11. Immediate increases in quadriceps corticomotor excitability during an electromyography biofeedback intervention.

    Science.gov (United States)

    Pietrosimone, Brian; McLeod, Michelle M; Florea, David; Gribble, Phillip A; Tevald, Michael A

    2015-04-01

    The purpose of the study was to determine the effects of EMG-BF on vastus lateralis corticomotor excitability, measured via motor evoked potential (MEP) amplitudes elicited using Transcranial Magnetic Stimulation (TMS) during a maximal voluntary isometric contraction (MVIC). We also determined the effect of EMG-BF on isometric knee extensor strength. Fifteen healthy participants volunteered for this crossover study with two sessions held one-week apart. Participants were randomly assigned to condition order, during which five intervention MVICs were performed with or without EMG-BF. MEP amplitudes were collected with TMS during five knee extension contractions (5% of MVIC) at baseline and again during intervention MVICs within each session. During the control condition, participants were instructed to perform the same number of MVICs without any EMG-BF. Percent change scores were used to calculate the change in peak-to-peak MEP amplitudes that occurred during EMG-BF and Control MVICs compared to the baseline MEPs. Peak knee extension torque was recorded during MVICs prior to TMS for each condition. EMG-BF produced significantly increased MEP change scores and significantly greater torque than the control condition. The results of the current study suggest that EMG-BF may be a viable clinical method for targeting corticomotor excitability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Bayesian aggregation versus majority vote in the characterization of non-specific arm pain based on quantitative needle electromyography

    Directory of Open Access Journals (Sweden)

    McLean Linda

    2010-02-01

    Full Text Available Abstract Background Methods for the calculation and application of quantitative electromyographic (EMG statistics for the characterization of EMG data detected from forearm muscles of individuals with and without pain associated with repetitive strain injury are presented. Methods A classification procedure using a multi-stage application of Bayesian inference is presented that characterizes a set of motor unit potentials acquired using needle electromyography. The utility of this technique in characterizing EMG data obtained from both normal individuals and those presenting with symptoms of "non-specific arm pain" is explored and validated. The efficacy of the Bayesian technique is compared with simple voting methods. Results The aggregate Bayesian classifier presented is found to perform with accuracy equivalent to that of majority voting on the test data, with an overall accuracy greater than 0.85. Theoretical foundations of the technique are discussed, and are related to the observations found. Conclusions Aggregation of motor unit potential conditional probability distributions estimated using quantitative electromyographic analysis, may be successfully used to perform electrodiagnostic characterization of "non-specific arm pain." It is expected that these techniques will also be able to be applied to other types of electrodiagnostic data.

  13. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  14. Treatment Efficacy of Electromyography versus Fiberscopy-Guided Botulinum Toxin Injection in Adductor Spasmodic Dysphonia Patients: A Prospective Comparative Study

    Science.gov (United States)

    Kim, Jae Wook; Park, Jae Hong; Park, Ki Nam; Lee, Seung Won

    2014-01-01

    Introduction. This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group) and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group). Methods. Thirty patients with adductor spasmodic dysphonia (ADSD), who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI) before injection and at 1, 3, and 6 months after injection. Results. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P > 0.05). There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Conclusion. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable. PMID:25383369

  15. Treatment Efficacy of Electromyography versus Fiberscopy-Guided Botulinum Toxin Injection in Adductor Spasmodic Dysphonia Patients: A Prospective Comparative Study

    Directory of Open Access Journals (Sweden)

    Jae Wook Kim

    2014-01-01

    Full Text Available Introduction. This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group. Methods. Thirty patients with adductor spasmodic dysphonia (ADSD, who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI before injection and at 1, 3, and 6 months after injection. Results. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P>0.05. There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Conclusion. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable.

  16. Optimization of the Motion Trajectory for Standing from a Seated Position by Considering Muscular Load Based on Electromyography

    Science.gov (United States)

    Kushida, Daisuke; Asakura, Yuki; Kitamura, Akira

    Standing from a chair is an important task of daily living for physically handicapped people. In a rehabilitation center, a health care professional is planning motion based on the experience and knowledge so that a patient may stand up with few loads. Therefore, there is a problem that the plan is different occasionally as each health care professional. In this paper, a generation method of motion trajectory to stand from a seated position with few loads by using Genetic Algorithm (GA) was proposed. The human body was expressed as three-rigid-link model. In the model, the ankle, the knee, and the waist were set to the joint. Moreover, Electromyography (EMG) generated from the muscle to drive each joint was measured, and the model between each joint torque and EMG was constructed with the ARX model. The motion trajectory to stand from the seated position was generated by using GA with the evaluation function based on the constructed ARX model. The generated motion trajectory was evaluated by the experimental work with eight healthy subjects. As a result, the effect of the proposed method was objectively verified by subject's EMG. In addition, subjective effect of the proposed method was verified by analysis of variance about subject's impression.

  17. Analysis of applied forces and electromyography of back and shoulders muscles when performing a simulated hand scaling task.

    Science.gov (United States)

    Porter, William; Gallagher, Sean; Torma-Krajewski, Janet

    2010-05-01

    Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.

  18. Interannual to decadal variability of summer sea surface temperature in the Sea of Okhotsk recorded in the shell growth history of Stimpson's hard clams (Mercenaria stimpsoni)

    Science.gov (United States)

    Tanabe, Kazushige; Mimura, Toshihiro; Miyaji, Tsuzumi; Shirai, Kotaro; Kubota, Kaoru; Murakami-Sugihara, Naoko; Schöne, Bernd R.

    2017-10-01

    Sclerochronological and shell stable oxygen isotopic analyses were conducted on live-caught specimens of Stimpson's hard clams, Mercenaria stimpsoni, from the southern Sea of Okhotsk, off northern Hokkaido, Japan. In this region, the main growing season of this species during early ontogeny (below the age of 12 years) lasts from mid-spring to mid-fall at sea surface temperatures (SST) between approximately 10 and 22 °C. Growth cessation begins between late fall and early spring at SST, below approximately 6 °C; however, shell growth was largely limited to the summer season later in life. Counting of annual increments indicated that this species had a relatively long life span of up to 100 years. Annual shell growth rates were high during early ontogeny and declined abruptly afterwards. Mean standardized shell growth indices (SGIs) of long-lived specimens were positively correlated to the mean summer SSTs near the sampling site and in the coastal waters off northern Hokkaido. The SGI chronology of the longest-lived specimen (99 years old) exhibited periodicities of approximately 10 and 5 years during the calendar years 1920-2011, possibly reflecting the quasi-decadal variability of summer SST in the southern Sea of Okhotsk. These findings indicate that M. stimpsoni could serve as an archive to reconstruct past marine climate changes in the Sea of Okhotsk.

  19. Convolutive blind source separation of surface EMG measurements of the respiratory muscles.

    Science.gov (United States)

    Petersen, Eike; Buchner, Herbert; Eger, Marcus; Rostalski, Philipp

    2017-04-01

    Electromyography (EMG) has long been used for the assessment of muscle function and activity and has recently been applied to the control of medical ventilation. For this application, the EMG signal is usually recorded invasively by means of electrodes on a nasogastric tube which is placed inside the esophagus in order to minimize noise and crosstalk from other muscles. Replacing these invasive measurements with an EMG signal obtained non-invasively on the body surface is difficult and requires techniques for signal separation in order to reconstruct the contributions of the individual respiratory muscles. In the case of muscles with small cross-sectional areas, or with muscles at large distances from the recording site, solutions to this problem have been proposed previously. The respiratory muscles, however, are large and distributed widely over the upper body volume. In this article, we describe an algorithm for convolutive blind source separation (BSS) that performs well even for large, distributed muscles such as the respiratory muscles, while using only a small number of electrodes. The algorithm is derived as a special case of the TRINICON general framework for BSS. To provide evidence that it shows potential for separating inspiratory, expiratory, and cardiac activities in practical applications, a joint numerical simulation of EMG and ECG activities was performed, and separation success was evaluated in a variety of noise settings. The results are promising.

  20. ATLAS Recordings

    CERN Multimedia

    Steven Goldfarb; Mitch McLachlan; Homer A. Neal

    Web Archives of ATLAS Plenary Sessions, Workshops, Meetings, and Tutorials from 2005 until this past month are available via the University of Michigan portal here. Most recent additions include the Trigger-Aware Analysis Tutorial by Monika Wielers on March 23 and the ROOT Workshop held at CERN on March 26-27.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal.Feedback WelcomeOur group is making arrangements now to record plenary sessions, tutorials, and other important ATLAS events for 2007. Your suggestions for potential recording, as well as your feedback on existing archives is always welcome. Please contact us at wlap@umich.edu. Thank you.Enjoy the Lectures!

  1. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.

    Science.gov (United States)

    Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S

    2013-03-01

    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.

  2. Objective assessment of actual chewing side by measurement of bilateral masseter muscle electromyography.

    Science.gov (United States)

    Yamasaki, Yo; Kuwatsuru, Rika; Tsukiyama, Yoshihiro; Matsumoto, Hiroshi; Oki, Kyosuke; Koyano, Kiyoshi

    2015-12-01

    The aim of this study was to examine the validity of objective assessment of actual chewing side by measurement of electromyographic (EMG) activity of the bilateral masseter muscles upon chewing test foods. The sample consisted of 19 healthy, dentate individuals. The subjects were asked to chew three types of test foods (peanuts, beef jerky, and chewing gum) for 10 strokes on the right side and then on the left side, and instructed to perform maximum voluntary clenching for 3s, three times. EMG activity from the bilateral masseter muscles was recorded. The data were collected in three different days. The root mean square EMG amplitude obtained from the maximum clenching task was used as the maximum voluntary contraction (MVC). Then, the level of amplitude against the MVC (%MVC) was calculated for the right and left sides on each stroke. The side with the larger %MVC value was judged as the chewing side, and the concordance rates (CRs) for the instructed chewing side (ICS) and the judged chewing side (JCS) were calculated. Intraclass correlation coefficients (ICCs) of the CRs were calculated to evaluate the reproducibility of the method. High CRs between the ICS and JCS for each test food were recognized. There were significant ICCs for beef jerky (R=0.761, P<0.001) and chewing gum (R=0.785, P<0.001). The results suggested that the measurement of EMG activity from the bilateral masseter muscles may be a useful method for the objective determination of the actual chewing side during mastication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records

    Science.gov (United States)

    Deng, Qimin; Nian, Da; Fu, Zuntao

    2018-02-01

    Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.

  4. Piriformis electromyography activity during prone and side-lying hip joint movement.

    Science.gov (United States)

    Morimoto, Yasuhiro; Oshikawa, Tomoki; Imai, Atsushi; Okubo, Yu; Kaneoka, Koji

    2018-01-01

    [Purpose] To measure electromyographic activity of the piriformis using fine-wire electrodes during 7 hip movements. [Subjects and Methods] Eleven healthy men, without severe low back pain or lower limb injury, participated in this study. Fine-wire electrodes were inserted into the piriformis and surface electrodes were attached to the muscles in the hip region and the trunk muscles on the dominant arm side. Electromyographic signal amplitude was measured during 7 hip movements: side-lying external rotation in hip neutral position, side-lying abduction in hip neutral position, side-lying abduction in hip external rotation, side-lying abduction in hip internal rotation, prone extension in hip neutral position, prone extension in hip external rotation, and prone extension in hip internal rotation. Repeated-measures one-way analysis of variance was used to examine electromyographic activity in each of the 7 hip movements. [Results] Piriformis electromyographic activity was highest during prone hip extension in external rotation. Both the superior and inferior portions of the gluteus maximus were also highly activated during prone hip extension in external rotation. [Conclusion] Prone hip extension in external rotation induced high electromyographic activity in the piriformis and superior and inferior gluteus maximus muscles.

  5. Record dynamics

    DEFF Research Database (Denmark)

    Robe, Dominic M.; Boettcher, Stefan; Sibani, Paolo

    2016-01-01

    When quenched rapidly beyond their glass transition, colloidal suspensions fall out of equilibrium. The pace of their dynamics then slows down with the system age, i.e., with the time elapsed after the quench. This breaking of time translational invariance is associated with dynamical observables......-facto irreversible and become increasingly harder to achieve. Thus, a progression of record-sized dynamical barriers are traversed in the approach to equilibration. Accordingly, the statistics of the events is closely described by a log-Poisson process. Originally developed for relaxation in spin glasses...

  6. ATLAS Recordings

    CERN Multimedia

    Jeremy Herr; Homer A. Neal; Mitch McLachlan

    The University of Michigan Web Archives for the 2006 ATLAS Week Plenary Sessions, as well as the first of 2007, are now online. In addition, there are a wide variety of Software and Physics Tutorial sessions, recorded over the past couple years, to chose from. All ATLAS-specific archives are accessible here.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal. Shaping Collaboration 2006The Michigan group is happy to announce a complete set of recordings from the Shaping Collaboration conference held last December at the CICG in Geneva.The event hosted a mix of Collaborative Tool experts and LHC Users, and featured presentations by the CERN Deputy Director General, Prof. Jos Engelen, the President of Internet2, and chief developers from VRVS/EVO, WLAP, and other tools...

  7. Record Club

    CERN Multimedia

    Record Club

    2011-01-01

    http://cern.ch/Record.Club Nouveautés été 2011 Le club de location de CDs et de DVDs vient d’ajouter un grand nombre de disques pour l’été 2011. Parmi eux, Le Discours d’un Roi, oscar 2011 du meilleur film et Harry Potter les reliques de la mort (1re partie). Ce n’est pas moins de 48 DVDs et 10 CDs nouveaux qui vous sont proposés à la location. Il y en a pour tous les genres. Alors n’hésitez pas à consulter notre site http://cern.ch/record.club, voir Disc Catalogue, Discs of the month pour avoir la liste complète. Le club est ouvert tous les Lundi, Mercredi, Vendredi de 12h30 à 13h dans le bâtiment du restaurent N°2 (Cf. URL: http://www.cern.ch/map/building?bno=504) A très bientôt.  

  8. Record Club

    CERN Multimedia

    Record Club

    2011-01-01

    http://cern.ch/Record.Club June Selections We have put a significant number of new CDs and DVDs into the Club You will find the full lists at http://cern.ch/record.club and select the «Discs of the Month» button on the left side on the left panel of the web page and then June 2011. New films include the latest Action, Suspense and Science Fiction film hits, general drama movies including the Oscar-winning The King’s Speech, comedies including both chapter of Bridget Jones’s Diary, seven films for children and a musical. Other highlights include the latest Harry Potter release and some movies from the past you may have missed including the first in the Terminator series. New CDs include the latest releases by Michel Sardou, Mylene Farmer, Jennifer Lopez, Zucchero and Britney Spears. There is also a hits collection from NRJ. Don’t forget that the Club is now open every Monday, Wednesday and Friday lunchtimes from 12h30 to 13h00 in Restaurant 2, Building 504. (C...

  9. Record club

    CERN Multimedia

    Record club

    2010-01-01

      Bonjour a tous, Voici les 24 nouveaux DVD de Juillet disponibles depuis quelques jours, sans oublier les 5 CD Pop musique. Découvrez la saga du terroriste Carlos, la vie de Gainsbourg et les aventures de Lucky Luke; angoissez avec Paranormal Activity et évadez vous sur Pandora dans la peau d’Avatar. Toutes les nouveautés sont à découvrir directement au club. Pour en connaître la liste complète ainsi que le reste de la collection du Record Club, nous vous invitons sur notre site web: http://cern.ch/crc. Toutes les dernières nouveautés sont dans la rubrique « Discs of the Month ». Rappel : le club est ouvert les Lundis, Mercredis, Vendredis de 12h30 à 13h00 au restaurant n°2, bâtiment 504. A bientôt chers Record Clubbers.  

  10. Record Club

    CERN Multimedia

    Record Club

    2011-01-01

    http://cern.ch/Record.Club November  Selections Just in time for the holiday season, we have added a number of new CDs and DVDs into the Club. You will find the full lists at http://cern.ch/record.club; select the "Discs of the Month" button on the left side on the left panel of the web page and then Nov 2011. New films include the all 5 episodes of Fast and Furious, many of the most famous films starring Jean-Paul Belmondo and those of Louis de Funes and some more recent films such as The Lincoln Lawyer and, according to some critics, Woody Allen’s best film for years – Midnight in Paris. For the younger generation there is Cars 2 and Kung Fu Panda 2. New CDs include the latest releases by Adele, Coldplay and the Red Hot Chili Peppers. We have also added the new Duets II CD featuring Tony Bennett singing with some of today’s pop stars including Lady Gaga, Amy Winehouse and Willy Nelson. The Club is now open every Monday, Wednesday and Friday ...

  11. Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces.

    Science.gov (United States)

    Silva, Priscila de Brito; Mrachacz-Kersting, Natalie; Oliveira, Anderson Souza; Kersting, Uwe Gustav

    2018-04-01

    Standing on unstable surfaces requires more complex motor control mechanisms to sustain balance when compared to firm surfaces. Surface instability enhances the demand to maintain equilibrium and is often used to challenge balance, but little is known about how balance training affects movement strategies to control posture while standing on unstable surfaces. This study aimed at assessing the effects of isolated wobble board (WB) training on movement strategies to maintain balance during single-leg standing on a WB. Twenty healthy men were randomly assigned to either a control or a training group. The training group took part in four weeks of WB training and both groups were tested pre and post the intervention. Electromyography from the supporting lower limb muscles, full-body kinematics and ground reaction forces were recorded during firm surface (FS) and WB single-leg standing. WB training did not affect FS performance (p = 0.865), but tripled WB standing time (p < 0.002). Moreover, training decreased lower leg muscle activation (29-59%), leg and trunk velocities (30% and 34%, respectively), and supporting limb angular velocity (24-47% across all planes for the ankle, knee and hip joints). Post intervention standing time was significantly correlated with angular velocities at the hip (r = 0.79) and knee (r = -0.83) for controls, while it correlated significantly with contra-lateral leg (r ∼ 0.70) and trunk velocity (r = -0.74) for trained participants. These results support the assumption that WB training enhances the ability to control counter-rotation mechanisms for balance maintenance on unstable surfaces, which may be a crucial protective factor against sports injuries. Copyright © 2018. Published by Elsevier B.V.

  12. Using Electromyography to Detect the Weightings of the Local Muscle Factors to the Increase of Perceived Exertion During Stepping Exercise

    Directory of Open Access Journals (Sweden)

    Miao-Ju Hsu

    2008-06-01

    Full Text Available Rate of perceived exertion (RPE is a clinically convenient indicator for monitoring exercise intensity in cardiopulmonary rehabilitation. It might not be sensitive enough for clinicians to determine the patients’ physiological status because its association with the cardiovascular system and local muscle factors is unknown. This study used the electromyographic sensor to detect the local muscle fatigue and stabilization of patella, and analyzed the relationship between various local muscle and cardiovascular factors and the increase of RPE during stepping exercise, a common exercise program provided in cardiopulmonary rehabilitation. Ten healthy adults (4 males and 6 females participated in this study. Each subject used their right bare foot to step up onto a 23-cm-high step at a constant speed until the RPE score reached 20. The RPE, heart rate (HR, and surface EMG of the rectus femoris (RF, vastus medialis, and vastus lateralis were recorded at 1-minute intervals during the stepping exercise. The generalized estimating equations (GEE analysis indicated that the increase in RPE significantly correlated with the increase in HR, and decrease in median frequency (MF of the EMG power spectrum of the RF. Experimental results suggest that the increase in RPE during stepping exercise was influenced by the cardiovascular status, localized muscle fatigue in the lower extremities. The weighting of the local muscle factors was more than half of the weighting of the cardiovascular factor.

  13. A quantitative approach to measure women's sexual function using electromyography: a preliminary study of the Kegel exercise.

    Science.gov (United States)

    Mohktar, Mas Sahidayana; Ibrahim, Fatimah; Mohd Rozi, Nur Farahana; Mohd Yusof, Juhaida; Ahmad, Siti Anom; Su Yen, Khong; Omar, Siti Zawiah

    2013-12-13

    Currently, the reference standard used to clinically assess sexual function among women is a qualitative questionnaire. Hence, a generalised and quantitative measurement tool needs to be available as an alternative. This study investigated whether an electromyography (EMG) measurement technique could be used to help quantify women's sexual function. A preliminary intervention study was conducted on 12 female subjects, who were randomised into a control (n=6) and an intervention (n=6) group. Intervention involved a set regimen of pelvic floor muscle exercises (Kegel) and the control group did not have any treatment. All subjects were asked to answer a validated, self-rated Pelvic Organ Prolapse/Urinary Incontinence Sexual Function Questionnaire (PISQ). EMG measurements of the pelvic floor muscles (PFM) and the abdominal muscles were taken from all women at recruitment and 8 weeks after study commencement. After 8 weeks, most of the subjects in the control group did not display any noted positive difference in either PISQ score (4/6) or in their muscle strength (4/6). However, a noted progressive difference were observed in subjects who were placed in the Kegel group; PISQ score (5/6) and muscles strength (4/6). The noted difference in the Kegel group subjects was that if progress is observed in the sexual function, improvement is also observed in the strength of at least 2 types of muscles (either abdominal or PFM muscles). Thus, EMG measurement is a potential technique to quantify the changes in female sexual function. Further work will be conducted to validate this assumption.

  14. Electromyography (EMG) analysis on impact of classroom chair and table usage among primary school students in Perlis

    Science.gov (United States)

    Jing, Ewe Hui; Shan, Lim Shaiu; Effendi, M. S. M.; Rosli, Muhamad Farizuan

    2017-09-01

    The existing design of primary school classroom chair and table had brought low back pain, neck pain and shoulder pain problems respectively among students in primary school. The purpose of this study is to relate the electromyography (EMG) analysis with the most critical area of the body during sitting and writing. Six male and six female primary school students from SK Seri Perlis with no back pain, neck pain and shoulder pain problems involved were invited as respondents in this study. EMG experiment was carried out by first determined the critical point at T9 and L3 from thoracic and lumbar segment respectively for ECG electrode placement and performed with a series of sitting trials for analysis. The sitting trials performed were slouch to lumbopelvic sitting and slouch to thoracic sitting follow by instruction. Next, the electrode placement was identified at C2-C3 on cervical spine for neck and at midpoint between C7 to the lateral edge of acromion spanning for shoulder respectively. These points were identified for a series of writing task performing for the EMG analysis. There were two type of writing task which included writing by looking at the whiteboard and paper placed on the table. The subjects were instructed to rest during the experiment when necessary. During lumbopelvic sitting posture, the average muscle activation on lumbar area was at the highest peak. The peak indicated that there was critical effect from the experimental finding. The performance of writing task from whiteboard gave rise a higher impact on neck muscle while writing task from paper had a greater impact on shoulder muscle. The critical affected muscle on these areas was proven on these written tasks. The EMG experiment showed that the existing design of primary school classroom chair and table had brought impact on lumbar, neck and shoulder towards the students who were using. A future recommendation suggests that to redesign primary school classroom chair and table which

  15. RECORD CLUB

    CERN Multimedia

    Record Club

    2010-01-01

    DVD James Bond – Series Complete To all Record Club Members, to start the new year, we have taken advantage of a special offer to add copies of all the James Bond movies to date, from the very first - Dr. No - to the latest - Quantum of Solace. No matter which of the successive 007s you prefer (Sean Connery, George Lazenby, Roger Moore, Timothy Dalton, Pierce Brosnan or Daniel Craig), they are all there. Or perhaps you have a favourite Bond Girl, or even perhaps a favourite villain. Take your pick. You can find the full selection listed on the club web site http://cern.ch/crc; use the panel on the left of the page “Discs of the Month” and select Jan 2010. We remind you that we are open on Mondays, Wednesdays and Fridays from 12:30 to 13:00 in Restaurant 2 (Bldg 504).

  16. Record breakers

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In the sixties, CERN’s Fellows were but a handful of about 50 young experimentalists present on site to complete their training. Today, their number has increased to a record-breaking 500. They come from many different fields and are spread across CERN’s different activity areas.   “Diversifying the Fellowship programme has been the key theme in recent years,” comments James Purvis, Head of the Recruitment, Programmes and Monitoring group in the HR Department. “In particular, the 2005 five-yearly review introduced the notion of ‘senior’ and ‘junior’ Fellowships, broadening the target audience to include those with Bachelor-level qualifications.” Diversification made CERN’s Fellowship programme attractive to a wider audience but the number of Fellows on site could not have increased so much without the support of EU-funded projects, which were instrumental in the growth of the programme. ...

  17. Effects of performing an abdominal hollowing exercise on trunk muscle activity during curl-up exercise on an unstable surface

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of the abdominal hollowing exercise on trunk muscle activity during the curl-up exercise on an unstable surface by measuring electromyography (EMG) activity. [Subjects] Fourteen young healthy adults (nine male, five female) voluntarily participated in this study. [Methods] Each subject was asked to perform a curl-up exercise on two supporting surfaces (stable and unstable surfaces) combined with the abdominal hollowing exercis...

  18. Records Control Schedules Repository

    Data.gov (United States)

    National Archives and Records Administration — The Records Control Schedules (RCS) repository provides access to scanned versions of records schedules, or Standard Form 115, Request for Records Disposition...

  19. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Jolene Atia

    2016-04-01

    Full Text Available Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations.

  20. Record Club

    CERN Multimedia

    Record Club

    2012-01-01

      March  Selections By the time this appears, we will have added a number of new CDs and DVDs into the Club. You will find the full lists at http://cern.ch/record.club; select the "Discs of the Month" button on the left panel of the web page and then Mar 2012. New films include recent releases such as Johnny English 2, Bad Teacher, Cowboys vs Aliens, and Super 8. We are also starting to acquire some of the classic films we missed when we initiated the DVD section of the club, such as appeared in a recent Best 100 Films published by a leading UK magazine; this month we have added Spielberg’s Jaws and Scorsese’s Goodfellas. If you have your own ideas on what we are missing, let us know. For children we have no less than 8 Tin-Tin DVDs. And if you like fast moving pop music, try the Beyonce concert DVD. New CDs include the latest releases from Paul McCartney, Rihanna and Amy Winehouse. There is a best of Mylene Farmer, a compilation from the NRJ 201...

  1. Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm.

    Science.gov (United States)

    Qian, Qiuyang; Hu, Xiaoling; Lai, Qian; Ng, Stephanie C; Zheng, Yongping; Poon, Waisang

    2017-01-01

    Effective poststroke motor rehabilitation depends on repeated limb practice with voluntary efforts. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot arm was designed for the multi-joint physical training on the elbow, the wrist, and the fingers. To investigate the training effects of the device-assisted approach on subacute stroke patients and to compare the effects with those achieved by the traditional physical treatments. This study was a pilot randomized controlled trial with a 3-month follow-up. Subacute stroke participants were randomly assigned into two groups, and then received 20-session upper limb training with the EMG-driven NMES-robotic arm (NMES-robot group, n  = 14) or the time-matched traditional therapy (the control, n  = 10). For the evaluation of the training effects, clinical assessments including Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), Action Research Arm Test (ARAT), and Function Independence Measurement (FIM) were conducted before, after the rehabilitation training, and 3 months later. Session-by-session EMG parameters in the NMES-robot group, including normalized co-contraction Indexes (CI) and EMG activation level of target muscles, were used to monitor the progress in muscular coordination patterns. Significant improvements were obtained in FMA (full score and shoulder/elbow), ARAT, and FIM [ P   0.279] for both groups. Significant improvement in FMA wrist/hand was only observed in the NMES-robot group ( P   0.24), and remained at an elevated level when assessed 3 months later. The EMG parameters indicated a release of muscle co-contraction in the muscle pairs of biceps brachii and flexor carpi radialis and biceps brachii and triceps brachii, as well as a reduction of muscle activation level in the wrist flexor in the NMES-robot group. The NMES-robot-assisted training was effective for early stroke upper limb rehabilitation and promoted independence in the daily

  2. Vaccination Records for Kids

    Science.gov (United States)

    ... teams, and summer camps or to travel. Recording Immunizations Good record- keeping begins with good record- taking. ... to each visit with his doctor. Finding Official Immunization Records CDC does not have immunization record information. ...

  3. Behaviour of a surface EMG based measure for motor control: Motor unit action potential rate in relation to force and muscle fatigue

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2008-01-01

    Surface electromyography parameters such as root-mean-square value (RMS) and median power frequency (FMED) are commonly used to assess the input of the central nervous system (CNS) to a muscle. However, RMS and FMED are influenced not only by CNS input, but also by peripheral muscle properties. The

  4. Sea surface temperature variability in the Gulf of Mexico from 1734-2008 CE: A reconstruction using cross-dated Sr/Ca records from the coral Siderastrea siderea

    Science.gov (United States)

    DeLong, K. L.; Flannery, J. A.; Quinn, T. M.; Maupin, C. R.; Lin, K.; Shen, C.

    2013-12-01

    Sea surface temperature (SST) variability in the Gulf of Mexico impacts climate in Central and North America because the Gulf is a major source of moisture and is a source region for the Gulf Stream, which transports ocean heat northward. Here we use skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42'N, 82°48'W) to develop 274 years of monthly-resolved SST variations. The cross-dated chronology, determined by counting annual density bands and correlating Sr/Ca variations, is verified by four replicated high precision 230Th dates (×1.7-37 years, 2σ). Calibration and verification of our replicated coral Sr/Ca-SST reconstruction with Dry Tortugas SST (r = 0.98 and 0.55 for monthly and 36-month smoothed, respectively; 1992-2008 CE) and Key West, Florida surface air temperature (1895-2008 CE) measurements reveals similar covariance (r = 0.96 and 0.56 for monthly and 36-month smoothed, respectively). The absolute coral SST reconstruction is consistent with SST recorded at the Dry Tortugas lighthouse from 1879-1907 CE indicating that this coral Sr/Ca-SST relationship is stable on centennial time scales. The Sr/Ca-SST reconstruction reveals ~2.0°C interannual variability, ~1.5°C decadal fluctuations, and a 0.7°C warming trend for the past 274 years. Secular variability in our reconstruction is similar to approximately decadally resolved planktic foraminifer Mg/Ca records from the northern Gulf of Mexico. The coral Sr/Ca-SST reconstruction reveals colder decades (~1.5°C) suggesting a reduction in moisture and ocean heat flux from the Gulf of Mexico. We find winter extremes are more variable than summer extremes (×2.2°C vs. ×1.6°C, 2σ) with a stronger warming trend (1°C) in the summers suggesting continued warming may increase coral bleaching.

  5. Surface EMG to assess arm function in boys with DMD: a pilot study.

    Science.gov (United States)

    Janssen, Mariska M H P; Harlaar, Jaap; de Groot, Imelda J M

    2015-04-01

    Preserving functional abilities of the upper extremities is a major concern in boys with Duchenne Muscular Dystrophy (DMD). To assess disease progression and treatments, good knowledge on arm function in boys with DMD is essential. Therefore, feasibility and validity of the use of surface electromyography (sEMG) to assess arm function in boys with DMD was examined. Five boys with DMD and 6 age-matched controls participated in this study. Single joint movements and ADL activities were examined while recording sEMG of main shoulder and elbow muscles. All boys with DMD and controls were able to perform the non standardized movements of the measurement protocol, however one boy with DMD was not able to perform all the standardized movements. Boys with DMD used significantly more of their maximal muscle capacity for all muscles to conduct movements compared to controls. The measurement protocol was feasible to assess arm function in boys with DMD. This tool was able to discriminate between DMD patients and controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Reliability of a combined biomechanical and surface electromyographical analysis system during dynamic barbell squat exercise.

    Science.gov (United States)

    Brandon, Raphael; Howatson, Glyn; Hunter, Angus

    2011-10-01

    An analysis system for barbell weightlifting exercises is proposed to record reliable performance and neuromuscular responses. The system consists of surface electromyography (sEMG) synchronized with electrogoniometry and a barbell position transducer. The purpose of this study was to establish the reliability of the three components of the system. Nine males (age 28.9 ± 4.8 years, mass 85.7 ± 15.1 kg) performed squat exercise at three loads on three separate trial days. A data acquisition and software system processed maximal knee angle (flexion), mean power for the concentric phase of squat exercise, and normalized root mean square of the vastus lateralis. Inter-trial coefficients of variation for each variable were calculated as 5.3%, 7.8%, and 7.5% respectively. In addition, knee joint motion and barbell displacement were significantly related to each other (bar displacement (m) = 1.39-0.0057 × knee angle (degress), with goodness-of-fit value, r² = 0.817), suggesting knee goniometry alone can represent the kinematics of a multi-joint squat exercise. The proven reliability of the three components of this system allows for real-time monitoring of resistance exercise using the preferred training methods of athletes, which could be valuable in the understanding of the neuromuscular response of elite strength training methods.

  7. Identification of Onset Of Fatigue in Biceps Brachii Muscles Using Surface EMG and Multifractal DMA Alogrithm.

    Science.gov (United States)

    Marri, Kiran; Swaminathan, Ramakrishnan

    2015-01-01

    Prolonged and repeated fatigue conditions can cause muscle damage and adversely impact coordination in dynamic contractions. Hence it is important to determine the onset of muscle fatigue (OMF) in clinical rehabilitation and sports medicine. The aim of this study is to propose a method for analyzing surface electromyography (sEMG) signals and identify OMF using multifractal detrending moving average algorithm (MFDMA). Signals are recorded from biceps brachii muscles of twenty two healthy volunteers while performing standard curl exercise. The first instance of muscle discomfort during curl exercise is considered as experimental OMF. Signals are pre-processed and divided into 1-second epoch for MFDMA analysis. Degree of multifractality (DOM) feature is calculated from multifractal spectrum. Further, the variance of DOM is computed and OMF is calculated from instances of high peaks. The analysis is carried out by dividing the entire duration into six equal zones for time axis normalization. High peaks are observed in zones where subjects reported muscle discomfort. First muscle discomfort occurred in third and forth zones for majority of subjects. The calculated and experimental muscle discomfort zone closely matched in 72% of subjects indicating that multifractal technique may be a good method for detecting onset of fatigue. The experimental data may have an element of subjectivity in identifying muscle discomfort. This work can also be useful to analyze progressive changes in muscle dynamics in neuromuscular condition and co-contraction activity.

  8. Organic biomarker records spanning the last 34,800 years from the southeastern Brazilian upper slope: links between sea surface temperature, displacement of the Brazil Current, and marine productivity

    Science.gov (United States)

    Lourenço, Rafael André; de Mahiques, Michel Michaelovitch; Wainer, Ilana Elazari Klein Coaracy; Rosell-Melé, Antoni; Bícego, Márcia Caruso

    2016-10-01

    Collective assessment of marine and terrigenous organic biomarkers was performed on a sediment core spanning the last 34,800 years on the upper slope southeast of Brazil to verify the signatures of climatic variations in sea surface temperature (SST), marine productivity, and the flux of terrigenous material in this region. This evaluation is based on marine and terrigenous proxies including alkenones, chlorins, aliphatic hydrocarbons, n-alcohols, and fatty acids. This first report of organic biomarker data for this region confirms a correlation between SST, changes in terrigenous organic matter flow into the ocean, and marine productivity over the last 34.8 ka as a response to the displacement of the Brazil Current. Conditions prevailing during marine isotopic stage (MIS) 3 may be considered intermediate between the last glacial maximum (LGM) and the Late Holocene. For MIS 2, a period of low relative sea level, it was verified that the lowest SSTs were associated with the LGM and higher marine productivity. SST increased by up to 4.4 °C between the LGM and the Holocene. This reveals synchronicity between SST on the southeastern Brazilian upper slope and the North Atlantic Ocean SST records reported in earlier studies.

  9. Water Quality Records in California

    Science.gov (United States)

    1964-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the Nation in conjunction with water usage and its availability. The basic records for the 1964 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering States. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  10. Beauty in the eye of the beholder: Using facial electromyography to examine the association between eating disorder symptoms and perceptions of emaciation among undergraduate women.

    Science.gov (United States)

    Dodd, Dorian R; Velkoff, Elizabeth A; Forrest, Lauren N; Fussner, Lauren M; Smith, April

    2017-06-01

    Thin-ideal internalization, drive for thinness, and over-evaluation of the importance of thinness are associated with eating disorders (EDs). However, little research has examined to what extent perceptions of emaciation are also associated with ED symptoms. In the present study, 80 undergraduate women self-reported on ED symptomatology and perceptions of emaciated, thin, and overweight female bodies. While participants viewed images of these different body types, facial electromyography was used to measure activation of facial muscles associated with disgust reactions. Emaciated and overweight bodies were rated negatively and elicited facial responses consistent with disgust. Further, ED symptomatology was associated with pronounced aversion to overweight bodies (assessed via self-report pleasantness ratings), and attenuated negative affect to emaciated bodies (assessed via facial electromyography). The latter association was significant even when controlling for self-reported perceptions of emaciation, suggesting that psychophysiological methods in ED research may provide valuable information unavailable via self-report. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Gluteus Medius Vs. Thigh Muscles Strength Ratio and Their Relation to Electromyography Amplitude During a Farmer’s Walk Exercise

    Science.gov (United States)

    Stastny, Petr; Lehnert, Michal; Zaatar, Amr; Svoboda, Zdenek; Xaverova, Zuzana; Pietraszewski, Przemysław

    2015-01-01

    The strength ratio between hamstrings and quadriceps (H/Q) is associated with knee injuries as well as hip abductor muscle (HAB) weakness. Sixteen resistance trained men (age, 32.5 ± 4.2 years) performed 5 s maximal isometric contractions at 75° of knee flexion/extension and 15° of hip abduction on a dynamometer. After this isometric test they performed a Farmer’s walk exercise to find out if the muscle strength ratio predicted the electromyography amplitude expressed as a percentage of maximum voluntary isometric contraction (%MVIC). The carried load represented a moderate intensity of 75% of the exercise six repetitions maximum (6RM). Electromyography data from the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gluteus medius (Gmed) on each leg were collected during the procedure. The groups selected were participants with H/Q ≥ 0.5, HQ gluteus medius, especially for individuals with a HAB/H ratio < 1 and HAB/Q < 0.5. PMID:25964819

  12. Currents, temperature, and salinity data recorded continuously from May 12, 2010 to December 16, 2010 from the surface to 1000 meters at a coastal location near the 1600 meters isobath off SW Oahu, Hawaii (NODC Accession 0072305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains ADCP Workhorse Long Ranger current records from 50 to 950m depth and Seabird CTD at 20, 80, 130, 230, 500, 850, and 1000m, recorded continuously...

  13. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    Science.gov (United States)

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a

  14. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.

    Science.gov (United States)

    Geng, Yanjuan; Zhou, Ping; Li, Guanglin

    2012-10-05

    Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier

  15. Hip abductors and thigh muscles strength ratios and their relation to electromyography amplitude during split squat and walking lunge exercises

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    2015-06-01

    Full Text Available Background: The hip abductors (HAB, quadriceps (Q and hamstrings (H reciprocal strength ratios are predictors of electromyography (EMG amplitude during load carrying walking at moderate intensity. Therefore, these strength ratios might predict also the EMG during the exercises as walking lunge (WL or split squat (SSq at submaximal intensity. Objective: To determine whether the EMG amplitude of vastus mediali (VM, vastus laterali (VL, biceps femoris (BF and gluteus medius (Gmed is associated with muscle strength ratio during SSqs and WLs. To determine whether the EMG amplitude differs between individuals with HAB/H ratio above and below one and between individuals with H/Q or HAB/Q ratio above and below 0.5 during SSqs and WLs. Methods: 17 resistance-trained men (age 29.6 ± 4.6 years with at least 3 years of strength training performed in cross-sectional design 5 s maximal voluntary isometric contractions (MVIC on an isokinetic dynamometer for knee extension, knee flexion, and hip abduction. The MVIC was used to normalize the EMG signal and estimate the individual strength ratios. Than participants performed WL and SSq for a 5 repetition maximum, to find out muscle activity at submaximal intensity of exercise. Results: The H/Q ratio was associated by Kendall's tau (τ with VM (τ = .33 and BF (τ = -.71 amplitude, HAB/Q ratio was associated with BF (τ = -.43 and Gmed (τ = .38 amplitude, as well as HAB/H was associated with VM (τ = -.41 and Gmed (τ = .74 amplitude. ANOVA results showed significant differences between SSq and WL (F(4, 79 = 10, p < .001, ηp2 = .34 in Gmed amplitude, where WL resulted in higher Gmed amplitude compared to SSq. Other significant differences were found between H/Q groups (F(4, 29 = 3, p = .04, ηp2 = .28 in VM and Gmed amplitude, where group with H/Q > 0.5 showed higher VMO amplitude and lower Gmed amplitude. Furthermore, significant difference was found

  16. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    Directory of Open Access Journals (Sweden)

    Geng Yanjuan

    2012-10-01

    Full Text Available Abstract Background Electromyography (EMG pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9% as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for

  17. Assessment of Diaphragm and External Intercostals Fatigue from Surface EMG using Cervical Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2008-03-01

    Full Text Available This study was designed: (1 to test the reliability of surface electromyography (sEMG recording of the diaphragm and external intercostals contractions response to cervical magnetic stimulation (CMS, (2 to examine the amount and the types of inspiratory muscle fatigue that developed after maximum voluntary ventilation (MVV maneuvers.Ten male college students without physical disability (22.1±2.0 years old participated in the study and each completed a control (quiet breathing trial and a fatigue (MVV maneuvers trial sequentially. In the quiet breathing trial, the subjects maintained quiet breathing for five minutes. The subjects performed five maximal static inspiratory efforts and received five CMS before and after the quiet breathing. In the MVV trial, subjects performed five maximal inspiratory efforts and received five CMS before, immediately after, and ten minutes after two sets of MVV maneuvers performed five minutes apart. Maximal inspiratory pressure (PImax, sEMG of diaphragm and external intercostals during maximal static inspiratory efforts and during CMS were recorded. In the quiet breathing trial, high intraclass correlation coefficients (ICC=0.95-0.99 were observed in all the variables. In the MVV trial, the PImax, the EMG amplitude and the median power frequency during maximal static inspiratory efforts significantly decreased in both the diaphragm and the external intercostals immediately after the MVV maneuvers Sensors 2008, 8 2175 (P 0.05. It is concluded that the sEMG recordings of the diaphragm during maximal static inspiratory efforts and in response to CMS allow reproducible sequential assessment of diaphragm contractility. MVV maneuvers resulted in inspiratory muscles fatigue, possibly central fatigue.

  18. Size-dependent δ18O and δ13C variations in a planktic foraminiferal Neogloboquadrina pachyderma (sinistral) record from Chukchi Plateau: implications for (sub)surface water conditions in the western Arctic Ocean over the past 50 ka

    Science.gov (United States)

    Wang, R.; Xiao, W.; Mei, J.; Polyak, L.

    2017-12-01

    Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.

  19. Concurrent validity of the pressure biofeedback unit and surface electromyography in measuring transversus abdominis muscle activity in patients with chronic nonspecific low back pain

    OpenAIRE

    Lima,Pedro O. P.; Oliveira,Rodrigo R.; Moura Filho,Alberto G.; Raposo,Maria C. F.; Costa,Leonardo O. P.; Laurentino,Glória E. C.

    2012-01-01

    BACKGROUND: The Pressure biofeedback unit (PBU) is an assessment tool used in clinical practice and research aimed to indirectly analyze the transversus abdominis (TrA) muscle activity. The concurrent validity of the PBU in a clinically relevant sample is still unclear. OBJECTIVE: The purpose of this study was to evaluate the concurrent validity and diagnostic accuracy of the PBU in measuring TrA muscle activity in patients with chronic nonspecific low back pain. METHOD: This study was perfor...

  20. Concurrent validity of the pressure biofeedback unit and surface electromyography in measuring transversus abdominis muscle activity in patients with chronic nonspecific low back pain.

    Science.gov (United States)

    Lima, Pedro O P; Oliveira, Rodrigo R; Moura Filho, Alberto G; Raposo, Maria C F; Costa, Leonardo O P; Laurentino, Glória E C

    2012-01-01

    The Pressure biofeedback unit (PBU) is an assessment tool used in clinical practice and research aimed to indirectly analyze the transversus abdominis (TrA) muscle activity. The concurrent validity of the PBU in a clinically relevant sample is still unclear. The purpose of this study was to evaluate the concurrent validity and diagnostic accuracy of the PBU in measuring TrA muscle activity in patients with chronic nonspecific low back pain. This study was performed using a validation, cross-sectional design. Fifty patients with chronic nonspecific low back pain were recruited for this study. To test the concurrent validity both PBU measures (index test) and superficial electromyographic measures (reference-standard test) were compared and collected by a physical therapist in a series of voluntary contraction maneuvers of TrA muscle. Participants were on average 22 years old, weighed 63.7 kilos, 1.70 meters height and mean low back pain duration was 1.9 years. It was observed a weak and non-significant Phi coefficient (r=0.2, plow sensitivity (60%) and specificity (60%) of the PBU. The positive predictive value was high (0.8) and negative predictive value was low (0.2). Concurrent validity of the PBU in measuring TrA muscle activity in patients with chronic nonspecific low back pain is poor given the low correlation and diagnostic accuracy with superficial EMG.

  1. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode

    DEFF Research Database (Denmark)

    Madeleine, Pascal; Jørgensen, Lars Vincents; Søgaard, Karen

    2002-01-01

    The goal of the present study was to investigate the significance of low-force continuous or intermittent static contraction and feedback mode (visual or proprioceptive) on the development of muscle fatigue as assessed by electromyography (EMG) and mechanomyography (MMG). Visual (force control...... and MPF values versus time were observed with proprioceptive feedback compared with visual feedback. The findings suggest that (1) the EMG and MMG signals give complementary information about localised muscle fatigue at low-level contraction: they responded differently in terms of changes in the time...... and frequency domain during continuous contraction, while they responded in concert in the frequency domain during intermittent contractions, and (2) the different centrally mediated motor control strategies used during fatiguing contraction may be dependent upon the feedback modality....

  2. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    Science.gov (United States)

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  3. The Gluteus Medius Vs. Thigh Muscles Strength Ratio and Their Relation to Electromyography Amplitude During a Farmer’s Walk Exercise

    Directory of Open Access Journals (Sweden)

    Stastny Petr

    2015-03-01

    Full Text Available The strength ratio between hamstrings and quadriceps (H/Q is associated with knee injuries as well as hip abductor muscle (HAB weakness. Sixteen resistance trained men (age, 32.5 ± 4.2 years performed 5 s maximal isometric contractions at 75° of knee flexion/extension and 15° of hip abduction on a dynamometer. After this isometric test they performed a Farmer´s walk exercise to find out if the muscle strength ratio predicted the electromyography amplitude expressed as a percentage of maximum voluntary isometric contraction (%MVIC. The carried load represented a moderate intensity of 75% of the exercise six repetitions maximum (6RM. Electromyography data from the vastus medialis (VM, vastus lateralis (VL, biceps femoris (BF and gluteus medius (Gmed on each leg were collected during the procedure. The groups selected were participants with H/Q ≥ 0.5, HQ < 0.5, HAB/H ≥ 1, HAB/H < 1, HAB/Q ≥ 0.5 and HAB/Q < 0.5. One way ANOVA showed that Gmed activity was significantly greater in the group with HAB/H < 1 (42 ± 14 %MVIC as compared to HAB/H ≥ 1 (26 ± 10 %MVIC and HAB/Q < 0.5 (47 ± 19 %MVIC compared to HAB/Q ≥ 0.5 (26 ± 12 %MVIC. The individuals with HAB/H < 1 were found to have greater activation of their Gmed during the Farmer’s walk exercise. Individuals with HAB/Q < 0.5 had greater activation of the Gmed. Gmed strength ratios predict the muscle involvement when a moderate amount of the external load is used. The Farmer’s walk is recommended as an exercise which can strengthen the gluteus medius, especially for individuals with a HAB/H ratio < 1 and HAB/Q < 0.5.

  4. Laryngeal electromyography-guided hyaluronic acid vocal fold injection for unilateral vocal fold paralysis: a prospective long-term follow-up outcome report.

    Science.gov (United States)

    Wang, Chen-Chi; Chang, Ming-Hong; Jiang, Rong-San; Lai, Hsiu-Chin; De Virgilio, Armando; Wang, Ching-Ping; Wu, Shang-Heng; Liu, Shi-An; Liang, Kai-Li

    2015-03-01

    Unilateral vocal fold paralysis (UVFP) is a common voice disorder that may cause glottal closure insufficiency with hoarseness of voice. Laryngeal electromyography (LEMG)-guided hyaluronic acid vocal fold (VF) injection has been proposed as a treatment option to improve glottal closure with a satisfactory short-term effect. To our knowledge, this study reports the first long-term follow-up result of this treatment modality. To present the long-term treatment results of LEMG-guided hyaluronic acid VF injection for UVFP. Prospective study of the treatment results of 74 patients who received LEMG-guided hyaluronic acid VF injection for UVFP at a tertiary referral medical center from March 2010 to February 2013. In the office-based procedure, 1.0 mL of hyaluronic acid was injected via a 26-gauge monopolar injectable needle electrode into paralyzed thyroarytenoid muscles by LEMG guidance. Various glottal closure evaluations such as normalized glottal gap area, maximal phonation time, phonation quotient, mean airflow rate, perceptual GRBAS (grade, roughness, breathiness, asthenia, strain) scale, and Voice Handicap Index were compared before and after injection using the nonparametric Wilcoxon signed rank test within 1 month, at 6 months, and at the last follow-up examination. Sixty patients had been followed up for at least 6 months. Forty-four patients received only 1 injection, and 16 patients received repeated injections (2 injections for 13 patients and 3 for 3 patients). All the glottal closure parameters improved significantly (P injection and 16 (22%) who received repeated injections did not require another treatment after long-term follow-up. Laryngeal electromyography-guided hyaluronic acid VF injection is an option for treating UVFP with satisfactory results.

  5. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study

    Directory of Open Access Journals (Sweden)

    Nagano Yasuharu

    2011-07-01

    Full Text Available Abstract Background Some research studies have investigated the effects of anterior cruciate ligament (ACL injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes. Methods Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program. Results After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE: 24.4 (2.1 deg was significantly larger than that for the Pre-training trial (19.3 (2.5 deg (p Conclusions The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.

  6. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study.

    Science.gov (United States)

    Nagano, Yasuharu; Ida, Hirofumi; Akai, Masami; Fukubayashi, Toru

    2011-07-14

    Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes. Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program. After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.

  7. Quality assurance records and records' system

    International Nuclear Information System (INIS)

    Link, M.; Martinek, J.

    1980-01-01

    For nuclear power plants extensive proof of quality is required which has to be documented reliably by quality records. With respect to the paper volume it is the most comprehensive 'curriculum vitae' of the technique. Traditional methods of information and recording are unsatisfactory for meeting regulatory requirements for maintaining the QA-aspects of status reporting, completeness, traceability and retrieval. Therefore KWU has established a record (documentation) subsystem within the overall component qualification system. Examples of the general documentation requirements, the procedure and handling in accordance with this subsystem for mechanical equipment are to be described examplarily. Topics are: - National and international requirements - Definition of QA records - Modular and product orientated KWU-record subsystem - Criteria for developing records - Record control, distribution, collection, storage - New documentation techniques (microfilm, data processing) - Education and training of personnel. (orig./RW)

  8. A reconstruction of sea surface temperature variability in the southeastern Gulf of Mexico from 1734 to 2008 C.E. using cross-dated Sr/Ca records from the coral Siderastrea siderea

    Science.gov (United States)

    DeLong, Kristine L.; Maupin, Christopher R.; Flannery, Jennifer A.; Quinn, Terrence M.; Shen, CC

    2014-01-01

    This study uses skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42′N, 82°48′W) to reconstruct monthly sea surface temperature (SST) variations from 1734 to 2008 Common Era (C.E.). Calibration and verification of the replicated coral Sr/Ca-SST reconstruction with local, regional, and historical temperature records reveals that this proxy-temperature relationship is stable back to 1879 C.E. The coral SST reconstruction contains robust interannual (~2.0°C) and multidecadal variability (~1.5°C) for the past 274 years, the latter of which does not covary with the Atlantic Multidecadal Oscillation. Winter SST extremes are more variable than summer SST extremes (±2.2°C versus ±1.6°C, 2σ) suggesting that Loop Current transport in the winter dominates variability on interannual and longer time scales. Summer SST maxima are increasing (+1.0°C for 274 years, σMC = ±0.5°C, 2σ), whereas winter SST minima contain no significant trend. Colder decades (~1.5°C) during the Little Ice Age (LIA) do not coincide with decades of sunspot minima. The coral SST reconstruction contains similar variability to temperature reconstructions from the northern Gulf of Mexico (planktic foraminifer Mg/Ca) and the Caribbean Sea (coral Sr/Ca) suggesting areal reductions in the Western Hemisphere Warm Pool during the LIA. Mean summer coral SST extremes post-1985 C.E. (29.9°C) exceeds the long-term summer average (29.2°C for 1734–2008 C.E.), yet the warming trend after 1985 C.E. (0.04°C for 24 years, σMC = ±0.5, 2σ) is not significant, whereas Caribbean coral Sr/Ca studies contain a warming trend for this interval.

  9. CMS Records Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Records Schedule provides disposition authorizations approved by the National Archives and Records Administration (NARA) for CMS program-related records...

  10. Reliability of surface EMG as an assessment tool for trunk activity and potential to determine neurorecovery in SCI.

    Science.gov (United States)

    Mitchell, M D; Yarossi, M B; Pierce, D N; Garbarini, E L; Forrest, G F

    2015-05-01

    Reliability and validity study. This study investigates the responsiveness and reliability of the brain motor control assessment (BMCA) as a standardized neurophysiological assessment tool to: (i) characterize trunk neural activity in neurologically-intact controls; (ii) measure and quantify neurorecovery of trunk after spinal cord injury (SCI). Kessler Foundation Research Center, West Orange, NJ. A standardized BMCA protocol was performed to measure surface electromyography (sEMG) recordings for seven bilateral trunk muscles on 15 able-bodied controls during six maneuvers (inhalation, exhalation, neck flexion, jendrassik, unilateral grip). Additionally, sEMG recordings were analyzed for one chronic SCI individual before electrical stimulation (ES), after ES of the lower extremities while supine, and after active stand training using body-weight support with bilateral ES. sEMG recordings were collected on bilateral erector spinae, internal and external obliques, upper and middle trapezius, biceps and triceps. For each maneuver a voluntary response index was calculated: incorporating the magnitude of sEMG signal and a similarity index (SI), which quantifies the distribution of activity across all muscles. Among all maneuvers, the SI presented reproducible assessment of trunk-motor function within (ICC: 0.860-0.997) and among (P⩾0.22) able-bodied individuals. In addition, potential changes were measured in a chronic SCI individual after undergoing two intensive ES protocols. The BMCA provides reproducible characterization of trunk activity in able-bodied individuals, lending credence for its use in neurophysiological assessment of motor control. Additionally, the BMCA as an assessment tool to measure neurorecovery in an individual with chronic SCI after intense ES interventions was demonstrated.

  11. Use of electromyography to assess pain in the upper trapezius and lower back muscles within a fatigue protocol Uso da eletromiografia na análise de dor dos músculos trapézio superior e lombares durante protocolo de fadiga

    Directory of Open Access Journals (Sweden)

    CT Candotti

    2009-04-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate whether muscle fatigue indices obtained using surface electromyography and calculated in the time and frequency domains would be capable of objectively diagnosing pain and discriminating between subjects with and without pain in the upper trapezius muscle and the lower back muscles. METHODS: Forty-seven individuals underwent a muscle fatigue test for thirty-five seconds at 80% of the maximal voluntary contraction (MVC, while EMG and muscle force data were recorded. The RMS value and the median frequency (MF were calculated within consecutive one-second windows. Linear regression analysis was used to obtain the slope coefficients and the respective y-axis intercept values, which were considered to be localized muscle fatigue indices. RESULTS: In the frequency domain, the slope coefficients were negative for both muscles, while in the time domain, the coefficient for the upper trapezius was positive and the coefficient for the lower back muscles was negative (pOBJETIVO: A proposta do estudo foi investigar se índices de fadiga, obtidos a partir de eletromiografia de superfície, calculados no domínio do tempo e da frequência, são capazes de diagnosticar a dor objetivamente, discriminando entre sujeitos com e sem dor no trapézio superior e nos músculos lombares. MÉTODOS: Quarenta e sete indivíduos foram submetidos a um teste de fadiga muscular por 35s a 80% da contração voluntária máxima (CVM, enquanto EMG e força muscular foram registradas. O valor RMS e a mediana da frequência (MF foram calculados em janelas consecutivas de 1s. Análise de regressão linear foi utilizada para obter os coeficientes de inclinação e seus respectivos valores de interseção no eixo y, os quais foram considerados índices de fadiga muscular localizada. RESULTADOS: Os coeficientes de inclinação analisados no domínio da frequência apresentaram comportamento similar, sendo negativos para ambos os m

  12. Surgical medical record

    DEFF Research Database (Denmark)

    Bulow, S.

    2008-01-01

    A medical record is presented on the basis of selected linguistic pearls collected over the years from surgical case records Udgivelsesdato: 2008/12/15......A medical record is presented on the basis of selected linguistic pearls collected over the years from surgical case records Udgivelsesdato: 2008/12/15...

  13. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  14. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  15. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  16. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  17. Record Summer Melt in Greenland in 2010

    NARCIS (Netherlands)

    Tedesco, M.; Fettweis, X.; van den Broeke, M.R.; van de Wal, R.S.W.; Smeets, C.J.P.P.; van de Berg, W.J.; Serreze, M.C.; Box, J.E.

    2011-01-01

    As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass balance of the Greenland ice sheet requires appreciation of the close links among changes in surface

  18. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 1.00m; Data Range: 20020724-20020920.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  19. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20020911-20030305.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  20. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20040622-20040808.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  1. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20040919-20050411.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); AMSM, ROS; Long: -168.16025, Lat: -14.55134 (WGS84); Sensor Depth: 1.00m; Data Range: 20060307-20080312.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  3. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10280, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20060326-20071017.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  4. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 1.00m; Data Range: 20020224-20020420.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  5. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); AMSM, ROS; Long: -168.16025, Lat: -14.55134 (WGS84); Sensor Depth: 1.00m; Data Range: 20060307-20070902.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  6. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, PHR; Long: -175.81612, Lat: 27.85325 (WGS84); Sensor Depth: 1.00m; Data Range: 20020918-20030314.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  7. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20050413-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10283, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20020315-20021023.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 1.00m; Data Range: 20020424-20020802.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, LIS; Long: -173.91608, Lat: 25.96767 (WGS84); Sensor Depth: 1.00m; Data Range: 20011020-20011225.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 1.00m; Data Range: 20040629-20041005.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); CNMI, SAI; Long: 145.72288, Lat: 15.23746 (WGS84); Sensor Depth: 1.00m; Data Range: 20050921-20060525.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 1.00m; Data Range: 20040924-20051014.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  14. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, PHR; Long: -175.81595, Lat: 27.85396 (WGS84); Sensor Depth: 0.91m; Data Range: 20060915-20080828.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  15. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, PHR; Long: -175.81590, Lat: 27.85408 (WGS84); Sensor Depth: 0.50m; Data Range: 20030801-20030810.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 1.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 1.00m; Data Range: 20011022-20020325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  18. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 1.00m; Data Range: 20020922-20030316.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  19. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20050411-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  20. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, PHR; Long: -175.81590, Lat: 27.85408 (WGS84); Sensor Depth: 1.00m; Data Range: 20020505-20020810.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  1. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 1.00m; Data Range: 20040209-20041002.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 1.00m; Data Range: 20051016-20060907.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  3. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, PHR; Long: -175.81612, Lat: 27.85325 (WGS84); Sensor Depth: 1.00m; Data Range: 20030812-20040428.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  4. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, KUR; Long: -178.34453, Lat: 28.41852 (WGS84); Sensor Depth: 1.00m; Data Range: 20060918-20080929.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  5. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10289, Lat: 05.88463 (WGS84); Sensor Depth: 1.00m; Data Range: 20080401-20100410.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  6. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10289, Lat: 05.88463 (WGS84); Sensor Depth: 1.00m; Data Range: 20080401-20090515.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  7. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, KUR; Long: -178.34453, Lat: 28.41852 (WGS84); Sensor Depth: 1.00m; Data Range: 20060917-20080929.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 1.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20011017-20020120.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 1.00m; Data Range: 20051020-20060907.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 1.00m; Data Range: 20021001-20030321.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10280, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20060326-20080401.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. A Real-Time Pinch-to-Zoom Motion Detection by Means of a Surface EMG-Based Human-Computer Interface

    Directory of Open Access Journals (Sweden)

    Jongin Kim

    2014-12-01

    Full Text Available In this paper, we propose a system for inferring the pinch-to-zoom gesture using surface EMG (Electromyography signals in real time. Pinch-to-zoom, which is a common gesture in smart devices such as an iPhone or an Android phone, is used to control the size of images or web pages according to the distance between the thumb and index finger. To infer the finger motion, we recorded EMG signals obtained from the first dorsal interosseous muscle, which is highly related to the pinch-to-zoom gesture, and used a support vector machine for classification between four finger motion distances. The powers which are estimated by Welch’s method were used as feature vectors. In order to solve the multiclass classification problem, we applied a one-versus-one strategy, since a support vector machine is basically a binary classifier. As a result, our system yields 93.38% classification accuracy averaged over six subjects. The classification accuracy was estimated using 10-fold cross validation. Through our system, we expect to not only develop practical prosthetic devices but to also construct a novel user experience (UX for smart devices.

  14. A real-time pinch-to-zoom motion detection by means of a surface EMG-based human-computer interface.

    Science.gov (United States)

    Kim, Jongin; Cho, Dongrae; Lee, Kwang Jin; Lee, Boreom

    2014-12-29

    In this paper, we propose a system for inferring the pinch-to-zoom gesture using surface EMG (Electromyography) signals in real time. Pinch-to-zoom, which is a common gesture in smart devices such as an iPhone or an Android phone, is used to control the size of images or web pages according to the distance between the thumb and index finger. To infer the finger motion, we recorded EMG signals obtained from the first dorsal interosseous muscle, which is highly related to the pinch-to-zoom gesture, and used a support vector machine for classification between four finger motion distances. The powers which are estimated by Welch's method were used as feature vectors. In order to solve the multiclass classification problem, we applied a one-versus-one strategy, since a support vector machine is basically a binary classifier. As a result, our system yields 93.38% classification accuracy averaged over six subjects. The classification accuracy was estimated using 10-fold cross validation. Through our system, we expect to not only develop practical prosthetic devices but to also construct a novel user experience (UX) for smart devices.

  15. Climate Record Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Record Books contain daily, monthly, seasonal, and annual averages, extremes, or occurrences. Most data are sequential by period of record 1871-1910,...

  16. Electronic Health Records

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Electronic Health Records KidsHealth / For Teens / Electronic Health Records ...

  17. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  18. Iraq Radiosonde Launch Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  19. 40 CFR 63.4930 - What records must I keep?

    Science.gov (United States)